
Chapter 2

Mathematical problem and main results

2.1 Intial boundary value problem for hydrodynamic model

By assuming the physical coefficients in (1.9) are positive constants and letting ε′ = 1, we
have a system of equations

ρs +mx = 0, (2.1a)

ms +

(
m2

ρ
+ ρθ

)
x

= ρϕx −
m

τm
, (2.1b)

ρθs +mθx +
2

3

(
m

ρ

)
x

ρθ − 2

3
(τmκ0θx)x =

2τe − τm
3τmτe

m2

ρ
− ρ

τe
(θ − 1), (2.1c)

ϕxx = ρ−D. (2.1d)

We study the initial boundary value problem for (2.1) with a spatial variable x ∈ Ω :=
(0, 1) and a time variable s > 0. The unknown functions ρ, m, θ and ϕ stand for the
electron density, the current density, the electron temperature and the electrostatic potential,
respectively. Positive constants τm and τe are the momentum relaxation time and the energy
relaxation time, respectively. From the physical point of view, it holds that 0 < τm ≤ τe.
Positive constant τmκ0 corresponds to the thermal conductivity. A doping profileD(x), which
determines the electric property of semiconductors, is assumed to be a bounded continuous
and positive function of the spatial variable x, that is,

D ∈ B0(Ω), inf
x∈Ω

D(x) > 0. (2.2)
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The initial and the boundary data to the system (2.1) are prescribed as

(ρ,m, θ)(0, x) = (ρ0,m0, θ0)(x). (2.3)
ρ(t, 0) = ρl > 0, ρ(t, 1) = ρr > 0, (2.4)

θx(t, 0) = θx(t, 1) = 0, (2.5)
ϕ(t, 0) = 0, ϕ(t, 1) = ϕr ≥ 0 (2.6)

with given constants ρl, ρr and ϕr. In typical devices (see [10]), ρl and ρr coincide with
the boundary value of the doping profile, that is, ρl = ρr = D(0) = D(1) however we
do not assume this condition. The constant ϕr means voltage applied to the devices. In
engineering, it is preferable to design devices to have stable steady flow with small voltage
to save electricity. Thus it is admissible to assume that the difference between boundary
values

δ := |ρr − ρl|+ |ϕr|,

which is called a boundary strength, is small from physical point of view. Throughout the
present paper we assume the smallness of the boundary strength δ. It is also assumed that
the initial data (ρ0,m0, θ0) is compatible with boundary data (2.4), (2.5) and ρt(t, 0) =
ρt(t, 1) = 0:

ρ0(0) = ρl, ρ0(1) = ρr, (2.7a)
θ0x(0) = θ0x(1) = 0, (2.7b)
m0x(0) = m0x(1) = 0 (2.7c)

to establish the strong solution.
Solving the Poisson equation (2.1d) with using (2.6), we have an explicit formula of

electrostatic potential

ϕ(t, x) = Φ[ρ](t, x)

:=

∫ x

0

∫ y

0

(ρ−D)(t, z) dzdy +

(
ϕr −

∫ 1

0

∫ y

0

(ρ−D)(t, z) dzdy

)
x. (2.8)

The initial boundary value problem (2.1) and (2.3)–(2.6) is studied under the initial condition
that

inf
x∈Ω

ρ0 > 0, inf
x∈Ω

θ0 > 0, inf
x∈Ω

(
θ0 −

m2
0

ρ20

)
> 0. (2.9)

In fact, we construct the solution satisfying the same conditions for an arbitrary t > 0 under
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the initial assumptions as in (2.9). Namely,

inf
x∈Ω

ρ > 0, (2.10a)

inf
x∈Ω

θ > 0, (2.10b)

inf
x∈Ω

(
θ − m2

ρ2

)
> 0. (2.10c)

The conditions (2.10a) and (2.10b) means positivity of the density and the temperature,
respectively. We call the condition (2.10c) a subsonic condition in analogy of fluid dynamics.
By straightforward computation, we see it is equivalent to the property that one characteris-
tic speed of the hyperbolic equations (2.1a) and (2.1b) is negative and the other is positive:

m

ρ
−
√
θ < 0,

m

ρ
+
√
θ > 0.

Therefore we need one condition on each boundary x = 0, 1 for (2.1a) and (2.1b). We also
need two boundary conditions for the parabolic equation (2.1c) and the elliptic equation
(2.1d). In total, the three boundary conditions in (2.4)–(2.6) are necessary and sufficient for
the well-posedness of the initial boundary value problem (2.1), (2.3) and (2.4)–(2.6) at least
locally in time.

2.2 Formal computation of relaxation limits
In Section 1.2, we have studied formal computations of the relaxation limits for the multi-
dimensional hydrodynamic model (1.1). To clarify the main mathematical problems in the
present paper, we again discuss the relaxation limits for the one-dimensional model (2.1).
Here we also derive the initial and the boundary data for the drift-diffusion and the energy-
transport models from (2.3)–(2.6).

In the same way as in Section 1.2, we employ scaled variables

t := τms, j :=
m

τm
, ε := τ 2m, ζ := τmτe.

and substitute them in (2.1). This computation gives a system of equations

ρt + jx = 0, (2.11a)

εjt +

(
ε
j2

ρ
+ ρθ

)
x

= ρϕx − j, (2.11b)

ρθt + jθx +
2

3

(
j

ρ

)
x

ρθ − 2

3
κ0θxx =

(
2

3
− ε

3ζ

)
j2

ρ
− ρ

ζ
(θ − 1), (2.11c)

ϕxx = ρ−D, (2.11d)



16 CHAPTER 2. MATHEMATICAL PROBLEM AND MAIN RESULTS

which is called a hydrodynamic model, too. The initial data to (2.11) are derived from (2.3)
as

ρ(0, x) = ρ0(x), (2.12a)
j(0, x) = j0(x) := (m0/τm)(x), (2.12b)

θ(0, x) = θ0(x). (2.12c)

The boundary data to (2.11) is prescribed by (2.4)–(2.6). The subsonic condition (2.10c) is
rewritten as

inf
x∈Ω

S[ρ, j, θ] > 0, S[ρ, j, θ] := θ − ε
j2

ρ2
. (2.13)

Note the positivity of the temperature (2.10b) immediately implies that the subsonic condi-
tion (2.13) holds for the sufficiently small momentum relaxation τm =

√
ε.

Letting the parameter ε tend to zero in (2.11) with ζ kept constant formally yields the
energy-transport model

ρt + jx = 0, (2.14a)

ρθt + jθx +
2

3

(
j

ρ

)
x

ρθ − 2

3
κ0θxx =

2

3

j2

ρ
− ρ

ζ
(θ − 1), (2.14b)

ϕxx = ρ−D, (2.14c)

where the electric current is explicitly given by

j = ρϕx − (θρ)x. (2.14d)

The initial and the boundary data to (2.14) are also prescribed by (2.12a), (2.12c) and (2.4)–
(2.6). Furthermore, letting the parameter ζ tend to zero in (2.14) or letting the parameters
ε and ζ tend to zero in (2.11) yields the drift-diffusion model

ρt + jx = 0, (2.15a)
ϕxx = ρ−D (2.15b)

with the electric current
j = ρϕx − ρx. (2.15c)

Here the initial and the boundary data to (2.15) are given by (2.4), (2.6) and (2.12a).
The remained case is to make the parameter ζ tend to zero with ε kept constant. This

formal limit yields the isothermal hydrodynamic model

ρt + jx = 0,

εjt +

(
ε
2j2

3ρ
+ ρ

)
x

= ρϕx − j,

ϕxx = ρ−D.
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This computation, however, is not admissible from physical point of view since ε < ζ.
Moreover, we have the drift-diffusion model by letting the parameter ε tend to zero in the
isothermal hydrodynamic model. The limit procedures above are called relaxation time
limits or relaxation limits in short. They are summarized in the next figure.

HHD

HD ET

DD

ε→0

ε→0 ζ→0

ζ→0

ζ→0

ε→0

ε fixed ζ fixed
(i)

(ii)

(iii)(∗)

Figure 2.1: HHD, ET, DD and HD mean the hydrodynamic, the energy-transport, the
drift-diffusion, the isothermal hydrodynamic models, respectively.

In the authors’ paper [33], the relaxation limit (∗) in Figure 2.1 have been justified
rigorously. Thus the main purpose of the present paper is the justification of the other
limits. Precisely, we show that (i) the solution for the hydrodynamic model (2.1) converges
to that for the energy-transport model (2.14) as ε tends to zero; (ii) the solution for the
hydrodynamic model converges to that for the drift-diffusion model (2.15) as ε and ζ tend
to zero; (iii) the solution for the energy-transport converges to that for the drift-diffusion
model as ζ tends to zero. The above three assertions hold for the solutions globally in time
without any restriction on the norm of the initial data as far as it belongs to the suitable
Sobolev space. Hence we firstly have to establish the time global existence of the solutions
to these models. In these procedures, we also show that their asymptotic behaviors are given
by the corresponding stationary solutions.

2.3 Asymptotic behavior of hydrodynamic model
The asymptotic stability of a stationary solution to (2.11) for the large initial data (ρ0, j0, θ0)
is one of the main results. The authors have shown the stability theorem for a small initial
disturbance from the stationary solution in [32], where the authors adopt the Dirichlet
boundary condition for the electron temperature in place of the Neumann boundary condition
(2.5), that is, θ(t, 0) = θl and θ(t, 1) = θr. Precisely it is shown that the solution (ρ, j, θ, ϕ)
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to the problem (2.1) converges to the corresponding stationary solution (ρ̃, j̃, θ̃, ϕ̃) as time
tends to infinity provided that the initial disturbance ∥(ρ0 − ρ̃, j0 − j̃, θ− θ̃)∥2 is sufficiently
small. In the present research, we show the stability theorem for the boundary condition
(2.5) without any smallness assumption on the initial disturbance. Instead of it, we assume
that the parameters ε and ζ are sufficiently small.

The stationary solution (ρ̃, j̃, ϕ̃) is a solution to (2.11) independent of a time variable t.
Since (1/ρ̃)xρ̃ = −(log ρ̃)x, it versifies

j̃x = 0, (2.17a)

S[ρ̃, j̃, θ̃]ρ̃x + ρ̃θ̃x = ρ̃ϕ̃x − j̃, (2.17b)

j̃θ̃x −
2

3
j̃θ̃ (log ρ̃)x −

2

3
κ0θ̃xx =

(
2

3
− ε

3ζ

)
j̃
2

ρ̃
− ρ̃

ζ
(θ̃ − 1), (2.17c)

ϕ̃xx = ρ̃−D (2.17d)

and the boundary conditions

ρ̃(0) = ρl > 0, ρ̃(1) = ρr > 0, (2.18)

θ̃x(0) = θ̃x(1) = 0, (2.19)

ϕ̃(0) = 0, ϕ̃(1) = ϕr > 0. (2.20)

In Section 2.1, the unique existence of the stationary solution is proven (see Theorem 3.5).
Its asymptotic stability is summarized in

Theorem 2.1. Let (ρ̃, j̃, θ̃, ϕ̃) be the stationary solution of (2.17)–(2.20). Suppose that the
initial data (ρ0, j0, θ0) ∈ H2(Ω)×H2(Ω)×H3(Ω) and the boundary data ρl, ρr and ϕr satisfy
the conditions (2.4), (2.6), (2.7), (2.10a), (2.10b) and (2.13). Then there exist positive
constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, there exist a positive constant ε0,
depending on ζ but independent of δ, such that if ε ≤ ε0, the initial boundary value problem
(2.11), (2.12) and (2.4)–(2.6) has a unique solution (ρ, j, θ, ϕ) satisfying ρ, j ∈ X2([0,∞)),
θ, θx ∈ Y([0,∞)), ϕ ∈ C2([0,∞);H2(Ω)) and the conditions (2.10a), (2.10b) and (2.13).
Moreover, the solution (ρ, j, θ, ϕ) verifies the additional regularity ϕ − ϕ̃ ∈ X2

2([0,∞)) and
the decay estimate

∥(j − j̃)(t)∥21 + ∥(ρ− ρ̃, θ − θ̃)(t)∥22
+ ε∥(∂2x{j − j̃}, ∂3x{θ − θ̃})(t)∥2 + ∥(ϕ− ϕ̃)(t)∥24 ≤ Ce−αt, (2.21)

where C and α are positive constants depending on ζ but independent of δ, ε and t.
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Remark 2.2. The initial data in Theorem 2.1 are able to be taken arbitrarily large in the
Sobolev space H2×H2×H3. Hence, we see that the original problem (2.1) and (2.3)–(2.6) has
a time global solution for the large electron density ρ0(x) and the electron temperature θ0(x)
at initial time. On the other hand, H2-norm of the current density m0(x) = τmj0(x) might
be small. However, it is an admissible condition for the situation immediately after voltage
is applied to the devices since there are no current of electrons before, that is, m0(x) = 0.

2.4 Relaxation time limits
The results on the relaxation limit from the hydrodynamic model (2.11) to the energy-
transport model (2.14) is summarized in Theorem 2.3 below. To study them we have to
establish the existence and the stability of the stationary solution for the energy-transport
model, which are proven in Section 3 and 4 (see Theorems 3.5 and 4.2). Let us note that we
prescribe two initial conditions for (2.14) while three initial conditions in (2.12) are necessary
for (2.11). Here the initial value j(0, x) to (2.14) is determined by (2.8), (2.12a), (2.12c) and
(2.14d), that is,

j(0, x) = (−(θ0ρ0)x + ρ0{Φ[ρ0]}x)(x).

In general, the initial data (2.12a) to (2.11) is not necessarily in the “momeuntam equilibrium”
states j0(x) = (−(θ0ρ0)x+ρ0{Φ[ρ0]}x)(x). Hence, in the justification of the relaxation limits,
the difference between j0(x)− j(0, x) gives rise to the initial layer. However, it is shown that
the layer decays as time t tends to infinity and/or the parameter ε tends to zero.

Theorem 2.3. Suppose that the initial data (ρ0, j0, θ0) ∈ H2(Ω)×H2(Ω)×H3(Ω) and the
boundary data ρl, ρr and ϕr satisfy the conditions (2.4), (2.6), (2.7), (2.10a), (2.10b) and
(2.13). Then there exist positive constants δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, there
exists a positive constant ε0, depending on ζ but independent of δ, such that if ε ≤ ε0, the
time global solution (ρεζ , j

ε
ζ , θ

ε
ζ , ϕ

ε
ζ) for the problem (2.11), (2.12) and (2.4)–(2.6) converges to

the time global solution (ρ0ζ , j
0
ζ , θ

0
ζ , ϕ

0
ζ) for the problem (2.14), (2.12a), (2.12c) and (2.4)–(2.6)

as ε tends to zero. Precisely, the following estimates hold for an arbitrary t ∈ (0,∞).

∥(ρεζ − ρ0ζ , θ
ε
ζ − θ0ζ)(t)∥21 + ∥(ϕε

ζ − ϕ0
ζ)(t)∥23 ≤ Cεγ, (2.22)

∥(jεζ − j0ζ )(t)∥2 ≤ ∥(j0 − j0ζ )(0)∥2e−t/ε + Cεγ, (2.23)
∥(∂2x{ρεζ − ρ0ζ}, ∂1x{jεζ − j0ζ}, ∂2x{θεζ − θ0ζ}, ∂4x{ϕε

ζ − ϕ0
ζ})(t)∥2 ≤ Cεγ(t−2 + 1), (2.24)

where γ and C are positive constants depending on ζ but independent of ε, δ and t.

Furthermore, we justify the relaxation limit from the energy-transport model (2.14) to
the drift-diffusion model (2.15). Similarly as in the relaxation limit from (2.11) to (2.14),
the initial layer occurs due to the difference θ0−1 since the initial data θ0 is not nessesary in
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the “energy equilibrium” θ0 = 1. The layer is also shown to decay as time t tends to infinity
and/or the parameter ε tends to zero. This result is summarized in the next lemma. Here
the existence of the time global solution to (2.15) has been proven in the author’s previous
paper [33].

Theorem 2.4. Suppose that the initial data (ρ0, θ0) ∈ H1(Ω) and the boundary data ρl, ρr
and ϕr satisfy (2.4), (2.6), (2.7a), (2.10a) and (2.10b). Then there exist positive constants
δ0 and ζ0 such that if δ ≤ δ0 and ζ ≤ ζ0, then the time global solution (ρ0ζ , j

0
ζ , θ

0
ζ , ϕ

0
ζ) for

the problem (2.14), (2.12a), (2.12c) and (2.4)–(2.6) converges to the time global solution
(ρ00, j

0
0 , ϕ

0
0) for the problem (2.15), (2.12a), (2.4) and (2.6) as ζ tends to zero. Precisely, the

following estimates hold for an arbitrary t ∈ [0,∞).

∥(ρ0ζ − ρ00)(t)∥2 + ∥(ϕ0
ζ − ϕ0

0)(t)∥22 ≤ Cζγ, (2.25)

∥(θ0ζ − 1)(t)∥2 ≤ C∥θ0 − 1∥2e−νt/ζ + Cζγ , (2.26)
∥({ρ0ζ − ρ00}x, {θ0ζ}x, j0ζ − j00)(t)∥2 ≤ Cζγ(1 + t−1), (2.27)

where ν, γ and C are positive constants independent of ζ, δ and t.

The next corollary, concerning the relaxation limit from the hydrodynamic model (2.11)
to the drift-diffusion model (2.15), immediately follows from Theorems 2.3 and 2.4.

Corollary 2.5. Assume the same conditions as in Theorems 2.3 and 2.4. Then the time
global solution (ρεζ , j

ε
ζ , θ

ε
ζ , ϕ

ε
ζ) for the problem (2.11), (2.12) and (2.4)–(2.6) converges to the

time global solution (ρ00, j
0
0 , 1, ϕ

0
0) for the problem (2.15), (2.12a), (2.4) and (2.6) as ε and ζ

tend to zero. Precisely, the following estimates hold for an arbitrary t ∈ (0,∞).

∥(ρεζ − ρ00)(t)∥2 + ∥(ϕε
ζ − ϕ0

0)(t)∥22 ≤ Cζγ + Cεγ, (2.28)

∥(θεζ − 1)(t)∥2 ≤ C∥θ0 − 1∥2e−νt/ζ + Cζγ + Cεγ, (2.29)

∥(jεζ − j00)(t)∥2 ≤ C∥(j0 − j00)(0)∥2e−t/ε + Cζγ(1 + t−1) + Cεγ, (2.30)

∥({ρεζ − ρ00}x, {θεζ}x)(t)∥2 ≤ Cζγ(1 + t−1) + Cεγ. (2.31)

Here γ and C are positive constants depending on ζ but independent of ε, δ and t. Also ν,
γ and C are positive constants independent of ε, ζ, δ and t.

Remark 2.6. If we regard the time when voltage is applied on the device as initial time
t = 0, then it is physically admissible that the initial temperature coincides with the ambient
temperature, that is, θ0 = 1. In this typical setting, we can improve the results in Theorem
2.3 and/or Corollary 2.5. Precisely, if θ0 = 1 in Theorem 2.3 and Corollary 2.5, we can
explicitly write the dependence on the constants γ and C in the inequalities (2.22)–(2.24) and
(2.28)–(2.31) with respect to ζ. Namely, the constant Cεγ in these inequalities are replaced
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by C{ε+ (ε/ζ)2}γ, where γ and C are positive constants independent of ε, ζ, δ and t. This
fact means that the time global solution to the hydrodynamic model converges to those to the
energy-transport and/or the drift-diffusion models as ε and/or ζ tend to zero if the inequality
ε1−a ≤ ζ hold for an arbitrarily fixed constant a ∈ (0, 1). See Remarks 4.18 and 5.17.

2.5 Outline of proofs

In Section 3.1, we begin detailed discussion with the proof of the unique existence of the
stationary solutions for the hydrodynamic and the energy-transport models. The existence
is established by the Schauder fixed-point theorem. The uniqueness follows from the en-
ergy method. The relaxation limits for the stationary solutions are justified in Section 3.2.
Precisely, we show that (i) the stationary solution for the hydrodynamic model converges
to that for the energy-transport model as ε tends to zero; (ii) the stationary solution for
the energy-transport converges to that for the drift-diffusion model as ζ tends to zero; (iii)
the stationary solution for the hydrodynamic model converges to that for the drift-diffusion
model (2.15) as ε and ζ tend to zero. These results are proven by the standard energy
method and utilized to show the relaxation limits for the non-stationary solutions.

In Section 4.1–4.3, we discuss about the asymptotic stability of the stationary solution
for the energy-transport model with the large initial data. The stability theorem is shown by
the following three steps. It is firstly shown that there exists positive time T∗ independent
of ζ such that the energy-transport model has a unique solution until T∗ in Section 4.1.
Secondly, a “semi-global existence” of the solution is established in Section 4.2. Precisely,
we prove that the solution exists until arbitrary time T by assuming ζ is sufficiently small.
Then we confirm that the difference between the non-stationary and the stationary solutions
becomes arbitrarily small by taking time T large enough. In Section 4.3, we thirdly prove
the stability theorem for the small initial disturbance. Consequently, these three results in
Sections 4.1–4.3 complete the proof of the stability theorem with the large initial data. The
theorem also shows that the solution converges to the stationary solution exponentially fast.

In Section 4.4, Theorem 2.4 shows that the relaxation limit from the energy-transport
model to the drift-diffusion model is justified for the time global solution. In the proof, to
handle the initial layer, we employ the time weighted energy method and then show that
the layer decays exponentially fast as the parameter ζ tends to zero and/or time t tends to
infinity. The key of the proof is the facts that the solutions for both models converge to the
corresponding stationary solutions exponentially fast and that the both stationary solutions
are close to each other in the Sobolev space.

We study in Sections 5.1–5.3 the stability of the stationary solution for the hydrodynamic
model with the large initial data, by the essentially same procedures in Sections 4.1–4.3.
Precisely, it is shown in Section 5.1 that the existence time of the local solution is independent
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of the parameter ε. In Section 5.2, we prove the “semi-global existence”. The stability
theorem with the small initial disturbance is proven in Section 5.3. These three procedures
complete the proof of Theorem 2.1.

In Section 5.4, we prove Theorem 2.3 and Corollary 2.5, which ensure the justification
of the relaxation limits to the energy-transport and the drift-diffusion models, respectively.
Namely, it is shown that the time global solution for the hydrodynamic model converges to
that for the energy-transport and the drift-diffusion models as the relaxation times tend to
zero. In these proofs, the time weighted energy method and the convergence rate toward the
stationary solutions play essential roles similarly as in Sections 4.4.


