
Chapter 3

Properties of hyperbolic
polynomials

In order to study the solution u(t, x) to (1.0.1), we must first know some
properties of the characteristic roots τ1(ξ), . . . , τm(ξ). Naturally, we do not
have explicit formulae for the roots, unlike in the cases of the dissipative wave
equation and the Klein–Gordon equation (i.e. for second order equations),
but we do know some properties for the roots of the principal symbol. For
general hyperbolic operators, the roots ϕ1(ξ), . . . , ϕm(ξ) of the characteris-
tic polynomial of the principal part are homogeneous functions of order 1
since the principal part is homogeneous. Furthermore, for strictly hyperbolic
polynomials these roots are distinct when ξ 6= 0. Since these two properties
are very useful when studying homogeneous (strictly) hyperbolic equations,
it is useful to know whether the characteristic roots of the full equation,
τ1(ξ), . . . , τm(ξ), have similar properties. Indeed, if we regard the full equa-
tion as a perturbation of the principal part by lower order terms, we can
show that similar properties hold for large |ξ|; these results are the focus of
this section. In the outline of the method in Section 2.5, we subdivided the
phase space into large |ξ| and bounded |ξ|, and it is these properties that
motivate this step.

3.1 General properties

First, we give some properties of general polynomials which are useful to us.
For constant coefficient polynomials, the following result holds:
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Lemma 3.1.1. Consider the polynomial over C with complex coefficients

zm + c1z
m−1 + ∙ ∙ ∙+ cm−1z + cm =

m∏

k=1

(z − zk).

If there exists M > 0 such that |cj| ≤ M j for each j = 1, . . . ,m, then
|zk| ≤ 2M for all k = 1, . . . ,m.

Proof. Assume that |z| > 2M . Then

|zm + c1z
m−1 + ∙ ∙ ∙+ cm−1z + cm| ≥ |z|

m

(

1−
|c1|
|z|
− ∙ ∙ ∙ −

|cm−1|
|z|m−1

−
|cm|
|z|m

)

≥ (2M)m(1− 2−1 − ∙ ∙ ∙ − 2−(m−1) − 2−m) > 0.

That is, no zero of the polynomial lies outside of the ball about the origin of
radius 2M ; hence |zk| ≤ 2M for each k = 1, . . . ,m.

Remark 3.1.2. If we replace the hypothesis |cj| ≤M j by |cj| ≤M for each
j = 1, . . . ,m, then by a similar argument we obtain that |zk| ≤ max{2, 2M}.
The quantity max{2, 2M} appears because we need M ≥ 1 for the sum on
the right hand side to be positive.

For general polynomials with variable coefficients, we have continuous
dependence of roots on coefficients (we give an independent proof of this
result here for the sake of completeness and for referencing, but analogue
of this result can be found in many monographs dealing with hyperbolic
polynomials).

Lemma 3.1.3. Consider the mth order polynomial with coefficients depend-
ing on ξ ∈ Rn

p(τ, ξ) = τm + a1(ξ)τ
m−1 + ∙ ∙ ∙+ am(ξ).

If each of the coefficient functions aj(ξ), j = 1, . . . ,m, is continuous in Rn

then each of the roots τ1(ξ), . . . , τm(ξ) with respect to τ of p(τ, ξ) = 0 is also
continuous in Rn.

Proof. Define ρ : Cm → Cm by ρ(z1, . . . , zm) = (c1, . . . , cm) where the cj
satisfy

zm + c1z
m−1 + ∙ ∙ ∙+ cm =

m∏

j=1

(z − zj).

By the fundamental theorem of algebra ρ is invertible (but the inverse is not
unique modulo permutation of roots), and, moreover, ρ is:
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(a) surjective by the Fundamental Theorem of Algebra;

(b) continuous since each of the cj may be written as polynomials of the zj
(by the Vièta formulae);

(c) proper (that is, the preimage of each compact set is compact) by Re-
mark 3.1.2;

properties (b) and (c) imply that ρ is a closed mapping.
Now, fix ξ0 ∈ Rn. For any given ε > 0, consider the set

U =
⋃

α∈Sm

m⋂

k=1

{
ζ = (ζ1, . . . , ζm) ∈ C

m : |ζαk − τk(ξ
0)| < ε

}
,

where α = (α1, . . . , αm) ∈ Sm denotes the set of permutations of {1, . . . ,m}
(see Fig. 3.1 for a diagram of this). Note that U is, by construction, symmet-

C2

C1τ1(ξ
0)

τ1(ξ
0)

τ2(ξ
0)

τ2(ξ
0) U1

U2 2ε

2ε

2ε 2ε

Figure 3.1: U = U1 ∪ U2

ric, i.e. if (z1, . . . , zm) ∈ U then (zα1 , . . . , zαm) ∈ U for all (α1, . . . , αm) ∈ Sm.
Let F denote the complement to U :

F =
⋂

α∈Sm

{
ζ = (ζ1, . . . , ζm) ∈ C

m : |ζαk − τk(ξ
0)| ≥ ε ∃ k = 1, . . . ,m

}
.

We need to show that there exists δ > 0 such that (τ1(ξ), . . . , τm(ξ)) ∈ U
whenever |ξ − ξ0| < δ; note:

• ρ−1(ρ(F )) = F by construction—if ρ(w) = ρ(w′) then both w and w′ give
rise to the same polynomial, and hence their entries are permutations of
each other, and so either both or neither lie in F ;

• by the surjectivity of ρ,

ρ(U) = ρ(F c) = ρ([ρ−1(ρ(F ))]c) = ρ(ρ−1(ρ(F )c)) = ρ(F )c ;
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• ρ(F ) is closed since F a closed set and ρ is a closed mapping;

therefore, ρ(U) is open. Thus, there exists an open ball in ρ(U) of radius δ′

(for some δ′ > 0) about a(ξ0) ≡ (a1(ξ0), . . . , am(ξ0)) = ρ(τ1(ξ0), . . . , τm(ξ0)):

Bδ′(a(ξ
0)) =

{
(c1, . . . , cm) ∈ C

m : |cj − aj(ξ
0)| < δ′ ∀ j = 1, . . . ,m

}
⊂ ρ(U).

By the continuity of the aj(ξ), there exists δ > 0 such that

|ξ − ξ0| < δ =⇒ |aj(ξ)− aj(ξ
0)| < δ′ for all j = 1, . . . ,m ;

hence,

|ξ − ξ0| < δ =⇒ (a1(ξ), . . . , am(ξ)) ∈ Bδ′(a(ξ
0)) ⊂ ρ(U) .

Finally, since ρ(τ1(ξ), . . . , τm(ξ)) = (a1(ξ), . . . , am(ξ)) and U is symmetric
(this is needed as different root orderings give the same coefficients), we find
that we have (τ1(ξ), . . . , τm(ξ)) ∈ U when |ξ − ξ0| < δ as required; this
completes the proof of the lemma.

Now, let us turn to proving properties of the characteristic roots.

Proposition 3.1.4. Let L = L(Dt, Dx) be a linear m
th order constant coeffi-

cient differential operator in Dt with coefficients that are pseudo-differential
operators in x, with symbol

L(τ, ξ) = τm +
m∑

j=1

Pj(ξ)τ
m−j +

m∑

j=1

aj(ξ)τ
m−j,

where Pj(λξ) = λjPj(ξ) for all λ >> 1, |ξ| >> 1, and aj ∈ Sj−ε, for some
ε > 0.
Then each of the characteristic roots of L, denoted τ1(ξ), . . . , τm(ξ), is

continuous in Rn; furthermore, for each k = 1, . . . ,m, the characteristic
root τk(ξ) is smooth away from multiplicities, and analytic if the operator
L(Dt, Dx) is differential.
If operator L(Dt, Dx) is strictly hyperbolic, then there exists a constant

M such that, if |ξ| ≥ M then the characteristic roots τ1(ξ), . . . , τm(ξ) of L
are pairwise distinct.

Proof. The first part of Proposition is simple. Let us now investigate the
structure of the characteristic determinant. We use the notation and results
from Chapter 12 of [GKZ94] concerning the discriminant Δp of the polyno-
mial p(x) = pmx

m + ∙ ∙ ∙+ p1x+ p0,

Δp ≡ Δ(p0, . . . , pm) := (−1)
m(m−1)

2 p2m−2m

∏

i<j

(xi − xj)
2 ,
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where the xj (j = 1, . . . ,m) are the roots of p(x); that is, the irreducible
polynomial in the coefficients of the polynomial which vanishes when the
polynomial has multiple roots. We note that Δp is a continuous function of
the coefficients p0, . . . , pm of p(x) and it is a homogeneous function of degree
2m− 2 in them; in addition, it satisfies the quasi-homogeneity property:

Δ(p0, λp1, λ
2p2, . . . , λ

mpm) = λ
m(m−1)Δ(p0, . . . , pm).

Furthermore, Δp = 0 if and only if p(x) has a double root.
We write L(τ, ξ) in the form

L(τ, ξ) = Lm(τ, ξ) + a1(ξ)τ
m−1 + a2(ξ)τ

m−2 + ∙ ∙ ∙+ am−1(ξ)τ + am(ξ),

where

Lm(τ, ξ) = τ
m +

m∑

j=1

Pj(ξ)τ
m−j

is the principal part of L(τ, ξ); note that the Pj(ξ) are homogeneous of de-
gree j and the aj(ξ) are symbols of degree < j. By the homogeneity and
quasi-homogeneity properties of ΔL, we have, for λ 6= 0,

ΔL(λξ) = Δ(Pm(λξ) + am(λξ), . . . , P1(λξ) + a1(λξ), 1)

= Δ(λm[Pm(ξ) +
am(λξ)
λm
], . . . , λ[P1(ξ) +

a1(λξ)
λ
], 1)

= λm(2m−2)Δ(Pm(ξ) +
am(λξ)
λm

, . . . , λ−(m−1)[P1(ξ) +
a1(λξ)
λ
], λ−m)

(using that Δ is homogenous of degree 2m− 2)

= λm(m−1)Δ(Pm(ξ) +
am(λξ)
λm

, . . . , P1(ξ) +
a1(λξ)
λ

, 1)

(by quasi-homogeneity).

Now, since L is strictly hyperbolic, the characteristic roots ϕ1(ξ), . . . , ϕm(ξ)
of Lm are pairwise distinct for ξ 6= 0, so

ΔLm(ξ) = Δ(Pm(ξ), . . . , P1(ξ), 1) 6= 0 for ξ 6= 0.

Since the discriminant is continuous in each argument, there exists δ > 0
such that if

∣
∣aj(λξ)
λj

∣
∣ < δ for all j = 1, . . . ,m then

∣
∣Δ(Pm(ξ) +

am(λξ)
λm

, . . . , P1(ξ) +
a1(λξ)
λ

, 1)
∣
∣ 6= 0,

and hence the roots of the associated polynomial are pairwise distinct. So,
fix ξ ∈ {ξ ∈ Rn : |ξ| = 1} and let λ → ∞. Since the aj(ξ) are polynomials
of degree < j it follows that when |ξ| ≥M , the characteristic roots of L are
pairwise distinct.
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3.2 Symbolic properties

In this section we will establish a number of useful properties of characteristic
roots which will be important for the subsequent analysis. In particular, we
will show that asymptotically roots behave like symbols, and we will show
the relation between roots of the full symbol of a strictly hyperbolic operator
with homogeneous roots of the principal part.

Proposition 3.2.1 (Symbolic properties of roots). Let L = L(Dt, Dx) be a
hyperbolic operator of the following form

L(Dt, Dx) = D
m
t +

m∑

j=1

Pj(Dx)D
m−j
t +

m∑

j=1

∑

|α|+m−j=K

cα,j(Dx)D
m−j
t ,

where Pj(λξ) = λjPj(ξ) for λ >> 1, |ξ| >> 1, and cα,j ∈ S|α|. Here
0 ≤ K ≤ m − 1 is the maximum order of the lower order terms of L. Let
τ1(ξ), . . . , τm(ξ) denote its characteristic roots ; then

I. for each k = 1, . . . ,m, there exists a constant C > 0 such that

|τk(ξ)| ≤ C(1 + |ξ|) for all ξ ∈ Rn .

Furthermore, if we insist that L is strictly hyperbolic, and denote the roots
of the principal part Lm(τ, ξ) by ϕ1(ξ), . . . , ϕm(ξ), then we have the following
properties as well :

II. For each τk(ξ), k = 1, . . . ,m, there exists a corresponding root of the
principal symbol ϕk(ξ) (possibly after reordering) such that

|τk(ξ)− ϕk(ξ)| ≤ C(1 + |ξ|)K+1−m for all ξ ∈ Rn . (3.2.1)

In particular, for arbitrary lower terms, we have

|τk(ξ)− ϕk(ξ)| ≤ C for all ξ ∈ Rn . (3.2.2)

III. There exists M > 0 such that, for each characteristic root of L and for
each multi-index α, we can find constants C = Ck,α > 0 such that

∣
∣∂αξ τk(ξ)

∣
∣ ≤ C|ξ|1−|α| for all |ξ| ≥M , (3.2.3)

In particular, there exists a constant C > 0 such that

|∇τk(ξ)| ≤ C for all |ξ| ≥M . (3.2.4)
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IV. There exists M > 0 such that, for each τk(ξ) a corresponding root of the
principal symbol ϕk(ξ) can be found (possibly after reordering) which
satisfies, for each multi-index α and k = 1, . . . ,m,

∣
∣∂αξ τk(ξ)− ∂

α
ξ ϕk(ξ)

∣
∣ ≤ C|ξ|K+1−m−|α| for all |ξ| ≥M (3.2.5)

In particular, since K ≤ m− 1, we have
∣
∣∂αξ τk(ξ)− ∂

α
ξ ϕk(ξ)

∣
∣ ≤ C|ξ|−|α| for all |ξ| ≥M , (3.2.6)

for each multi-index α and k = 1, . . . ,m.

First, we need the following lemma about perturbation properties of gen-
eral smooth functions. Clearly, we do not need to require that functions are
smooth, but this will be the case in our application.

Lemma 3.2.2. Let p, q : C → C be smooth functions and suppose z0 is a
simple zero of p(z) (i.e. p(z0) = 0, p

′(z0) 6= 0). Consider, for each ε > 0, the
following “perturbation” of p(z):

pε(z) := p(z) + εq(z) ,

and suppose zε is a root of pε(z); then, for all sufficiently small ε > 0, we
have

|zε − z0| ≤ Cε
∣
∣
∣
q(z0)

p′(z0)

∣
∣
∣ . (3.2.7)

Proof. By Taylor’s theorem, we have, near z0,

pε(z) = pε(z0) + p
′
ε(z0)(z − z0) +O(|z − z0|

2)

= εq(z0) + (p
′(z0) + εq

′(x0))(z − z0) +O(|z − z0|
2) .

Thus, setting z = zε, we get

0 = εq(z0) + (p
′(z0) + εq

′(z0))(zε − z0) +O(|zε − z0|
2) . (3.2.8)

Now, consider the function of ε, z(ε) := zε; this is clearly smooth since p and
q are smooth and z0 is a simple zero of p(z). Indeed, p

′
ε(zε) ≈ p′(z0) 6= 0 for

small ε, hence zε is a simple root of pε. Thus, near the origin,

z(ε) = z(0) + εz′(0) + O(ε2) . (3.2.9)

Combining (3.2.8) and (3.2.9), we get

0 = εq(z0) + (p
′(z0) + εq

′(z0))(εz
′(0) + O(ε2)) + O(ε2) ,
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or,
0 = q(z0) + p

′(z0)z
′(0) + O(ε) ,

for small ε. Therefore, by the triangle inequality, for each ε > 0 small enough,

|z′(0)| ≤
Cε

|p′(z0)|
+
∣
∣
∣
q(z0)

p′(z0)

∣
∣
∣ ,

and, thus,

|z′(0)| ≤ C
∣
∣
∣
q(z0)

p′(z0)

∣
∣
∣ . (3.2.10)

Finally, combining (3.2.10) with (3.2.9), we obtain (3.2.7) as required.

Proof of Proposition 3.2.1.

Part I: We may write L(τ, ξ) in the form

L(τ, ξ) = τm + a1(ξ)τ
m−1 + ∙ ∙ ∙+ am−1(ξ)τ + am(ξ),

where |aj(ξ)| ≤ C〈ξ〉j. Hence for all k we have |τk(ξ)| ≤ C〈ξ〉 by Lemma 3.1.1.

Part II: In the proof of this part, let us write L(τ, ξ) in the form

L(τ, ξ) =
R∑

i=0

Lm−ri(τ, ξ) ,

where r0 = 0, m − r1 = K (the maximum order of the lower order terms),
1 ≤ r1 < ∙ ∙ ∙ < rR ≤ m,

Lm(τ, ξ) = τ
m +

m∑

j=1

Pj(ξ)τ
m−j

and Lm−ri(τ, ξ) =
∑

|α|+j=m−ri

cα,j(ξ)τ
j for 1 ≤ i ≤ R;

here, as usual, the Pj(ξ) are homogeneous in ξ of order j.
Denote the roots of

Ll(τ, ξ) :=
l∑

i=0

Lm−ri(τ, ξ) , 0 ≤ l ≤ R ,

with respect to τ by τ l1(ξ), . . . , τ
l
m(ξ). Note that L0(τ, ξ) = Lm(τ, ξ), i.e.

L0(τ, ξ) is the principal symbol with no lower order terms. Since Ll(τ, ξ) are
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strictly hyperbolic, we will look at |ξ| ≥ M0, where all τ
l
1(ξ), . . . , τ

l
m(ξ) are

distinct, for all l.
We shall show that there existsM ≥M0 so that, possibly after reordering

the roots, for all k = 1, . . . ,m,

|τ l+1k (ξ)−τ
l
k(ξ)| ≤ C|ξ|−rl+1+1 for all l = 0, . . . , R−1 and |ξ| ≥M . (3.2.11)

Assuming this, and noting that τ 0k (ξ) = ϕk(ξ) and τ
R
k (ξ) = τk(ξ) for each

k = 1, . . . ,m (possibly after reordering), we obtain

|τk(ξ)− ϕk(ξ)| ≤
R−1∑

l=0

|τ l+1k (ξ)− τ
l
k(ξ)| ≤ C|ξ|−r1+1 when |ξ| ≥M ;

this, together with the continuity of the τk(ξ) and ϕk(ξ)—and thus the bound-
edness of |τk(ξ) − ϕk(ξ)| in BM(0), gives (3.2.1). Then, (3.2.2) follows by
setting K = m− 1. Here we also used r1 = m−K.
So, with the aim of proving (3.2.11), we first introduce some notation:

set

L̃m−ri : C× S
n−1 → C : L̃m−ri(τ, ω) = Lm−ri(τ, ω) , i = 0, . . . , R,

L̃l : (M0,∞)× C× S
n−1 → C : L̃l(ρ, τ, ω) = ρ

−mLl(ρτ, ρω), l = 0, . . . , R;

observe that L̃m−ri is just the restriction of Lm−ri(τ, ξ) to C× S
n−1. Denote

by ϕ̃1(ω), ϕ̃2(ω), . . . , ϕ̃m(ω) the roots of L̃m(τ, ω) = L̃0(ρ, τ, ω) with respect

to τ , and by τ̃ k1 (ρ, ω), τ̃
k
2 (ρ, ω), . . . , τ̃

k
m(ρ, ω) those of L̃k(ρ, τ, ω).

We denote τ̃ = τ
|ξ| . Since,

L̃m
(
τ̃ , ξ|ξ|

)
= Lm

(
τ̃ , ξ|ξ|

)
= |ξ|−mLm(τ, ξ) = |ξ|−mL0(τ, ξ) = L̃0

(
|ξ|, τ̃ , ξ|ξ|

)

for ξ ∈ Rn, τ ∈ C, and

L̃l+1(ρ, τ, ω) = ρ
−mLl+1(ρτ, ρω) = ρ

−m
l+1∑

i=0

Lm−ri(ρτ, ρω)

=ρ−m
l∑

i=0

Lm−ri(ρτ, ρω) + ρ
−m

∑

|α|+j=m−rl+1

cα,j(ρω)(ρτ)
j

=L̃l(ρ, τ, ω) + ρ
−rl+1

∑

|α|+j=m−rl+1

cα,j(ρω)

ρ|α|
τ j

=L̃l(ρ, τ, ω) + ρ
−rl+1L0m−rl+1(ρ, τ, ω)
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for ω ∈ Sn−1, ρ > M0, τ ∈ C, l = 0, . . . , R − 1. Here

L0m−rl+1(ρ, τ, ω) =
∑

|α|+j=m−rl+1

cα,j(ρω)

ρ|α|
τ j.

We also have
|ξ|−mLL(τ, ξ) = L̃l

(
|ξ|, ξ|ξ| , τ̃

)
.

As the left-hand side of this is zero when τ = τ lk(ξ), k = 1, . . . ,m, and
the right-hand side is zero when τ̃ = τ̃ lk(|ξ|,

ξ
|ξ|), k = 1, . . . ,m, we see that

|ξ|τ̃ lk(|ξ|,
ξ
|ξ|) = τ

l
k(ξ) for each k = 1, . . . ,m (possibly after reordering). Hence,

for all |ξ| ≥M0, k = 1, . . . ,m and l = 0, . . . , R − 1, we have

|τ l+1k (ξ)− τ
l
k(ξ)| = |τ̃

l+1
k

(
|ξ|, ξ|ξ|

)
− τ̃ lk

(
|ξ|, ξ|ξ|

)
||ξ| .

Next, observe that applying Lemma 3.2.2 with ε = ρ−rl+1 to

L̃l(ρ, τ, ω) + ρ
−rl+1L0m−rl+1(ρ, τ, ω)

yields, for all ω ∈ Sn−1 and k = 1, . . . ,m,

|τ̃ l+1k (ρ, ω)− τ̃
l
k(ρ, ω)| ≤ Cρ−rl+1

∣
∣
∣
∣
∣

L0m−rl+1(ρ, τ̃
l
k(ρ, ω), ω)

∂τ L̃l(ρ, τ̃ lk(ρ, ω), ω)

∣
∣
∣
∣
∣
.

provided we take ρ ≥ M ′ for a sufficiently large constant M ′ ≥ M0. There-
fore, for all |ξ| ≥M ′, k = 1, . . . ,m and l = 0, . . . , R − 1, we have

|τ l+1k (ξ)− τ
l
k(ξ)| ≤ C|ξ|−rl+1+1

∣
∣
∣
∣
∣
∣

L0m−rl+1
(
|ξ|, τ

l
k(ξ)

|ξ| ,
ξ
|ξ|

)

∂τ L̃l
(
|ξ|, τ

l
k(ξ)

|ξ| ,
ξ
|ξ|

)

∣
∣
∣
∣
∣
∣
. (3.2.12)

Thus, it suffices to show the following two inequalities when |ξ| ≥ M for
some M ≥M ′:

• there exists a constant C1 so that, for all 1 ≤ i ≤ R,

∣
∣
∣L0m−ri

(
|ξ|, τ

l
k(ξ)

|ξ| ,
ξ
|ξ|

)∣∣
∣ =

∣
∣
∣
∣
∣
∣

∑

|α|+j=m−ri

cα,j(ξ)

|ξ||α|

(
τ lk(ξ)

|ξ|

)j
∣
∣
∣
∣
∣
∣
≤ C1; (3.2.13)

and

• there exists a constant C2 > 0 so that, for all 0 ≤ l ≤ R− 1,
∣
∣∂τ L̃l

(
|ξ|, τ

l
k(ξ)

|ξ| ,
ξ
|ξ|

)∣∣ = |ξ|−m+1|∂τLl(τ lk(ξ), ξ)| ≥ C2. (3.2.14)
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Then, combining (3.2.12), (3.2.13) and (3.2.14) gives (3.2.11).

The first estimate (3.2.13) follows immediately from Part I since the τ lk(ξ)
are roots of strictly hyperbolic equations, and from the fact that cα,j ∈ S|α|.
The second, (3.2.14), in the case l = 0 is clear: the homogeneity of

Lm(τ, ξ) and its roots give

|ξ|−m+1|∂τL0(τ
0
k (ξ), ξ)| =

∣
∣
∣∂τLm

(
ϕk
(
ξ
|ξ|

)
, ξ|ξ|
)∣∣
∣ ,

which is never zero due to the strict hyperbolicity of Lm and hence (using
that the sphere Sn−1 is compact and Lm(τ, ξ) is continuous and thus achieves
its minimum) is bounded below by some positive constant as required.

For 1 ≤ l ≤ R− 1, we know that τ lk(ξ), k = 1, . . . ,m, are simple zeros of
LL(τ, ξ) for |ξ| ≥M0 by the earlier choice of M0. Observe,

(∂τLl)(τ
l
k(ξ), ξ)

|ξ|m−1
=
(∂τLm)(τ

l
k(ξ), ξ)

|ξ|m−1
+

l∑

i=1

(∂τLm−ri)(τ
l
k(ξ), ξ)

|ξ|m−1
.

Now,

(∂τLm−ri)(τ
l
k(ξ), ξ)

|ξ|m−1
→ 0 as |ξ| → ∞

for i = 1, . . . , l, because ∂τLm−ri(τ, ξ) is a symbol of order m− ri − 1. Also,
using the Mean Value Theorem,

(∂τLm)(τ
l
k(ξ), ξ) = (∂τLm)(ϕk(ξ), ξ) + [(∂τLm)(τ

l
k(ξ), ξ)− (∂τLm)(ϕk(ξ), ξ)]

=(∂τLm)(ϕk(ξ), ξ) + (∂
2
τLm)(τ̄

l
k(ξ), ξ) ,

where τ̄ lk(ξ) lies on the line connecting ϕk(ξ) and τ
l
k(ξ) for each ξ ∈ R

n,
k = 1, . . . ,m and l = 1, . . . , R − 1, and

∣
∣(∂2τLm)(τ̄

l
k(ξ), ξ)

∣
∣

|ξ|m−1
≤ C|ξ|−1 → 0 as |ξ| → ∞ .

Therefore, for a sufficiently large constant M ≥ M ′, there exists a constant
C2 > 0 such that

∣
∣∂τLm(τ lk(ξ), ξ)

∣
∣

|ξ|m−1
≥ C
|∂τLm(ϕk(ξ), ξ)|

|ξ|m−1
≥ C2 , when |ξ| ≥M.

This completes the proof of (3.2.13) and thus of Part II.
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Part III: We take M > 0 so that for |ξ| ≥ M , the roots τ1(ξ), . . . , τm(ξ)
are distinct.
To prove the statement, we do induction on |α|.
First, assume |α| = 1. Since L(τk(ξ), ξ) = 0 for each k = 1, . . . ,m, we

have, for each i = 1, . . . , n,

∂L

∂ξi
(τk(ξ), ξ) +

∂L

∂τ
(τk(ξ), ξ)

∂τk

∂ξi
(ξ) = 0 .

The first term is a symbol of order m − 1 in (τk(ξ), ξ), hence, by Part I,
there exists a constant C such that, when |ξ| ≥ M1 for some suitably large
constant M1 ≥M , ∣

∣
∣
∂L

∂ξi
(τk(ξ), ξ)

∣
∣
∣ ≤ C|ξ|m−1 .

The inequality (3.2.3) for |α| = 1 (i.e. (3.2.4)) then follows immediately from:

Lemma 3.2.3. There exists constants C > 0, M2 ≥ M such that, for each
k = 1, . . . ,m,

∣
∣
∣
∂L

∂τ
(τk(ξ), ξ)

∣
∣
∣ ≥ C|ξ|m−1 when |ξ| ≥M2 .

Proof. Note that

∣
∣
∣
∂L

∂τ
(τk(ξ), ξ)

∣
∣
∣ ≥

∣
∣
∣
∂Lm

∂τ
(ϕk(ξ), ξ)

∣
∣
∣−
∣
∣
∣
∂L

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ)

∣
∣
∣ , (3.2.15)

where Lm(τ, ξ) is the principal symbol of L and ϕ1(ξ), . . . , ϕm(ξ) are the
corresponding characteristic roots, ordered in the same way as in Part II.
We look at each of the terms on the right-hand side in turn:

• By strict hyperbolicity, ∂Lm
∂τ
(ϕk(ξ), ξ) is non-zero for ξ 6= 0. Thus, for all

ξ 6= 0,

∣
∣
∣
∂Lm

∂τ
(ϕk(ξ), ξ)

∣
∣
∣ = |ξ|m−1

∣
∣
∣
∂Lm

∂τ

(
ξ
|ξ| , ϕ

(
ξ
|ξ|

))∣∣
∣ ≥ C|ξ|m−1 . (3.2.16)

• Observe,

∂L

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ)

=
∂Lm

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ) +

m−1∑

r=0

∑

|α|+l=r

l cα,l(ξ)τk(ξ)
l−1 .
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Now,

∂Lm

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ)

= m(τk(ξ)
m−1−ϕk(ξ)

m−1)+
m∑

j=1

(m− j)Pj(ξ)(τk(ξ)
m−j−1−ϕk(ξ)

m−j−1),

and

|τk(ξ)
r−ϕk(ξ)

r| = |τk(ξ)−ϕk(ξ)||τk(ξ)
r−1+τk(ξ)

r−2ϕk(ξ)+∙ ∙ ∙+ϕk(ξ)
r−1| .

So, by Part I and Part II (specifically inequality (3.2.2)) and the fact that
the Pj(ξ) are homogeneous in ξ of order j, we have, for some suitably large
M2 ≥M ,

∣
∣
∣
∂Lm

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ)

∣
∣
∣ ≤ C|ξ|m−2 when |ξ| ≥M2 .

This, together with

∣
∣
∣
∑

|α|+l=r

l cα,r(ξ)τk(ξ)
l−1
∣
∣
∣ ≤ C|ξ|r−1 ≤ C|ξ|m−2

when |ξ| ≥M2, r = 0, . . . ,m− 1 ,

which again follows straight from Part I, yields

∣
∣
∣
∂L

∂τ
(τk(ξ), ξ)−

∂Lm

∂τ
(ϕk(ξ), ξ)

∣
∣
∣ ≤ C|ξ|m−2 for |ξ| ≥M2 . (3.2.17)

The result now follows by combining (3.2.15), (3.2.17) and (3.2.16). The
proof of Lemma 3.2.3 is complete.

For |α| = J > 1, assume inductively that,
∣
∣∂αξ τk(ξ)

∣
∣ ≤ C|ξ|1−|α| when |ξ| ≥M, |α| ≤ J − 1 ,

for some fixed M ≥ max(M1,M2).
Then, for |α| = J , we use ∂αξ [L(τk(ξ), ξ)] = 0, i.e.

∂αξ τk(ξ)∂τL(τk(ξ), ξ)

+
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

∂β
j

ξ τk(ξ)
)
∂α−β

1−∙∙∙−βr

ξ ∂rτL(τk(ξ), ξ) = 0 .
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By the inductive hypothesis and the fact that ∂βξ ∂
j
τL(τk(ξ), ξ) is a symbol of

order m− j−|β|, we have, for all multi-indices β1, . . . , βr 6= 0 or α satisfying
β1 + ∙ ∙ ∙+ βr ≤ α,
∣
∣
∣
∣
∣

( r∏

j=1

∂β
j

ξ τk(ξ)
)
∂α−β

1−∙∙∙−βr

ξ ∂rτL(τk(ξ), ξ)

∣
∣
∣
∣
∣
≤ Ck,α|ξ|

m−|α| when |ξ| ≥M.

Thus, using Lemma 3.2.3 again, we have

|∂αξ τk(ξ)| ≤
Cα|ξ|m−|α|

|∂τL(τk(ξ), ξ)|
≤ Ck,α|ξ|

1−|α| when |ξ| ≥M,

which completes the proof of the induction step.

Part IV: Once again, assume that the roots τk(ξ), k = 1, . . . ,m, corre-
spond to ϕk(ξ), k = 1, . . . ,m, in the manner of Part II.
The proof of this part for general multi-index α is quite technical, so

we first give the proof in the case |α| = 1 to demonstrate the main ideas
required, and then show how it can be extended when |α| > 1.
From L(τk(ξ), ξ) = 0 = Lm(ϕk(ξ), ξ), we have for each i = 1, . . . , n,

∂L

∂ξi
(τk(ξ), ξ) +

∂L

∂τ
(τk(ξ), ξ)

∂τk

∂ξi
(ξ) = 0 ,

∂Lm

∂ξi
(ϕk(ξ), ξ) +

∂Lm

∂τ
(ϕk(ξ), ξ)

∂ϕk

∂ξi
(ξ) = 0 .

Therefore,

∂L

∂τ
(τk(ξ), ξ)

(∂τk
∂ξi
(ξ)−

∂ϕk

∂ξi
(ξ)
)
=
∂Lm

∂ξi
(ϕk(ξ), ξ)−

∂Lm

∂ξi
(τk(ξ), ξ)

+
∂ϕk

∂ξi

[∂Lm
∂τ
(ϕk(ξ), ξ)−

∂L

∂τ
(τk(ξ), ξ)

]
−
∂(L− Lm)

∂ξi
(τk(ξ), ξ) . (3.2.18)

It suffices to show that the right-hand side is bounded absolutely by C|ξ|m−2

when |ξ| ≥M1 for some suitably large M1 ≥M0; this is because an applica-
tion of Lemma 3.2.3 then yields

∣
∣
∣
∂τk

∂ξi
(ξ)−

∂ϕk

∂ξi
(ξ)
∣
∣
∣ ≤

C|ξ|m−2
∣
∣∂L
∂τ
(τk(ξ), ξ)

∣
∣ ≤ C|ξ|−1 for |ξ| ≥M ,

where M = max(M1,M2).
Since ∂ξi(L − Lm)(τ, ξ) is a symbol of order ≤ m − 2 in (τ, ξ), it is

immediately clear that the final term of (3.2.18) is bounded by C|ξ|m−2;
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here we have also used Part I. Also, noting that |∂ξiϕk(ξ)| ≤ C by the
homogeneity of ϕk(ξ), we have, by (3.2.17),

∣
∣
∣
∂ϕk

∂ξi
(ξ)
∣
∣
∣
∣
∣
∣
∂Lm

∂τ
(ϕk(ξ), ξ)−

∂Lm

∂τ
(τk(ξ), ξ)

∣
∣
∣ ≤ C|ξ|m−2 .

Finally, by the Mean Value Theorem,

∣
∣
∣
∂Lm

∂ξi
(ϕk(ξ), ξ)−

∂Lm

∂ξi
(τk(ξ), ξ)

∣
∣
∣ ≤ C

∣
∣
∣
∂2Lm

∂τ∂ξi
(ξ, τ̄)

∣
∣
∣|ϕk(ξ)− τk(ξ)| ,

where τ̄ lies on the linear path between ϕk(ξ) and τk(ξ)—which means that
(using Part I once more) |τ̄ | ≤ C|ξ| for |ξ| ≥ M . Since ∂τ∂ξiLm(τ, ξ) is a
symbol of order m− 2 in (τ, ξ), and |ϕk(ξ)− τk(ξ)| ≤ C by Part II, this term
is bounded by C|ξ|m−2, completing the proof in the case |α| = 1.

For |α| = J > 1, we assume inductively that

∣
∣∂αξ τk(ξ)− ∂

α
ξ ϕk(ξ)

∣
∣ ≤ C|ξ|−|α| for |ξ| ≥M , |α| ≤ J − 1 .

As in the proof of Part III, we have

∂αξ τk(ξ)∂τL(τk(ξ), ξ)

+
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

∂β
j

ξ τk(ξ)
)
∂α−β

1−∙∙∙−βr

ξ ∂rτL(τk(ξ), ξ) = 0 ;

similarly,

∂αξ ϕk(ξ)∂τLm(ϕk(ξ), ξ)

+
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

∂β
j

ξ ϕk(ξ)
)
∂α−β

1−∙∙∙−βr

ξ ∂rτLm(ϕk(ξ), ξ) = 0 .
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Thus,

(∂αξ τk(ξ)− ∂
α
ξ ϕk(ξ))∂τL(τk(ξ), ξ) =

∂αξ ϕk(ξ)
(
∂τLm(ϕk(ξ), ξ)− ∂τL(τk(ξ), ξ)

)

+
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

∂β
j

ξ ϕk(ξ)
)
[∂α−β

1−∙∙∙−βr

ξ ∂rτLm(ϕk(ξ), ξ)−

∂α−β
1−∙∙∙−βr

ξ ∂rτLm(τk(ξ), ξ)]

+
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

[∂β
j

ξ ϕk(ξ)− ∂
βj

ξ τk(ξ)]
)
∂α−β

1−∙∙∙−βr

ξ ∂rτLm(τk(ξ), ξ)

−
∑

β1+∙∙∙+βr≤α,
βj 6=0,βj 6=α

cα,β1,...,βr
( r∏

j=1

∂β
j

ξ τk(ξ)
)
∂α−β

1−∙∙∙−βr

ξ ∂rτ (L− Lm)(τk(ξ), ξ) .

We claim the right-hand side is then bounded absolutely by Cα|ξ|m−1−|α|,
which, together with Lemma 3.2.3, yields the desired estimate.
To see this, let us look at each of the terms in turn:

• |∂αξ ϕk(ξ)| ≤ Cα|ξ|1−|α| by the homogeneity of ϕk(ξ); using this with (3.2.17)
gives the desired bound.

• Using the Mean Value Theorem as in the case |α| = 1, we get

∣
∣[∂α−β

1−∙∙∙−βr

ξ ∂rτLm(ϕk(ξ), ξ)− ∂
α−β1−∙∙∙−βr

ξ ∂rτLm(τk(ξ), ξ)]
∣
∣

≤ Cα|ξ|
m−|α|+|β1|+∙∙∙+|βr|−r−1 ;

coupled with |∂βξ ϕk(ξ)| ≤ Cα|ξ|1−|β|, this gives the correct bound.

• By the inductive hypothesis,

|∂β
j

ξ ϕk(ξ)− ∂
βj

ξ τk(ξ)| ≤ Cβ|ξ|
1−|βj | ;

together with

|∂α−β
1−∙∙∙−βr

ξ ∂rτLm(τk(ξ), ξ)| ≤ Cα|ξ|
m−|α|+|β1|+∙∙∙+|βr|−r ,

which follows from Part I and the homogeneity of Lm(τ, ξ), this gives the
correct estimate.
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• To show the final term is bounded absolutely by |ξ|m−1−|α|, first note that

∂α−β
1−∙∙∙−βr

ξ ∂rτ (L− Lm)(τk(ξ), ξ)

is a symbol of order ≤ m− |α|+ |β1|+ ∙ ∙ ∙+ |βr| − r− 1; applying Part III
to estimate the ∂β

j

ξ τk(ξ) terms, we have the required result.

This completes the proof of (3.2.6); (3.2.5) is proved in a similar way in the
proof using the set-up of the proof of Part II. The proof of Proposition 3.2.1
is now complete.

We will now establish further symbolic properties of characteristic roots.
A refinement of this proposition concerning real and imaginary parts of com-
plex roots τ is given in Proposition 6.8.2.

Proposition 3.2.4. Suppose that the characteristic roots φk, k = 1, . . . ,m,
of the principal part Lm(τ, ξ) of a strictly hyperbolic operator L(τ, ξ) in (2.0.1)
are non-zero for all ξ 6= 0. Then the roots τ(ξ) of the full symbols satisfy the
following properties:

(i) for all multi-indices α there exists a constants M,Cα > 0 such that

|∂αξ τ(ξ)| ≤ Cα|ξ|
1−|α|;

for all |ξ| ≥M .

(ii) there exist constants M,C > 0 such that for all |ξ| ≥ M we have
|τ(ξ)| ≥ C|ξ|;

(iii) there exists a constant C0 > 0 such that |∂ωτ(λω)| ≥ C0 for all ω ∈
Sn−1, λ > 0; in particular, |∇τ(ξ)| ≥ C0 for all ξ ∈ Rn \ {0};

(iv) there exists a constant R1 > 0 such that, for all λ > 0,

1

λ
Σλ(τ) ≡

1

λ
{ξ ∈ Rn : τ(ξ) = λ} ⊂ BR1(0) .

Proof. • Property (i): by Proposition 3.2.1, Part III,

|∂αξ τ(ξ)| ≤ Cα|ξ|
1−|α| for all |ξ| ≥M ,

for all multi-indices α.
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• Properties (ii) and (iii): these follow by using perturbation methods. By
Proposition 3.2.1, Part IV, there exists a homogeneous function ϕ(ξ) of
order 1 such that, for all |ξ| ≥M and k = 1, . . . , n,

|τ(ξ)− ϕ(ξ)| ≤ C0 and |∂ξkτ(ξ)− ∂ξkϕ(ξ)| ≤ Ck|ξ|
−1 ,

for some constants C0, Ck > 0. Now, the homogeneity of ϕ(ξ) implies that
ϕ(ξ) = |ξ|ϕ

(
ξ
|ξ|) and ek ∙ ∇ϕ(ek) = ϕ(ek), where ek = (0, . . . , 0, 1︸ ︷︷ ︸

k

, 0, . . . , 0),

so

|ϕ(ξ)| ≥ C ′|ξ| for all ξ ∈ Rn and |∂ωϕ(λω)| ≥ C ′ for all ω ∈ Sn−1, λ > 0 ,

for some constant C ′ > 0. Thus,

|τ(ξ)| ≥ |ϕ(ξ)| − |τ(ξ)− ϕ(ξ)| ≥ C ′|ξ| − C0 ≥ C|ξ| for |ξ| ≥M , (3.2.19)

for some constants M,C > 0, and

|∂ωτ(λω)| ≥ |∂ωϕ(λω)| − |∂ωϕ(λω)− ∂ωτ(λω)| ≥ C ′ − Ckλ
−1 ≥ C > 0

for all ω ∈ Sn−1 and suitably large λ; for small λ > 0, ∂ωτ(λω) is separated
from 0 by the convexity condition, so |∂ωτ(λω)| ≥ C > 0 for all ω ∈ Sn−1,
λ > 0, as required.

• Property (iv)—there exists a constant R1 > 0 such that, for all λ > 0,
1
λ
Σλ(τ) ⊂ BR1(0)—holds by Proposition 3.2.1, Part II, and the fact that
1
λ
Σλ(ϕ) = Σ1(ϕ) for the characteristic root of the principal symbol ϕ
corresponding to τ .




