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Chapter 10

Virasoro group and its coadjoint
orbits

In this Chapter we introduce the Virasoro group Vir, which is a central extension of
the diffeomorphism group of the circle Diff+(S1), and study its coadjoint represen-
tation. We are especially interested in the coadjoint orbits, which have, along with
the natural symplectic form, also a compatible complex structure. These Kähler
coadjoint orbits of Vir are studied in Sec. 10.3 of this Chapter.

10.1 Virasoro group and Virasoro algebra

The Virasoro group is a central extension of the diffeomorphism group of the circle
Diff+(S1). To describe it explicitly, we find first central extensions of the Lie algebra
Vect(S1) of Diff+(S1), being the algebra of tangent vector fields on S1.

As we have pointed out in Sec. 4.1, any central extension of Vect(S1) is de-
termined by some 2-cocycle w on the algebra Vect(S1). We extend this cocycle
complex-linearly to the complexification VectC(S1) of the algebra Vect(S1). The ex-
tended cocycle, denoted by the same letter w, is uniquely determined by its values
wm,n := w(em, en) on the basis vector fields

em = ieimθ
d

dθ
, m = 0,±1,±2, . . . ,

of VectC(S1) (cf. Sec. 2.2). The cocycle condition for w, written for three vector
fields (e0, em, en):

w([e0, em], en) + w(em, [e0, en]) = w(e0, [em, en]) ,

implies that the cohomology class [w] does not change under the action of rotations
(generated by the vector field e0). So the cocycle, obtained from w by averaging
over S1, belongs to the same cohomology class, as w. Therefore we can suppose
from the beginning that the cocycle w is invariant under rotations, i.e.

w([e0, em], en) + w(em, [e0, en]) = 0

on the basis vector fields em, en. Due to the commutation relations for basis vector
fields

[em, en] = (m− n)em+n ,
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112 CHAPTER 10. VIRASORO GROUP

it means that
mwm,n + nwm,n = 0 . (10.1)

The latter relation implies that wm,n = 0 for m + n ̸= 0. So we set wm := wm,−m
and note that w−m = −wm due to the skew-symmetricity of w. It remains to find
out the values of wm for natural m.

The cocycle condition for w on three basis vector fields (em, en, em+n) means that

(m− n)wm+n = (m+ 2n)wm − (2m+ n)wn , (10.2)

so we get a finite-difference equation of the 2nd order for the computation of values
wm. In order to find a general solution of (10.2), it’s sufficient to find its two
particular solutions. But it’s easy to see that wm = m and wm = m3 are two
independent solutions of (10.2). Hence a general solution of (10.2) has the form

wm = αm3 + βm (10.3)

with arbitrary complex coefficients α, β.
Note that the cocycle w with wm = m is a coboundary, since in this case

w(em, en) = dθ(em, en) = θ([en, em]) ,

where θ is a 1-cochain on VectC(S1), defined by: θ(e0) = −1
2

and θ(em) = 0 for
m ̸= 0. So the value of β in the formula (10.3) is not essential. Hence all cocycles w,
defining non-trivial central extensions of the algebra Vect(S1), up to coboundaries,
are proportional to each other. In other words, we have proved the following

Proposition 19. The cohomology group H2(Vect(S1),R) has dimension 1. A gen-
eral central extension of the algebra Vect(S1) is determined by a cocycle w of the
form

w(em, en) =

{
αm(m2 − 1) for m+ n = 0, α ∈ R,
0 for m+ n ̸= 0 .

We have chosen the parameter β = −α in order to annihilate the restriction of the
cocycle w to the subalgebra sl(2,R) in Vect(S1), generated by the vectors e0, e1, e−1

(this subalgebra coincides with the Lie algebra of the Möbius group PSL(2,R) of
diffeomorphisms of the circle S1, extending to the fractional-linear automorphisms
of the unit disc ∆).

We note that the Gelfand–Fuks cocycle

w(ξ, η) =
1

2π

∫ 2π

0

ξ′(θ)dη′(θ) , ξ = ξ(θ)
d

dθ
, η = η(θ)

d

dθ
∈ Vect(S1) ,

found in [25], has the basis values, equal to wm = im3, m ∈ Z.
One can also change the value of α, multiplying the central element by a number.

The usual choice for α (based on physical analogies) is α = 1
12

. The corresponding
central extension of the algebra Vect(S1) is called the Virasoro algebra and denoted
by vir. The Virasoro algebra is generated (as a vector space) by the basis vector fields
{em} of the algebra Vect(S1) and a central element κ, satisfying the commutation
relations of the form

[em, κ] = 0 , [em, en] = (m− n)em+n + δm,−n
m3 −m

12
κ .
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This central extension of the Lie algebra Vect(S1) corresponds to a central ex-
tension of the Lie group Diff+(S1), which we describe next.

Since the Frechet manifold Diff+(S1) is homotopy equivalent to the circle S1 (cf.
Sec. 1.2.1), all S1-bundles over Diff+(S1) are topologically trivial and any central
extension of the group Diff+(S1) is determined by some 2-cocycle c on Diff+(S1) (cf.
Sec. 4.1). In other words, such a central extension consists of elements of the form

(f, λ) , f ∈ Diff+(S1), λ ∈ S1 ,

and the product is given by the formula

(f, λ) · (g, µ) = (f ◦ g, λµeib(f,g)) ,

where c(f, g) = eib(f,g) is the 2-cocycle on Diff+(S1), defining the central extension.
The cocycle condition in terms of b takes the form

b(f, g) + b(f ◦ g, h) = b(f, g ◦ h) + b(g, h) . (10.4)

An explicit solution of this functional equation, found by Bott [11], has the form

b0(f, g) =
1

2π

∫ 2π

0

ln(f ◦ g)′ d ln g′ .

Note that the Bott group cocycle corresponds on the Lie algebra level to the Gelfand–
Fuks cocycle of the Lie algebra Vect(S1).

A general solution of (10.4) coincides with b0 up to a coboundary, more precisely,
it has the form

b(f, g) = αb0(f, g) + a(f ◦ g)− a(f)− a(g) ,

where α = const ∈ R, and a is an arbitrary smooth real functional on Diff+(S1).
The central extension of the group Diff+(S1), determined by the Bott cocycle, is

called the Virasoro group (or Virasoro–Bott group) and is denoted by Vir.

10.2 Coadjoint action of the Virasoro group

Consider the coadjoint action of the diffeomorphism group of the circle Diff+(S1)
and its central extension, the Virasoro group Vir, on the dual spaces of their Lie
algebras.

We study first the coadjoint action of the diffeomorphism group Diff+(S1) on the
space Vect∗(S1), dual to the Lie algebra Vect(S1) of Diff+(S1). The space Vect∗(S1),
dual to the Frechet space Vect(S1), can be identified with the tensor product

Ω1(S1)⊗D(S1) D′(S1)

over the ring D(S1), consisting of all C∞-smooth (real-valued) functions on S1.
Here, Ω1(S1) is the Frechet space of C∞-smooth 1-forms on S1, and D′(S1) is the
space of distributions on S1, i.e. of linear continuous functionals on D(S1) (note
that D′(S1) is not a Frechet space!). The above tensor product should be taken in
the category of topological vector spaces, we recall its definition for convenience.
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Digression 3 (Tensor product of topological vector spaces). The tensor product E⊗
F of topological vector spaces E and F is provided with the projective topology,
generated by the seminorms p⊗ q, where {p} and {q} are families of seminorms on
E and F respectively. The seminorm p⊗ q is defined as

(p⊗ q)(z) = inf

{∑
i

p(xi)q(yi) : z =
∑

xi ⊗ yi

}
,

where the infimum is taken over all possible representations of z ∈ E ⊗ F as finite
sums of the form

∑
xi ⊗ yi with xi ∈ E, yi ∈ F .

The elements of the completion Ẽ ⊗ F of the space E ⊗ F with respect to this
topology in the case of metrizable spaces E and F can be given by series of the form

Ẽ ⊗ F ∋ z =
∞∑
i=1

λixi ⊗ yi ,

where
∑∞

i=1 |λi| <∞ and the sequences {xi}, {yi} tend to zero in E and F respec-
tively.

For the nuclear spaces E and F the topology, introduced on Ẽ ⊗ F , coincides
with the topology of the uniform equicontinuous convergence (i.e. topology of uni-
form convergence on the sets of the form S ⊗ T , where S and T are uniformly
equicontinuous subsets in E ′ and F ′ respectively).

We return to the dual space Vect∗(S1), which is identified with the tensor product
Ω1(S1)⊗D(S1)D′(S1) by the map, associating with an element (α, φ) ∈ Ω1(S1)⊗D(S1)

D′(S1) a linear continuous functional on Vect(S1) of the form

T(α,φ)(ξ) = φ[α(ξ)] , ξ ∈ Vect(S1) .

As in Sec. 8.3, we restrict ourselves to the study of the coadjoint action of the
group Diff+(S1) on the ”smooth” part of the space Vect∗(S1), identified with the
tensor product of Frechet spaces

Ω1(S1)⊗D(S1) Ω1(S1) .

An element (α, β) of this space determines a linear continuous functional on Vect(S1)
by the formula

Vect(S1) ∋ ξ 7−→ T(α,β)(ξ) =
1

2π

∫ 2π

0

β(ξ(θ))α(θ) .

In other words, the smooth part of the space Vect∗(S1) may be identified with the
space Q(S1) of quadratic differentials on S1 of the form

q = q(θ)(dθ)2 ,

where q is a smooth 2π-periodic function of θ.
From another point of view, one can consider Q(S1) as a set of pseudometrics

on S1 (the term ”pseudo” indicates that the function q(θ) may have zeros on S1).



10.2. COADJOINT ACTION OF THE VIRASORO GROUP 115

The coadjoint action of the group Diff+(S1) on Q(S1) coincides with the natural
action of the group Diff+(S1) on quadratic differentials

Diff+(S1) ∋ f 7−→ K(f)q = q ◦ f−1 := q(g(θ))g′(θ)2dθ2 ,

where g(θ) = f−1(θ).
We consider next the coadjoint action of the group Diff+(S1) on the dual space

vir∗ of the Virasoro algebra vir. Since the Virasoro algebra coincides with vir =
Vect(S1)⊕R (as a vector space), we have vir∗ = Vect∗(S1)⊕R. So the smooth part
of vir∗ may be identified with the space

Q(S1)⊕ R = {(q, s) : q is a quadratic differential, s ∈ R} .

The coadjoint action of the group Diff+(S1) on Q(S1)⊕R associates with an element

f ∈ Diff+(S1) a linear transformation K̃(f) of the space Q(S1) ⊕ R, acting by the
formula

K̃(f)(q, s) = (K(f)q + sS(f) ◦ f−1, s) = ((q + sS(f)) ◦ f−1, s) , (10.5)

where S is a 1-cocycle on the group Diff+(S1), satisfying the relation

S(f ◦ h) = (S(f) ◦ h) + S(h) . (10.6)

A non-trivial particular solution of this equation is given by the Schwarzian

S[f ] =

(
f ′′′

f ′ −
3

2

(
f ′′

f ′

)2
)
dθ2 = d2 ln f ′ − 1

2
(d ln f ′)2 , (10.7)

while a general solution has the form

S[f ] + q ◦ f − q ,

where q ∈ Q(S1) is a quadratic differential.

Digression 4 (Schwarzian). A characteristic property of the Schwarzian is its con-
formal invariance:

S

[
af + b

cf + d

]
= S[f ]

for any fractional-linear transformation z 7→ az+b
cz+d

from the Möbius group Möb(S1) :=
PSL(2,R). This property follows immediately from the transformation rule for the
Schwarzian

S[f ◦ h] = (S[f ] ◦ h) (h′)2 + S[h] , (10.8)

which is just a decoded version of (10.6).
The Schwarzian S[f ] of a diffeomorphism f ∈ Diff+(S1) measures its deviation

from conformal automorphisms of the unit disc in the sense that

S[f ] = 0⇐⇒ f is fractional-linear .

Moreover, one can define the Schwarz derivative S[f ] of any conformal map f : ∆→
C by the same formula (10.7). Then S[f ] measures again the deviation of a conformal



116 CHAPTER 10. VIRASORO GROUP

map f in ∆ from fractional-linear automorphisms of ∆, and the maximal deviation
may be explicitly computed. Introduce a natural norm on Schwarz derivatives S[f ],
coinciding with the hyperbolic norm on quadratic differentials in ∆:

∥S[f ]∥2 := sup
z∈∆
|S[f ](z)|(1− |z|2)2 .

There is a following remarkable theorem, known as Nehari theorem.

Theorem 11 ((cf. [49], Theor. II.1.3)). For any conformal map f of the unit disc ∆
the following sharp estimate holds

∥S[f ]∥2 ≤ 6 .

The upper bound is attained on the Koebe function z 7→ z/(1 + z).

The infinitesimal variant of the coadjoint representation (10.5) is given by the
representation of the Lie algebra Vect(S1) on the space Q(S1) ⊕ R, defined by the
formula

k̃(ξ)(q, s) = (−Dq,sξ, s) , (10.9)

where ξ = ξ(θ) d
dθ
∈ Vect(S1), q = q(θ)(dθ)2 ∈ Q(S1), and the operator Dq,s has the

form

Dq,s = s
d3

dθ3
+ q

d

dθ
+

d

dθ
q .

What can be said about the orbits of the coadjoint representation of Diff+(S1)?
The orbit of a regular element (q, s) ∈ Q(S1) ⊕ R under the action of the group
Diff+(S1) is completely determined by the isotropy subgroup Gq,s with respect to
the coadjoint action. The Lie algebra gq,s of this subgroup consists of vector fields
ξ = ξ(θ) d

dθ
∈ Vect(S1), satisfying the condition: Dq,sξ = 0. In other words, to

describe the subalgebra gq,s, one should find periodic solutions ξ(θ) of the linear
differential equation

sξ
′′′

+ 2qξ′ + q′u = 0 . (10.10)

Referring for the general solution of this problem to the papers [40, 30], we
consider here only its particular case, when a regular element (q, s) has the form
(q(dθ)2, s) with q ≡ const =: c, s ̸= 0. In this case the equation (10.10) takes on the
form

sξ
′′′

+ 2cξ′ = 0 , (10.11)

which, after the change of variable η := ξ′, reduces to the equation

sη
′′

+ 2cη = 0 .

The latter equation has non-trivial periodic solutions only for 2c = n2, where n is
a natural number, and all these solutions are linear combinations of the functions
cosnθ and sinnθ. In other words, the only periodic solutions of the equation (10.11)
for 2c

s
̸= n2 are given by constants, while for 2c

s
= n2 they are linear combinations

of the functions 1, 1
n

cosnθ and 1
n

sinnθ.
The isotropy subalgebra gq,s in the first case coincides with R, and in the second

case with the algebra sl(2,R). Respectively, the isotropy subgroup Gq,s in the first
case coincides with the rotation group S1 ⊂ Diff+(S1), and in the second case with
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the group PSL(n)(2,R), which is the n-fold covering of the Möbius group Möb(S1) =
PSL(2,R). We have already encountered this group in Sec. 2.2. Recall that a
diffeomorphism f ∈ Diff+(S1) belongs to the group PSL(n)(2,R) if and only if there
exists a transformation φ ∈ PSL(2,R) such that

λn ◦ f = φ ◦ λn

where λn : z 7→ zn is the map, defining the n-fold covering of the circle S1.
It follows from the description of isotropy subgroups that the coadjoint orbit

of a constant element (q, s) = (c(dθ)2, s) coincides with the homogeneous space
Diff+(S1)/S1, when 2c/s is not a square of a natural number, and with the homo-
geneous space Diff+(S1)/PSL(n)(2,R), when 2c/s = n2.

As we have explained earlier in Subsec. 3.2.3, all coadjoint orbits have a natural
symplectic structure, given by the Kirillov form. In the case, we are considering,
the value of this form at a point (q, s) ∈ Q(S1) ⊕ R of an orbit O of the group
Diff+(S1) may be computed in the following way. Let δξ and δη be tangent vectors
from Tq,sO, which are the images of tangent vectors ξ, η ∈ Vect(S1) under the map

k̃ from (10.9):

δξ = k̃(ξ)(q, s) , δη = k̃(η)(q, s) .

Then the value of the form ωO on these vectors is equal to

ωO(δξ, δη) = −
∫
S1

(Dq,sξ)(θ)η(θ)dθ .

Thus every coadjoint orbit of Vir has a symplectic structure. But not all of them
can be provided with a compatible complex structure. In fact, among the coadjoint
orbits of the group Vir, described above, only the orbits

Diff+(S1)/S1 , Diff+(S1)
/

Möb(S1) = Diff+(S1)/PSL(2,R)

are Kähler (cf. [79]). In other words, only these orbits admit Diff+(S1)-invariant
complex structures, compatible with the symplectic structure ωO. We shall concen-
trate our attention on these Kähler orbits.

Example 29. We give now an interesting interpretation of the coadjoint action of
the Virasoro group in terms of Hill operators, due to Lazutkin and Pankratova [48].

Recall that a Hill operator is a differential operator of the 2nd order, having the
form

L =
d2

dθ2
+ u(θ) ,

where u = u(θ) is a potential, given by a C∞-smooth 2π-periodic function on R.
The corresponding ordinary differential equation

y
′′

+ uy = 0

is called the Hill equation. Its solutions form a two-dimensional vector space V ,
provided with a natural symplectic 2-form, given by the Wronskian of two solutions.
The shift of a solution y of the Hill equation Ly = 0 to the period 2π transforms
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it into another solution, obtained from y by the action of an operator M ∈ SL(V ),
called the monodromy matrix of the operator L.

If {y1, y2} is a fundamental system of solutions, i.e. a basis in the space V of
solutions of the Hill equation, then one can reconstruct the potential u from this
system by the Schwarz formula:

u(θ) =

{
1
2
S[y1/y2](θ) , if y2(θ) ̸= 0 ,

1
2
S[y2/y1](θ) , if y1(θ) ̸= 0 ,

where S[y] is the Schwarzian of y.
The diffeomorphism group Diff+(S1) acts in a natural way on the space of Hill

operators. Namely, we can associate with any diffeomorphism f ∈ Diff+(S1), which
lifts to a diffeomorphism f̃ of the real line R, a transformation, which sends a given
Hill operator L = d2

dθ2
+ u(θ) to another Hill operator f ∗L = d2

dθ2
+ f ∗u(θ) with

f ∗u(θ) := u(f̃(θ)) · (f̃ ′(θ))2 +
1

2
S[f̃ ](θ) .

Under this transformation a solution y of the Hill equation Ly = 0 is transferred to
a solution z of the Hill equation (f ∗L)z = 0 with

z(θ) := y(f̃(θ)) · (f̃ ′(θ))−
1
2 .

Note that, due to the periodicity of the potential u, the action of f on potentials
does not depend on the choice of the lift f̃ of the diffeomorphism f ∈ Diff+(S1) and
so defines an action of the group Diff+(S1) on Hill operators. This action coincides
with the coadjoint action of the group Diff+(S1) on elements (u, 1

2
) of the space

Q(S1)⊕ R, given by (10.5).
But the action of f on solutions of the Hill equation depends on the choice of the

lift f̃ , because of the monodromy. In accordance with the above formula, solutions
of the Hill equation transform under the action of diffeomorphisms f̃ , as densities
of order −1/2 on the line R.

The constructed action of the group Diff+(S1) on Hill operators was studied
in the Lazutkin–Pankratova’s paper [48]. The authors formulate, in particular, a
conjecture that any Hill operator with the help of the above action can be brought
to the Matieu normal form of the type:

L =
d2

dθ2
+ a cos(2πnθ) + b .

10.3 Kähler structure of the spaces

Diff+(S1)
/
Möb(S1) and Diff+(S1)/S1

As we have pointed out in the previous Section, among the coadjoint orbits of the
Virasoro group Vir only two are Kähler, namely:

R := Diff+(S1)/S1 and S := Diff+(S1)
/

Möb(S1) .

In this Section we study their Kähler structure in detail.
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As coadjoint orbits of the group Vir, these spaces have a natural symplectic
structure ω, given by the Kirillov form.

We introduce now a complex structure J on the space S = Diff+(S1)/Möb(S1),
invariant under the action of the diffeomorphism group Diff+(S1) by left translations.
Due to its invariance, it’s sufficient to define this complex structure only at the origin
o ∈ S.

The tangent space ToS may be identified with the quotient of the Lie algebra
Vect(S1) of tangent vector field on S1 modulo its subalgebra sl(2,R). In terms of
Fourier decompositions vector fields v = v(θ) d

dθ
∈ ToS are given by series of the

form
v(θ) =

∑
n̸=−1,0,1

vne
inθ , vn ∈ C ,

subject to the condition: v−n = v̄n. In these terms the restriction of the Diff+(S1)-
invariant complex structure J to ToS is given by the formula

Jv(θ) = −i
∑
n>1

vne
inθ + i

∑
n<−1

vne
inθ

for v = v(θ) d
dθ
∈ ToS. It’s easy to see that the constructed complex structure on S

is formally integrable (i.e. the bracket of two tangent vector fields of type (1, 0) with
respect to this complex structure is again a vector field of type (1, 0)). Moreover, this
complex structure is compatible with the symplectic structure ω on S, mentioned
above.

The symplectic form ω on S together with the complex structure J define a
Kähler metric g on S. In terms of Fourier decompositions this metric can be defined
in the following way. Suppose that tangent vectors u, v ∈ ToS are given by the
Fourier series

u =
∑

n̸=−1,0,1

unen and v =
∑

n̸=−1,0,1

vnen . (10.12)

Then the value of the metric g on these vectors is equal to

g(u, v) = 2 Re

(
∞∑
n=2

unv̄n(n
3 − n)

)
. (10.13)

The infinite series in the right hand side of (10.13) is absolutely converging, if the
Fourier series (10.12) correspond to the vector fields u, v of the class C3/2+ϵ on S1.

We turn now to the orbit R := Diff+(S1)/S1. It can be identified (as a ho-
mogeneous space) with a subgroup of Diff+(S1), consisting of diffeomorphisms f ∈
Diff+(S1), fixing the point 1 ∈ S1: f(1) = 1.

The embedding of the rotation group of the circle S1 into the Möbius group
Möb(S1) generates a homogeneous bundle

R = Diff+(S1)/S1 −→ S ,

having the unit disc ∆ as a fibre.
We describe explicitly the symplectic structure on R, given by the Kirillov form.

This form, being invariant under the left translations of the group Diff+(S1), is
completely determined by its restriction to the tangent space at the origin ToR.
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The tangent space ToR is identified with the space Vect0(S
1), consisting of vector

fields v = v(θ) d
dθ

, whose coefficients v(θ) are 2π-periodic functions with zero average:

1

2π

∫ 2π

0

v(θ)dθ = 0 .

In terms of Fourier decompositions tangent vectors v ∈ ToR are given by the series
of the form v =

∑
n̸=0 vnen, subject to the condition: v−n = v̄n.

An invariant symplectic structure on R is defined by a 2-cocycle w on the Lie
algebra VectC(S1), invariant under rotations. Such a cocycle is determined by its
values w(em, en) on the basis elements {em}. These basis values necessarily have the
form (cf. Prop. 19 in Sec. 10.1):

w(em, en) = (αm3 + βm)δm,−n

for some real α, β. Denote the form, corresponding to the parameters α, β, by wα,β.
It’s easy to see that it is non-degenerate on Vect0(S

1) if and only if

αm3 + βm ̸= 0 for all natural m .

The latter condition is satisfied, if either α = 0, β ̸= 0, or −β/α is not a square of a
natural number. In the first case the form wα,β is exact (cf. Sec. 10.1), so we choose
the second possibility.

The form wα,β defines a symplectic structure on Vect0(S
1), which can be written

in a more invariant way as

wα,β(u, v) =
1

2π

∫ 2π

0

u(θ) (βv′(θ)− αv′′′(θ)) dθ ,

where u, v ∈ Vect0(S
1). In terms of Fourier decompositions

u =
∑
n̸=0

une
inθ , v =

∑
n̸=0

vne
inθ ,

we get

wα,β(u, v) = 2Im

(∑
n≥1

(αn3 + βn)ξnη̄n

)
.

The constructed 2-parameter family of symplectic structures on R has a natural
interpretation in terms of the coadjoint action of the group Diff+(S1). Recall that
the orbit of an element (c(dθ)2, s) coincides with R, if 2c/s is not a square of a
natural number. By identifying the homogeneous space R with the orbit of an
element (c(dθ)2, s) and providing it with the canonical symplectic structure, given
by the Kirillov form, we shall obtain, for different choices of (c, s) with 2c/s ̸= n2,
the two-parameter family of symplectic structures on R, constructed above.

Introduce a Diff+(S1)-invariant complex structure J on the space R. Its re-
striction to ToR = Vect0(S

1) is given by the Hilbert transform, which assigns to a
tangent vector v ∈ Vect0(S

1) the vector

(Jv)(θ) =
1

2π

∫ 2π

0

cot
θ − ψ

2
v(ψ)dψ , 0 ≤ θ ≤ 2π .
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In terms of the Fourier decomposition v =
∑

n̸=0 vnen ∈ Vect0(S
1) we get

Jv = −i
∑
n>0

vnen + i
∑
n<0

vnen .

The complex structure J is formally integrable, i.e. the bracket of two tangent
vector fields of type (1, 0) with respect to this complex structure is again a vector
field of type (1, 0). Moreover, it can be shown that this complex structure is a unique
formally integrable Diff+(S1)-invariant complex structure on R.

The constructed complex structure J is compatible with all symplectic structures
wα,β, so it generates a 2-parameter family of Kähler metrics gα,β(u, v) := wα,β(u, Jv)
on R, given at the origin by the formula:

gα,β(u, v) = 2 Re

(∑
n≥1

(αn3 + βn)unv̄n

)
,

where u =
∑

n̸=0 unen, v =
∑

n̸=0 vnen ∈ ToR. Hence, R is a Kähler Frechet
manifold with a 2-parameter family of Kähler metrics gα,β.

As we know, the existence of a formally integrable complex structure on an
infinite-dimensional manifold does not guarantee the existence of an atlas of local
complex coordinates on it. We shall introduce local complex coordinates on R,
following an idea, proposed by Kirillov and Yuriev [44]. Namely, we shall realize R
as the space of holomorphic univalent functions in the unit disc ∆.

Denote by A the complex Frechet space of all C∞-smooth complex-valued func-
tions in the closure ∆ of the unit disc ∆, which are holomorphic inside ∆ and vanish
at the origin. Let A0 be a subset of A, consisting of all f ∈ A, which define a C∞-
smooth embedding of the closed disc ∆ into C. It is an open subset in A, which
inherits a complex Frechet manifold structure. Denote by S the set of functions
f ∈ A0, such that f ′(0) = 1, which is a smooth hypersurface in A0. The functions
f ∈ S are holomorphic and univalent in ∆, they define C∞-smooth embeddings
∆ → f(∆) and satisfy the normalizing conditions: f(0) = 0, f ′(0) = 1. They can
be given by power series of the form

f(z) = z + c2z
2 + c3z

3 + . . . ,

whose coefficients satisfy, according to de Branges theorem, the relations: |ck| < k.
The coefficients {ck} may be chosen for local complex coordinates in a neighborhood
of f(z) ≡ z in S.

We construct now a map from S to R. For that we associate with a function
f ∈ S the contour K := f(S1). The function f := fK maps conformally the unit
disc ∆ := ∆+ onto the domain DK , bounded by the contour K. Denote by

gK : ∆− −→ C \DK

the conformal map of the complement ∆− := C \∆+ of the closed unit disc ∆+ on
the Riemann sphere C onto the domain C \DK , normalized by the conditions:

gK(∞) =∞ , g′K(∞) > 0 .
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The map gK extends to a diffeomorphism of ∂∆− = S1 onto ∂DK . We associate
with f ∈ S the diffeomorphism

γK := f−1
K ◦ gK |S1 .

In order to construct an inverse map from R to S, note that, using an arbitrary
diffeomorphism γ ∈ R, we can construct a new complex structure on the Riemann
sphere C. Indeed, denote by Cγ the smooth manifold, obtained by gluing ∆+ with
∆− with the help of γ. In other words, Cγ is obtained from the disconnected union
∆+ ⊔∆− by the identification of points from S1 = ∂∆+ = ∂∆− via the rule:

z ∈ S1 = ∂∆+ ←→ γ−1(z) ∈ S1 = ∂∆− .

The complex manifold Cγ is diffeomorphic to the Riemann sphere C. But, according
to the theorem of Ahlfors, there exists a unique complex structure on the Riemann
sphere C. So the two manifolds are biholomorphic to each other, i.e. there exists a
biholomorphic map

F : Cγ −→ C ,

which is uniquely defined, being normalized by the following conditions:

F (0) = 0 , F (∞) =∞ , F ′(0) = 1 .

The biholomorphism F is given by a pair of functions (f, g), where the function
f is holomorphic in ∆+ and C∞-smooth up to S1 = ∂∆+, and the function g is
holomorphic in ∆− and C∞-smooth up to S1 = ∂∆−, while

f = g ◦ γ−1 on S1 .

Setting K := f(S1), we get that γ = γK mod S1 (since the normalization of F does
not fix arg g(∞)).

As it is pointed out by Lempert [50], one can construct the inverse map by
using, instead of the Ahlfors theorem, the factorization theorem of Pflüger [62],
which asserts that any diffeomorphism γ ∈ R may be represented in the form

γ = f−1 ◦ g ,

where f and g have the same properties, as above.
The constructed one-to-one map from S to R is smooth and defines a diffeo-

morphism
κ : R −→ S .

It’s easy to describe its tangent map

d0κ : T0R −→ T1S .

The tangent space T1S is identified with the space Φ, consisting of functions φ,
which are holomorphic in ∆, C∞-smooth up to ∂∆ and normalized by the conditions:
φ(0) = 0, φ′(0) = 0. (Indeed, any such vector φ is tangent to the curve ft(z) =
z + tφ(z), which is contained in S for 0 ≤ t ≤ ϵ.) The map d0κ associates with a
vector v ∈ T0R a function φ ∈ T1S by the formula

2 Reφ(eiθ) = (Jv)(θ) ,
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where J is the Hilbert transform on T0R. The Hilbert transform J on T0R corre-
sponds to the multiplication by i in the space T1S, hence the map, inverse to d0κ,
is given by the formula: v(θ) = −2 Imφ(eiθ).

It follows from the definition of complex structures on R and S that the homo-
geneous disc bundle R → S is, in fact, holomorphic.

We note also that on the Virasoro group Vir itself there exists a complex struc-
ture, induced by the complex structure on R, such that the natural projection

π : Vir −→ R

is a holomorphic C∗-bundle with respect to this complex structure (cf. [50]).
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Chapter 11

Universal Techmüller space

In this Chapter we study the Kähler geometry of the universal Teichmüller space T ,
which can be defined as the space of normalized homeomorphisms of S1, extending
to quasiconformal maps of the unit disc ∆. It may be also realized as an open subset
in the complex Banach space of holomorphic quadratic differentials in a disc. All
classical Teichmüller spaces T (G), where G is a Fuchsian group, are contained in T
as complex Kähler submanifolds. The homogeneous space S = Diff+(S1)/Möb(S1),
introduced in the previous Chapter 10, may be considered as a ”regular” part of T .

11.1 Definition of the universal Techmüller space

Definition 37. A homeomorphism f : S1 → S1 is called quasisymmetric, if it can
be extended to a quasiconformal homeomorphism of the unit disc ∆.

This definition agrees with the definition of a quasisymmetric homeomorphism
as an orientation-preserving homeomorphism of S1, satisfying the Beurling–Ahlfors
condition (6.5), given in Sec. 6.1. The equivalence of two definitions is established
in the Beurling–Ahlfors theorem in Sec. 6.1.

We denote by QS(S1) the set of all orientation-preserving quasisymmetric home-
omorphisms of S1. This is a group with respect to the composition of homeomor-
phisms.

Any diffeomorphism f ∈ Diff+(S1) extends to a diffeomorphism of the closed
unit disc ∆, and so to a quasiconformal homeomorphism f̃ (recall that the Jacobian
of a diffeomorphism f is equal to |fz|2−|fz̄|2). Hence, Diff+(S1) ⊂ QS(S1). Since the
Möbius group Möb(S1) of fractional-linear automorphisms of the disc is contained
in Diff+(S1), we obtain the following chain of embeddings

Möb(S1) ⊂ Diff+(S1) ⊂ QS(S1) ⊂ Homeo(S1) .

Definition 38. The quotient space

T := QS(S1)/Möb(S1)

is called the universal Teichmüller space. It can be identified with the space of
normalized quasisymmetric homeomorphisms of S1, fixing the points ±1 and −i.

125
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The reasons for choosing the name ”universal Teichmüller space” for the intro-
duced object will become clear later.

As we have just pointed out, we have an inclusion

S = Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1) .

Using the existence theorem for quasiconformal maps (Theor. 5 from Sec. 6.2),
we can describe the universal Teichmüller space in terms of Beltrami differentials.
Denote by B(∆) the set of Beltrami differentials in the unit disc ∆. It can be
identified, as we have pointed out in Sec. 6.1, with the unit ball in the complex
Banach space L∞(∆).

Given a Beltrami differential µ ∈ B(∆), we can extend it by symmetry (cf.
Sec. 6.2) to the Beltrami differential µ̂ on the whole plane. Theor. 5 from Sec. 6.2
implies the existence of a unique normalized quasiconformal homeomorphism wµ on
the extended complex plane C with complex dilatation µ̂. Moreover, this homeo-
morphism preserves the unit disc ∆, so we can associate with µ the quasisymmetric
homeomorphism wµ|S1 of the unit circle S1. Introduce an equivalence relation be-
tween Beltrami differentials in ∆: µ ∼ ν if and only if

wµ = wν on S1 .

Then the universal Teichmüller space T will be identified with the quotient of the
space B(∆) of Beltrami differentials modulo this equivalence relation:

T = B(∆)/ ∼ .

Or, to put it in another words, T coincides with the space of normalized quasicon-
formal self-homeomorphisms of the unit disc ∆.

We can give still another definition of the universal Teichmüller space T , using
the extension of a given Beltrami differential µ by zero outside the unit disc ∆ (cf.
Sec. 6.2). In more detail, we denote by µ̌ the Beltrami differential on the complex
plane, obtained by the extension of µ by zero outside ∆. Then by Theor. 5 from
Sec. 6.2 we obtain a normalized quasiconformal homeomorphism wµ of the extended
complex plane C, which is conformal on the exterior ∆− of the closed unit disc
∆ ⊂ C and fixes the points ±1,−i. Recall that the image ∆µ := wµ(∆) of the unit
disc ∆ under the quasiconformal map wµ is called the quasidisc. We associate with
the Beltrami differential µ ∈ B(∆) the normalized quasidisc ∆µ.

Introduce now another equivalence relation between Beltrami differentials in ∆
by saying that two Beltrami differentials µ and ν are equivalent, if wµ|∆− = wν |∆− .
We claim that this new equivalence relation between Beltrami differentials coincides
with the previous one. More precisely, we have the following

Lemma 4. Two Beltrami differentials µ, ν ∈ B(∆) are equivalent if and only if

wµ|S1 = wν |S1 ⇐⇒ wµ|∆− = wν |∆− .

The proof of Lemma will be given below. Note that it implies that the universal
Teichmüller space T can be identified with the space of normalized quasidiscs in C.

This last definition of T allows us to consider the elements of T as univalent
holomorphic functions in ∆− (which extend to quasiconformal homeomorphisms of
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the extended complex plane C and fix the points ±1 and −i). For such functions it is
standard to use an alternative normalization by fixing their Laurent decompositions
at ∞ in the form

f(z) = z +
b1
z

+
b2
z2

+ . . . .

The complex numbers b1, b2, . . . play the role of complex coordinates on T . Accord-
ing to the classical area theorem, they satisfy the inequality

∞∑
n=1

n|bn|2 ≤ 1 .

A relation between two different interpretations of Teichmüller space T , namely,
as the space of normalized quasisymmetric homeomorphisms of S1 and the space of
normalized quasidiscs in C, can be established in the following way.

If f is a given quasisymmetric homeomorphism of S1, then it can be extended to
a quasiconformal homeomorphism of the unit disc ∆, associated with some Beltrami
differential µ. Then the corresponding quasidisc

∆µ = wµ(∆)

will not depend on the choice of the quasiconformal extension of f to ∆.
Conversely, let ∆µ be the quasidisc, corresponding to a quasiconformal map

with the complex dilatation µ. Since both maps wµ : ∆→ ∆µ and wµ : ∆→ ∆ are
quasiconformal and have the same Beltrami potential µ in ∆, the map ρ := wµ◦w−1

µ

defines a conformal transform of the unit disc ∆ onto the quasidisc ∆µ. Denote this
map by ρ+, and by ρ− : ∆− → ∆µ

− a conformal map of ∆− onto the exterior
∆µ

− of the closed quasidisc ∆µ, provided by the Riemann mapping theorem. We
associate with the quasidisc ∆µ the quasisymmetric homeomorphism of S1, given
by the formula

f := ρ−1
+ ◦ ρ− |S1 .

The constructed correspondences preserve the normalizations and so establish a
relation between two different interpretations of the universal Teichmüller space T .

We give now the proof of the Lemma, formulated above.

Proof of Lemma. Suppose first that wµ|∆− = wν |∆− . Then the maps wµ ◦ w−1
µ and

wν ◦w−1
ν are both conformal in ∆+, which they map onto the same quasidisc. Being

normalized, they should agree on S1. But wµ|S1 = wν |S1 , so we should also have
wµ|S1 = wν |S1 .

Conversely, suppose that wµ|S1 = wν |S1 . Consider a map w of the extended
complex plane C, given by

w =

{
wµ ◦ (wν)−1 on wν(∆−) ,

[wµ ◦ (wµ)
−1] ◦ [wν ◦ (wν)−1] on wν(∆+) .

It follows from the assumption wµ|S1 = wν |S1 that w is a homeomorphism of C.
Moreover, w is conformal on wν(∆−) by construction and w is conformal on wν(∆+),
since both maps wµ ◦ (wµ)

−1 and wν ◦ (wν)−1 are conformal there. It follows from
the quasiconformal extension property (cf. [49], Lemma I.6.1) that w extends to
a conformal map of C, i.e. to a fractional-linear automorphism of C. Since it is
normalized, it should be equal to identity, so wµ|∆− = wν |∆− .
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The universal Teichmüller space T can be provided with a natural metric, called
the Teichmüller distance, which can be defined as follows. Representing the points
of T as normalized quasiconformal self-homeomorphisms of ∆, fixing the points ±1
and −i, we can define the distance between two points [w1], [w2] of T as

τ([w1], [w2]) :=
1

2
inf{logKw2◦w−1

1
: w1 ∈ [w1], w2 ∈ [w2]} ,

where Kw is the maximal dilatation of a quasiconformal map w (cf. Sec. 6.1). This
metric converts T into a complete metric space (cf. [49], Sec. III.3.2). Moreover, it
can be shown that T is contractible (cf. [49], Theor. III.3.2).

11.2 Kähler structure of the universal Techmüller

space

We shall study the Kähler geometry of the universal Teichmüller space T , using an
embedding of T into the space of quadratic differentials, proposed by L.Bers. This
embedding will allow us to introduce complex coordinates on T . It is convenient
to use for its definition the model of T as the space of normalized quasidiscs ∆µ =
wµ(∆+) or, which is the same, the space of normalized conformal maps wµ of ∆−.
By using a suitable Möbius transform, we can substitute here the disc ∆+ by the
upper halfplane H+ and represent T as the space of normalized quasidiscs wµ(H+),
i.e. the images of the upper halfplane H+ under quasiconformal homeomorphisms
wµ of the extended complex plane C, which are conformal on H− and fix the points
0, 1,∞.

Suppose that [µ] is an arbitrary point of T , represented by a normalized quasidisc
wµ(H+), and define a map

Ψ : [µ] 7−→ ψ[µ] := S[wµ|H− ] , (11.1)

where S denotes the Schwarzian (cf. Sec. 10.2). Due to the invariance of the
Schwarzian under the Möbius transformations, the image of this map ψ[µ] depends
only on the class [µ] of the Beltrami differential µ in T and is a holomorphic function
inH−. The converse is also true: if ψ[µ] = ψ[ν], then [µ] = [ν] in T . Indeed, consider
the conformal map h := wµ ◦ (wν)−1 from wν(H−) to wµ(H−). Then, applying the
transformation rule (10.8) for the Schwarzian on H−, we shall have

S[wµ] = S[h ◦ wν ] = (S[h] ◦ wν) (wν)′2 + S[wν ] .

Since S[wµ] = S[wν ] in H−, it follows that S[h] = 0 in H−. So h is a fractional-linear
transformation (cf. Sec. 10.2), which is normalized (i.e. fixes the points 0, 1,∞).
Hence, h is the identity, which implies that [µ] = [ν] in T .

The transformation rule for the Schwarzian (10.8) suggests that the image ψ[µ]
of a Beltrami differential µ ∈ B(H−) is a holomorphic quadratic differential in H−.
So the map (11.1) defines an embedding of the universal Teichmüller space T into
the space of holomorphic quadratic differentials in H−, called the Bers embedding .

We have already considered in Sec. 10.2 a natural hyperbolic norm on the space
of quadratic differentials. In the case of H− it is equal to

∥ψ∥2 := sup
z∈H−

4y2|ψ(z)|
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for a quadratic differential ψ. It follows from Theor. 11 in Sec. 10.2 that

∥ψ[µ]∥2 ≤ 6

for any Beltrami differential µ ∈ B(H−). Denote by B2(H−) the space of holomor-
phic quadratic differentials in H− with a finite norm:

B2(H−) = {holomorphic quadratic differentials ψ on H− : ∥ψ∥2 <∞} .

So we have an embedding
Ψ : T −→ B2(H−)

of T into a bounded subset in B2(H−). It can be shown that it is a homeomorphism
(with respect to the topology on T , determined by the Teichmüller distance) onto
the image of Ψ (cf. [49], Theor. III.4.1). The image Ψ(T ) is an open subset in
B2(H−), which contains the ball of radius 1/2 centered at zero (cf. [1]). Moreover,
it is known (cf. [20]) that it is a connected contractible set.

Using Bers embedding, we can introduce a complex structure and complex coor-
dinates on the universal Teichmüller space T by pulling them back from the complex
Banach space B2(H−). It provides T with the structure of a complex Banach man-
ifold. Consider now the natural projection of the space of Beltrami differentials
to the universal Teichmüller space, defined in the beginning of Sec. 11.1. In our
realization of T this map is given by

Φ : B(H+) −→ T = B(H+)/ ∼ .

It is holomorphic with respect to the introduced complex structure on T (cf. [56],
Ch. 3.4). So the composition map

F := Ψ ◦ Φ : B(H+) −→ B2(H−)

is also holomorphic.
We study next the tangent structure of this map, i.e. the differential of F . We

describe the tangent bundle TT , using the definition of T in terms of Beltrami
differentials

T = B(H+)/ ∼ .

Due to the homogeneity of T with respect to the right action of quasisymmetric
homeomorphisms, it’s sufficient to determine the tangent space T0T at the origin,
corresponding to the identity homeomorphism, associated with µ = 0.

Let µ ∈ L∞(H+) represents an arbitrary tangent vector from T0B(H+). Then
for the corresponding quasiconformal map wtµ we’ll have an expansion

wtµ(z) = z + tw1(z) + o(t)

for t→ 0, where o(t) := tδ(z, t) and δ(z, t)→ 0 uniformly in z, when z belongs to a
compact subset in C. The term

w1(z) ≡ ẇ[µ](z)

represents the first variation of the quasiconformal map wtµ with respect to µ. We
substitute wtµ into the Beltrami equation and differentiate it with respect to t at
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t = 0. Since ∂/∂t commutes with ∂/∂z and ∂/∂z̄ for almost all z, being applied to
wtµ(z) (cf. [2]), we obtain that

∂

∂z̄
(ẇ[µ](z)) = µ(z)

for almost all z, i.e. ẇ[µ](z) satisfies the ∂̄-equation. Hence it can be represented
by the Cauchy-Green integral: if µ has a compact support in C it has the form

− 1

π

∫
C

µ(ζ)

ζ − z
dξdη for ζ = ξ + iη

plus an arbitrary entire function, which in our case can be only a linear function of
the form (cf. [1])

A+Bz = (z − 1)

∫
C

µ(ζ)

ζ
dξdη − z

∫
C

µ(ζ)

ζ − 1
dξdη .

Altogether it gives the following formula for ẇ[µ](z)

w1(z) = ẇ[µ](z) = −z(z − 1)

π

∫
C

µ(ζ)

ζ(ζ − 1)(ζ − z)
dξdη , (11.2)

which holds for all µ ∈ L∞(H+) (the restriction on the support of µ being compact
is removed by a standard approximation argument, cf. [1]).

We are now able to prove the following

Proposition 20 ([1, 56]). The differential of the map

F = Ψ ◦ Φ : B(H+) −→ B2(H−)

at zero is given by the formula

d0 (Ψ ◦ Φ) [µ](z) = − 6

π

∫
H+

µ(ζ)

(ζ − z)4
dξdη , z ∈ H− , (11.3)

for µ ∈ B(H+).

Proof. Fix z0 ∈ H−. We want to find the derivative of the function

φ(t, z) := S[wtµ](z) = F [tµ](z)

at t = 0. By denoting w := wtµ, the derivative with respect to t by ”dot”, and
derivative with respect to z by ”prime”, we get

φ̇ =

(
w

′′′

w′ −
3

2

(
w′′

w′

)2
)·

=
(w′)3ẇ

′′′ − ẇ′(w′)2w
′′′ − 3ẇ′′(w′)2w′′ + 3ẇ′w′(w′′)2

(w′)4
.

For t = 0 we have w(z) ≡ z, so w′ ≡ 1, w′′ = w
′′′ ≡ 0. Hence, the above formula

reduces to
∂φ

∂t

∣∣∣∣
t=0

=
(w′)3ẇ

′′′

(w′)4
= ẇ

′′′
.
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But the formula (11.2) implies that

ẇ(z) = −z(z − 1)

π

∫
H+

µ(ζ)

ζ(ζ − 1)(ζ − z)
dξdη

(note that µ ≡ 0 on H−). Differentiating this formula three times over z, we obtain
the desired formula (11.3).

In addition to formula (11.3), it may be proved (cf. [56], Theor. 3.4.5) that the
operator d0F is a bounded linear operator and estimate its norm by an absolute
constant.

We describe the kernel of the differential d0F . We note that there is a natural
pairing between the space A2(H+) of L1-integrable holomorphic quadratic differen-
tials in H+ and the space B(H+) of Beltrami (−1, 1)-differentials in H+, denoted
by

< µ, ψ >:=

∫
H+

µψ . (11.4)

In terms of this pairing, the kernel of d0F can be identified as follows.

Theorem 12 (Teichmüller lemma). The kernel of d0F coincides with the subspace

N ≡ A2(H+)⊥ = {µ ∈ L∞(H+) : < µ, ψ >= 0 for all ψ ∈ A2(H+)} .

The proof of this Lemma may be found in ([1], Sec.IV(D); [56], Sec.3.7).

It will be useful to summarize the previous results also in the case of the unit
disc ∆ = ∆+. The Bers embedding for this case coincides with the map

F : B(∆+) −→ B2(∆−) ,

associating with a Beltrami differential µ ∈ B(∆+) in the unit disc ∆+ the restriction
S[wµ]|∆− of the Schwarzian S[wµ] to the exterior ∆− = {|z| > 1} ∪∞ of the closed
unit disc ∆+ on the Riemann sphere C. The image of this map is contained in the
space of holomorphic quadratic differentials in ∆− with a finite norm

∥ψ∥2 := sup
z∈∆−

(1− |z|2)2|ψ(z)| <∞ .

The formula for the differential d0F is given by

d0F [µ](z) = − 6

π

∫
∆+

µ(ζ)

(ζ − z)4
dξdη , z ∈ ∆− , (11.5)

for µ ∈ L∞(∆+). The kernel of d0F is equal to

N ≡ A2(∆+)⊥ = {µ ∈ L∞(∆+) : < µ, ψ >= 0 for all ψ ∈ A2(∆+)} .

This definition is equivalent to the following (cf. [56], Sec. 3.7.2)

N = {µ ∈ L∞(∆) :

∫
∆

µ(ζ)

(ζ − z)4
dξdη = 0 for all z ∈ ∆−} .
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The formulas (11.3),(11.5) suggest how a Kähler metric on T can be defined.
Namely, we employ the Ahlfors map (cf. [3]): L∞(∆) −→ B2(∆), given by

L∞(∆) ∋ µ 7−→ φ[µ](z) =

∫
∆

µ(ζ)

(1− zζ̄)4
dξdη .

It associates with any µ ∈ L∞(∆) a holomorphic quadratic differential φ[µ] with a
finite norm ∥φ∥2 = supz∈∆(1 − |z|2)2|φ(z)| < ∞. The kernel of this map coincides
with N = A2(∆+)⊥. Now we can define formally a Hermitian metric on T by setting
for two tangent vectors µ, ν in T0T = L∞(∆)/N :

(µ, ν) :=< µ,φ[ν] >=

∫
∆

∫
∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy . (11.6)

However, this metric is only densely defined. More precisely (cf. [59]), for a general
µ ∈ L∞(∆) its image φ[µ] in B2(∆) may be not integrable, i.e. it does not belong,
in general, to A2(∆), in which case the integral in (11.6) will diverge. In fact, the
formula (11.6) is correctly defined, if the tangent vectors µ, ν in T0T are sufficiently
smooth. To formulate this smoothness condition more precisely, we realize T as the
space of normalized quasisymmetric homeomorphisms of S1. Then a tangent vector
µ ∈ L∞(∆) = T0B(∆) will correspond under the differential d0Φ to the vector field
v = v(θ)∂/∂θ on S1 of the form

v(θ)
∂

∂θ
= ẇ[µ](z)

∂

∂z
, z = eiθ ,

where ẇ[µ] is the derivative with respect to t of the one-parameter flow wtµ of
quasisymmetric homeomorphisms:

wtµ(z) = z + tẇ[µ](z) + o(t) for t→ 0 .

Then it may be proved (cf. [59]) that the integral in (11.6) converges, if the tangent
vectors µ, ν in T0T correspond to C3/2+ϵ-smooth vector fields on S1. Whenever the
metric (11.6) is well-defined, it determines a Kähler metric, in particular, it defines
a Kähler metric on the ”regular” part of T .

11.3 Teichmüller spaces T (G) and Diff+(S1)/Möb(S1)

The universal Teichmüller space T contains, as its complex submanifolds, all clas-
sical Teichmüller spaces T (G), where G is a Fuchsian group (cf. [49, 56]). In
particular, it is true for all Teichmüller spaces of compact Riemann surfaces. This
property of T motivates the use of the term ”universal” in the name of T .

With an arbitrary Fuchsian group G we associate the Riemann surface X :=
∆/G, uniformized by the unit disc ∆. By definition, T (G) consists of quasisymmetric
homeomorphisms f ∈ QS(S1), which are G-invariant in the following sense:

f ◦ g ◦ f−1 belongs to Möb(S1) for all g ∈ G ,

modulo fractional-linear automorphisms of the disc ∆. If we denote by QS(S1)G the
subset of G-invariant quasisymmetric homeomorphisms in QS(S1), then

T (G) = QS(S1)G/Möb(S1) .
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The universal Teichmüller space T itself corresponds to the Fuchsian group G = {1}.
The various interpretations of the universal Teichmüller space T , given in Sec. 11.1,

are compatible with the notion ofG-invariance. In particular, the Teichmüller spaces
T (G) admit a description in terms of G-invariant Beltrami differentials. More pre-
cisely, denote by B(∆)G the subspace of B(∆), consisting of Beltrami differentials
µ, satisfying the relation

µ(gz)
g′(z)

g′(z)
= µ(z) almost everywhere on ∆ for all g ∈ G .

Then we’ll have, as in Sec. 11.1:

T (G) = B(∆)G/ ∼ ,

where µ ∼ ν iff wµ = wν on S1 or, equivalently, wµ|∆− = wν |∆− .
We can associate with a G-invariant Beltrami differential µ a Fuchsian group

Gµ, conjugate to G:
Gµ := wµGw

−1
µ ,

where wµ is the quasiconformal homeomorphism of C, leaving ∆± invariant (cf.
Sec. 11.1).

We have a natural quasiconformal map of the Riemann surface X := ∆/G onto
another Riemann surface Xµ := ∆/Gµ. This map is a homeomorphism which is
biholomorphic precisely, when µ ∈ Möb(S1). Hence, one can say that the space
T (G) parametrizes, with the help of the map µ 7→ Gµ, different complex structures
on the Riemann surface X := ∆/G, which can be obtained from the original one by
quasiconformal deformations.

On the other hand, we can associate with a G-invariant Beltrami differential
µ ∈ B(∆)G another conjugated group

Gµ := wµG(wµ)−1 ,

operating properly discontinuously on the quasidisc ∆µ := wµ(∆). Here, wµ is the
quasiconformal homeomorphism of C, which is conformal on ∆− (cf. Sec. 11.1). The
group Gµ is a Kleinian group, called otherwise a quasi-Fuchsian group (cf. [49, 56]).
The Riemann surface Xµ is biholomorphic to ∆µ/Gµ (cf. [56], Theor. 1.3.5). We
note also that the Riemann surface ∆µ

−/G
µ is biholomorphic to the Riemann surface

∆−/G, due to the conformality of wµ on ∆−.
The definition and main properties of the Bers embedding, given in Sec. 11.2,

extend to the Teichmüller spaces T (G). For the case of the unit disc ∆ ≡ ∆+ the
Bers embedding is the map

F : B(∆+)G −→ B2(∆−)G ,

associating with a Beltrami differential µ ∈ B(∆+)G the quadratic differential
S[wµ|∆− ] on ∆−. The image of this map is contained in the space B2(∆−)G of
G-invariant holomorphic quadratic differentials in ∆− with a finite norm

∥ψ∥2 := sup
z∈∆−

(1− |z|2)2|ψ(z)| <∞ .
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The formula for the differential d0F has the form

d0F [µ](z) = − 6

π

∫
∆+

µ(ζ)

(ζ − z)4
dξdη , z ∈ ∆− ,

for µ ∈ L∞(∆+)G. The kernel of d0F is given by

NG ≡ (A2(∆+)G)⊥ = {µ ∈ L∞(∆+)G : < µ, ψ >= 0 for all ψ ∈ A2(∆+)} .

This definition is equivalent to

NG = {µ ∈ L∞(∆)G :

∫
∆

µ(ζ)

(ζ − z)4
dξdη = 0 for all z ∈ ∆−} .

So the tangent space of T (G) at the origin coincides with the space L∞(∆)G/NG.
As in Sec. 11.2, there is the Ahlfors map L∞(∆)G/NG −→ B2(∆)G, given by

L∞(∆)G ∋ µ 7−→ φ[µ](z) =

∫
∆

µ(ζ)

(1− zζ̄)4
dξdη .

Using this map, we can define the Weil–Petersson metric on T (G), as in Sec. 11.2,
by setting for two tangent vectors µ, ν in T0T (G) = L∞(∆)G/NG:

gG(µ, ν) :=

∫
∆/G

∫
∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy . (11.7)

As was pointed out in Sec. 11.2, the image φ[µ] ∈ B2(∆)G of the Ahlfors map
for a general Fuchsian group G may not belong to the space A2(∆)G of integrable
holomorphic quadratic differentials, so the formula (11.7) for the metric gG(µ, ν)
is ill-defined for general Fuchsian groups. But in the case of finite-dimensional
Teichmüller spaces T (G) this difficulty does not show up, since in this situation
B2(∆)G = A2(∆)G (cf. [56]), and the introduced metric coincides with the standard
Weil–Petersson metric on the finite-dimensional Teichmüller spaces T (G). Moreover,
S.Nag has proved (cf. [59]) that the metric gG(µ, ν) on T (G) can be obtained from
the metric (µ, ν) on T by a certain reduction procedure. This procedure involves a
regularization of the integral

(µ, ν) =

∫
∆

∫
∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy =

∫
∆

µ · φ[ν] . (11.8)

To define the regularization, we rewrite the integral (11.8) in the form

(µ, ν) = lim
r→1−0

gr(µ, ν)

where

gr(µ, ν) =

∫
∆r

µ · φ[ν] , (11.9)

and ∆r := {z ∈ ∆ : |z| < r}, 0 < r < 1.
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In the case when µ, ν are G-invariant, i.e. belong to L∞(∆)G/NG, the integral
(11.8) coincides with

n

∫
∆/G

µ · φ[ν] = ngG(µ, ν) ,

where n is the number of copies of the fundamental domain ∆/G, contained in ∆.
Hence, this integral must diverge, if the group G has infinitely many elements. The
integral (11.9) by the same argument is proportional to nrgG(µ, ν), where nr is the
number of copies of the fundamental domain ∆/G, contained in ∆r. It follows that
the integral (11.9) may be regularized by dividing it by a quantity, proportional to
nr. More precisely, the following assertion is true .

Proposition 21 ([59]). For any finite-dimensional Teichmüller space T (G) its Weil–
Petersson metric gG(µ, ν) may be computed by the formula

gG(µ, ν)

gG(µ0, µ0)
= lim

r→1−0

gr(µ, ν)

gr(µ0, µ0)
,

where µ, ν ∈ L∞(∆)G, and µ0 ∈ L∞(∆)G/NG is an arbitrary nonzero tangent vector
from T0T (G).

As we have remarked at the beginning of Sec. 11.1, the universal Teichmüller
space T contains the homogeneous space S = Diff+(S1)/Möb(S1) as its ”regular”
part:

S = Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1) .

In Sec. 10.3 we have defined the structure of a Kähler–Frechet manifold on S.
We recall the definition of the Kähler metric g on this space in terms of Fourier
decompositions. For given tangent vectors u, v ∈ ToS with Fourier decompositions

u =
∑

n̸=−1,0,1

unen and v =
∑

n̸=−1,0,1

vnen ,

the value of g on these vectors is equal to

g(u, v) = 2 Re

(
∞∑
n=2

unv̄n (n3 − n)

)
. (11.10)

As we have noted before, the series on the right hand side is absolutely converging,
if the vector fields u, v are of the class C3/2+ϵ on S1.

It was pointed out in [59] that the Kähler metric g on S coincides (up to a con-
stant factor) with the Weil–Petersson metric (11.6) on S, induced by the embedding
S ↪→ T . (Note that the metric (11.6) on the smooth part S of T is correctly defined,
as we have remarked in Sec. 11.2.) Using the interpretation of tangent vectors from
T0T , given at the end of Sec. 11.2, we can express the equality of these metrics on S
as follows. Given two tangent vectors u, v ∈ T0S, written in the form u = ẇ[µ]∂/∂z,
v = ẇ[ν]∂/∂z, we have

g(µ, ν) = λ

∫
∆

∫
∆

µ(z)ν(ζ)

(1− zζ̄)4
dξdη dxdy
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for a suitable choice of the constant λ. By introducing this constant into the defini-
tion of the Kähler metric on S, we can make the embedding S ↪→ T an isometry.

It is an interesting question, how the smooth part S is placed inside the universal
Teichmüller space T with respect to the classical Teichmüller spaces T (G). It can
be shown (cf. [12]) that the quasidiscs, corresponding to all points of T (G), except
the origin, have fractal boundaries (i.e. boundaries of Hausdorff dimension> 1) in
contrast with the qiasidiscs, corresponding to points of S, which have C∞-smooth
boundaries.

11.4 Grassmann realization of the universal

Teichmüller space

The Grassmann realization of the universal Teichmüller space T is based on the fact
that the group QS(S1) of quasisymmetric homeomorphisms of the circle acts on the
Sobolev space V of half-differentiable functions on S1 (cf. Sec. 9.2).

Suppose that f : S1 → S1 is a homeomorphism of S1, preserving its orientation.
We define an operator Tf by the formula

Tf (ξ) := ξ ◦ f − 1

2π

∫ 2π

0

ξ (f(θ)) dθ

for ξ ∈ V . This operator has the following remarkable property.

Proposition 22 ([58]). The operator Tf acts on V (i.e. Tf (ξ) belongs to V for any
ξ ∈ V ) if and only if f ∈ QS(S1). Moreover, if f extends to a K-quasiconformal
homeomorphism of the disc ∆, then the operator norm of Tf does not exceed√
K +K−1.

The proof of this assertion, given in [58], uses the interpretation of the space V
in terms of harmonic functions in the disc, given at the end of Sec. 9.1.

Transformations of the form Tf with f ∈ QS(S1) preserve the symplectic form
ω, i.e. they are symplectic transformations of V .

Proposition 23 ([58]). If f ∈ QS(S1), then

ω(f ∗(ξ), f ∗(η)) = ω(ξ, η)

for any ξ, η ∈ V . Moreover, the complex-linear extension of the QS(S1)-action on
V to the complexification V C preserves the subspace W+ (cf. Sec. 9.1) if and only
if f is a Möbius transformation, i.e. f ∈ Möb(S1). In the latter case, Tf acts as a
unitary operator on W±.

Proof. For homeomorphisms f of the class C1 the first assertion is a corollary of
the change of variables formula. For a general quasisymmetric homeomorphism
f ∈ QS(S1) the assertion follows from the fact (cf. [49]) that f may be uniformly
approximated by real analytic quasisymmetric homeomorphisms of S1, having the
same quasiconformal constant K as f .

If the action of f on V C preserves W+, then it should extend to a map ∆→ ∆.
This map must be a biholomorphism, since f is a homeomorphism, hence, it is a
Möbius transformation. It is clear from the definition of the inner product on V C

(cf. Sec. 9.1) that such a transformation acts unitarily on W±.
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The symplectic form ω on V is uniquely determined by the invariance property,
stated in the above Proposition. In fact, a much stronger assertion is true.

Proposition 24 ([58]). Suppose that ω1 is a real-valued continuous bilinear skew-
symmetric form on V such that

ω1(f
∗(ξ), f ∗(η)) = ω1(ξ, η)

for any f ∈ Möb(S1) and arbitrary ξ, η ∈ V . Then ω1 is a real multiple of ω, in
particular, any form ω1, satisfying the hypothesis of the Proposition, coincides nec-
essarily with a symplectic form, invariant under quasisymmetric homeomorphisms
of S1.

Proof. Note that both forms ω and ω1 define the duality maps

Σ : V −→ V ∗ and Σ1 : V −→ V ∗ ,

given by
Σ(ξ) := ω(·, ξ) , Σ1(ξ) := ω1(·, ξ)

for ξ ∈ V . In the case of ω the duality operator Σ coincides, in fact, with the (minus
of) J0. In particular, Σ is a bounded invertible operator, defining an isomorphism
between V and its dual.

We consider an intertwining operator

M := Σ−1 ◦ Σ1 : V −→ V .

It is a bounded linear operator on V , defined by the equality

ω(ξ,Mη) = ω1(ξ, η) .

Note thatM commutes with any invertible bounded linear operator on V , preserving
the forms ω and ω1. Indeed, if T is such an operator, then

ω(Tξ, TMη) = ω(ξ,Mη) = ω1(ξ, η) = ω1(Tξ, Tη) = ω(Tξ,MTη) .

Since T is invertible, it implies that

ω(ξ, TMη) = ω(ξ,MTη)

for any ξ, η ∈ V . Since the duality operator Σ, determined by ω, is an isomorphism,
the last equality implies that TM = MT , as asserted.

We have to show that the intertwining operator M coincides with the scalar
operator const · I. We prove it by considering the complex-linear extension of M to
the complexification V C.

Consider the complexified action f 7→ Tf of the Möbius group Möb(S1) on V C.
Then its restriction to W+ can be identified with the standard unitary representation
of the group SL(2,R) on the space of L2-holomorphic functions in the disc ∆ (cf.
[58], lemma 4.6), hence, it is irreducible. The same is true for the restriction of
f 7→ Tf to W−. Moreover, W± are the only irreducible invariant subspaces of the
representation f 7→ Tf of Möb(S1) on V C.
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As we have just proved, the intertwining operatorM commutes with all operators
Tf : V C → V C with f ∈ Möb(S1). Since W± are the only invariant subspaces for all
such Tf , the operator M should map W+ either to W+ or W−. If M maps W+ into
W+, then by Schur’s lemma it should be a scalar, which is real, since the operator
M was real.

If the other possibility (when M maps W+ into W−) would realize, we would
substitute M by the operator M̃ , given by the composition of M with the complex
conjugation. The operator M̃ would map W+ into W+ and commute with all oper-
ators Tf . As we have just proved, such an operator M̃ should be a real scalar and
so coincide with M . But in this case M cannot map W+ into W−, so the second
possibility is not realized.

The Propositions 22 and 23 imply that the quasisymmetric homeomorphisms
from QS(S1) act on the Hilbert space V by bounded symplectic operators. Hence,
we have a map

T = QS(S1)/Möb(S1) −→ Sp(V )/U(W+) . (11.11)

Here, by Sp(V ) we denote the symplectic group of V , consisting of linear bounded
symplectic operators on V , and by U(W+) its subgroup, consisting of unitary oper-
ators, i.e. operators, whose complex-linear extensions to V C preserve the subspace
W+. We describe these groups in more detail.

Recall that the complexified Hilbert space V C is decomposed into the direct sum

V C = W+ ⊕W−

of subspaces

W+ = {f ∈ V C : f(z) =
∑
k>0

xkz
k} , W− = W+ = {f ∈ V C : f(z) =

∑
k<0

xkz
k} .

In terms of this decomposition any linear operator A : V C → V C can be written in
the block form

A =

(
a b
c d

)
,

where

a : W+ → W+ , b : W− → W+ , c : W− → W− , d : W+ → W− .

In particular, the linear operators on V C, obtained by the complex-linear extensions
of operators A : V → V , have the block form

A =

(
a b
b̄ ā

)
,

where we identify W− with the complex conjugate W+.
An operator A : V → V belongs to the symplectic group Sp(V ), if it preserves

the symplectic form ω. This condition is equivalent to the following relation:

AtJ0A = J0 ,
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where

J0 =

(
−i 0
0 i

)
.

In other words, the condition A ∈ Sp(V ) can be written in the form:

A =

(
a b
b̄ ā

)
∈ Sp(V )⇐⇒ āta− btb̄ = 1 , ātb = btā . (11.12)

Here at, bt denote the transposed operators

at : W ′
+ → W ′

+ ⇐⇒ at : W− → W− , bt : W ′
+ → W ′

− ⇐⇒ bt : W− → W+ ,

where the space W ′
+, dual to W+, is identified with W− with the help of the inner

product < · , · > (cf. Sec. 9.1).
The unitary group U(W+) is embedded into Sp(V ) as a subgroup, consisting of

block matrices

A =

(
a 0
0 ā

)
.

We return to the map (11.11). The space

Sp(V )/U(W+) ,

standing on the right hand side of the formula (11.11), can be considered as an
infinite-dimensional Siegel disc. To justify this assertion, we should study the action
of QS(S1) on compatible complex structures on the space V .

As we have proved above, Möbius transformations f ∈ Möb(S1) define, via the
representation f 7→ Tf , unitary operators in U(W+), in particular such transforma-
tions preserve the complex structure J0 on V . If a quasisymmetric homeomorphism
f does not belong to Möb(S1), it does not preserve the original complex structure
J0, transforming it into another complex structure Jf , which is also compatible with
the symplectic form ω. We explain this assertion in more detail.

Any complex structure J on V , compatible with ω, determines a decomposition

V C = W ⊕W (11.13)

into the direct sum of subspaces, isotropic with respect to ω. This decomposition is
orthogonal with respect to the Kähler metric gJ on V C, determined by J and ω. The
subspaces W and W are identified with, respectively, the (−i)- and (+i)-eigenspaces
of the operator J on V C. Conversely, any decomposition (11.13) of the space V C

into the direct sum of isotropic subspaces determines a complex structure J on V C,
which is equal to −i · I on W and +i · I on W and is compatible with ω.

This argument shows that the symplectic group Sp(V ) acts transitively on the
space J (V ) of complex structures J , compatible with ω. It follows that the space
Sp(V )/U(W+) can be identified with the space J (V ). Otherwise, it may be con-
sidered as the space of the so called positive polarizations of V , i.e. decompositions
(11.13) of V C into the direct sum V C = W ⊕ W of isotropic subspaces of V C,
orthogonal with respect to the Kähler metric gJ on V C.

We are ready to give a Siegel disc interpretation of the space Sp(V )/U(W+). By
definition, the Siegel disc is the set of bounded linear operators Z of the form

D = {Z : W+ → W− is a symmetric bounded linear operator with Z̄Z < I} .
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The symmetricity of Z means, as above, that Zt = Z and the condition Z̄Z < I
means that the symmetric operator I − Z̄Z is positive definite. In order to identify
J (V ) with D, consider the action of the group Sp(V ) on D, given by fractional-linear
transformations A : D → D of the form

Z 7−→ (āZ + b̄)(bZ + a)−1 ,

where A =

(
a b
b̄ ā

)
∈ Sp(V ). The invertibility of the operator bZ + a follows from

the invertibility of the operator a (cf. (11.12)) and the inequality (cf. (11.12))

bZZ̄b̄t < bb̄t < aāt .

It’s evident that A : D → D. The isotropy subgroup of the point Z = 0 consists of
the operators A ∈ Sp(V ), for which b̄a−1 = 0, i.e. b = 0. This subgroup coincides
with U(W+). It remains to check that the action of Sp(V ) on D is transitive, i.e.
to construct for a given Z ∈ D an operator A, sending Z = 0 to this Z. Such an
operator may be given by

A =

(
a b
b̄ ā

)
(11.14)

with b = āZ̄ and

āt(1− Z̄Z)a = 1⇒ (āt)−1a−1 = 1− Z̄Z ⇒ a = (1− Z̄Z)−1/2 .

This proves that the space

J (V ) = Sp(V )/U(W+)

may be identified with the Siegel disc D.
In Sec. 5.1 we have introduced the Grassmanian Grb(V

C), consisting of the images
of bounded linear operators W+ → W . It is clear from the given description of D
that it is embedded in Grb(V

C) as a complex submanifold.
Summarizing the argument above, we have the following

Proposition 25 ([58]). The map

T = QS(S1)/Möb(S1) ↪→ Sp(V )/U(W+) = D ↪→ Grb(V
C)

is an equivariant holomorphic embedding of Banach manifolds.

11.5 Grassmann realization of Diff+(S1)/Möb(S1)

and Diff+(S1)/(S1)

We have constructed in the previous Sec. 11.4 the natural embedding

T = QS(S1)/Möb(S1) ↪→ Sp(V )/U(W+) = D ↪→ Grb(V
C) .

Recall now that in Sec. 10.3 we have identified the space S with the ”regular” part
of the universal Teichmüller space T . Combining the above embedding

T ↪→ Sp(V )/U(W+)
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with the embedding S ↪→ T , we obtain a map

S ↪→ Sp(V )/U(W+) ,

yielding an embedding of S in the Grassmann manifold Grb(V
C).

However, this result may be significantly strengthened by replacing the Grass-
mann manifold Grb(V

C) with its ”regular” part, namely, the Hilbert–Schmidt Grass-
manian GrHS(V ), introduced in Sec. 5.2.

We recall that this Grassmanian GrHS(V ) consists of closed subspaces W ⊂ V
such that the orthogonal projection pr+ : W → W+ is a Fredholm operator, while the
orthogonal projection pr− : W → W− is a Hilbert–Schmidt operator. It was shown
in Sec. 5.2 that GrHS(V ) is a Kähler Hilbert manifold, having as its local model the
Hilbert space HS(W+,W−) of Hilbert–Schmidt operators. Recall (cf. Sec. 5.2) that
GrHS(V ) is a homogeneous space of the Hilbert–Schmidt unitary group UHS(V ),
more precisely

GrHS(V ) = UHS(V )/ U(W+)× U(W−) .

We introduce now, by analogy with the group UHS(V ), the Hilbert–Schmidt sym-
plectic group SpHS(V ). Recall that the symplectic group Sp(V ) consists of bounded
linear operators A : V C → V C, having the block representations of the form

A =

(
a b
b̄ ā

)
,

where
āta− btb̄ = 1 , ātb = btā .

By definition, the group SpHS(V ) ⊂ Sp(V ) consists of transformations A ∈ Sp(V ),
for which the operator b is Hilbert–Schmidt. The unitary group U(W+) is contained
in SpHS(V ) as a subgroup

U(W+) ∋ a 7−→ A =

(
a 0
0 ā

)
.

The diffeomorphism group Diff+(S1) acts on the space V by symplectic trans-
formations, given by the same formula, as in Sec. 11.4:

Tf (ξ) := ξ ◦ f − 1

2π

∫ 2π

0

ξ (f(θ)) dθ .

As before, the transformation Tf preserves the subspace W+ ⊂ V if and only if
f ∈ Möb(S1), and in this case Tf ∈ U(W+). The correspondence f 7→ Tf defines an
embedding

S ↪→ SpHS(V )/U(W+) .

Moreover, the following result is true.

Proposition 26 ([57]). The map

S ↪→ SpHS(V )/U(W+) = GrHS(V )

is an equivariant holomorphic embedding.
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By analogy with Sec. 11.4, we identify the space SpHS(V )/U(W+) with the space
JHS(V ) of admissible complex structures on V , compatible with the symplectic form
ω. As in the previous Section, it has a natural realization as a Hilbert–Schmidt Siegel
disc

DHS = {Z : W+ → W− is a symmetric Hilbert–Schmidt operator with Z̄Z < I} .

So, the above Proposition yields a holomorphic embedding

S ↪→ SpHS(V )/U(W+) = DHS .

There is another interpretation of the space S as the space of complex structures,
namely, as the space of admissible complex structures on the loop space ΩG.

There is a natural action of the diffeomorphism group of the circle Diff+(S1) on
the loop group LG by the reparametrization of loops. It is given by the formula

f∗γ(θ) := γ (f(θ))− 1

2π

∫ 2π

0

γ (f(θ)) dθ

for γ ∈ LG, f ∈ Diff+(S1). By identifying ΩG with the subgroup L1(G), it’s evident
that this action can be pushed down to the action of Diff+(S1) on the loop space
ΩG.

From the definition of the symplectic structure ω on ΩG, generated by the form

ω0(ξ, η) =
1

2π

∫ 2π

0

< ξ(eiθ), η′(eiθ) > dθ ,

on Lg, it’s clear (by the change of variables in the integral) that diffeomorphisms
from Diff+(S1) preserve ω, i.e. generate symplectomorphisms of the manifold ΩG.

The complex structure J0 on ΩG is given at the origin o ∈ ΩG by the formula

ξ =
∑
k ̸=0

ξkz
k ∈ ΩgC =⇒ J0

o ξ = −i
∑
k>0

ξkz
k + i

∑
k<0

ξkz
k ,

so the tangent subspaces, consisting of vectors of the type (1, 0) and (0, 1), have the
form

T 1,0
o (ΩG) = {ξ =

∑
k<0

ξkz
k ∈ ΩgC}, T 0,1

o (ΩG) = {ξ =
∑
k>0

ξkz
k ∈ ΩgC} .

A diffeomorphism f ∈ Diff+(S1) transforms the complex structure J0 into the com-
plex structure

Jf := f−1
∗ ◦ J0 ◦ f∗ ,

where f∗ is the tangent map to f .

Proposition 27. The complex structure Jf with f ∈ Diff+(S1) coincides with the
original complex structure J0 if and only if f ∈ Möb(S1).

Proof. If the diffeomorphism f ∈ Diff+(S1) does not change the original complex
structure, i.e. defines a biholomorphism of ΩG, provided with the complex structure
J0, it means , in particular, that it preserves the tangent space T 0,1

o (ΩG). Hence,
such a diffeomorphism should preserve the subspace L+GC, implying that it extends
to a biholomorphism of the unit disc ∆. So, f ∈ Möb(S1). The converse assertion
is obvious.
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We shall call the complex structures Jf on ΩG:

Jf := f−1
∗ ◦ J0 ◦ f∗ ,

obtained from J0 by the action of the diffeomorphism group, the admissible complex
structures on ΩG. The Proposition 27 implies that the space of admissible complex
structures on ΩG can be identified with the manifold S.

Recall that the complex structure J0 on ΩG is invariant under the left LG-
translations on the space ΩG and compatible with the symplectic structure ω (in
the sense of Def. 17 from Sec. 1.2.5). Due to the invariance of ω with respect to the
action of the group Diff+(S1), the complex structures Jf are also invariant under
the left LG-translations and compatible with ω. In particular, any such complex
structure Jf defines a Kähler metric gf on ΩG by the formula

gf (ξ, η) := ω(ξ, Jfη)

for any ξ, η ∈ Tγ(ΩG), γ ∈ ΩG.

Consider now the space R = Diff+(S1)/(S1). Combining the above embedding

S ↪→ SpHS(V )/U(W+) = DHS

with the holomorphic map

R = Diff+(S1)/(S1) −→ S ,

we obtain the Grassmann realization of the space R = Diff+(S1)/(S1):

R −→ SpHS(V )/U(W+) = DHS .

As in the case of S, the space R can be also considered as a space of complex
structures on the loop space ΩG. Recall that the loop space ΩG, provided with the
complex structure J0, admits the following complex homogeneous representation

ΩG = LGC/L+G
C .

According to Birkhoff theorem (cf. Sec. 7.3), we can identify a neighborhood of the
origin in ΩG with a neighborhood of the identity in the loop subgroup L−

1 G
C. If a

diffeomorphism f ∈ Diff+(S1) fixes the origin in ΩG and generates a biholomorphism
of

(ΩG, J0) = LGC/L+G
C ,

it generates also a biholomorphism of L−
1 G

C. In this case we shall say that the
complex structure Jf , associated with f ∈ Diff+(S1), is equivalent to the original
complex structure J0.

Proposition 28. The complex structure Jf with f ∈ Diff+(S1) is equivalent to the
original complex structure J0 in the above sense if and only if f is a rotation, i.e.
f ∈ S1.

Proof. If the diffeomorphism f ∈ Diff+(S1) generates a biholomorphism of

(ΩG, J0) = LGC/L+G
C ,

fixing the origin, then it leaves the subspace L+G
C invariant and generates a biholo-

morphism of L−
1 G

C. The first property implies that f extends to a biholomorphism
of the unit disc ∆, while the second one implies that f extends to a biholomorphism
of its exterior ∆−, fixing the infinity. Then, by Liouville theorem, f ∈ S1.
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