
CHAPTER 1

Surfaces

In this chapter we present some of the elements of the geometric theory of
2-dimensional (bounded) homology in an informal way. The main purpose of this
chapter is to standardize definitions, to refresh the reader’s mind about the relation-
ship between 2-dimensional homology classes and maps of surfaces, and to compute
the Gromov norm of a hyperbolic surface with boundary. All of this material is
essentially elementary and many expositions are available; for example, [10] covers
this material well.

We start off by discussing maps of surfaces into topological spaces. One way
to study such maps is with linear algebra; this way leads to homology. The other
way to study such maps is with group theory; this way leads to the fundamental
group and the commutator calculus. These points of view are reconciled by Hopf’s
formula; a more systematic pursuit leads to rational homotopy theory.

1.1. Triangulating surfaces

A surface is a topological space (usually Hausdorff and paracompact) which is
locally two dimensional. That is, every point has a neighborhood which is homeo-
morphic to the plane, usually denoted by R2.

1.1.1. The plane. It is unfortunate in some ways that the standard way
to refer to the plane emphasizes its product structure. This product structure
is topologically unnatural, since it is defined in a way which breaks the natural
topological symmetries of the object in question. This fact is thrown more sharply
into focus when one discusses more rigid topologies.

Example 1.1 (Zariski topology). The product topology on two copies of the
affine line with its Zariski topology is not typically the same as the Zariski topology
on the affine plane. A closed set in R1 with the Zariski topology is either all of
R, or a finite collection of points. A closed set in R2 with the product topology
is therefore either all of R2, or a finite union of horizontal and vertical lines and
isolated points. By contrast, closed sets in the Zariski topology in R2 include circles,
ovals, and algebraic curves of every degree.

Part of the bias is biological in origin:

Example 1.2 (Primary visual cortex). The primary visual cortex of mammals
(including humans), located at the posterior pole of the occipital cortex, contains
neurons hardwired to fire when exposed to certain spatial and temporal patterns.
Certain specific neurons are sensitive to stimulus along specific orientations, but in
primates, more cortical machinery is devoted to representing vertical and horizontal
than oblique orientations (see for example [58] for a discussion of this effect).
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2 1. SURFACES

The correct way to discuss the plane is in terms of the separation properties
of its 1-dimensional subsets. The foundation of many such results is the Jordan
curve theorem, which says that there is essentially only one way to embed a cir-
cle in the plane, up to reparameterization and ambient homeomorphism. Moore
[158] gave the first “natural” topological definition of the plane, in terms of sep-
aration properties of continua. Once this is understood, one is led to study the
plane and other surfaces by cutting them up into simple pieces along 1-dimensional
continua. The typical way to perform this subdivision is combinatorially, giving
rise to triangulations.

1.1.2. Triangulations and homology. Every topological surface can be tri-
angulated in an essentially unique way, up to subdivision (Radó [176]). Here by
a triangulation, we mean a description of the surface as a simplicial complex built
from countably many 2-dimensional simplices by identifying edges in pairs (note
that a simplicial complex is topologized with the weak topology, so that every
compact subset of a surface S meets only finitely many triangles).

Conversely, if we let
∐
i∆i be a countable disjoint union of triangles, and glue

the edges of the ∆i in pairs, the result is a simplicial complex K. Every point in
the interior of a face or an edge has a neighborhood homeomorphic to R2, by the
gluing condition. Every vertex has a neighborhood homeomorphic to the open cone
on its link. Each such link is a 1-manifold, and is therefore either homeomorphic
to S1 or to R. It follows that the complex K is a surface if and only if the link of
every vertex is compact.

If there are only finitely many triangles, every such identification gives rise to
a surface. Otherwise, we need to impose the condition that each vertex in the
quotient space is in the image of only finitely many triangles, so that the link of
this vertex is compact.

Remark 1.3. It is worth looking more closely at the set of all possible ways in which
a given surface can be triangulated. Any two triangulations τ, τ ′ (given up to isotopy)
of a fixed surface S are related by a finite sequence of local moves and their inverses.
These moves are of two kinds: the 1–3 move, and the 2–2 move, illustrated in Figure 1.1.
Only the 1–3 move and its inverse change the number of vertices in a triangulation, and

↔ ↔

Figure 1.1. The 1–3 and the 2–2 moves

therefore these moves cannot be dispensed with entirely. However, it is an important fact
that any two triangulations τ, τ ′ of the same surface S with the same number of vertices
are related by 2–2 moves alone.

In fact, somewhat more than this is true. Define a cellulation of a surface to be a
decomposition of the surface into polygonal disks (each with at least 3 sides). Associated
to a surface S and a discrete collection P of points in S there is a natural cell complex
A(S,P ) with one cell for each cellulation of S whose vertex set is exactly P , and with the
property that one cell is in the boundary of another if one cellulation is obtained from
the other by adding extra edges as diagonals in some of the polygons. In A(S, P ), the
vertices correspond to the triangulations of S with vertex set exactly P , and the edges
correspond to pairs of triangulations related by 2–2 moves. Hatcher [105] proves not only
that A(S,P ) is connected, but that it is contractible.
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The combinatorial view of a surface as a union of triangles gives rise to a
fundamental relationship between surfaces and 2-dimensional homology.

Example 1.4 (integral cycles). Let X be a topological space, and let α ∈
H2(X) be an integral homology class. The class α is represented (possibly in many
different ways) by an integral 2-cycle A. By the definition of a 2-cycle, there is an
expression

A =
∑

i

niσi

where each ni ∈ Z, and each σi is a singular 2-simplex; i.e. a continuous map
σi : ∆2 → X where ∆2 is the standard 2-simplex. By allowing repetitions of the
σi, we can assume that each ni is ±1.

Since A is a cycle, ∂A = 0. That is, for each σi and for each singular 1-simplex e
which is a face of some σi, the signed sum of copies of e appearing in the expression∑
i ni∂σi is 0. It follows that each such e appears an even number of times with

opposite signs. This lets us choose a pairing of the faces of the σi so that each pair
of faces contributes 0 in the expression for ∂A.

Build a simplicial 2-complex K by taking one 2-simplex for each σi, and gluing
the edges according to this pairing. Since the number of simplices is finite, and
edges are glued in pairs, the result is a topological surface S (note that S need
not be connected). Each simplex of K can be oriented compatibly with the sign of
the coefficient of the corresponding singular simplex σi, so the result is an oriented
surface. The maps σi induce a map from the simplices of K into X , and the
definition of the gluing implies that these maps are compatible on the edges of the
simplices. We obtain therefore an induced continuous map fA : S → X . Since S is
closed and oriented, there is a fundamental class [S] ∈ H2(S), and by construction
we have

(fA)∗([S]) = [A] = α

In words, elements of H2(X) are represented by maps of closed oriented surfaces
into X .

Remark 1.5. One can also consider homology with rational or real coefficients. Every
rational chain has a finite multiple which is an integral chain, so if one is prepared to
consider “weighted” surfaces mapping to X, the discussion above suffices. We think of
H2(X; Q) as a subset of H2(X; R) by using the natural isomorphism H2(X; Q) ⊗ R =
H2(X; R). Suppose α ∈ H2(X; Q) is represented by a real 2-cycle A =

P
riσi. Then for

any ǫ > 0 there exists a rational 2-cycle A′ =
P
r′iσi (i.e. with the same support as A)

such that the following are true:

(1) The cycles A and A′ are homologous (hence [A′] = α)
(2) There is an inequality

P
i |ri − r′i| < ǫ

To see this, let V denote the abstract vector space with basis the σi. There is a natural
map ∂ : V → C1(X)⊗R. Since ∂ is defined over Q, the kernel ker(∂) is a rational subspace
of V . There is a further map h : ker(∂) → H2(X; R) = H2(X; Q) ⊗ R. This map is also
defined over Q, and therefore h−1(α) is a rational subspace of V (and therefore rational
points are dense in it). Since A is in h−1(α), it can be approximated arbitrarily closely
by a rational cycle A′ also in h−1(α).

1.1.3. Topological classification of surfaces. For simplicity, in this section
we consider only connected surfaces.
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Closed surfaces are classified by Euler characteristic and whether or not they
are orientable. For each non-negative integer g, there is a unique (up to homeo-
morphism) closed orientable surface with Euler characteristic 2− 2g. The number
g is called the genus of S, denoted genus(S).

For each positive integer n, there is a unique (up to homeomorphism) closed
non-orientable surface with Euler characteristic 2− n.

Example 1.6 (closed surfaces). The sphere is the unique closed surface with
χ(sphere) = 2 and the torus is the unique closed orientable surface with χ(torus) =
0. The projective plane is the unique closed surface with χ(projective plane) = 1.
For the sake of notation, we abbreviate these surfaces by S2, T, P . Every closed
surface may be obtained from these by the connect sum operation, denoted #. This
operation is commutative and associative, with unit S2, and satisfies

T#P = P#P#P

Moreover, every other relation for # is a consequence of this one.
Euler characteristic is subadditive under connect sum, and satisfies

χ(S1#S2) = χ(S1) + χ(S2)− 2

A closed surface S is non-orientable if and only if P appears as a summand in some
(and therefore any) expression of S as a sum of T and P terms.

If S is an oriented surface, we denote the same surface with opposite orientation
by S. We say that a topological surface is of finite type if it is homeomorphic to a
closed surface minus finitely many points. If T is closed, and there is an inclusion
i : S → T so that T − i(S) is finite, then

χ(S) = χ(T )− card(T − i(S))

(here card denotes cardinality). Moreover, S is orientable if and only if T is.

1.1.4. Surfaces with boundary. A surface with boundary is a (Hausdorff,
paracompact) topological space for which every point has a neighborhood which
is either homeomorphic to R2 or to the closed half-space {(x, y) ∈ R2 | y ≥ 0}.
Points with neighborhoods homeomorphic to R2 are interior points, and the others
are boundary points. Surfaces with boundary can be triangulated in such a way
that the triangulation induces a triangulation (by 1-dimensional simplices) of the
boundary. We denote the set of interior points of S by int(S), and the set of
boundary points by ∂S.

If S is a surface with boundary, the double of S, denoted DS, is the surface
obtained from S

∐
S by identifying ∂S with ∂S. Note that S is only distinguished

from S if S is oriented, in which case the double is also oriented. We say S is of
finite type if DS is. Note that in this case, DS may be obtained from a closed
surface DT which is the double of a compact surface with boundary T by removing
finitely many points. If this happens, we can always assume S is obtained from T
by removing finitely many points. Note that some of these points may be contained
in ∂T .

Genus is not a good measure of complexity for surfaces with boundary: −χ
is better, in the sense that there are only finitely many homeomorphism types of
connected compact surface for which −χ is less than or equal to any given value.
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1.1.5. Fundamental group and commutators. Let S be an oriented sur-
face of finite type. If S has genus g and p > 0 punctures, π1(S) is free of rank
2g + p− 1, and similarly if S is compact with p boundary components.

If S is closed of genus g, then S can be obtained by gluing the edges of a 4g-gon
in pairs, and one obtains the “standard” presentation of π1:

π1(S) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉
A closed surface is obtained from a surface with one boundary component by

gluing on a disk. If S has genus g with one boundary component, π1(S) is free with
generators a1, b1, . . . , ag, bg and ∂S represents the conjugacy class of the element
[a1, b1] · · · [ag, bg].

Let X be a topological space, and let αi, βi be elements in π1(X) such that
there is an identity

[α1, β1] · · · [αg, βg] = id ∈ π1(X)

There is an induced map π1(S) → π1(X) sending each ai → αi and bi → βi.
Thinking of S as the quotient of a polygon P with 4g sides glued together in pairs,
this defines a map ∂P → X whose image is null homotopic in X , and therefore this
map extends to a map S → X . The homology class of the image of the fundamental
class [S] depends on the particular expression involving the αi, βi. Moreover, two
different choices of the extension ∂P → X to P differ by a pair of maps of P which
agree on the boundary; these maps sew together to define a map S2 → X defining
an element of π2(X). In words, identities in the commutator subgroup of π1(X)
correspond to homotopy classes of maps of closed orientable surfaces into X, up to
elements of π2(X).

In the relative case, let γ ∈ π1(X) be a conjugacy class represented by a loop
lγ ⊂ X . If γ has a representative in the commutator subgroup [π1(X), π1(X)] then
we can write

[α1, β1] · · · [αg, βg] = γ ∈ π1(X)

Let S be a genus g surface with one boundary component. S is obtained from a
(4g + 1)-gon P by identifying sides in pairs. Choose loops in X representing the
elements γ, αi, βi and let f : ∂P → X be defined by sending the edges of P to
loops in X by ai → αi, bi → βi, and the free edge to γ. By construction, f factors
through the quotient map ∂P → S induced by gluing up all but one of the edges.
Moreover, by hypothesis, f(∂P ) is null-homotopic in X . Hence f can be extended
to a map f : S → X sending ∂S to γ.

In words, loops corresponding to elements of [π1(X), π1(X)] bound maps of
oriented surfaces into X .

1.1.6. Hopf’s formula. The two descriptions above of (relative) maps of
surfaces, in terms of homology and in terms of fundamental group, are related
by Hopf’s formula.

Let X be a topological space. If π2(X) is nontrivial, we can attach 3-cells to X
to kill π2 while keeping π1 fixed. If X ′ is the result, then H2(X

′; Z) can be identified
with the group homology H2(π1(X); Z), by the relative Hurewicz theorem.

We let G = π1(X). Suppose we have a description of G as a quotient of a free
group:

0→ R→ F → G→ 0

where F is free. Every map from a closed oriented surface S into X ′ is associated
to a product of commutators [a1, b1] · · · [ag, bg] which is equal to 0 in G. A choice



6 1. SURFACES

of word in F for each element ai, bi in such an expression determines an element of
R ∩ [F, F ]. A substitution a′i = air where r ∈ R changes the result by an element
of [F,R], since

[ar, b] = [ara−1, aba−1][a, b]

By the discussion above, there is a surjective homomorphism from the Abelian
group (R ∩ [F, F ])/[F,R] to H2(G).

Hopf’s formula says this map is an isomorphism:

Theorem 1.7 (Hopf’s formula [155]). Let G be a group written as a quotient
G = F/R where F is free. Then

H2(G) = (R ∩ [F, F ])/[F,R]

One quick way to see this is to use spectral sequences. This argument is short
but a bit technical, and can be skipped by the novice, since the result will not
be used elsewhere in this book. The extension R → F → G defines a spectral
sequence (the Hochschild–Serre spectral sequence [110]) whose E2

n,0 term is Hn(G)

and whose E2
0,1 term is H1(R)G, the quotient of H1(R) by the conjugation action

of G. Since H1(R) = R/[R,R], we conclude that H1(R)G is equal to R/[F,R]. Let
d2 : E2

2,0 → E2
0,1 be the differential connecting H2(G) to R/[F,R]:

H1(R)G

Z H1(G) H2(G)
...........................

............................
............................

............................
............................

............................
.......................... d2

Then there is an exact sequence

H2(F )→ H2(G)→ R/[F,R]→ H1(F )→ H1(G)→ 0

Since F is free, H2(F ) = 0 and therefore H2(G) is identified with the kernel of the
map R/[F,R] → H1(F ). But the kernel of F → H1(F ) is exactly [F, F ], so we
obtain Hopf’s formula.

1.2. Hyperbolic surfaces

1.2.1. Conformal structures. A conformal structure on a surface is an at-
las of charts for which the induced transition maps are angle-preserving. We do
not require these maps to preserve the sense of the angles, so that non-orientable
surfaces may still admit conformal structures. Orientable surfaces with conformal
structures on them are synonymous with Riemann surfaces.

Example 1.8 (conformal surfaces by cut-and-paste). A Euclidean polygon P
inherits a natural conformal structure from the Euclidean plane, which we denote
by E2. Isometries of E2 preserve the conformal structure, and therefore induce a
natural conformal structure on any Euclidean surface. If S is obtained by gluing
a locally finite collection of Euclidean polygons by isometries of the edges, the
resulting surface is Euclidean away from the vertices, where there might be an
angle deficit or surplus. If v is a vertex which has a cone angle of rπ, we can
develop the complement of v locally to the complement of the origin in E2. If we
think of E2 as C, and compose this developing map with the map z → z2/r the
result extends over v and defines a conformal chart near v which is compatible with
the conformal charts on nearby points.
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Let S be an arbitrary triangulated surface. By taking each triangle to be an
equilateral Euclidean triangle with side length 1, and all gluing maps between edges
to be isometries, we see that every surface can be given a conformal structure.

Example 1.9 (Belyi’s Theorem [9]). Belyi proved that a non-singular algebraic
curve X is conformally equivalent to a surface obtained by gluing black and white
equilateral triangles as above in a checkerboard pattern (i.e. so that no two triangles
of the same color share an edge) if and only if X can be defined over an algebraic
number field (i.e. a finite algebraic extension of Q).

Such a description defines a map X → P1, by taking the black triangles to
the upper half space and the white triangles to the lower half space; this map is
algebraic, and unramified except at 0, 1,∞. The preimage of the interval [0, 1]
is a bipartite graph on X , which Grothendieck called a “dessin d’enfant” (child’s
drawing; see [100]). The point of this construction is that the algebraic curve X
can be recovered from the combinatorics and topology of the diagram. The Galois
group Gal(Q/Q) acts on the set of all dessins, and gives unexpected topological
insight into this fundamental algebraic object.

A conformal structure on S induces a tautological conformal structure on S.
We say that a conformal structure on S is conformally finite if it is conformally
equivalent to a closed surface minus finitely many points. Every surface of finite
type admits a conformal structure which is conformally finite.

The classical Uniformization Theorem for Riemann surfaces says that any sur-
face S with a conformal structure admits a complete Riemannian metric of constant
curvature in its conformal class, which is unique up to similarity (note that this
theorem is also valid for conformal surfaces of infinite type).

1.2.2. Conformal structures on surfaces with boundary. Let S be a
surface with boundary. We say that a conformal structure on S is given by a
conformal structure on DS which induces the same conformal structures on the
interiors of S and S by inclusion, after composing with the tautological identification
of S and S. A surface with boundary S is said to be of finite type if DS is of finite
type, and a conformal structure on S is conformally finite if DS is conformally
finite.

If S admits a conformally finite conformal structure, we define

χ(S) =
1

2
χ(DS)

Note that this may not be an integer, but always takes values in 1
2Z.

If T is compact with boundary, and there is an inclusion i : S → T so that
T − i(S) is finite, then

χ(S) = χ(T )− card(int(T )− i(int(S))) − 1

2
card(∂T − i(∂S))

1.2.3. Hyperbolic surfaces. A Riemannian metric on a surface S is said to
be hyperbolic if it has curvature −1 everywhere. A conformally finite surface admits
a unique compatible hyperbolic metric which is complete of finite area if and only
if χ(S) < 0. The Gauss–Bonnet Theorem says that for any closed Riemannian
surface S there is an equality ∫

S

K = 2πχ(S)
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where K is the sectional curvature on S.
If S is hyperbolic, we obtain an equality

area(S) = −2πχ(S)

A conformally finite surface S with boundary admits a unique hyperbolic struc-
ture for which ∂S is totally geodesic if and only if χ(S) < 0. For, by definition,
χ(DS) < 0 and thereforeDS admits a unique complete finite area hyperbolic struc-
ture in its conformal class. If i : DS → DS is the involution which interchanges
S and S, then i preserves the conformal structure, and therefore it acts on DS as
an isometry. It follows that the fixed point set, which can be identified with ∂S, is
totally geodesic. Notice that with our definition of χ(S) the relation

area(S) = −2πχ(S)

holds also for surfaces with boundary.

1.2.4. Straightening chains. Let ∆ be a geodesic triangle in H2. The
Gauss–Bonnet Theorem gives a straightforward relationship between the area of
∆ and the sum of the interior angles:

area(∆) = π − sum of interior angles of ∆

It follows that there is a fundamental inequality

area(∆) < π

A geodesic triangle in H2 is semi-ideal if some of its vertices lie at infinity, and
ideal if all three vertices are at infinity. If we allow ∆ to be semi-ideal above, the
inequality becomes

area(∆) ≤ π
with equality if and only if ∆ is ideal.

Similar inequalities hold in every dimension; that is, for every dimension m
there is a constant cm > 0 such that every geodesic hyperbolic m-simplex has
volume ≤ cm, with equality if and only if the simplex is ideal and regular (Haagerup
and Munkholm [101]). Note that every ideal 2-simplex is regular.

A fundamental insight, due originally to Thurston, is that in a hyperbolic
manifold Mm, a singular chain can be replaced by a (homotopic) chain whose
simplices are all geodesic. Applying this observation to the fundamental class [M ]
of M , and observing that there is an upper bound on the volume of a geodesic
simplex in each dimension, we see that the complexity (in a suitable sense) of a
chain representing [M ] can be bounded from below in terms of cm and vol(M).
That is, one can use (hyperbolic) geometry to estimate the complexity of an a
priori topological quantity. Technically, the right way to quantify the complexity
of [M ] is to use bounded (co-)homology, which we will study in detail in Chapter
2.

Definition 1.10. Let M be a hyperbolic m-manifold, and let σ : ∆n →M be
a singular n-simplex. Define the straightening σg of σ as follows. First, lift σ to a
map from ∆n to Hm which we denote by σ̃.

Let v0, · · · , vn denote the vertices of ∆n. In the hyperboloid model of hyper-
bolic geometry, Hm is the positive sheet (i.e. the points where xm+1 > 0) of the
hyperboloid ‖x‖ = −1 in Rm+1 with the inner product

‖x‖ = x2
1 + x2

2 + · · ·+ x2
m − x2

m+1
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If t0, · · · , tn are barycentric co-ordinates on ∆n, so that v =
∑
i tivi is a point in

∆n, define

σ̃g(v) =

∑
i tiσ̃(vi)

−‖∑i tiσ̃(vi)‖
and define σg to be the composition of σ̃ with projection Hm →M .

Since the isometry group of Hm acts on Rm+1 linearly preserving the form ‖ ·‖,
the straightening map σ → σg is well-defined, and independent of the choice of lift.

Let M be a hyperbolic manifold. Define

str : C∗(M)→ C∗(M)

by setting str(σ) = σg, and extending by linearity.
By composing a linear homotopy in Rm+1 with radial projection to the hy-

perboloid, one sees that there is a chain homotopy between str and the identity
map.

1.2.5. The Gromov norm. We now return to hyperbolic surfaces. Let S
be conformally finite, possibly with boundary. If S is closed and oriented, the
fundamental class of S, denoted [S], is the generator of H2(S, ∂S) which induces
the orientation on S.

Definition 1.11. Define the L1 norm, also called the Gromov norm of S, as
follows. Consider the homomorphism

i∗ : H2(S, ∂S; Z)→ H2(S, ∂S; R)

induced by inclusion Z→ R, and by abuse of notation, let [S] denote the image of
the fundamental class. Let C =

∑
i riσi represent [S], where the coefficients ri are

real, and denote

‖C‖1 =
∑

i

|ri|

Then set

‖[S]‖1 = inf
C
‖C‖1

The following lemma, while elementary, is very useful in what follows.

Lemma 1.12. Let S be an orientable surface with p boundary components. If
p > 1 then for any integer m > 1 with m and p−1 coprime there is an m-fold cyclic
cover Sm with p boundary components, each of which maps to the corresponding
component of ∂S by an m-fold covering.

Proof. The inclusion ∂S → S induces a homomorphism H1(∂S) → H1(S)
whose kernel is 1-dimensional, and generated by the homology class represented by
the union ∂S. In particular, if p > 1, then we can take p− 1 boundary components
to be part of a basis for H1(S). Denote the images of the boundary components
in H1(S) by e1, · · · , ep, and let e1, · · · , ep−1 be part of a basis for H1(S). If m and
p − 1 are coprime, let α ∈ H1(S; Z/mZ) = Hom(H1(S); Z/mZ) satisfy α(ei) = 1
for 1 ≤ i ≤ p− 1. Then α(ej) is primitive for all 1 ≤ j ≤ p. The kernel of α defines
a regular m-fold cover Sm with the desired properties. �
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Remark 1.13. A surface with exactly one boundary component has no regular (nontrivial)
covers with exactly one boundary component. However irregular covers with this property
do exist. For example, let S be a genus one surface with one boundary component, so
π1(S) is free on two generators a, b. Let φ : π1(S)→ S3 be the permutation representation
defined by φ(a) = (12) and φ(b) = (23). Then φ([a, b]) = (312), which is a 3-cycle. This
representation determines a 3-sheeted (irregular) cover of S with one boundary component.

It is straightforward to generalize this example to show that every connected oriented
surface with χ ≤ 0 admits a connected cover of arbitrarily large degree with the same
number of boundary components.

Theorem 1.14 (Gromov norm of a hyperbolic surface). Let S be a compact
orientable surface with χ(S) < 0, possibly with boundary. Then

‖[S]‖1 = −2χ(S)

Proof. Let S be a surface of genus g with p boundary components, so that

χ(S) = 2− 2g − p
The surface S admits a triangulation with one vertex on each boundary component,
and no other vertices. Any such triangulation has 4g+ 3p− 4 triangles. Figure 1.2
exhibits the case g = 1, p = 2. By Lemma 1.12, there is an m-fold cover Sm of S
with p boundary components.

Figure 1.2. A triangulation of a surface with g = 1, p = 2 by 6 triangles

Since χ is multiplicative under covers, χ(Sm) = 2m− 2gm−mp and it can be
triangulated with p+m(4g+ 2p− 4) triangles. Projecting this triangulation under
the covering map Sm → S gives an integral chain representing m[S] with L1 norm
equal to p + m(4g + 2p − 4). Dividing coefficients by m and taking the limit as
m→∞, we get

‖[S]‖1 ≤ −2χ(S)

To obtain the other inequality, let C be any chain representing [S]. Then str(C)
has L1 norm no greater than that of C, and also represents [S]. On the other hand,
since every geodesic triangle has area ≤ π, and area(S) = −2πχ(S), we obtain

‖[S]‖1 ≥ −2χ(S)

�

Remark 1.15. If χ(S) ≥ 0 then S admits a proper self map f : S → S of any degree. By
pushing forward a chain under this map and dividing coefficients, one sees that ‖[S]‖1 = 0.

If X is any topological space and α is a class in H2(X ; R) the Gromov norm
of α, denoted ‖α‖1, is the infimum of the L1 norm over all (real valued) 2-cycles
representing the homology class α. If α is rational, any real 2-cycle representing
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α can be approximated in L1 by a rational 2-cycle representing α. By multiplying
through to clear denominators, some multiple nα can be represented by a map of a
surface S → X . For such a surface S, let χ−(S) denote the Euler characteristic of
the union of the non-spherical components of S. Then Theorem 1.14 implies that

‖α‖1 = inf
S

−2χ−(S)

n(S)

where the image of the fundamental class of S under the map S → X represents
n(S)α in homology, and the infimum is taken over all maps of (possibly discon-
nected) closed oriented surfaces into X .
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