
CHAPTER 5

Relations with the Residue Theory

It is pointed out by Hurder [46] that every known example of transversely

holomorphic foliation with non-vanishing secondary classes is related to the residue

theory by Heitsch [41]. The examples considered in Chapter 3 can be also related

to the residue.

We begin by recalling the notion of the residue for transversely holomorphic

foliations by Heitsch [41]. The original paper deals with real foliations. Here we

formulate the residue theory for transversely holomorphic foliations after straight-

forward modifications.

Let F be a transversely holomorphic foliation onM and let TCM ,E andQ(F) be

as in Definition 1.1.4. Sections of TCM are nothing but C-valued vector fields onM .

Definition 5.1. A C-valued vector field X is called a Γ -vector field for F if

[E,X] ⊂ E, namely, if [s,X] is a local section of E for any local section s of E.

Definition 5.2. Let X be a Γ -vector field. The singular set of X is the union

of points x of M where X(x) ∈ Ex and denoted by SingX.

A Γ -vector field is locally of the form X =

q∑
i=1

fi
∂

∂zi
modulo sections of E,

where fi’s are locally constant along the leaves and holomorphic in the transversal

direction. The singular set SingX is saturated, namely, it is a union of leaves of F .

Let E and X be as above. Then they span an integrable subbundle of TCM on

M \ SingX. The induced foliation FX is transversely holomorphic and of complex

codimension q − 1, where q is the complex codimension of F .
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104 5. RELATIONS WITH THE RESIDUE THEORY

Definition 5.3. Let X be a Γ -vector field for F and let U be an open neighbor-

hood of SingX. A Bott connection ∇ for F is called a basic X-connection supported

off U if ∇XY = LXY for any section Y of Q(F) on a neighborhood ofM \U , where

LXY denotes the Lie derivative of Y with respect to X.

Remark 5.4. Basic X-connections are Bott connections for FX on the neigh-

borhood of M \ U in Definition 5.3.

When residues are considered, the complex normal bundle Q(F) is often as-

sumed to be trivial. But it suffices to assume the triviality of the canonical bundle∧q
Q(F)∗ for our purpose. The residue of the Bott class is constructed as follows.

If
∧q
Q(F)∗ is trivial, then the Bott class Bottq(F) = u1v

q
1(F) is well-defined as an

element of H2q+1(M ;C). More precisely, the Bott class is calculated by choosing a

Bott connection ∇b and a flat connection ∇s of
∧q
Q(F) (see Chapter 1). By using

these connections, a well-defined 1-form u1(∇b,∇s) and a 2-form v1(∇b) such that

du1(∇b,∇s) = v1(∇b) are obtained. Let X be a Γ -vector field for F and choose a

basic X-connection supported off U as a Bott connection ∇b. Then the support of

the differential form u1(∇b,∇s)v1(∇b)q is contained in U because v1(∇b)q = 0 by

the Bott vanishing theorem for FX . Thus an element of H2q+1
c (U ;C) is obtained,

where H∗
c (U ;C) denotes the compactly supported cohomology.

The residue theorem due to Heitsch is formulated as follows. For simplicity

we state the theorem assuming that Q(F) is trivial on a neighborhood of SingX.

In such a case, secondary classes are obtained from H∗(Wq) and H∗(WC

q ) (see

Definitions 1.1.19 and 1.1.14). Recall that there is a natural inclusion of H∗(Wq)

into H∗(WC

q ).

Theorem 5.5 (Heitsch [43]). Let X and U be as above and let s be a trivi-

alization of Q(F) on U . Then there is a well-defined element resω(F , X, s) ∈
H2q+1

c (U ;C) for each ω ∈ H2q+1(Wq). This element depends on FX and the homo-

topy type of s, and is called the residue of ω(F) with respect to X and s. Under the

natural mapping from H∗
c (U ;C) to H∗(M ;C), the residue is mapped to ω(F).
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The original situation considered by Heitsch in [41], [43] is as follows. In what

follows, coefficients of the cohomologies are chosen in C. Let M ∼= W × Cq+1 and

assume thatW =W×{0} is a compact leaf of F . We also assume that SingX =W

and FX is transversal to M ′ =W × S2q+1 so that FX induces a foliation F of M ′,

where S2q+1 is the unit sphere in Cq+1. The Gysin exact sequence associated with

M , M ′ and W is as follows:

· · · �� Hr(M) �� Hr(M ′)
−
∫

�� Hr−2q−1(W ) �� Hr+1(M) �� · · · ,

where −
∫

denotes the integration along the fiber. Recall that −
∫

is the composition

Hr(M ′) ∂
�� Hr+1(W × D2(q+1),M ′) ∼= Hr+1

c (M)

∫
D

�� Hr−2q−1(W ), where ∂ is the

connecting homomorphism and

∫
D

is the integration along the fiber ofW×Dq+1 →
W . Let ι : M ′ → M \ W be the inclusion. Then ι∗ induces an isomorphism of

cohomology and ι∗(Bottq(FX)) = Bottq(F) by the naturality. Hence Bottq(F)

is mapped to

∫
D

vq+1
1 (∇b) under −

∫
. Thus obtained class is the residue in the

original sense.

Example 5.6. Example 1.1.6 can be slightly modified. Let XA be a holo-

morphic vector field determined by A ∈ GL(q + 1;C), namely, let

XA =
∑

0≤i≤q
0≤j≤q

aijzj
∂

∂zi
,

where aij denotes the (i, j)-entry of A. The vector field XA has the origin as an

isolated singularity. If XA is transversal to S2q+1, then the same construction as in

Example 1.1.6 can be done. It is not always the case, however, XA induces a foliation

of a Hopf manifold as follows. Let F̃A be the foliation of Cq+1 \ {0} by the orbits of

XA. Then F̃A is invariant under the Z-action on Cq+1 \ {0} defined by v · n = λnv,

where λ is a complex number such that |λ| > 1. If we set Hλ = (Cq+1 \ {0})/Z,
then Hλ

∼= S2q+1 × S1 and F̃A induces a foliation FA of Hλ.

The canonical bundle of FA is trivial so that the classes u1vJ(FA), |J | = q,

are well-defined. To see the triviality, we fix the logarithm log λ of λ and define a
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function Ψ: (0,+∞) → C by Ψ(r) = exp

(
log r

log |λ| log λ
)
. Let ‖ · ‖ be the standard

norm on Cq+1 and set

σ̃A =
1

Ψ(‖z‖)q+1

q∑
i=0

ζidz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzq,

where ζ = Az and ζ = t(ζ0, . . . , ζq), then σ̃A induces a trivialization of KFA
.

Let S2q+1 be the unit sphere in Cq+1 and let S be the natural image of S2q+1

in Hλ. Then, we have

u1vJ(FA) =
v1vJ(A)

detA
[S].

The formula is shown as follows. If we set

ω =
1

‖z‖2 z
∗A−1dz,

then ω(XA) = 1. We set ei = Ψ(‖z‖) ∂
∂zi

for i = 0, . . . , q. Then e0, . . . , eq are

invariant under the multiplication by λ so that they induce vector fields on Hλ. Let

∇ be the unique connection on Cq+1 \ {0} which satisfies ∇Y ei = ω(Y )[XA, ei].

The connection ∇ is a Bott connection for F̃A and induces a Bott connection for

FA on Hλ. In order to evaluate u1vJ(FA), it suffices to compute

∫
S

u1vJ(FA). Let

ρ : R → R be a non-decreasing smooth function such that ρ(r) = 0 if r ≤ 0 and

that ρ(r) = 1 if r ≥ 1

2
. If we set ∇′ = ρ(‖z‖)∇, then ∇′ is a basic XA-connection

supported off U , where U is the open round ball of radius
2

3
centered at the origin.

We denote by u1vJ(∇) and u1vJ(∇′) the representatives of u1vJ(F̃A) calculated

by ∇ and ∇′, respectively. Then,∫
S

u1vJ(FA) =

∫
S2q+1

u1vJ(∇) =

∫
S2q+1

u1vJ(∇′) =
∫
D2q+2

v1vJ(Ω
′
A),

where Ω′
A is the curvature of ∇′. The right-most term is by definition the residue

of the trivial foliation of Cq+1 at {0} with respect to XA. Therefore the formula

follows from a more general formula of Baum–Bott [13, Proposition 8.67]. Under

our setting, the proof is as follows. Let ∇̃ be the connection on Cq+1 \{0} such that

∇̃ ∂

∂zi
= ω

[
XA,

∂

∂zi

]
. Then ∇̃ is also a basic XA-connection. If we denote by η̃ the
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connection form of ∇̃ with respect to

{
∂

∂z0
, . . . ,

∂

∂zq

}
, then η̃ = −Aω. Note that

(dω)q+1 = 0 by the Bott vanishing for F̃A. We set ∇̃′ = ρ(‖z‖)∇̃. Then ∇̃′ is a

basic XA-connection supported off U . Hence

∫
D2q+2

v1vJ(Ω
′
A) =

∫
D2q+2

v1vJ(Ω̃
′
A),

where Ω̃′
A is the connection form of ∇̃′. We have

Ω̃′
A = −dρ

dr
(‖z‖)z

∗ dz + z dz∗

2 ‖z‖ A ∧ ω − ρ(‖z‖)Adω

= −A
(
dρ

dr
(‖z‖)z

∗ dz + z dz∗

2 ‖z‖ ∧ ω + ρ(‖z‖) dω
)
.

It follows that

v1vJ(Ω̃
′
A) =

( −1

2π
√−1

)q+1

v1vJ(−A)
(
dρ

dr
(‖z‖)z

∗ dz + z dz∗

2 ‖z‖ ∧ ω + ρ(‖z‖) dω
)q+1

=

( −1

2π
√−1

)q+1

v1vJ(−A)(q + 1)
dρ

dr
ρq(‖z‖)z

∗ dz + z dz∗

2 ‖z‖ ∧ ω ∧ (dω)q.

We set ω′ = z∗A−1dz. Then

dω = d

(
1

‖z‖2ω
′
)

= −z
∗ dz + z dz∗

‖z‖4 ω′ +
1

‖z‖2 dω
′.

Hence, if we set C =

( −1

2π
√−1

)q+1

, then we have

v1vJ(Ω̃
′
A)

=C v1vJ(−A)(q + 1)
dρ

dr
(‖z‖)ρ(‖z‖)q z

∗ dz + z dz∗

2 ‖z‖2q+3 ∧ ω′ ∧ (dω′)q

=C v1vJ(−A)(q + 1)
dρ

dr
(‖z‖)ρ(‖z‖)q z dz∗

2 ‖z‖2q+3 ∧ ω′ ∧ (dω′)q

=C v1vJ(−A)(q + 1)!
dρ

dr
(‖z‖)ρ(‖z‖)q 1

2 ‖z‖2q+1 ∧ det(A−1)

(
q∧

i=0

dzi ∧ dzi
)

=
1

πq+1
v1vJ(A)(q + 1)ρ(r)q

dρ

dr
(‖z‖) 1

2 ‖z‖2q+1 ∧ det(A−1)volR2q+2

= v1vJ(A)(q + 1)ρ(r)q
dρ

dr
(r) dr ∧ det(A−1)volS2q+1 ,

where volR2q+2 denotes the standard volume form of R2q+2, and volS2q+1 is the

volume form of S2q+1 normalized so that vol(S2q+1) = 1. Therefore∫
D2q+2

v1vJ(Ω̃
′
A) =

v1vJ(A)

detA
.
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Note that if A is diagonal and XA is transversal to S2q+1, then FA induces the

foliation Fλ of S2q+1 in Example 1.1.6.

Example 3.3.6 is also related to residues as follows. Let M̃ = SL(q+1;C)×Cq+1.

Then SL(q + 1;C) acts on M̃ by (g, v)h = (gh, h−1v). In particular, SU(q + 1) also

acts on M̃ . We denote by π the quotient map and denote by Ñ the image of π.

Let M̃∗ = SL(q + 1;C) × (Cq+1 \ {0}) and M̃ ′ = SL(q + 1;C) × S2q+1. Then M̃∗

is invariant under the SL(q + 1;C)-action and M̃ ′ is invariant under the SU(q + 1)-

action. We set Ñ∗ = π(M̃∗) and Ñ ′ = π(M̃ ′). Let Γ be a cocompact lattice of

SL(q+1;C) such that B = Γ\SL(q+1;C)/SU(q+1) is a closed manifold. Set then

M = Γ\M̃ , M∗ = Γ\M̃∗, M ′ = Γ\M̃ ′, N = Γ\Ñ , N∗ = Γ\Ñ∗ and N ′ = Γ\Ñ ′,

where SL(q + 1;C) acts on these manifolds on the left by h(g, v) = (hg, v).

Let F̃ be the foliation of M̃ induced by the right SL(q + 1;C)-action. If T is

the holomorphic vector field on Cq+1 defined by T =

q∑
i=0

zi
∂

∂zi
, where (z0, . . . , zq)

is the standard coordinates of Cq+1, then T is a Γ -vector field for F̃ . Note that T

induces the Hopf fibration on S2q+1. We also call the foliation of C2q+1 \{0} by the

orbits of T the Hopf fibration.

Let F̃T be the singular foliation F̃T of M̃ . Then F̃T is regular on M̃∗. Indeed,

if we define f : SL(q + 1;C) × (Cq+1 \ {0}) → Cq+1 \ {0} by f(g, z) = gz, then F̃T

is the pull-back of the Hopf fibration of Cq+1 \ {0} by f . Moreover, F̃ and F̃T

naturally induce foliations F of M and FT of M∗ because they are invariant under

the natural left action of SL(q + 1;C) on M̃ and M̃∗. Finally, F̃T is transversal to

M̃ ′ so that it induces a foliation F̃ ′
T of M̃ ′. The foliation F̃ ′

T is also invariant under

the left SL(q + 1;C)-action so that it induces a foliation F ′
T of M ′. The foliations

F̃ , F̃T and F̃ ′
T are invariant under the right SU(q+1)-action. Hence they naturally

induce foliations of Ñ , Ñ∗ and Ñ ′. We denote them by G̃, G̃T and G̃′
T , respectively.

Foliations of N , N∗ and N ′ can be constructed in a similar way. We denote them

by G, GT and G′
T , respectively.



5. RELATIONS WITH THE RESIDUE THEORY 109

The canonical bundles of F̃T , F̃ ′
T , G̃T and G̃′

T are trivial, indeed, if we define a

q-form ω on Cq+1 by

ω = z0 dz1 ∧ · · · ∧ dzq − z1dz0 ∧ dz2 ∧ · · · ∧ dzq + · · ·+ (−1)qzq dz0 ∧ · · · ∧ dzq−1,

then ω(T ) = 0. The differential form f∗ω on M̃∗ induces trivializations of canonical

bundles. Since f∗ω is invariant under the left SL(q + 1;C)-action, the canonical

bundles of FT , F ′
T , GT and G′

T are also trivial. Therefore, the Bott class is well-

defined for these foliations and the Godbillon–Vey class of these foliations are trivial.

The vector field T gives rise to an S1-action which preserves FT , F ′
T , GT and G′

T .

Indeed, the action is essentially the Hopf fibration on Cq+1 \ {0}.
Let M̃ ′′ = SL(q + 1;C) × CP q. Then SL(q + 1;C) acts on M̃ ′′ by (g, [v])h =

(gh, h−1[v]). Let F̃ ′′ be the foliation of M̃ ′′ induced by the right SL(q + 1;C)-

action. Let Ñ ′′ and G̃′′ be the quotient by the induced action of SU(q + 1), and

we denote by π the quotient map by abuse of notation. We set M ′′ = Γ\M̃ ′′ and

N ′′ = Γ\Ñ ′′. They are naturally equipped with foliations induced by F̃ ′′ and G̃′′.

We denote them by F ′′ and G′′. It is well-known that (N ′′,G′′) is isomorphic to

the foliation of Γ\SL(q + 1;C)/(T 1 × SUq) given in Example 3.3.6. We have the

following commutative diagram:

M ′′

π

M ′

π

M∗

π

M

π

N ′′ N ′
p N∗ N,

where p : N ′ → N ′′ is the natural projection which is a fiberwise Hopf fibration.

Note that p∗(GV2q(G′′)) = GV2q(G′
T ) = 0. The Gysin sequence associated with p

is as follows:

· · · �� H∗(N ′)
p!

�� H∗−1(N ′′) ∪ e
�� H∗+1(N ′′)

p∗
�� H∗+1(N ′) �� · · · ,

where e =
1

(q + 1)
ch1(G′′) =

v1(G′′) + v1(G′′)
2(q + 1)

, and p! denotes the integration

along the fiber. Therefore ξq(G′′) ch1(G′′)k is mapped to a non-zero multiple of
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ξq(G′′) ch1(G′′)k+1 under ∪ e. If k = q, then ξq(G′′) ch1(G′′)q is a non-zero mul-

tiple of GV2q(G′′), and the image under ∪ e is trivial because ch1(G′′)q+1 = 0.

Hence there is an element of H4q+2(N ′) which is mapped to GV2q(G′′). Indeed,

p!(u1v1(FT )
qu1v1(FT )

q) is equal to a non-zero multiple of GV2q(G′′) by The-

orem 3.3.10.

The Gysin sequence associated with S2q+1 → N ′ → B = Γ\SL(q+1;C)/SU(q+

1) is now decomposed as follows:

H4q+2(B) �� H4q+2(N ′)
p!

�� H4q+1(N ′′)
−
∫

�� H2q+1(B)

H4q+2(N ′) ∂
�� H4q+3(N∗, N ′) t−1

�� H2q+1(B),

where t : H∗(B) → H∗+2q+2(N∗, N ′) is the Thom isomorphism, and −
∫

is the inte-

gration along the fiber. We have

−
∫
p!(u1v

q
1(FT )u1v

q
1(FT )) = −

∫
GV2q(G′′)

up to multiplications of non-zero constants, and

t−1 ◦ ∂(u1vq1(F ′
T )u1v

q
1(F ′

T )) = t−1(v1(F ′
T )

q+1u1v
q
1(F ′

T )− u1v
q
1(F ′

T )v
q+1
1 (F ′

T ))

= res((vq+1
1 u1v

q
1 − u1v

q
1v

q+1
1 ), F ′, T ).

Thus Example 3.3.6 is related to the residue. It is possible to apply this construction

to other examples involving SO(2n + 1;C), Sp(n;C) and G2 by using the Iwasawa

decomposition and naturally associated S1-bundles.

The fibration N ′ → N ′′ is also relevant for studying derivatives of the Bott

class with respect to deformations of foliations. By Theorem B2, ξq(G′′) chk1(G′′) is

rigid under deformations if k > 0. Indeed, DμBq(G′′) chk1(G′′) is trivial if k > 0 by

Corollary 4.3.30. On the other hand, if k = 0, then DμBq(G′′) belongs to the kernel

of ∪ e. Hence there is an element of H2q+2(N ′) which is mapped to DμBq(G′′).

Such an element is obtained as follows.

Assume that KF is trivial and let ω be a trivialization. We may assume that

there is a family of local trivializations {ρi = t(ρ1i , . . . , ρ
q
i )} of Q∗(F) such that
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ω = ρ1i ∧ · · · ∧ ρqi locally holds. Let μ ∈ H1(M ; ΘF ) be an infinitesimal derivative

and let σ be a representative. Let {θi} be the connection form of a Bott connection

on Q(F) with respect to the dual of {ρi}. If we set τi = tr θi, then τi determines a

globally well-defined 1-form τ thanks to the choice of {ρi}, and dω = −τ ∧ ω. Let

θ′ be the infinitesimal derivative of θ with respect to σ and set τ ′ = tr θ′. If we set

(5.7) σ̃ =

q∑
k=1

ρ1i ∧ · · · ∧ ρk−1
i ∧ ρki (σ) ∧ ρk+1

i ∧ · · · ∧ ρqi ,

then σ̃ is an infinitesimal deformation of KF induced from σ ([10, Lemma 2.12])

and we have

(5.8) dσ̃ + τ ∧ σ̃ = τ ′ ∧ ω.

Lemma 5.9. The (2q + 2)-form τ ′ ∧ τ ∧ (dτ)q is closed.

Proof. We have d(τ ′ ∧ (dτ)q) = 0 by Lemma 4.3.17. It follows that d(τ ′ ∧ τ ∧
(dτ)q) = τ ∧ d(τ ′ ∧ (dτ)q)− τ ′ ∧ d(τ ∧ (dτ)q) = 0. �

Once the trivialization ω is fixed, by applying the results in Section 4.3, one can

verify that the differential form τ ′ ∧ τ ∧ (dτ)q determines a cohomology class which

is independent of the choice of τ and τ ′ (see also [55]).

Definition 5.10 ([28, p. 248], [56], [55]). We denote by TμBq(F , ω) the co-

homology class in H2q+2(M ;C) represented by

( −1

2π
√−1

)q+2

(q+1) τ ′ ∧ τ ∧ (dτ)q.

We call TμBq(F , ω) the Fuks–Lodder–Kotschick class of F with respect to ω.

The class TμBq(F , ω) is mentioned by Fuks [28] for families of codimension-one

foliations. Lodder proved the well-definedness of the class in [56]. Then, Kotschick

[55] pointed out and filled a gap in the proof, and extended the definition for ar-

bitrary codimension case. To be precise, they defined a classes, which are denoted

by c(ζ) in [56] and TGV (Ft) in [55]. We have c(ζ) = TGV (Ft)(0), and if μ is the

infinitesimal deformation associated with {Ft}, then this is the class TμBq(F , ω).
It is easy to see that the construction is also valid for infinitesimal deformations,

and also for transversely holomorphic foliations. The original construction was for
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real foliations so that we may assume KF is trivial, and TμBq(F , ω) is independent
of the choice of ω. This is the most difference, namely, if the construction is applied

for transversely holomorphic foliations, then TμBq(F , ω) depends on the homotopy

class of ω. Before giving a proof, we present an example.

Example 5.11. Let Fλ be the foliation of S3 given in Example 1.1.6 (with

n = 1). Let M = S3 × S1 and π : M → S3 be the natural projection. We set

Gλ = π∗Fλ. Let

ωm = tm(λ2z2 dz1 − λ1z1 dz2)

be a trivialization of KGλ
= Q∗(Gλ), where t denotes the standard coordinates of

S1 considered as the unit circle in C. Then, dωm = −τm ∧ ωm, where

τm = − λ1 + λ2

|z1|2 + |z2|2
(
z̄1
λ1

dz1 +
z̄2
λ2

dz2

)
−m

dt

t
.

Since we are working on S3, we have

τm = −(λ1 + λ2)

(
z̄1
λ1

dz1 +
z̄2
λ2

dz2

)
−m

dt

t

= −
(
1 +

1

λ

)
z̄1 dz1 − (λ+ 1)z̄2 dz2 −m

dt

t

and

dτm = −
(
1 +

1

λ

)
dz̄1 ∧ dz1 − (λ+ 1) dz̄2 ∧ dz2,

where λ =
λ1
λ2

. It follows that

τ ′m = λ−2z̄1 dz1 − z̄2 dz2

and that

τ ′m ∧ τm ∧ dτm
=

(
λ−2(λ+ 1)z̄1 dz1 ∧ dz̄2 ∧ dz2 −

(
1 +

1

λ

)
z̄2 dz2 ∧ dz̄1 ∧ dz1

)
∧mdt

t
.

Consequently,

TμB1(Gλ, ωm) = −m
(
1− 1

λ2

)
[S3 × S1],

where [S3 × S1] denotes the fundamental class and μ is an element of H1(M ; ΘG)

induced from {Gλ}.
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Lemma 5.12. TμBq(F , ω) depends on the homotopy class of ω.

Proof. Let ω0 and ω1 be trivializations of KF and let ωs, s ∈ [0, 1], be a

homotopy between ω0 and ω1. Then, we can choose a continuous family {fs}
of smooth functions such that ωs = efsω0. It follows that we may assume that

τs = τ0 − dfs. If σ is an infinitesimal deformation of ω0, then dσ+ τ0 ∧ σ = τ ′0 ∧ ω0.

We have

d(efsσ) = dfs ∧ (efsσ) + efsdσ

= dfs ∧ (efsσ) + efs(−τ0 ∧ σ + τ ′0 ∧ ω0)

= −τs ∧ (efsσ) + τ ′0 ∧ ωs.

Hence we may assume that τ ′s = τ ′0 for any s. It follows that

τ ′s ∧ τs ∧ (dτs)
q = τ ′0 ∧ (τ0 − dfs) ∧ (dτ0)

q = τ ′0 ∧ τ0 ∧ (dτ0)
q + d(fsτ

′
0 ∧ (dτ0)

q)

because d(τ ′0 ∧ (dτ0)
q) = 0. �

Remark 5.13. Actually, it suffices to begin with a Bott connection on KF in

order to define the class TμBq(F). Indeed, the notions of infinitesimal deformation

of KF and infinitesimal derivative of Bott connections can be introduced by the

formulae (5.7) and (5.8) [10]. Note that (5.8) follows from (4.3.8) if connections on

Q(F) (or Q∗(F)) are considered.

We will retain the notations in Theorem 3.3.10. We have then

Theorem 5.14 (cf. [8, Theorem 2.3]). If μ ∈ H1(M ; ΘF ), then

πm!Tπ∗
mμBq(Gm, ωm) = −mDμBq(F).

Proof. We denote πm and ωm by π and ω for simplicity. Let σ be a represen-

tative of μ. If we set

σi =

q∑
k=1

dz1i ∧ · · · ∧ dzk−1
i ∧ dzki (σ) ∧ dzk+1

i ∧ · · · ∧ dzqi ,
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then we have dσi + αi ∧ σi = α′
i ∧ νi, where {α′

i} is the infinitesimal derivative of

{αi} with respect to σ. As KGm
is trivialized by {ωi}, π∗μ is represented by {σi},

where σi = t−mπ∗σi. It follows that

dπ∗σi + τ ∧ π∗σi −m
dt

t
∧ π∗σi = tmπ∗α′

i ∧ ωi.

Hence we have

dσi + τ ∧ σi = π∗α′
i ∧ ωi.

Therefore, Tπ∗
mμBq(Gm, ω) is locally represented by( −1

2π
√−1

)2q+2

(q + 1)(π∗α′
i) ∧ τ ∧ (dτ)q.

On the other hand, DμBq(F) is locally represented by( −1

2π
√−1

)2q+1

(q + 1)α′
i ∧ (dαi)

q.

It is easy to see that∫
S1

(π∗α′
i) ∧ τ ∧ (dτ)q =

∫
S1

π∗(α′
i ∧ (dαi)

q) ∧mdt

t

= 2mπ
√−1α′

i ∧ (dαi)
q. �

By applying Theorem 5.14 to (N ′,FT ) and (N ′′,G′′), one sees that DμBq(G′′)

belongs to the image of the integration along the fiber.




