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Part III
Spherical functions on p-adic homogeneous
spaces

Yumiko Hironaka

Introduction

Let G be a reductive linear algebraic group defined over k, and X be an affine algebraic variety
defined over k which is G-homogeneous, where and henceforth & stands for a non-archimedian local
field of characteristic 0. The Hecke algebra H(G, K) of G with respect to K acts by convolution
product on the space of C*°(K\X) of K-invariant C-valued functions on X, where K is a maximal
compact open subgroup of G = G(k) and X = X(k).

A nonzero function in C*°(K\X) is called a spherical function on X if it is a common H(G, K)-
eigen function.

Spherical functions on homogeneous spaces comprise an interesting topic to investigate and a
basic tool to study harmonic analysis on G-space X. They have been studied also as spherical vec-
tors of distinguished models, Shalika functions and Whittaker-Shintani functions, and are closely
related to theory of automorphic forms and representation theory. When G and X are defined over
Q, spherical functions appear in local factors of global objects, e.g. Rankin-Selberg convolutions
and Eisenstein series (e.g. [CS], [F1], [HS3], [Jac], [KMS], [Sf2]).

The theory of spherical functions also has applications to classical number theory. For example
when X is the space of symmetric forms, alternating forms or hermitian forms, spherical functions
can be considered as generating functions of local densities, and have been applied to obtain their
explicit formulas (cf. [HS1], [HS2], [H1]-[H4]).

To obtain explicit expressions of spherical functions is one of basic problems. For the group
cases, it has been done by I. G. Macdonald and afterwards by W. Casselman by a representation
theoretical method (cf. [Ma], [Cas]). There are some results on homogeneous space cases mainly
for the case that the space of spherical functions attached to each Satake parameter is of dimension
one (e.g. [CS], [KMS], [Of]).

In this paper, following the preliminaries in §1, we give a general expression of spherical functions
on X of dimension not necessary one based on the data of the group G and functional equations
of spherical functions in §2. Then we show a unified method to obtain functional equations of
spherical functions on X, and explain that functional equations are reduced to those of p-adic
local zeta functions of small prehomogeneous vector spaces in §3. These are improvements of some
results in [H3] and [H6]. We devote §4 to examples. For general references for algebraic groups,
one may refer to [Bo] and [PR].
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This research was partially supported by Grant-in-Aid for Scientific Research (C):20540029.

50



Y. Hironaka

§1

1.1. Let H be a connected linear algebraic group and Y an affine algebraic variety on which
H acts, where everything is assumed to be defined over k. We denote by X(H) the group of k-
rational characters of H, which is a free abelian group of finite rank. We set Xo(H) for the subgroup
consisting of characters corresponding to some relative H-invariants on Y, where a rational function
f onY defined over k is called relative H-invariant if it satisfies, for some ¢ € X(H),

flg-y) =g fly), geH

We say a set { fi(y)| 1 <@ <n}is basic, if the corresponding characters form a basis for Xo(H);
then every relative H-invariant on Y has a following form

c-l_If}(y)e"7 ceck*, e €.

We consider the following conditions for (H,Y).
(A1’) Y has a Zariski open H-orbit.
(A1) Y has only a finite number of H-orbits.
(A2) A basic set of relative H-invariants on Y can be taken by regular functions on Y.

(A3) For y € Y not contained in open orbits, there exists some 1) in Xo(H) whose restriction to
the identity component of the stabilizer H, is not trivial.

(A4) The rank of Xo(H) coincides with that of X(H).

Remark 1.1. Assume that Y is a homogeneous space of a connected reductive linear algebraic
group G (like as § 1. 2). Then Y is irreducible and there is at most one Zarisky open orbit,
and (A1) implies (A1’). The condition (A1) is satisfied if Y is a spherical homogeneous space of
G and H is a minimal parabolic subgroup of G, and symmetric spaces are spherical, especially
the spaces of type G/G? (G is the set of fixed points of an involution # on G) are spherical(cf.
[Sf4]). As for (A2), we note here that for the case of prehomogeneous vector spaces, basic relative
invariants can be chosen as polynomial functions ([Sfl]-Lemma 1.3). The condition (A3) assures us
a good condition for distributions on Y(k), which we need when we consider functional equations
of spherical functions.

1.2. Hereafter, let G be a connected reductive linear algebraic group and X be an affine algebraic
variety which is G-homogeneous, where everything is assumed to be defined over k. For an algebraic
set, we use the same ordinary letter for the set of k-rational points, e.g. G = G(k), X = X(k). Let
K be a maximal compact open subgroup of GG, and B a minimal parabolic subgroup of G defined
over k satisfying G = KB = BK. The group B is not necessarily a Borel subgroup. We denote
by | | the absolute value on k normalized by |7| = ¢~', where 7 is a prime element of k and ¢ is
the cardinal number of the residue class field of k, we understand |0] = 0 for simplicity.

Assume that (B, X) satisfies (A1’) and (A2), and let { f;(z) | 1 < i < n} be a basic set of regular
relative B-invariants, and v; € Xo(B) the corresponding character to f;(z), and n = rank(Xy(B)).
The open B-orbit X is decomposed into a finite number of open B-orbits over k (cf. [Sr]-1II-4.4),
which we write

XPk)= || X
ueJ(X)
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Forz € X, s € C" and u € J(X), we define
w(z;s) = / k- 2) db, walss) = / k- 2) 5 d, (L1)
K K

where dk is the Haar measure on K normalized by / dk =1, and
K

lf(2)]° = H \fi(@), (@), = { ‘()f(l)| gtiefwiz’.
i=1

We set .
Wwp)* =[] i)
i=1

By the following proposition, we see w(z;s) and wy(x;s) are spherical functions on X, where we
give also the ‘eigenvalues’ for them.

Proposition 1.2. The integrals in (1.1) are absolutely convergent if Re(s;) > 0, 1 < i < n,
analytically continued to rational functions of ¢°',...,¢°", and become H(G, K)-common eigen
functions. In particular wy(z; s), u € J(X), are spherical functions on X and linearly independent
for generic s. More precisely, for each ¢ € H(G,K), one has (¢ *w( ;s))(z) = A\s(d)w(z;s) and
(¢ xwu(58))(@) = As(P)wu(w; 5) with

As(9) :/qu(p) Iz/»(p)lfsé(p)dp:/G¢(9)Iw(p(g))l’sé(p(g))dg’

where dp is the left invariant Haar measure on B normalized by / dp =1 and p(g) € B for
KNB
which p(g)~'g € K.

For a proof we refer to [H3]-Proposition 1.1. To make it sure we note here the action of H(G, K)
on wy(x;s) : for ¢ € H(G,K) and z € X,

/ 6(9) / |F(kg™" - o)’ didg
G K
//¢(9k)}f(g’l-af)lzdgdk=/¢(9)|f(g’1-x)lidg
KJG G
- / / o0kp) | F kY )| dypak
KJB
/ / o(p) (@)~ | F (k- )| dypdk
KJB
/B (o) [6(0)[~* 5(p)dp - walz: s).

(¢ * wu(;5))(z)

Remark 1.3. When we assume also (A4), we can determine g9 € Q™ by

() = 53 (p), p € B,
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and it is better to modify the definition of spherical functions as follows:
Gulais) = [ 17(k- )} d. (12)
K

Then, instead of Proposition 1.2, we have

(@ xw(59) (x) = As(@)w(@;5),  (d*Wul59)) () = As(P)wu(w; 5),

where

A(6) = /B o(p) [(p) |+ dp = /G 6(0) [ (p(g)| >+ dg, & € H(G, ).

Remark 1.4. The value f;(z) mod ¢;(B) is constant in k* /1;(B) on each open B-orbit, which
we call the signature of f;. If we can parametrize open B-orbits in X by the signatures of
{fi(x) ] 1 <i < mn}, then J(X) can be naturally identified with a subset of the finite abelian group

()" /TLa(B). (1.3)

Such cases often occur, and then, it is natural to consider spherical functions with character as
follows. Assume U is J(X) or its suitable subset which is canonically identified with a subgroup
of (1.3). Taking a character x of U, we set

W(JE;X;S)—/KX(f(k'-T))f(k'fv)|sdk—;><(u)wu($;8)v (1.4)
w(x;x;8) = - cx)|Fteodk = w)wy (T 8), .
(z5x58) /Kx(f(k NI (k- 2)|70 dk %X( Jwu(; 5) (1.5)

the latter can be considered only when (A4) is satisfied.

Let W be the relative Weyl group of G with respect to T, where T is a maximal k-split torus
contained in B. The group W acts on X(B) as (c¢)(b) = £(n;'bn,) by taking a representative
ne € Ng(T) of o € W, hence it acts on s € C™ through the identification C" = Xy(B) ®z C C
X(B) ®z C.
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In this section, we will give a general expression for spherical functions based on the data of the
group G and functional equations of spherical functions.

We follow the notation in §1.2, and take K as a special, good, maximal compact subgroup in
the sense of Bruhat and Tits (cf. [Cas]-§3.5), and Iwahori subgroup U of K compatible with B.

2.1. In this subsection, we prepare some results from representation theory (cf. [H3]-§1, [Cas]).

We denote by S(G) the Schwartz-Bruhat space on G, namely the space of locally constant
compactly supported functions on G, and set D(G) = Home(S(G), C), the space of distributions
on G, and the pairing on D(G) x S(G)

(T,0) = (T, d)pys = T(¢), (T €D(G), ¢ €S5(G)).
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Then the space C*°(G) of locally constant functions can be regarded as a subspace of D(G) by

w.0) = [ 6@ole)a. (0 €C(G). 6 € S(E)).
We regard C*(G) as a two-sided G-module and S(G) as a submodule by
g b(@) =v(rg),  V(x) =v(gr), (W ECF(G), gz € Q).
Then, D(G) becomes also a two-sided G-module by the dual action:
(9-T,6) =(T,g7 - 9), (I9,¢)=(T,¢" ), (T€D(G), $€S(G), g€G).

For a subspace I' of D(G) and a subgroup H of G, we denote by T'# the set of left H-invariant
elements in I'.

Let x be an unramified regular character of the centralizer Zg(T), i.e. X|z,(r)nhx = 1, and
ox = x implies 0 = 1 for o € W, which is canonically extended to be a character of B. We recall
the induced representation (principal series representation) of G:

1(x) 6(pg) = X33 (P)olg) (P B, g€ C)}

nd§(x) = { s € c=(G) |
Hp)g, (pe B}, (2.1)

{occ=@)| ¢ =xs

which is a left G-submodule of C*°(G). Then we have a left G-equivariant surjection
Py 2 8(G) — 1(x);
1
PU)a) = [ X5 @o(pa)dn, (6 €S(@). 2 € 6.

We set px = Py(chi), where chg is the characteristic function of K.
The map P, -1 induces a left G-equivariant injection P, —1* from I(x*)* = Hom¢(I(x ), C) to
D(G) determined by

(Py1"(1),¢) =T(Py-1(9)), (TeIlx™ '), ¢ €8(Q)),
and we obtain the following ([H3]-Lemma 1.2, Corollary 1.3) ).

Proposition 2.1. By the dual map Py 1" of P, -1, one has a left G-isomorphism
—1\* ~ 1
1Y) = DG = {TeD(@) | T =0 ()T (peB)}.

Further, by this isomorphism, 1(x) and I(x™') can be understood as the smooth dual of the each
other with pairing

< fifa>= /K k)RR, (eI, f2eIx).

Indeed we calculate the pairing on I(x) x I(x™!) in the following: for (fi, fo) € I(x) x I(x™1)
and ¢ € S(G) such that P,-1(¢) = fo,

(fi, f2) = ((Pxfl*)_l(fﬁ»Pxfl(¢)>1(X71)*x1(>(1)
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= (fodhpys = / £1(9)(g)dg = / / 11 (k) S(pk) dpdk
/ﬁ /MZMWWM:AﬁWR%@WM

/ﬁ@h@M
K

For o € W, there is a unique left G-equivariant map satisfying

Ty 1(x) — Ilox),  TH(erx) = ce()PKox; (2.2)

where

co(x) = H ca(X),

aext, o(a)<0

(- 65 X)) (1 + 457 X (an)
@l = 1 —x(aa)?

(= 1 - g 'x(aa)

if G is split).
T~ X(a0) )

Here ¥ is the set of positive roots G with respect to T and B, and for the definition of a, € T
and numbers go, q1,, (o € X), see [Cas]. It is known that
2

TX is an isomorphism if and only if ¢, (x)c,-1(o(x)) # 0. (2.3)

For a compact open subgroup V' of G, we define an operator Py on D(G) by

UMN@=LWTMM=/@M”@M7@Gmwwe&QL

\%4

where du is the Haar measure on V normalized by / du = 1.
1%

As the adjoint G-morphism of 77X ' we have (under the identification through P,-1* and
P,y -1" by Proposition 2.1)

(T257) 7 D(6), = I )" — D(G), = Tox7Y)"

Then we see the following(cf. [H3]-Propositionl.6, Proposition 1.7).

Proposition 2.2. Assume c,(x)co(X 1) co-1(0X)co-1(0xL) # 0. Then

T CU(X) ox 1\ *
W:————@@):DG—HDG
o 6071(0)(*1) o1 ( )X ( )(TX

is an extension of the G-isomorphism TX : I(x) — I(ox). Further, for a compact open subgroup
V of G, one has

PVoT;(:T;(O'P\/.
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We recall Casselman basis { f,., | 0 € W} for I(x)Y, which satisfies the following(cf. [Cas])

T;((f'r,S)(l) = 50,77

Pt - 2250,

where d,,- is the Kronecker delta, and

100 =[] calv), Q= [UoU:UI™".

aext ceW

Let us recall our situation in §1. Since G is reductive and X is affine, H = G,,, (xro € X°P) is
reductive also(cf. [Sp]-Satz 3.3). Then there is a G-invariant measure on G/H, since G and H are
unimodular. Since BH/H is open in G/H and isomorphic to B/By with By = BN H, there is an
invariant measure on B/ By, so the modulus character of By coincides with ¢|p,.

Now we set

I(x,BH) ={¢ € I(x)| Supp(¢) C BH}.

The next lemma is based on an idea of O. Offen used in [Of]. It will play a key role to restrict the
summation with respect W to a certain subgroup Wy in §2.2.

Lemma 2.3. If there is a nonzero left H-invariant distribution in I(x)* which is not identically
zero on I(x, BH), then x = 5% on By.

Proof. Assume a distribution A € I(x)* satisfies the condition as above. The space I(x, BH) can
be identified (by the restriction) with

Indf,(X|s) = {F€C=H) | fpoh) = X0} (o) f(h) (po € Bo, he H)},

on which there is a left H-invariant surjection Pg,, from S(H) given by

P () (h) :/B X182 (po) @ (poh) dpo,

where dpyg is a left invariant Haar measure on By. Then we have a nonzero H-invariant distribution
T on H determined by

<Ta @)DXS = <A’ ,PHO((LP)%

thus we have a left invariant measure on H, which becomes also right invariant since H is uni-
modular. On the other hand, since we have for p € By

—1

T Dpes = (T pxs = (A Pry(@?)) = (A, X672 (0) Py ()
= xé‘%(p)<T,s0>ms,

we obtain x = 5% on By. O

2.2. Take 9 € X and set H = Gy, and U = {v € J(X)| G 29N X, #0}. We define the
subgroup Wy of W by

Wo={oceW]|o(¢’)=1and 6(§) = on BNH},
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where s € C" is considered as a variable. Though we do not assume the condition (A4), o(|¥|*)
is contained in X((B) ®z C if 0 € Wy, and in this case |f(z)\Z(s) and |7 = o(|y|*) are well
defined. For o € W we define e, € Q™ by

6% = G5, (2.4)
For s € C™, let x = x5 be the character of B given by
x=0*672, e, x(b) = W) 52 (). pEB. (2:5)
Then we have
o) = "5 e
For each v € U, we set (through the analytic continuation for general s € C")

Uy(z,59) = |f(g-2)l, € DGy =T, (2.6)

Ty(,59) = Pu(W(es))g) = /U (g )[5 du € I(x)7,
where we note that

U, (g91-2,89) = g1-Vu(x,s )(g) = V,(z,5991), (9,91 €G). (2.7)

The condition (A3) is crucial for the next lemma (cf. [H3]-Lemma 1.8).

Lemma 2.4. Assume (A1), (A2) and (A3) for (B,X). Then for each x € G-x¢ and generic s, the
set {Uy(z,0(s5) +¢€5;9) | v €U} forms a basis for D(G)f; for any o € Wy. Here, ‘generic’ means

to avoid a finite number of linear relations of type Y i mis; — o € (271;‘2?) with m; € Z, o € C.

In the following, we say s is generic if s is generic in the sense of Lemma 2.4, s is neither a pole
nor a zero of wy(x;s) (u € U), x = xs is regular, and
co(X)eo (X Vo (67 x)eo (611 # 0 for every o € Wy (cf. Proposition 2.2).
We set
R={zeG xgNX?P|U-2CB-x}, (2.8)
R ={zeR||f(u-2)"=|f(2)", (ueU)}.
Our main theorem in this section is the following, which is a refinement of [H3]-Proposition 1.9,
where we assumed the condition (A4).

Theorem 2.5. Assume (A1), (A2) and (A3) for (B,X) and s is generic. For x € R, one has

1 .
(2 _ 1 .B, ) . o(s)+eqs d ) .
(wu(@38)) ey QUEEWOV(U(X)) ) (/U |f(u- )]} “) e
Moreover, if x € RY, one has

(wu(m;S))Veu = % Z (o (X)) - Bo(x) - (If(:v)\i(s”gv)

u
oeWy ve

Here the constant @ and the rational function v(x) of ¢, ...,q*" are determined by the group G
as in §2.1, and the matriz B,(x) is determined by the functional equation

(w0 (75)) ,yy = Bo () (i (@30(5) + &0)) -
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We give here an outline of a proof. By definition of ¥, and \T/V, we have

wy (23 ) :/K\I/,,(m,s;k)dk:/\fy(x,s;k)dk:PK(\fly(x,s; (1), (2.9)

K

and we may write by using Casselman basis

\Ilu(x§5; ) = Z au,a(x§5)fzf,x»
ceW
where
(2

avo(r;s) = TX(U,(x,85 ))(1) = (Py o TX) (T, (x, 55 ))(1).

Now we set A = TX(W,(zo, s; )) € I(ox~')*, which is left H-invariant, and = = g - 29. Then we
have (cf. (2.7))

ta(r3s) = (PuoT¥)(gr-Vulzo, s ))(1)
= (Pue(gi-A)1).

Since Py (gy - A) is regarded as an element of I(ox)V by Proposition 2.1, taking oy € I(ox™1) as
supported by BU and ¢y (u) =1 for u € U, we can continue

ao(ais) = /K Puo (g1 - A)(k)gu (k)dk

= <PUO(91'A):¢U>:/U<91'A7U'<PU>dU
= <91'A,@U>:<A,g1_1'50U>,

where Supp(gf1 ~py) = BUyg;.
If x € R, then Supp(gf1 ~@y) C BH, and a,s(x;s) = 0 unless ox ™ = 5% on By by Lemma 2.3,
ie., ayo(z;s) = 0 unless o € Wy, by our choice of x and Wy. Thus we have, for x € R

1

w,(z;5) = Q ol ZP s;)))(1). (2.10)

oceWy

On the other hand, by Lemma 2.4, there exists an invertible matrix A, (x) for o € W satisfying

(ﬁ(\lfy(m,s; ))) y= As(X) (P (2, 0(5) + £0; ))ueu’ (2.11)

Ve

where A, (x) depends only on the G-orbit containing x, since iz( is G-equivariant and (2.7).
For x € R, we obtain by (2.10) and (2.11)

e = 53 2000 (Potwue,ols) + 0 D)D)

v

where we set B, (x) = co(x) 1 4s(x). By (2.3) and Proposition 2.2, we see the invertible matrix
B, (x) satisfies the cocycle relation

Byr(x) = B+ (x)Bs(1(x)), 0,7 € Wo.
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Hence

lair(s)+e))y = g 3 Hom()Bo(r(0) (Tulasor(s) + i)

oeWy
= BT(X)71 (w,,(ar; 8))u ) (2'12)

and the above relation determines B, (x), since {wy(x;0(s) +&5) | v € U} is linearly independent
for each o € Wy. _
Finally, if z € RT, we have ¥, (z,s;1) = |f(z)|°. O

Now we assume the condition (A.4) for (B, X) and recall W, (z; s), then we do not need to consider
the subgroup Wy, i.e. Wy = W. We have x = x5 = |¢|® for @y, (x;s) (cf. (2.5), (2.6)), and instead
of Theorem 2.5, we have the following.

Theorem 2.6. Assume (A1), (A2), (A3) and (A4) for (B,X) and s is generic. For x € R, one

has
wy(z; s :l o(s)) - s) - u- )7 du
( v(z; ))ygu QZ 1(0(s)) - Bo(s) (/U I I d )ueu'

oeW

Moreover, if z € R, one has

(@0li9)) s = 5 2 206 Bl (1F@E),

oW

Here the constant Q and the rational function v(s) = y(||°) of ¢°*,...,¢*" are determined by the
group G as in §2.1, and the matriz By(s) is determined by the functional equation

(@ (@35)) ey = Bo(8) (@0 (250(5))) ey

§3

We follow the previous notations, and assume that (B, X) satisfies (A1), (A2) and (A3). In this
section we give a condition to assure the existence of functional equations for o € W attached to a
simple root «, and explain how the functional equations are reduced to those of p-adic local zeta
functions of small prehomogeneous vector spaces of limited type. A basic reference is [H6], where
we assumed (A4) also.

3.1. For a simple root a whose associated reflection o = o, belongs to Wy, denote by P the
standard parabolic subgroup Py, in the sense of [Bo]-21.11, and consider the following condition.

(A5) There exists a k-rational representation p : P — Ry /(G L2) satisfying

p(P) = Ry jx(GL2) or Ry jp(SLa), plo) = ( _01 (1) ) (=], say ),
p '(B2) CB, p(KNP)D Ry (SL)(0), (3.1)

where &’ is a finite unramified extension of k, Ry, is the restriction functor of base field, and By
is the Borel subgroup of p(P) consisting of upper triangular matrices.
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Chevalley groups are typical examples which have p as above for k = k' for each simple root (cf.
Sf2]-84.1.). As for Ry /., we note an example in §4.3.
/

For each v € J(X), we set J, = {v € J(X)| P- X, = P-X,}. Denote by e the group index
[X(B) N (X0(B) ®z Q) : Xo(B)], by d the extension degree of k’'/k, and let £, be the same as in
(2.4). Our first main result of this section is the following (cf. [H6]-Theorem 2.6).

Theorem 3.1. We assume (A1), (A2), (A3) for (B,X). For a simple root whose associated
reflection o belongs to Wy, we assume (A5), and keep the notations above. Then, there exists a
functional equation

1 _ q72d72i €;8;

wulzis) = 1 — g 2d=X;ei(o(s)ite) % ; V() - wi (w3 0(5) + €6),

where g; is the i-th component of €5, Yun(8)’s are rational functions of qs?z, and e; is defined in

(3.5).

Hereafter we assume (B, X) satisfies (A1), (A2) and (A3) and P satisfies (A5). In order to prove
the above theorem and explain about gamma-factors, we introduce the following space.
Set X =X x V with V = Ry (Ma1) and P =P x Ry, (GL1), and define the action

(p,t) - (z,0) = (p- 2, plp)vt™ "), (p.t) €P, (x,0) € X. (3.2)

Here we identify &’ with its image by the regular representation in My(k) (with respect to a fixed
basis for k'/k) and realize Ry x(GL2) (resp. V) in GLgg(k) (resp. Maga(k)), where k is the
algebraic closure of k. Then we may identify as P=Px GLy(K') and V =} 2. Further we regard
B as a subgroup of P by the embedding

B— P, b— (b.p(b)), (3:3)
where p(b)1 is the upper left d by d block of p(b) € Rjs/,(GL2). Then one can identify B as the
stabilizer subgroup of P at v = < (1) > eV, ie.

BxP, = {(p7 tyeP ‘ p(p)vot ™+ = vo} . (3.4)
Then we have the following(cf. [H6]-Lemma 1.1, Proposition 1.2).
Proposition 3.2. (i) One has the following isomorphism:

X(P) = X(P) x X(Ry/x(GL1)) — X(B)
(Y1,92) — [p = 1(@)¥2(p(p)1)]:
(ii) The space (P,X) satisfies (A1), (A2) and (A3). Further, if (B,X) satisfies also (A4), then so
does (P,X), and [X(B) : Xo(B)] = [X(P) : Xo(P)].
(iii) The set of open B-orbits in X corresponds bijectively to the set of open P-orbits in X by the
map B-x+— P (x,v9).

Let {E(T, )
satisfy fi(z) = fi(x,v0). Since fi(x,v) is a relative Ry /1,(GL1)-invariant with respect to the action
on v, it is homogeneous in the coordinates of v over k, and we set

1< < n} be the basic set of relative Iﬁ—invariants, which are regular on X and

e; = deg, fi(z,v), 1<i<n. (3.5)
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We denote by ; the character corresponding to ﬁ-(w,v), then ; = {Z;i\B for each i. For each
u € J(X) denote by X, the P-orbit corresponding to X, by Proposition 3.2, then we have

xXr= || X, X*= || X
ueJ(X) ueJ(X)

Further we see

Xo=| ] Xuo, Xuo= || (1) (Xux{wo}), (3.6)
€7 heSLy(0")/T

where O’ is the ring of integers in &/, he KNP satisfying p(?L) = h for each h € SLs and

r:{(é ?)eSLg(O’) ae(’)’}.

Denote by S(X) and S ()? ) the spaces of Schwartz-Bruhat functions on X and X, respectively.
For s € C" and u € J(X), we consider the following integrals, which we call zeta integrals,

(0is) = [ o) f@lde, o€ S(X),
0(G:5) = [ dta0): [flao)| dado,  Ge (D),

where dz is a G-invariant measure on X, dv is a Haar measure on V, |f(z)|; is defined in (1.1),
and

il

i=1

|Fa,v)

o)™ |Faw)

u

s )f(a@v)‘s if (z,v) € X,
0 otherwise .
The above integrals are absolutely convergent for Re(s;) > 0, 1 < ¢ < n, and analytically continued

to rational functions of ¢%i, 1 < i < n. We have the following, where the assertion (i) is clear, and
the assertion (ii) follows from (3.6).

Lemma 3.3. (i) Let ch, be the characteristic function of K - x in S(X), then
wu(m;8) = (K - )7t Qulchy; s), zeX, ue J(X), (3.7)

where v(K - x) is the volume of K - x by the above measure dz.

(ii) Let ¢ = ¢ @ chy(m), where ¢ € S(K\X) and chy(my 18 the characteristic function of
V(n™mOy) in S(V). Then
qu(2d+zl €;si)

[ x Qu(;s), ueJ(X), (3.8)

Qu(¢7 5) =c:
where ¢ is a constant depending only on the normalization of measures, and independent of u.

In order to study the action of ¢ on s for §~2u($7 s), we define the partial Fourier transform F on
S(X) by

F@)av) = /V n(tojw)d(, w)duw,
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where 7 is an additive character on k" of conductor £, and consider the following distribution on
S(X)

Tus(9) = Qu(¢35),  Tys(9) = Tus(F(9))-

We examine the relative invariancy of these distribution concerning the action of PonS (X )
where P¢(z,v) = ¢(5 ! - (z,v)), p € P. We note the action of & on characters in the following (cf.
[H6]-Lemma 2.1).

Lemma 3.4. (i) For a character ¢ € X(P),

det p(p) 5

Ot =, ), e

i) [30. )| = [N det o) )], (1) € P.

Proposition 3.5. The distributions T

s and T, s with s* = o(s) + ¢, have the same relative

invariancy with respect to the action ofP

Proof. First we obtain
)7 Tl -1, | 7 s
Lo(®09) = [ dtmplp) ot | Fo )| dad
XxV

o~ £l
| Niw (72 det p(p { (m,v)’f(p-x,p(p)vt_l) dadv

S—Eq

G0 Ta@),

where we use Lemma 3.4(ii) and G-invariancy of dz. Next, since jo(p) = det p(p) ‘p(p)~'j, we have

F(®PYg)(x,v) = /V n("jw)d(p~" -z, p(p) " wt)dw

)J(p, t)

t
i " (PHHEED) @),

/vnc(p(p)*vdet PP) (o - e, w)du

By the above calculation together with Lemma 3.4 (i), we obtain

7.3) = 5.0 7.3)

—eo+o(s—es)

(pt)¢ ‘¢ p.t)

O

Because of the uniqueness of the relatively invariant distribution on homogeneous space(cf. [Ig]-
Proposition 7.2.1), we have the following identity

Tid@) = > . (5)The (), @€ S(XP), (3.9)

veJ(X)

where )l ,(s) is a constant independent of ¢. Since Tu,s(a) and TJJ,(%) are continued to rational
functions of ¢!, ...,¢* and [X(P) N (Xo(P) @z Q) : Xo(P)] = e, the above il ,(s) are rational
functions of ¢°1/¢, ... ¢*/¢.
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On the other hand, under our assumption, essentially by (A1) and (A3), it is known that there is

no nonzero distribution for generic s whose support is contained in X\ X°? and relative invariancy
~ ~|S

for P is ’w , where ‘generic’ means the same as in Lemma 2.4 (cf. [H6]-(F5), [Sf3]-Lemma 2.3,

Corollary 2.4). Hence the identity (3.9) holds for any ¢ € S(X). Finally, if ¢ € S(X) is zero

outside of P - X, x V, then so does F(¢), hence we see

Y, (8) =0 ‘unless P- X, =P-X,, ie,ve&Jy

Thus we obtain the following theorem.

Sn

Theorem 3.6. There exist rational functions v, (s) of q%, ..., q e, which satisfy the following

functional equation :

Qu(F(@)i5) = D A(5) W(dio(s) +e), &€ SX).

vedy

We note here that Yy (8) depends on the choice of the character n and the normalization of dv
on V, since F(¢) does. Let normalize dv on V to be self dual with respect to the inner product
(v,w) — n(*vjw), so vol(V(0)) = ¢".

Corollary 3.7. For any ¢ € S(K\X), we have

. _ 1— qudiZi €iS; .
Qu(¢7 S) - 1— q*Qd*Zi ei(o(s)iter) X ; '711,1/(3) . QV(¢7 O’(S) + ED‘)’

where g; is the i-th component of e, and
’Yuy(S) = q£<d+21 €isi) | fy;’lu(s)’
which is independent of the choice of the character n on k'.
Now Theorem 3.1 follows from Corollary 3.7 and Lemma 3.3.
3.2. In this subsection we look at V = Ry /;,(Ma1) together with the action of p(IP;) x Ry /(G L1)
for z € X°. First observation is the following ([H6]-Lemma 3.1).

Lemma 3.8. For each v € X, (p(Py) x Ry /1.(GL1),V) is a prehomogeneous vector space defined
over k. Further, for v € V, p(P,)vk'™ is open in V if and only if P- (z,v) is open in X.

For each u € J(X), fix an element z,, € X,, and denote by P, the stabilizer of x,, in P. Then we
obtain ([H6]-Lemma 3.2)

Lemma 3.9. (i) For any u,v € J(X), prehomogencous vector spaces (P, x Ry /1 (GL1),V) and
(Py x Ry /i (GL1),V) are isomorphic. If v € Ju, they are isomorphic over k.
(ii) The set of k-rational points of the open orbit in (p(Py) X Ry/(GL1),V) decomposes as

(P(Pu)UOPLk’/k(GLl)) (k) = |_| p(Pup)vok’”, (3.10)
vedy

where p, € P satisfying p;,* -z, € X,.
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For ¢ = ¢1 ® ¢y with ¢1 € S(X) and ¢y € S(V), we have
F(9) = ¢1 ® Fv (o),

where
Fu(da)w) = /V (") pa(w)dw

Taking these $ in Theorem 3.6 and pulling out the V-part, we obtain the following theorem (cf.
[H6]-Theorem 3.3) which shows that the functional equations of spherical functions w,(z; s) are
reduced to those for “small” prehomogeneous vector spaces, and oppositely gamma factors can be
calculated from those of these prehomogeneous vector spaces.

Theorem 3.10. The prehomogeneous vector space (P, x GL1,V) has the following functional

equation:
| Fvow|fa.o),

= Y | 0w |fawn]

veJy

dv

o(s)+teo
dv, peSV),

where the gamma factors vi,(s) are the same as those for ﬁu($, s*) in Theorem 3.6.

Because of the existence of the functional equations of the above type, we see the following (cf.
[H6]-Theorem 3.6).

Theorem 3.11. For the prehomogeneous vector space (p(Py) X Ry /1(GL1), V), the identity com-
ponent of p(Py) x Ry ,(GL1) is isomorphic to Ry ,(GL1 x GL1) over the algebraic closure k of
k.

3.3. If the condition (A4) is also satisfied by (B, X), we should consider w, (X s). In this subsection,
we assume (A1),(A2), (A3) and (A4) for (B,X). We assume (A5) for a simple root o whose
associated reflection o, and keep the notations before. Then we have Theorem 3.12 instead of
Theorem 3.6, and based on it, we obtain Theorem 3.13 and Theorem 3.14, these are the original
formulation in [H6]. We do not need to modify Theorem 3.11.

Theorem 3.12. There exist rational functions Y., (s) of qs?l, ey qun, which satisfy the following
functional equation :

Vu(F(@)is) = D F0,(s) Vuliols), ¢ €SX),

veJy
/¢rv flz,v)

Theorem 3.13. Then exists a functional equation

where
st+eo
dxdv.

u

1_ q72d > ei(sites)

1= 22 alo)ite) > Fu(s) Gyl o(s)),
vedy

wy(z58) =

where €; is the i-th component of €o, Yu (8)’s are rational functions of q%, and e; is defined in

(3.5).
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Theorem 3.14. The prehomogeneous vector space (P, x GL1,V) has the following functional

equation:
/‘FV ‘f xﬂn

= YA /¢ )| Flaw)|”

veJy

5+50

dv

o(s)+
0 sesw),

where the gamma factors Fu,(s) are the same as those for ﬁ’u(& s) in Theorem 3.12.

Remark 3.15. We recall Remark 1.4. Assume U is a subset containing J, and canonically
identified with a subgroup of k*™ / 1, ¥:(B), and denote by U the character group of «. We may
define similarly Q(¢; x; s) and Q(¢, x;s) for x € u. Then, instead of Theorem 3.1, we have

1 _ qudiZi ei(si)

W@ Xis) = T Sy e D Ave(s)w(@; & 0(s) + €5), (3.11)
cetd
where
Axe 7 Z (WE@W)Yuw(8),  Yuw(s) =0 unless v € Jy,
1
'Yw/ = Z (S)
X.§€U

We have a similar formula for w(z; x; s).

§4

We prepare some notations. For a matrix z € M, we denote by d;(x) is the determinant of
upper left i by ¢ block of x, by x;; the (i, j)-component of z, and z; = x;. We set J, =

0 1

' € GL,, i.e., the matrix whose anti-diagonal components are 1 and 0 elsewhere.
1 0
Set Ay ={A€Z"| M1 > >N} and Af ={Ae A, | \, >0}

In the following, we may take K = G(O), where O is the ring of integers in k, each X is
a symmetric space except the one in §4.5, which is a spherical homogeneous space, and (B, X)
satisfies (A1) and (A2). In each case, the open orbit X° is given as the non-vanishing set of
basic relative invariants, and one can consider spherical functions with character, since J(X) has
a canonical group structure (cf. Remark 1.4).

4.1. The space of symmetric forms.
GC=GLy,X={2eG| x=a},9 -z =ga'y
B is the Borel group consisting of lower triangular matrices in G.
filz) = di(z), Yi(p) = (pr---p) 1 <i<n, W=Wy=8,.
J(X) = (k% /k*2)" (2 (2/42)" if 2 ¢ ().
(B, X) satisfies (A1)—(A4).
We may take representatives of K\X in RT, since Diag(ai,...,a,) € X with vz(a1) < -+ <
vr(ay) is contained in R™.
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The condition (A5) is satisfied for each simple root, indeed for the transposition (o v+ 1), 1 <
a <n—1, we have

P=P,={(p) €G| p; =0 unlessi >jor (4,j) = (,a+ 1)},

p:P— GLy, p—> < Pa+l,a+1 —Pa+l,a
’ —Pa,a+1 Pa,a

The small prehomogeneous vector spaces are of type (O(T") x GL, V) for some symmetric matrix
T of size 2.

Functional equations with respect to the Weyl group have been known by a different method
based on the explicit expressions of spherical functions of size 2 ([H1]-III), and one can apply
Theorem 2.5 formally, but good expressions of spherical functions are not known for general n > 3,
only partial results are known([H1]).

4.2. The space of alternating forms.

G =GLy, X = {x€G| tx:fx},g-x:gxtg.

B = the Borel group consisting of lower triangular matrices in G.

fi(z) = pt;(x), ¥i(p) =p1-- p2i, 1 <i<n, where pf,(z) is the phaffian of the upper left 2i by 2i
block of x.

W = 89, D Wy =2 S, in fact for each o € S, we associate w, € W such that w,(2i — 1) =
20(1) — 1, wy(2i) =20(4), 1 <i<n.

X is a single B-orbit. As a set of complete representatives of K\ X, we may take

A A 0 7T)\1 0 7T)\”
{7r ‘/\GATL}, T 7<771')‘1 0 1oL TSV X,

and Jo, - 7 € RT.
The explicit formula of w(x;s) was calculated by another method ([HS1]), and it can be repro-
duced also by Theorem 2.5. We introduce a new variable z related to s by

si=—zi+zit1—2 (1<i<n-1), sp,=—-z,+n-1

and write w(z; z) = w(x;s). For each A € A,
zi—z;—1

1—gq _
s =a- 1] Tmmm B,
1<i<j<n

where cy, is an explicitly given constant in Q(¢~!) and Py is a Hall-Littlewood symmetric polynomial
(a symmetric Laurent polynomial of ¢*',...,¢**). The Hall-Littllewood polynomial Py(x;t) is
defined as follows (cf. [Ma2])

(L—t)" A A To(i) — 1o(j)
Py(x;t) = Pa(21,...,20;t) = . AR —_—
w(t) U;ﬂ ) (2% Tali) = To(y)

wat) = [[T]Q -1, for A= (" 0r), &4 > > by, my+ -+ 0y =,

j=li=1
where the set { Py(z;t) | A € Aj} forms a Z[t]-basis for Z[t][z1,- -+ ,z,]%", and the set
{Py(z;t) | A € A} forms a Z[t]-basis for Z[t][z7!, -, zt1]5.

Setting
U(x;2) = w(w; 2) /w70 2), 0=(0,...,0) € A,,
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we have the spherical transform which is a surjective H(G, K)-module homomorphism
SUNX) — Clg oo g5, 61 [ o) (oo
X

where dz is G-invariant measure on X and H(G, K') acts on the right hand side via A, (¢) = X\s(¢),
a specialization of Satake transform H (G, K) = C[gth, ..., gtt2n] %2,

Each spherical function on X is associated to some z € C"/S,, through ., and it is a constant
multiple of ¥(z;2).

4.3. The space of hermitian forms.

For a quadratic extension &’/k with involution *, we consider spherical functions on the space of
hermitian forms X = {x € GL, (k') | * = x} with canonical action of G = GL,(k), where (i, j)-
component of g* for g = (g;;) € G is g;;- We have to realize these objects as the sets of k-rational
points: taking u € &’ such k' = k(u) and u? € k, we identify &’ with the image of the inclusion

2
K —s My(k), a—&-bub—)(i bZ )

and realize G = Ry /(G Ly) and the space X of hermitian forms in the following.

2
aij biju

G= {(gij) € GLan (k) ‘ gij = ( by ) e My(k) (1<ij< n)},

X:{(mij)GG xij:(é fl>x,<(1) P1> (1§z'7j§n)}7

B={g=1(9;;) €G| 955 =0 unlessn>i>j>1}.

Then G = G(k) = GL,(K), X =X(k) ={z € G| z* =z},g9 -z = gzg*.
B = B(k) is the Borel subgroup of G consisting of lower triangular matrices.
fi(z) = di(z) € k for x € X, and ¥i(p) = Ny i(p1---pi) forpe B, 1 <i <n.
W =Wy S,. J(X) (kX/Nk//k(k'X)>n ~ (2)22)".
(B, X) satisfies (A1) — (A4).
Functional equations with respect to the Weyl group have been known by a different method
based on the explicit expressions of spherical functions of size 2 ([H1]-III), and one applies Theo-
rem 2.5 formally.

Theorem 2.5 (of its original formulation) was used to obtain the explicit formula for the case
unramified hermitian forms ([H3]-§2). We consider the spherical function of type (1.5)

w(z;2) = w(z;s) = /K |f (k- z)|* dk,

where £ = (—1,..., -1, -2y + (”1@, e 7T10g_ql) € C™, and z is the new variable related to s by
si=—zi+tzipr (1<i<n—1), s,=—2z,.

Though we are shifting the variable s here, w(z; z) is the same as before. We have the functional
equations

¢Fol) — gre !
w(z;2) = H e w(z;0(2)), o€ Sy (4.1)
1<i<j<n I 9

o(i) > o(4)
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A set of complete representatives of K\ X can be taken as
{7r)‘ = Diag(m™,..., ") ‘ S An}

and J,, - 7 € Rt. The explicit formula is given as

w(m;z) = ey - H

1<i<j<n

1 _ qzifzjfl
W'PA(Q yeeenq
where c) is an explicitly given constant in Q(¢g~!) and Py is a Hall-Little symmetric polynomial
(cf. §4.2). Setting

U(z;2) = w(w; 2) /w(ly; 2),

we have the spherical transform which is an H (G, K)-module isomorphism
S(K\X) = Cl[¢*™, ..., qiz”}sﬂ', ¢ r— / o(z)VU(z; z)dx,
X

where dz is the G-invariant measure on X and H(G, K) acts on the right hand side via Satake
transform \, = X\, : H(G, K) = Clg*?%,...,¢T?*]5. In particular S(K\X) is a free H(G, K)-
module of rank 2. N

Each spherical function on X is associated to some z € C" /Sp through )., and the space of
spherical functions associated to A, has dimension 2" and a basis
{\Il(m;ere) ‘ e€{0 ”‘/jl}”}

’ logq

For a simple root associated to the transposition (o a+1), 1 < a < n—1, there is a representation
p satisfying (A5), similarly given to the case of symmetric form, but we have to use Ry /(G Lz)
in order to define p over k (cf. [H6]-§4.2). The small prehomogeneous vector spaces are of type
(U(T) x GL1,V) for some hermitian matrix T of size 2.

2

Assume that k'/k is ramified and take a prime element 7’ of k¥’ as 7/ = —xw. Then some

2 1
~ m+

0
and they are not in R™, functional equations of spherical functions are much more complicated
(cf. [H1]-III), and no good expressions of spherical functions are known for general n > 3.

representatives of K\ X contain a matrix of type < 2mtl > as a direct summand,
—T

4.4.
(i) For a nondegenerate symmetric matrix A of size n, we set O(4) = {g € GL,, | Alg] = A} and
SO(A) = O(n) N SL,, where Alg] = ‘gAg. Set

1 1, bl b2 bz S MTL7 b3 = 07
= Hn 5 Hn =3 ’ B= i 1 :
G = SO(Hn) 2 < 1, > { ( bs by ) € G‘ b1 is upper triangular
In the following we consider the set of k-rational points. Fix a symmetric matrix T' € GL,(k), set

Xr = {ac S Mgn,r | Hn[l‘} = T}, Xr = }{T/O(T) 5T = IO(T),
and consider them as G-spaces by left multiplication. The stabilizer of

T € XT7 xrT = t(T Onfr,r 1, Onfr,r) e Xr

is isomorphic to S(O(T) x O(T LH,,_.)), so the space Xy is isomorphic to SO(2n)/S(O(r) x O(2n—
r)) over the algebraic closure of k.
A set of basic B-relative invariants and associated characters are given as follows

fri(@) = di(T 7 ['wa]) = di(xaTMaa),  ilp) = (p1---pi) 72, 1<i<rm,
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where x4 is the submatrix of x € X7 consisting of its (n + ¢)-th row, 1 <4 < r, in order, and p; is
the i-th diagonal component of p € B. So rank(Xo(B)) = r, whereas rank(X(B)) = n.
W =5, x Ci ' oWy, x Cy~!, and J(X7) = (K /k¥2)" .

Functional equations with respect to the S,-part are reduced to the case of symmetric forms.
When r = n, the condition (A5) is satisfied for each simple root and small prehomogeneous vector
spaces are isomorphic to (O(t) x GL1,V) for some symmetric matrix ¢ of size 2, for details see
[H6]-84-3. The spherical functions on this space with respect to the Siegel parabolic subgroup have
a close relation to Siegel singular series (cf. [HS4]).

For odd 2n + 1, we may start with

G= SO(Hn)7 Hy, = 1 € GLany1,
1

and consider the space for symmetric T € GL, (k)
Xr=%X7/0(T), Xr={x€ Mouq1,| Hpz] =T}.
Relative invariants are given similarly to the even case, and we have W = S, x C3 D Wy = S, x C3.

(ii) For a nondegenerate hermitian matrix A of size n, we set U(A) = {g € GL, | Alg] = g}, where
Alg] = g*Ag and g¢* is the same as in §4.3. In the following we write by the set of k-rational points
for simplicity of notations (cf. §4.3). Setting

. . 1, o by bo b; € My, ;b3=0
G=U(H,), H, = ( 1, > B = { < by ba ) < G‘ b1 is upper triangular }’

define the G-spaces X and Xp = Xp/U(T') similarly to the case (i) for hermitian T' € GL,(k').
Then,

Pri(@) = di(T~Y[23]), ¥s(p) = Nigji(pr -+ pi) "L 1 < i <7, J(Xr) 2 (K /Njg o (67))"
rank(X(B)) = n, rank(Xo(B)) =7, and W = S, x C§ D Wy = S, x C3.

Functional equations with respect to the S,-part are reduced to the case of hermitian forms, so we
know well if &' /k is unramified (cf. §4.3).

Let us assume r = n and k’/k is unramified, and consider the spherical function on X7 of type
(1.5)

wr(T; 2) = wr (T 5) = /K | () [+ dl,

where ¢ = (—1,...,—1,—3) + (ﬂl\o/g?v . ﬂlg) € C", and 7 is the new variable related to s by
si=—zi+zi1 (1<i<n—1), sp=—z.

This wp(T; z) satisfies the same functional equation as in (4.1) with respect to Sy, independent of
the choice of T'. Further we obtain

wp(T; 2z) = |2|i’2" wr(T;7(2)), 7(2) = (21, -y 2n-1, —2n), (4.2)

and we have functional equations with respect to whole W by cocycle relations. The parabolic
subgroup attached to 7 does not have the representation satisfying (A5) and the above functional
equation (4.2) does not come from prehomogeneous vector space. Explicit formulas of wy (%) for
some particular points are obtained by using these functional equations and Theorem 2.6.
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Similar to the case (i), spherical functions on this space with respect to the Siegel parabolic
subgroup have a close relation to hermitian Siegel series, for details see [H7].

4.5. Spy x (Sp1)%-space Spo (cf. [H5]).
‘We assume that £ has odd residual characteristic.
Setting

Spn ={x € GLoy, | Hylx] = H,}, Hy, =

we embed (Sp1)? = (SL2)? into Sps by

(o) (5 i)

and define the action of G = Spa x (Sp1)? on X = Spy

g r=giz'g, G=1(91,92) €G, z X

Then this space X is not a symmetric space, but a spherical homogeneous space, whereas Spa, / (Sppx
Spr)-space Spay, is no longer spherical for n > 2 (and hence there is no open Borel orbit in it).
We take the Borel subgroup of G consisting of matrices of type

bs 0

*

* 0
_ 0 0 by
b=( . b 0 | 0 o0 PES
*  bo 0 = 0 =
then a set of basic relative B-invariants on X and associated characters of B are given as
Si(@) = w31, P1(b) = bibs,
fa(z) = w32, ¥2(b) = bibs,

[3(x) = 231242 — 32241, ¥3(b) = b1bab3by,
fa(x) = x31243 — Ta1233, Pa(b) = brboa,

where x;; is the (¢, j)-component of x and b; comes from the above expression of b € B. J(X) =
kX /k*2 and (B, X) satisfies (A1) — (A4).
We consider the spherical function of type (1.5)

Saii) = Blainis) = [ (@) 17 (k- dk

where x is a character of kX /k*?, & = (—%, cey —%), and z is related to s by

z1 =81+ 82+ 83+ 84, 22 =83+ S4,
23 = 81 + S3, 24 = S2 + S3.

W =Wy = (S2 x (C3)?) x (S2)?, and (Ab) is satisfied for each simple root. Calculating functional
equations by using zeta integrals of type Q(¢, x;s) (in Remark 3.15), we have explicit formulas
of spherical functions on X. By spherical transform we see S(K\X) is a free H(G, K)-module of
rank 4. Each spherical function is associated to some z € C*/W through )., and the space of
spherical functions associated to A, has dimension 4 and there is a basis explicitly given by terms
of w(z; x; z). The small prehomogeneous vector spaces are isomorphic to (GLy x GL1,V) over k
(cf. [H6]-84.1), and those functional equations are reduced to Tate’s formula([Ta]-§2).
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