CHAPTER 5

Relations with the Residue Theory

It is pointed out by Hurder [46] that every known example of transversely
holomorphic foliation with non-vanishing secondary classes is related to the residue
theory by Heitsch [41]. The examples considered in Chapter 3 can be also related
to the residue.

We begin by recalling the notion of the residue for transversely holomorphic
foliations by Heitsch [41]. The original paper deals with real foliations. Here we
formulate the residue theory for transversely holomorphic foliations after straight-
forward modifications.

Let F be a transversely holomorphic foliation on M and let Tc M, E and Q(F) be

as in Definition 1.1.4. Sections of T M are nothing but C-valued vector fields on M.

DEFINITION 5.1. A C-valued vector field X is called a I'-vector field for F if

[E, X] C E, namely, if [s, X] is a local section of E for any local section s of E.

DEFINITION 5.2. Let X be a I'-vector field. The singular set of X is the union
of points x of M where X(z) € E, and denoted by Sing X.

modulo sections of F,

A I'-vector field is locally of the form X = Z fi 8'

where f;’s are locally constant along the leaves and holomorphlc in the transversal

direction. The singular set Sing X is saturated, namely, it is a union of leaves of F.

Let F and X be as above. Then they span an integrable subbundle of Tc M on
M \ Sing X. The induced foliation Fx is transversely holomorphic and of complex
codimension ¢ — 1, where ¢ is the complex codimension of F.
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104 5. RELATIONS WITH THE RESIDUE THEORY

DEFINITION 5.3. Let X be a I'-vector field for F and let U be an open neighbor-
hood of Sing X. A Bott connection V for F is called a basic X -connection supported
off Uif VxY = LxY for any section Y of Q(F) on a neighborhood of M\ U, where
LxY denotes the Lie derivative of Y with respect to X.

REMARK 5.4. Basic X-connections are Bott connections for Fx on the neigh-

borhood of M \ U in Definition 5.3.

When residues are considered, the complex normal bundle Q(F) is often as-
sumed to be trivial. But it suffices to assume the triviality of the canonical bundle
AIQ(F)* for our purpose. The residue of the Bott class is constructed as follows.
If A?Q(F)* is trivial, then the Bott class Botty(F) = uyvf(F) is well-defined as an
element of H 2qu1(M ; C). More precisely, the Bott class is calculated by choosing a
Bott connection V? and a flat connection V* of A?Q(F) (see Chapter 1). By using
these connections, a well-defined 1-form u;(V?, V*) and a 2-form v;(V?) such that
duy(V?, V) = v1(V?) are obtained. Let X be a I'-vector field for F and choose a
basic X-connection supported off U as a Bott connection V°. Then the support of
the differential form u;(V?, V*)v1(V?)? is contained in U because v1(V®)? = 0 by
the Bott vanishing theorem for Fy. Thus an element of H2?*!(U;C) is obtained,
where H(U;C) denotes the compactly supported cohomology.

The residue theorem due to Heitsch is formulated as follows. For simplicity
we state the theorem assuming that Q(F) is trivial on a neighborhood of Sing X.
In such a case, secondary classes are obtained from H*(W,) and H *(W;C) (see
Definitions 1.1.19 and 1.1.14). Recall that there is a natural inclusion of H*(W)
into H* (WS).

THEOREM 5.5 (Heitsch [43]). Let X and U be as above and let s be a trivi-
alization of Q(F) on U. Then there is a well-defined element resw(F,X,s) €
H2TY(U; C) for each w € H*TY(W,). This element depends on Fx and the homo-
topy type of s, and is called the residue of w(F) with respect to X and s. Under the
natural mapping from H}(U;C) to H*(M;C), the residue is mapped to w(F).
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The original situation considered by Heitsch in [41], [43] is as follows. In what
follows, coefficients of the cohomologies are chosen in C. Let M = W x C?™! and
assume that W = W x {0} is a compact leaf of 7. We also assume that Sing X = W
and Fy is transversal to M’ = W x S29*! g0 that Fy induces a foliation F of M’,
where S2971 is the unit sphere in C¢*1. The Gysin exact sequence associated with
M, M’ and W is as follows:

oo — H"(M) — H"(M’) i> Hr=24=Y (W) — H" "' (M) — -,

where ][ denotes the integration along the fiber. Recall that ][ is the composition

H™(M') % H™ T (W x D@D Ay = HI (M) Iy H™~27Y(W), where 9 is the

connecting homomorphism and / is the integration along the fiber of W x D1 —
W. Let t: M' — M\ W be thlg inclusion. Then /* induces an isomorphism of
cohomology and .*(Bott,(Fx)) = Botty(F) by the naturality. Hence Botty(F)
is mapped to / vIt(V?) under ][ . Thus obtained class is the residue in the
original sense. i

EXAMPLE 5.6. Example 1.1.6 can be slightly modified. Let X4 be a holo-
morphic vector field determined by A € GL(g + 1; C), namely, let

0
XA = Z a@'ija,

where a;; denotes the (i,j)-entry of A. The vector field X4 has the origin as an
isolated singularity. If X 4 is transversal to S9!, then the same construction as in
Example 1.1.6 can be done. It is not always the case, however, X 4 induces a foliation
of a Hopf manifold as follows. Let F4 be the foliation of C?**\ {0} by the orbits of
X 4. Then F is invariant under the Z-action on C*1\ {0} defined by v-n = A0,
where A is a complex number such that [A| > 1. If we set Hy = (C7"*\ {0})/Z,
then Hy = S%971 x St and ]--A induces a foliation F4 of Hj.

The canonical bundle of F, is trivial so that the classes wiv;(Fa), |J| = ¢,

are well-defined. To see the triviality, we fix the logarithm log A of A and define a
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logr

function W: (0, +o00) — C by ¥(r) = eXp(l g | Al
O

log A). Let || - || be the standard

norm on C4t! and set

~ 1

q

where ¢ = Az and ¢ = “(Cp, ...,(,), then G4 induces a trivialization of Kz,.

Let 5?97 be the unit sphere in C?T! and let S be the natural image of $297!
in Hy. Then, we have
v1v7(A)

det A 15}

uvy(Fa) =

The formula is shown as follows. If we set

w = 2z*A_1dz,
1]

then w(X4) = 1. We set ¢; = \Il(||z||)aa
Zi

invariant under the multiplication by A so that they induce vector fields on Hy. Let

for ¢ = 0,...,q. Then eg,...,e, are

V be the unique connection on C¢**\ {0} which satisfies Vye; = w(Y)[Xa, e;i].
The connection V is a Bott connection for F 4 and induces a Bott connection for
Fa on Hy. In order to evaluate ujvy(F4), it suffices to compute / uvy(Fa). Let
p: R — R be a non-decreasing smooth function such that p(r) :SO if » <0 and

1
that p(r) =1if r > 3 If we set V' = p(]|z]|)V, then V' is a basic X 4-connection

2
supported off U, where U is the open round ball of radius 3 centered at the origin.
We denote by uiv, (V) and uyv;(V’) the representatives of uyv;(F4) calculated

by V and V', respectively. Then,

/ vy (Fa) = / w10y (V) = / wvy (V) = / or0s(2y),
S SZq+1 52q+1 D2aq+2

where €/, is the curvature of V’. The right-most term is by definition the residue
of the trivial foliation of C?*! at {0} with respect to X 4. Therefore the formula
follows from a more general formula of Baum—Bott [13, Proposition 8.67]. Under
our setting, the proof is as follows. Let V be the connection on C77\ {0} such that

\Y

0 ~ -
9 w {XA, 8—} . Then V is also a basic X g-connection. If we denote by 7 the
Zq Z4
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~ 0 -
connection form of V with respect to { } then n = —Aw. Note that

520 8zq
(dw)?™' = 0 by the Bott vanishing for F4. We set V' = p(||z]|)V. Then V' is a

basic X 4-connection supported off U. Hence / vivg () = / vy (),
D2a+2 D2a+2

where 5214 is the connection form of V'. We have

~ dp z*dz+ zdz*
V= L2 g pw— Ad
A d (HZH) 2”2’” w p(HZH) w
dp 2*dz + zdz”
=—A( <Hzn>—w+p<nzu>dw).
dr 2171

It follows that

~ -1 atl d 2*dz 4 zdz* o+l
w0s @) = (o) oron-) (0D TG At el o

-1 atl dp 2 dz + zdz*
= —A 1)—p? ————— ANw A (dw)?.
(5o) oA+ D = p (o

We set w’ = 2*A"'dz. Then

d d 1, z¥dz 4+ zdz* 'y 1 A
w= w | =— w w'.
[El I=11* [Elh

Hence, if we set C' = <

q+1
m) , then we have
Uﬂu(ﬁ'A)
dp z¥dz+ zdz*
=Cuwy(=A)(g+ 1)%(||Z||)ﬂ(||2||)qw Aw' A (dw')?

zdz*

=Cuvvs(—A)(g+ )%(II De(ll=1)*® WAw’A(dw’)q

=Cuoy(=A4)(g+1 )d (IzIDe(l=1)* Wmﬁm (/\ dzz/\dzz>

1=0

1 dp 1 1
v (A) (g + 1)9(7")'7%(”2”)W A det(A™")volpaa+2

d
=uv1v7(A)(q + 1)p(r)qd—£(r) dr A det(A™1)volgeqr1,

where volgze+2 denotes the standard volume form of R??*2 and volgzq1 is the

volume form of $?7** normalized so that vol(S??™!) = 1. Therefore

~ A)
Q/ _ Ul'UJ( .
/qu+2 U1UJ( A) detA
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Note that if A is diagonal and X4 is transversal to S24+1 then F,4 induces the

foliation Fy of S2¢*! in Example 1.1.6.

Example 3.3.6 is also related to residues as follows. Let M = SL(g+1;C)xC4T!,
Then SL(g + 1;C) acts on M by (g,v)h = (gh, h~v). In particular, SU(q + 1) also
acts on M. We denote by m the quotient map and denote by N the image of 7.
Let M* = SL(q + 1;C) x (C%*1\ {0}) and M’ = SL(q + 1;C) x $>*'. Then M*
is invariant under the SL(g + 1; C)-action and M’ is invariant under the SU(q 4 1)-
action. We set N* = W(M*) and N’ = W(M/). Let I' be a cocompact lattice of
SL(¢+1;C) such that B = I'\SL(g¢+1;C)/SU(g+1) is a closed manifold. Set then
M = I\M, M* = I'\M*, M' = '\M’, N = I'\N, N* = '\N* and N’ = I'\N',
where SL(q + 1; C) acts on these manifolds on the left by h(g,v) = (hg,v).

Let F be the foliation of M induced by the right SL(¢ + 1;C)-action. If T is

82:@'
is the standard coordinates of C4™!, then T is a I'-vector field for F. Note that T
induces the Hopf fibration on S?4*!. We also call the foliation of C*?*1\ {0} by the
orbits of T" the Hopf fibration.

q
0
the holomorphic vector field on C¢*! defined by T = Z zi=—, where (z,..., %)
i=0

Let .7?T be the singular foliation fT of M. Then ]?T is regular on M*. Indeed,
if we define f: SL(g+ 1;C) x (C*+1\ {0}) — C4*1\ {0} by f(g,2) = gz, then Fy
is the pull-back of the Hopf fibration of CZ™ \ {0} by f. Moreover, F and Fr
naturally induce foliations F of M and Fr of M* because they are invariant under
the natural left action of SL(q + 1;C) on M and M*. Finally, Fr is transversal to
M’ so that it induces a foliation ]?’T of M. The foliation j-:'T is also invariant under
the left SL(q + 1; C)-action so that it induces a foliation F7» of M’. The foliations
F , j-:T and j-:} are invariant under the right SU(g+ 1)-action. Hence they naturally
induce foliations of N , N* and N’. We denote them by G , Q~T and g~}, respectively.
Foliations of N, N* and N’ can be constructed in a similar way. We denote them

by G, Gr and G/, respectively.
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The canonical bundles of ]?T, fr}, Gr and g} are trivial, indeed, if we define a

g-form w on C?t by
w=zodz1 N+ Ndzqg — z1dzo Ndza A -+~ Ndzg+ -+ (—1)%z4dzo A+ -+ Ndzg—1,

then w(T") = 0. The differential form f*w on M* induces trivializations of canonical
bundles. Since f*w is invariant under the left SL(g + 1;C)-action, the canonical
bundles of Fr, Fr, Gr and G} are also trivial. Therefore, the Bott class is well-
defined for these foliations and the Godbillon—Vey class of these foliations are trivial.
The vector field T gives rise to an S'-action which preserves Fr, Fy, Gr and G/.
Indeed, the action is essentially the Hopf fibration on C?**\ {0}.

Let M" = SL(q + 1;C) x CP?. Then SL(q + 1;C) acts on M" by (g, [v])h =
(gh,h~'[v]). Let F” be the foliation of M" induced by the right SL(g + 1, C)-
action. Let N” and G” be the quotient by the induced action of SU(g + 1), and
we denote by 7 the quotient map by abuse of notation. We set M"” = I \M " and
N” = I'\N". They are naturally equipped with foliations induced by ' and G”.
We denote them by F” and G”. It is well-known that (N” G") is isomorphic to
the foliation of I"\SL(q + 1;C)/(T" x SU,) given in Example 3.3.6. We have the

following commutative diagram:

M// M/ C M* ( s M
N 5 N’ C N* C N’

where p: N’ — N” is the natural projection which is a fiberwise Hopf fibration.
Note that p*(GV24(G")) = GVa(G1) = 0. The Gysin sequence associated with p
is as follows:
H*(N/) P H*—l(N//) Ue} H*'H(N”) P . H*-H(N/) o,
1 " - 1
Where e — —Chl(g//) — 'Ul(g )+U1(g )

(¢+1) 2(q+1)
along the fiber. Therefore &,(G”)ch;(G”)* is mapped to a non-zero multiple of

, and py denotes the integration
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£,(G") chy(G")F! under Ue. If k = ¢, then &,(G”)ch;(G") is a non-zero mul-
tiple of GV3,(G”), and the image under Ue is trivial because ch;(G"”)4t! = 0.
Hence there is an element of H*?*?(N’) which is mapped to GVa,(G"). Indeed,
pr(urvr (Fr)?u, vy (Fr)?) is equal to a non-zero multiple of GVa,(G”) by The-
orem 3.3.10.

The Gysin sequence associated with $??*1 — N’ — B = I'\SL(q+1;C)/SU(q+
1) is now decomposed as follows:

H4q—|—2(B) ;H4q+2(N/) P H4q—|—1(N//) f ;H2q+1(B)

t—l

H4q+2(N/) o H4q+3(N*,N’) H2q+1(B)’

where t: H*(B) — H*t?9T2(N* N’) is the Thom isomorphism, and][ is the inte-
gration along the fiber. We have

et (Fryamt(Fr) = f GVay(@”)
up to multiplications of non-zero constants, and
" 0 d(urol (Fpymvi (Fr)) =t (o1 (Fp) a0 (Fr) — wiof (Fp)ol ™ (Fr)

= res((v? w0 — up0dTITY), FLT).

Thus Example 3.3.6 is related to the residue. It is possible to apply this construction
to other examples involving SO(2n + 1;C), Sp(n;C) and G2 by using the Iwasawa
decomposition and naturally associated S'-bundles.

The fibration N’ — N” is also relevant for studying derivatives of the Bott
class with respect to deformations of foliations. By Theorem B2, £,(G") ch¥(G") is
rigid under deformations if k > 0. Indeed, D, B,(G")ch}(G") is trivial if k > 0 by
Corollary 4.3.30. On the other hand, if k = 0, then D, B,(G") belongs to the kernel
of Ue. Hence there is an element of H??"*(N’) which is mapped to D, B,(G").
Such an element is obtained as follows.

Assume that Kz is trivial and let w be a trivialization. We may assume that

there is a family of local trivializations {p; = (p},...,p!)} of Q*(F) such that
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W=pr A A pd locally holds. Let u € H'(M;©z%) be an infinitesimal derivative
and let o be a representative. Let {6;} be the connection form of a Bott connection
on Q(F) with respect to the dual of {p;}. If we set 7; = tr;, then 7; determines a
globally well-defined 1-form 7 thanks to the choice of {p;}, and dw = —7 Aw. Let

0" be the infinitesimal derivative of 6 with respect to o and set 7/ = tr’. If we set
q

(5.7) = pi A AP A (@) AT A AP,
k=1

then & is an infinitesimal deformation of Kr induced from o ([10, Lemma 2.12])

and we have
(5.8) do+17NhNo=1 ANw.
LEMMA 5.9. The (2q + 2)-form 7" A7 A (dT)? is closed.

PROOF. We have d(7' A (d7)?) = 0 by Lemma 4.3.17. It follows that d(7’ AT A
(dr)9) =7 ANd(T" A (dT)?) — 7" Ad(T A (dT)?) = 0. O

Once the trivialization w is fixed, by applying the results in Section 4.3, one can
verify that the differential form 7/ A7 A (d7)? determines a cohomology class which

is independent of the choice of 7 and 7’ (see also [55]).

DEFINITION 5.10 ([28, p. 248], [56], [55]). We denote by T, B,(F,w) the co-
_ q+2
homology class in H??t2?(M; C) represented by [ —— (q+1) 7" AT A(dT)1.
2my/—1
We call T, B, (F,w) the Fuks—Lodder—Kotschick class of F with respect to w.

The class T}, B4(F,w) is mentioned by Fuks [28] for families of codimension-one
foliations. Lodder proved the well-definedness of the class in [56]. Then, Kotschick
[55] pointed out and filled a gap in the proof, and extended the definition for ar-
bitrary codimension case. To be precise, they defined a classes, which are denoted
by ¢(¢) in [56] and TGV (F;) in [55]. We have ¢({) = TGV (F;)(0), and if u is the
infinitesimal deformation associated with {F;}, then this is the class 1), B,(F,w).
It is easy to see that the construction is also valid for infinitesimal deformations,

and also for transversely holomorphic foliations. The original construction was for
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real foliations so that we may assume K is trivial, and T}, B,(F,w) is independent
of the choice of w. This is the most difference, namely, if the construction is applied
for transversely holomorphic foliations, then T}, B,(F,w) depends on the homotopy

class of w. Before giving a proof, we present an example.

EXAMPLE 5.11. Let Fy be the foliation of S* given in Example 1.1.6 (with
n =1). Let M = 8% x S* and 7: M — S° be the natural projection. We set
Gy =" Fy. Let
Wi = t" (X222 dz1 — Mz1 dz2)

be a trivialization of Kg, = Q*(G»), where t denotes the standard coordinates of

S1 considered as the unit circle in C. Then, dw,, = —Tp A Wy, where
A1+ Ao <2’1 29 > dt
Tm=—5—5 | —dz1+ —dzo | —m—.
T al e W Az t

Since we are working on S®, we have
z z dt
Tm = —(/\1 + )\2) ()\—11 dz1 + )\—22 ng) — m7
1 dt
= — <1—|—X> Zldzl — (/\—i-l)ZQdZQ —m?
and

1
dTm = — <1+ X) dzi Ndz — (A +1)dza A dza,

A
where \ = )\—1 It follows that
2

7'7/” = )\7221 le — 29 dZQ
and that

T N T A d T,
_9 _ _ 1\ _ _ dt
=(A ()\+1)21 le /\dZQ/\dZQ — 1+X ZQdZQ/\le/\d,Zl /\m?.

Consequently,

1
T“Bl(g/\,wm) =—-m <1 — ﬁ) [SS X Sl],

where [S® x S'] denotes the fundamental class and p is an element of H'(M;0g)
induced from {Gy}.
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LEMMA 5.12. T,,B,(F,w) depends on the homotopy class of w.

PROOF. Let wy and w; be trivializations of Kr and let wg, s € [0,1], be a
homotopy between wp and w;. Then, we can choose a continuous family {fs}
of smooth functions such that ws; = ef*wy. It follows that we may assume that
Ts = 70 — dfs. If o is an infinitesimal deformation of wg, then do + 79 Ao = ) A wp.

We have
d(es0) = df, A (e':0) + el do

= dfs A (eT20) + el (=10 Ao + T Awo)

= 1, A(efoo) + 7} A ws.
Hence we may assume that 7. = 7, for any s. It follows that

TEATs A (d76)T = 75 A (10 — dfs) A (d70)? = 75 A 1o A (d70)? + d(f578 A (dT0)?)
because d(7) A (dr)?) = 0. O
REMARK 5.13. Actually, it suffices to begin with a Bott connection on K in

order to define the class T),B4(F). Indeed, the notions of infinitesimal deformation
of Kz and infinitesimal derivative of Bott connections can be introduced by the

formulae (5.7) and (5.8) [10]. Note that (5.8) follows from (4.3.8) if connections on
Q(F) (or Q*(F)) are considered.

We will retain the notations in Theorem 3.3.10. We have then

THEOREM 5.14 (cf. [8, Theorem 2.3]). If u € H'(M;Ox), then

Wm!Tﬂ,’;@,uBtI(gm’wm) = _mDHBQ(‘F)'

ProoF. We denote 7,,, and w,, by m and w for simplicity. Let ¢ be a represen-

tative of p. If we set

7

q
o; =Y dzj A-- Adzf TN Adzf () AdefTT A A da]
k=1
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then we have do; + a; A o; = o} A v;, where {}} is the infinitesimal derivative of
{a;} with respect to . As Kg, is trivialized by {w;}, 7*u is represented by {o;},

where o; =t""n*g,. It follows that

dt
dr*o, + T ANTg; — me Ao, =t ) A w;.

Hence we have
do; + 7 No; = m*al A w;.

Therefore, Trx ,,By(Gm,w) is locally represented by

1 2q+2
<m) (q+1)(7r*a§) AT A (dr)d.
On the other hand, D, B,(F) is locally represented by
1 2q+1 ,
<27T—\/_—1> (¢ +1) o A (dovi)?.

It is easy to see that

/ (T i) AT A (dT)? = / 7 (af A (day)?) A m@
S1 St t
= 2mmv/—1a} A (do)?. O

By applying Theorem 5.14 to (N', Fr) and (N”,G"), one sees that D, B,(G")

belongs to the image of the integration along the fiber.





