
CHAPTER 6

The Case of Complex Codimension One

The Godbillon–Vey class of real codimension-one foliations is deeply studied.

One of the most significant results is due to Duminy.

Theorem 6.1 (Duminy [27]). Let F be a real codimension-one foliation of a

closed manifold M . Then, GV1(F) is non-trivial only if F admits a resilient leaf.

A leaf of F is called resilient if the leaf admits a holonomy by which the leaf

accumulates on itself. It is known that F admits a minimal set other than a closed

leaf if there is a resilient leaf, and F has a leaf of exponential growth. This is shown

by carefully studying minimal sets.

If the codimension of F is greater than one, then there is a following analogue

shown by Hurder.

Theorem 6.2 (Hurder [47], [48]). Let F be a real codimension-q foliation of a

closed manifold M . Suppose that GVq(F) is non-trivial, then F admits a leaf of

exponential growth.

This theorem is shown by regarding h1 as a measure and studying its support.

Compared with the real codimension-one case, study of minimal sets is much

more difficult even if F is of complex codimension-one. There are however useful

notions related to complex one-dimensional dynamical systems. For example, there

are Julia sets of complex dynamical systems and limit sets of Kleinian groups.

These two notions are considered to be of the same nature (Sullivan’s dictionary).

Roughly speaking, dynamics are complicated on Julia sets or limit sets, and simple
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116 6. THE CASE OF COMPLEX CODIMENSION ONE

on the complement which are called Fatou sets or domains of discontinuity. One

can expect that there is also a similar decomposition, which we call a Fatou–Julia

decomposition, of transversely holomorphic foliations of complex codimension one,

and that Julia sets play a role of minimal sets. Such a decomposition is firstly

introduced by Ghys, Gomez-Mont and Saludes in [30]. We will call it the GGS-

decomposition, and here introduce another decomposition after [11].

Let F be a transversally holomorphic foliation of a closed manifold M . If we

choose a complete transversal T , which is possibly disconnected, then we can asso-

ciate the holonomy pseudogroup Γ of F acting on T . Thus obtained pseudogroups

are compactly generated.

Definition 6.3 (Haefliger [37]). A pseudogroup (Γ, T ) is compactly generated

if there are a relatively compact open set U in T which meets every orbit of Γ , and

a finite collection of elements {γ1, . . . , γr} of Γ of which the domains and the ranges

are contained in U such that

1) {γ1, . . . , γr} generates Γ |U ,
2) each γi is the restriction of an element of Γ defined on a neighborhood of

the closure of the source of γi.

(Γ |U , U) is called a reduction of (Γ, T ). A reduction of (Γ, T ) will always be denoted

by (Γ ′, T ′).

Definition 6.4. A subset X of T is called Γ -connected if X satisfies the fol-

lowing condition: if X =
∐
λ∈Λ

Xλ is the decomposition of X into its connected

components, then for any λ, λ′ ∈ Λ, there exists a sequence λ0 = λ, λ1, . . . , λr = λ′

such that Γ (Xλi
) ∩Xλi+1 �= ∅ holds for i = 0, . . . , r − 1.

Definition 6.5. Let (Γ, T ) be a compactly generated pseudogroup and let

(Γ ′, T ′) be a reduction.

1) A connected open subset U of T ′ is called a Fatou neighborhood if the

following conditions are satisfied:



6. THE CASE OF COMPLEX CODIMENSION ONE 117

(a) The germ of any element of Γ ′
x, x ∈ U , extends to an element of Γ

defined on the whole U .

(b) If we set

ΓU =
{
γ ∈ Γ dom γ = U , and γ is the extension of the germ of

an element of Γ ′ as above

}
= {γ ∈ Γ dom γ = U and γ(x) ∈ T ′ for some x ∈ U} ,

then ΓU is a normal family.

2) The union of Fatou neighborhoods is called the Fatou set of (Γ ′, T ′) and

denoted by F (Γ ′). The complement of the Fatou set is called the Julia set

of (Γ ′, T ′) and denoted by J(Γ ′).

3) The Fatou set of (Γ, T ) is the Γ -orbit of F (Γ ′), namely, F (Γ ) = Γ (F (Γ ′)).

The Julia set of (Γ, T ) is the complement of F (Γ ) and denoted by J(Γ ).

4) Γ -connected components of F (Γ ) and J(Γ ) are called the Fatou components

and Julia components, respectively.

If x ∈ F (Γ ), then any Fatou neighborhood U ⊂ F (Γ ′) which contains x is called a

Fatou neighborhood of x, where (Γ ′, T ′) is a reduction of (Γ, T ) such that x ∈ T ′.

Remark 6.6.

1) F (Γ ) is open and Γ -invariant. J(Γ ) is closed and Γ -invariant.

2) It is known that we may assume that T ′ is a disjoint union of finite number

of discs in C. Then, the condition (b) in 1) is always satisfied by virtue of

Montel’s theorem. On the other hand, it is necessary to fix a domain of

definition in order to speak of normal families. This leads to the condition

(a) in 1) of Definition 6.5.

3) J(Γ ) = Γ (J(Γ ′)).

The following lemmata are some of the fundamental properties of the Fatou–

Julia decomposition. The proofs are not quite difficult but we omit them.

Lemma 6.7. The Fatou set of Γ is well-defined, namely, the decomposition

T = F (Γ )� J(Γ ) is independent of the choice of the reduction (Γ ′, T ′).
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Lemma 6.8. Let (Γ, T ) and (Δ,S) be compactly generated pseudogroups. If Φ

is an equivalence from (Γ, T ) to (Δ,S), then Φ(F (Γ )) = F (Δ).

Lemma 6.8 implies that the Fatou–Julia decomposition has naturality, and it

justifies the following definition.

Definition 6.9. The Fatou set of F is the saturation of F (Γ ) ⊂ T ⊂ M , and

denoted by F (F). The Julia set is the complement of F (F) and denoted by J(F).

The connected components of the Fatou set and the Julia set are called the Fatou

components and the Julia components, respectively.

One of the fundamental properties of the Fatou set is the following.

Theorem 6.10 ([11]). There is a Γ -invariant Hermitian metric on F (Γ ), and

F|F (F) is transversely Hermitian.

An invariant metric in Theorem 6.10 is constructed as follows. For simplicity we

will explain the construction of a norm instead of a metric. First we fix a Hermitian

metric on F (Γ ), which is considered as an open subset of C. Let | · | denote the

norm with respect to the fixed metric. For v ∈ TxF (Γ
′), set ‖v‖ = sup

γ
|γ∗v|, where

γ runs through elements of Γ ′ which is defined on a neighborhood of x. Thus

constructed ‖ · ‖ is not necessarily continuous, however, by carefully choosing the

initial metric, we can obtain a metric which is locally Lipschitz continuous. The

Lipschitz continuity implies that elements of Γ ′ acting on F (Γ ′) satisfies an ordinary

differential equation, and completely determined by their 1-jets. One can consider

a kind of the closure, denoted by Γ ′, of Γ ′ by collecting uniform limits of elements

of Γ ′. We can now apply classical arguments of H. Cartan [21] to show that Γ ′ is

a local Lie transformation group. Finally, by using the local group, we can classify

Fatou components and find a smooth invariant metric.

A version of the residue of ξ1(F) can be introduced by using Theorem 6.10. Let

U be an arbitrarily small neighborhood of J(F) and let V be a neighborhood of
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M \U , which is disjoint from J(F). Recall that we have to choose a Bott connection

∇b and a unitary connection ∇u in order to define ξ1(F). By Theorem 6.10, we

may choose ∇u so that ∇u = ∇b holds on V . It follows that ũ1 = 0 on V , and

the support of ξ1(∇b,∇u) is contained in M \ V . It can be shown that the class in

H3
c (V ;R) determined by ξ1(∇b,∇u) is independent of the choices. Thus obtained

class is called the residue. One can also induce a measure theoretic localization of

the Bott class to J(F) like the Godbillon measure [45]. A weak version of Duminy’s

theorem is obtained via residues and localizations.

Theorem 6.11 ([8], [11]. See also [30]). Let F be a transversely holomorphic

foliation of a closed manifold M . If ξ1(F) �= 0, then J(F) �= ∅. If moreover

GV2(F) �= 0, then the Godbillon measure is supported on J(F).

We do not know if the support of the Godbillon measure coincides with J(F).

Remark 6.12. We denote by JGGS(F) the GGS-Julia set. Then, it is known

that JGGS(F) ⊂ J(F). Hence Theorem 6.11 is also valid for JGGS(F).

The following result suggests that dynamics on J(F) will be complicated as

expected.

Theorem 6.13. If L is a leaf contained in J(F), then either

1) L admits a hyperbolic holonomy, or

2) there is a leaf which admits a hyperbolic holonomy and which accumulates

on L.

Theorem 6.13 is much weaker than existence of resilient leaves. However, to-

gether with Theorem 6.11, it gives certainly an analogue.

We refer to [11] for examples of decompositions.

Remark 6.14. Deroin and Kleptsyn [25] recently studied asymptotic behavior

of leaves under the assumption that the foliation is transversely conformal and that

the foliation does not admit any holonomy invariant measure.




