Chapter 4. An analogue of W for discrete Markov chains.

4.0 Introduction.

In this chapter, we construct for Markov chains some σ-finite measures which enjoy similar properties as the measure \mathbf{W} studied in Chapter 1. Very informally, these σ-finite measures are obtained by "conditioning a recurrent Markov process to be transient".
Our construction applies to discrete versions of one- and two-dimensional Brownian motion, i.e. simple random walk on \mathbb{Z} and \mathbb{Z}^{2}, but it can also be applied to a much larger class of Markov chains.
This chapter is divided into three sections; in Section 4.1, we give the construction of the σ-finite measures mentioned above ; in Section 4.2, we study the main properties of these measures, and in Section 4.3, we study some examples in more details.

4.1 Construction of the σ-finite measures $\left(\mathbb{Q}_{x}, x \in E\right)$

4.1.1 Notation and hypothesis.

Let E be a countable set, $\left(X_{n}\right)_{n \geq 0}$ the canonical process on $E^{\mathbb{N}},\left(\mathcal{F}_{n}\right)_{n \geq 0}$ its natural filtration, and \mathcal{F}_{∞} the σ-field generated by $\left(X_{n}\right)_{n \geq 0}$.
Let us denote by $\left(\mathbb{P}_{x}\right)_{x \in E}$ the family of probability measures on $\left(E^{\mathbb{N}},\left(\mathcal{F}_{n}\right)_{n \geq 0}, \mathcal{F}_{\infty}\right)$ associated to a Markov chain $\left(\mathbb{E}_{x}\right.$ below denotes the expectation with respect to $\left.\mathbb{P}_{x}\right)$; more precisely, we suppose there exist probability transitions $\left(p_{y, z}\right)_{y, z \in E}$ such that:

$$
\begin{equation*}
\mathbb{P}_{x}\left(X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\mathbf{1}_{x_{0}=x} p_{x_{0}, x_{1}} p_{x_{1}, x_{2} \ldots} \ldots p_{x_{k-1}, x_{k}} \tag{4.1.1}
\end{equation*}
$$

for all $k \geq 0, x_{0}, x_{1}, \ldots, x_{k} \in E$.
We assume three more hypotheses :

- For all $x \in E$, the set of $y \in E$ such that $p_{x, y}>0$ is finite (i.e. the graph associated to the Markov chain is locally finite).
- For all $x, y \in E$, there exists $n \in \mathbb{N}$ such that $\mathbb{P}_{x}\left(X_{n}=y\right)>0$ (i.e. the graph of the Markov chain is connected).
- For all $x \in E$, the canonical process is recurrent under the probability \mathbb{P}_{x}.

4.1.2 A family of new measures.

From the family of probabilities $\left(\mathbb{P}_{x}\right)_{x \in E}$, we will construct families of σ-finite measures which should be informally considered to be the law of $\left(X_{n}\right)_{n \geq 0}$ under \mathbb{P}_{x}, after conditionning this process to be transient.
More precisely, let us fix a point $x_{0} \in E$ and let us suppose there exists a function $\phi: E \rightarrow \mathbb{R}_{+}$ such that:

- $\phi(x) \geq 0$ for all $x \in E$, and $\phi\left(x_{0}\right)=0$.
- ϕ is harmonic with respect to \mathbb{P}, except at the point x_{0}, i.e. : for all $x \neq x_{0}, \sum_{y \in E} p_{x, y} \phi(y)=\mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right]=\phi(x)$.
- ϕ is unbounded.

As we will see in Section 4.2 (Lemma 4.2.9), if ϕ satisfies the two first conditions, the third one is equivalent to the following (a priori weaker):

- ϕ is not identically zero.

In Section 4.3 (Proposition 4.3.1), we give some sufficient conditions for the existence of ϕ. We also study some examples. Generally, ϕ is not unique, but it will be fixed in this section. For any $r \in] 0,1[$, let us define:

$$
\begin{equation*}
\psi_{r}(x)=\frac{r}{1-r} \mathbb{E}_{x_{0}}\left[\phi\left(X_{1}\right)\right]+\phi(x) . \tag{4.1.2}
\end{equation*}
$$

From this definition, the following properties hold :

- For all $x \neq x_{0}, \psi_{r}(x)=\mathbb{E}_{x}\left[\psi_{r}\left(X_{1}\right)\right]$.
- $\psi_{r}\left(x_{0}\right)=r \mathbb{E}_{x_{0}}\left[\psi_{r}\left(X_{1}\right)\right]$

Now, for $y \in E$ and $k \geq-1$, let us denote by L_{k}^{y} the local time of X at point y and time k, i.e. :

$$
\begin{equation*}
L_{k}^{y}=\sum_{m=0}^{k} \mathbf{1}_{X_{m}=y} \tag{4.1.5}
\end{equation*}
$$

(in particular, $L_{-1}^{y}=0$ and $L_{0}^{y}=\mathbf{1}_{X_{0}=y}$). The properties of ψ_{r} imply the following result:
Proposition 4.1.1 For every $x \in E,\left(\psi_{r}\left(X_{n}\right) r^{L_{n-1}^{x_{0}}}, n \geq 0\right)$ is a martingale under \mathbb{P}_{x}.
Proof of Proposition 4.1.1 For every $n \geq 0$, by Markov property :

$$
\begin{align*}
\mathbb{E}_{x}\left[\psi_{r}\left(X_{n+1}\right) r^{L_{n}^{x_{0}}} \mid \mathcal{F}_{n}\right] & =r^{L_{n}^{x_{0}}} \mathbb{E}_{x}\left[\psi_{r}\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \\
& =r^{L_{n}^{x_{0}}} \psi_{r}\left(X_{n}\right)\left(\mathbf{1}_{X_{n} \neq x_{0}}+\frac{1}{r} \mathbf{1}_{X_{n}=x_{0}}\right)=r^{L_{n-1}^{x_{0}}} \psi_{r}\left(X_{n}\right) \tag{4.1.6}
\end{align*}
$$

(from (4.1.3) and (4.1.4)).

Corollary 4.1.2

There exists a finite measure $\mu_{x}^{(r)}$ on $\left(E^{\mathbb{N}}, \mathcal{F}_{\infty}\right)$ such that :

$$
\begin{equation*}
\mu_{x \mid \mathcal{F}_{n}}^{(r)}=\psi_{r}\left(X_{n}\right) r^{L_{n-1}^{x_{0}}} \cdot \mathbb{P}_{x \mid \mathcal{F}_{n}} \tag{4.1.7}
\end{equation*}
$$

At this point, we remark that, for all $\sigma, 0<\sigma<1 / r$:

- $\psi_{r}(x) \leq \sup \left(\frac{1-\sigma r}{\sigma(1-r)}, 1\right) \cdot \psi_{\sigma r}(x)$ for all $x \in E$.
- Consequently, for $n \geq 1$:

$$
\begin{align*}
& \mu_{x}^{(r)}\left(\sigma^{L_{n-1}^{x_{0}}}\right)=\mathbb{P}_{x}\left[\psi_{r}\left(X_{n}\right)(r \sigma)^{\left.L_{n-1}^{x_{0}}\right]} \quad(\text { from }(4.1 .7))\right. \\
& \leq \sup \left(\frac{1-\sigma r}{\sigma(1-r)}, 1\right) \mathbb{P}_{x}\left[\psi_{\sigma r}\left(X_{n}\right)(r \sigma)^{\left.L_{n-1}^{x_{0}}\right]}\right. \\
& \leq \sup \left(\frac{1-\sigma r}{\sigma(1-r)}, 1\right) \mu_{x}^{(\sigma r)}(1)=C \tag{4.1.8}
\end{align*}
$$

where $C<\infty$ does not depend on n.

Therefore, $\mu_{x}^{(r)}\left(\sigma^{L_{\infty}^{x_{0}}}\right)<\infty$, with

$$
L_{\infty}^{x_{0}}:=\sum_{m=0}^{\infty} \mathbf{1}_{X_{m}=x_{0}}=\lim _{k \rightarrow \infty} L_{k}^{x_{0}} .
$$

In particular, $L_{\infty}^{x_{0}}<\infty, \mu_{x}^{(r)}$-a.s. It is now possible to define a measure $\mathbb{Q}_{x}^{(r)}$, by : $\mathbb{Q}_{x}^{(r)}=$ $\left(\frac{1}{r}\right)^{L_{\infty}^{x_{0}}} \cdot \mu_{x}^{(r)}$; this measure is σ-finite since the sets $\left\{L_{\infty}^{x_{0}} \leq m\right\}$ increase to $\left\{L_{\infty}^{x_{0}}<\infty\right\}$; moreover $\left\{L_{\infty}^{x_{0}}=\infty\right\}$ is $\mathbb{Q}_{x}^{(r)}$-negligible, and

$$
\begin{equation*}
\mathbb{Q}_{x}^{(r)}\left(L_{\infty}^{x_{0}} \leq m\right) \leq\left(\frac{1}{r}\right)^{m} \mu_{x}^{(r)}(1)<\infty \tag{4.1.9}
\end{equation*}
$$

4.1.3 Definition of the measures $\left(\mathbb{Q}_{x}, x \in E\right)$.

Here is a remarkable result, which explains the interest of this construction :
Theorem 4.1.3 The two following properties hold :
i) For all $x \in E, \mathbb{Q}_{x}^{(r)}$ does not depend on $\left.r \in\right] 0,1[$.
ii) Let \mathbb{Q}_{x} denote the measure equal to $\mathbb{Q}_{x}^{(r)}$ for all $\left.r \in\right] 0,1\left[\right.$, and $F_{n} \geq 0$ a \mathcal{F}_{n}-measurable functional. If q is a function from E to $[0,1]$, such that $\{q<1\}$ is a finite set, then :

$$
\begin{equation*}
\mathbb{Q}_{x}\left[F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[F_{n} \psi_{q}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right] \tag{4.1.10}
\end{equation*}
$$

where for $y \in E, \psi_{q}(y):=\mathbb{Q}_{y}\left[\prod_{k=0}^{\infty} q\left(X_{k}\right)\right]$.
Remark 4.1.4 If we denote by $\mu_{x}^{(q)}$ the measure defined by :

$$
\begin{equation*}
\mu_{x}^{(q)}=\left(\prod_{k=0}^{\infty} q\left(X_{k}\right)\right) \cdot \mathbb{Q}_{x} \tag{4.1.12}
\end{equation*}
$$

we obtain :

$$
\begin{equation*}
\mu_{x \mid \mathcal{F}_{n}}^{(q)}=\psi_{q}\left(X_{n}\right)\left(\prod_{k=0}^{n-1} q\left(X_{k}\right)\right) \cdot \mathbb{P}_{x \mid \mathcal{F}_{n}} \tag{4.1.13}
\end{equation*}
$$

These relations are similar to relations between \mathbf{W} and Feynman-Kac penalisations of Wiener measure W (see Chap. 1, Th. 1.1.2, formulae (1.1.7), (1.1.8), (1.1.16)).
Moreover, ψ_{q} satisfies the "Sturm-Liouville equation" :

$$
\begin{equation*}
\psi_{q}(x)=q(x) \mathbb{E}_{x}\left[\psi_{q}\left(X_{1}\right)\right] \tag{4.1.14}
\end{equation*}
$$

The analogy between this situation and the Brownian case described in Chapter 1 can be represented by the following correspondance :

Markov chain	Brownian motion
$\mathbb{P}_{x_{0}}$	W_{0}
\mathbb{P}_{x}	W_{x}
$\mu_{x}^{(q)}$	$W_{x, \infty}^{(q)}$
$M_{n}^{(q)}=\psi_{q}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)$	$M_{t}^{(q)}=\frac{\varphi_{q}\left(X_{t}\right)}{\varphi_{q}(x)} \exp \left(-\frac{1}{2} A_{t}^{(q)}\right)$
$\psi_{q}(x)=q(x) \mathbb{E}_{x}\left(\psi_{q}\left(X_{1}\right)\right)$	$\varphi_{q}^{\prime \prime}(x)=q(x) \varphi_{q}(x)$
$\mu_{x}^{(q)} \mid \mathcal{F}_{n}=M_{n}^{(q)} \cdot \mathbb{P}_{x \mid \mathcal{F}_{n}}$	$W_{x, \infty}^{(q)} \mid \mathcal{F}_{t}=M_{t}^{(q)} \cdot W_{x \mid \mathcal{F}_{t}}$
\mathbb{Q}_{x}	\mathbf{W}_{x}
$\mu_{x}^{(q)}=\left(\prod_{k=0}^{\infty} q\left(X_{k}\right)\right) \cdot \mathbb{Q}_{x}$	$W_{x, \infty}^{(q)}=\frac{1}{\varphi_{q}(x)} \exp \left(-\frac{1}{2} A_{\infty}^{(q)}\right) \cdot \mathbf{W}_{x}$

Proof of Theorem 4.1.3 To begin with, let us prove the point ii) (with $\mathbb{Q}_{x}^{(r)}$ instead of \mathbb{Q}_{x}) for a function q such that $q\left(x_{0}\right)<1$. Under the hypotheses of Theorem 4.1.3, for all $n \geq 0, F_{n} \prod_{k=0}^{N-1} q\left(X_{k}\right)\left(\frac{1}{r}\right)^{L_{N-1}^{x_{0}}}$ tends to $F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)\left(\frac{1}{r}\right)^{L_{\infty}^{x_{0}}}$ as $N \rightarrow \infty$ and is dominated by $\left(\frac{q\left(x_{0}\right)}{r} \vee 1\right)^{L_{\infty}^{x_{0}}}$, which is $\mu_{x}^{(r)}$-integrable because $\frac{q\left(x_{0}\right)}{r} \vee 1<\frac{1}{r}$. (from (4.1.8)).
By dominated convergence, if for $y \in E, k \geq 0$, we define :

$$
\begin{equation*}
\chi_{q}^{r, k}(y):=\mathbb{E}_{y}\left[\psi_{r}\left(X_{k}\right) \prod_{m=0}^{k-1} q\left(X_{m}\right)\right], \tag{4.1.15}
\end{equation*}
$$

for all $x \in E$:

$$
\begin{align*}
& \mathbb{E}_{x}\left[F_{n} \chi_{q}^{r, N-n}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[F_{n} \psi_{r}\left(X_{N}\right) \prod_{k=0}^{N-1} q\left(X_{k}\right)\right] \\
& =\mu_{x}^{(r)}\left[F_{n} \prod_{k=0}^{N-1} q\left(X_{k}\right)\left(\frac{1}{r}\right)^{L_{N-1}^{x_{0}}}\right] \\
& \underset{N \rightarrow \infty}{\rightarrow} \mu_{x}^{(r)}\left[F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)\left(\frac{1}{r}\right)^{L_{\infty}^{x_{0}}}\right]=\mathbb{Q}_{x}^{(r)}\left[F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)\right] . \tag{4.1.16}
\end{align*}
$$

In particular, if we take $n=0$ and $F_{0}=1$:

$$
\begin{equation*}
\chi_{q}^{r, N}(y) \underset{N \rightarrow \infty}{\rightarrow} \mathbb{Q}_{y}^{(r)}\left[\prod_{k=0}^{\infty} q\left(X_{k}\right)\right] \tag{4.1.17}
\end{equation*}
$$

for all $y \in E$.
Moreover :

$$
\begin{align*}
& \chi_{q}^{r, N-n}(y) \leq \mathbb{E}_{y}\left[\left(q\left(x_{0}\right)\right)^{L_{N-n-1}^{x_{0}}} \psi_{r}\left(X_{N-n}\right)\right] \\
& \leq \sup \left(\frac{r}{q\left(x_{0}\right)}\left(\frac{1-q\left(x_{0}\right)}{1-r}\right), 1\right) \mathbb{E}_{y}\left[\left(q\left(x_{0}\right)\right)^{L_{N-n-1}^{x_{0}}} \psi_{q\left(x_{0}\right)}\left(X_{N-n}\right)\right] \\
& =\sup \left(\frac{r}{q\left(x_{0}\right)}\left(\frac{1-q\left(x_{0}\right)}{1-r}\right), 1\right) \psi_{q\left(x_{0}\right)}(y) \tag{4.1.18}
\end{align*}
$$

where

$$
\begin{align*}
\mathbb{E}_{x}\left[\psi_{q\left(x_{0}\right)}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right] & \leq \mathbb{E}_{x}\left[\psi_{q\left(x_{0}\right)}\left(X_{n}\right)\left(q\left(x_{0}\right)\right)^{L_{n-1}^{x_{0}}}\right] \\
& =\psi_{q\left(x_{0}\right)}(x)<\infty \tag{4.1.19}
\end{align*}
$$

By dominated convergence :

$$
\begin{equation*}
\mathbb{E}_{x}\left[F_{n} \chi_{q}^{r, N-n}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \mathbb{E}_{x}\left[F_{n} \psi_{q}^{(r)}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right], \tag{4.1.20}
\end{equation*}
$$

where $\psi_{q}^{(r)}(y)=\mathbb{Q}_{y}^{(r)}\left[\prod_{k=0}^{\infty} q\left(X_{k}\right)\right]$.
The two previous limits are equal; therefore :

$$
\begin{equation*}
\mathbb{Q}_{x}^{(r)}\left[F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)\right]=\mathbb{E}_{x}\left[F_{n} \psi_{q}^{(r)}\left(X_{n}\right) \prod_{k=0}^{n-1} q\left(X_{k}\right)\right], \tag{4.1.21}
\end{equation*}
$$

as written in point ii) of Theorem 4.1.3 (with $\mathbb{Q}_{x}^{(r)}$ instead of \mathbb{Q}_{x}).
Now we can prove point i, by taking for any $s \in] 0,1\left[, q(x)=\mathbf{1}_{x \neq x_{0}}+s \mathbf{1}_{x=x_{0}}\right.$.
Let us first observe that $\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}$ is $\mu_{y}^{(s)}$-a.s. well-defined for all $n \geq 0$; therefore, $\mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right]$ is well-defined and :

$$
\begin{align*}
& \mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right]=\mathbb{E}_{y}\left[s^{L_{n-1}^{x_{0}}} \psi_{r}\left(X_{n}\right)\right]=\mu_{y}^{(r)}\left[\left(\frac{s}{r}\right)^{L_{n-1}^{x_{0}}}\right] \\
& \underset{n \rightarrow \infty}{\rightarrow} \mu_{y}^{(r)}\left[\left(\frac{s}{r}\right)^{L_{\infty}^{x_{0}}}\right]=\mathbb{Q}_{y}^{(r)}\left[s^{L_{\infty}^{x_{0}}}\right]=\psi_{q}^{(r)}(y) . \tag{4.1.22}
\end{align*}
$$

Moreover, for all $A>0$:

$$
\begin{equation*}
\mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right]=\mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)} \mathbf{1}_{\psi_{s}\left(X_{n}\right) \geq A}\right]+K_{A}, \tag{4.1.23}
\end{equation*}
$$

where :

$$
\begin{equation*}
K_{A} \leq \sup \left(\frac{\psi_{r}}{\psi_{s}}\right) \cdot \mu_{y}^{(s)}\left[\psi_{s}\left(X_{n}\right) \leq A\right] \leq A \sup \left(\frac{\psi_{r}}{\psi_{s}}\right) \mathbb{E}_{y}\left[s^{\left.L_{n-1}^{x_{0}}\right]} \underset{n \rightarrow \infty}{\rightarrow} 0\right. \tag{4.1.24}
\end{equation*}
$$

(from the definition (4.1.7) of $\mu_{y}^{(s)}$ and the fact that $\left(X_{n}\right)_{n \geq 0}$ is recurrent under \mathbb{P}_{y}). Hence :

$$
\begin{align*}
& \liminf _{n \rightarrow \infty}\left(\inf _{\psi_{s}(x) \geq A} \frac{\psi_{r}(x)}{\psi_{s}(x)}\right) \mu_{y}^{(s)}\left[\psi_{s}\left(X_{n}\right) \geq A\right] \\
& \leq \liminf _{n \rightarrow \infty} \mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right] \leq \limsup _{n \rightarrow \infty}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right] \\
& \leq \limsup _{n \rightarrow \infty}\left(\sup _{\psi_{s}(x) \geq A} \frac{\psi_{r}(x)}{\psi_{s}(x)}\right) \mu_{y}^{(s)}\left[\psi_{s}\left(X_{n}\right) \geq A\right] . \tag{4.1.25}
\end{align*}
$$

Now, since ϕ (and hence, ψ_{s}) is unbounded, $\inf _{\psi_{s}(x) \geq A} \frac{\psi_{r}(x)}{\psi_{s}(x)}$ and $\sup _{\psi_{s}(x) \geq A} \frac{\psi_{r}(x)}{\psi_{s}(x)}$ tend to 1 when A goes to infinity and :

$$
\begin{equation*}
\mu_{y}^{(s)}\left[\psi_{s}\left(X_{n}\right) \geq A\right] \rightarrow \mu_{y}^{(s)}(1)=\psi_{s}(y) \tag{4.1.26}
\end{equation*}
$$

Hence, $\mu_{y}^{(s)}\left[\frac{\psi_{r}\left(X_{n}\right)}{\psi_{s}\left(X_{n}\right)}\right] \underset{n \rightarrow \infty}{\rightarrow} \psi_{s}(y)$, which implies that $\psi_{q}^{(r)}(y)=\psi_{s}(y)$.

By (4.1.21) :

$$
\begin{align*}
\mathbb{Q}_{x}^{(r)}\left[F_{n} s^{L_{\infty}^{x_{0}}}\right] & =\mathbb{E}_{x}\left[F_{n} s^{L_{n-1}^{x_{0}}} \psi_{q}^{(r)}\left(X_{n}\right)\right]=\mathbb{E}_{x}\left[F_{n} s^{L_{n-1}^{x_{0}}} \psi_{s}\left(X_{n}\right)\right] \\
& =\mu_{x}^{(s)}\left(F_{n}\right)=\mathbb{Q}_{x}^{(s)}\left[F_{n} s^{L_{\infty}^{x_{0}}}\right] \tag{4.1.27}
\end{align*}
$$

By monotone class theorem, if F is \mathcal{F}_{∞}-measurable and positive :

$$
\begin{equation*}
\mathbb{Q}_{x}^{(r)}\left(F . s^{L_{\infty}^{x_{0}}}\right)=\mathbb{Q}_{x}^{(s)}\left(F . s^{L_{\infty}^{x_{0}}}\right) \tag{4.1.28}
\end{equation*}
$$

for all $r, s \in] 0,1[$. Now, for all $r, s, t<1$:

$$
\begin{equation*}
\mathbb{Q}_{x}^{(r)}\left(F \cdot t^{L_{\infty}^{x_{0}}}\right)=\mathbb{Q}_{x}^{(t)}\left(F \cdot t^{L_{\infty}^{x_{0}}}\right)=\mathbb{Q}_{x}^{(s)}\left(F \cdot t^{L_{\infty}^{x_{0}}}\right) \tag{4.1.29}
\end{equation*}
$$

Recall that $L_{\infty}^{x_{0}}<\infty, \mathbb{Q}_{x}^{(r)}$ and $\mathbb{Q}_{x}^{(s)}$-a.s. Therefore, by monotone convergence, $\mathbb{Q}_{x}^{(r)}(F)=$ $\mathbb{Q}_{x}^{(s)}(F)$; point i) of Theorem 4.1.3 is proven, and \mathbb{Q}_{x} is well-defined. By (4.1.21), point ii) is proven if $q\left(x_{0}\right)<1$. It is easy to extend this formula to the case $q\left(x_{0}\right)=1$, again by monotone convergence ; the proof of Theorem 4.1.3 is now complete.

Remark 4.1.5 The family $\left(\mathbb{Q}_{x}\right)_{x \in E}$ of σ-finite measures depends on x_{0} and ϕ, which were assumed to be fixed in this section. In the sequel of the chapter, these parameters may vary; if some confusion is possible, we will write $\left(\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}\right)_{x \in E}$ instead of $\left(\mathbb{Q}_{x}\right)_{x \in E}$.
4.2 Some more properties of $\left(\mathbb{Q}_{x}, x \in E\right)$.
4.2.1 Martingales associated with $\left(\mathbb{Q}_{x}, x \in E\right)$.

At the beginning of this section, we extend the second point of Theorem 4.1.3 to more general functionals than functionals of the form $F_{n} \prod_{k=0}^{\infty} q\left(X_{k}\right)$. More precisely, the following result holds :

Theorem 4.2.1

Let F be a positive \mathcal{F}_{∞}-measurable functional. For $n \geq 0, y_{0}, y_{1}, \ldots, y_{n} \in E$, let us define the quantity :

$$
\begin{equation*}
M\left(F, y_{0}, y_{1}, \ldots, y_{n}\right):=\mathbb{Q}_{y_{n}}\left[F\left(y_{0}, y_{1}, \ldots, y_{n}=X_{0}, X_{1}, X_{2}, \ldots\right)\right] \tag{4.2.1}
\end{equation*}
$$

Then, for every $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-stopping time T, one has :

$$
\begin{equation*}
\mathbb{Q}_{x}\left(F . \mathbf{1}_{T<\infty}\right)=\mathbb{E}_{x}\left[M\left(F, X_{0}, X_{1}, \ldots, X_{T}\right) \mathbf{1}_{T<\infty}\right] \tag{4.2.2}
\end{equation*}
$$

Proof of Theorem 4.2.1: To begin with, let us suppose that $T=n$ for $n \geq 0$, and $F=r^{L_{\infty}^{x_{0}}} f_{0}\left(X_{0}\right) f_{1}\left(X_{1}\right) \ldots f_{N}\left(X_{N}\right)$ for $N>n, 0 \leq f_{i} \leq 1,0<r<1$.
One has:

$$
\begin{align*}
\mathbb{Q}_{x}(F) & =\mu_{x}^{(r)}\left[f_{0}\left(X_{0}\right) \ldots f_{N}\left(X_{N}\right)\right] \\
& =\mathbb{E}_{x}\left[f_{0}\left(X_{0}\right) \ldots f_{N}\left(X_{N}\right) r^{L_{N-1}^{x_{0}}} \psi_{r}\left(X_{N}\right)\right] \tag{4.2.3}\\
& =\mathbb{E}_{x}\left[f_{0}\left(X_{0}\right) \ldots f_{n-1}\left(X_{n-1}\right) r^{L_{n-1}^{x_{0}}} K\left(X_{n}\right)\right]
\end{align*}
$$

where :

$$
\begin{align*}
K(y) & =\mathbb{E}_{y}\left[f_{n}\left(X_{0}\right) \ldots f_{N}\left(X_{N-n}\right) r^{L_{N-n-1}} \psi_{r}\left(X_{N-n}\right)\right] \\
& =\mu_{y}^{(r)}\left[f_{n}\left(X_{0}\right) \ldots f_{N}\left(X_{N-n}\right)\right] \tag{4.2.4}\\
& =\mathbb{Q}_{y}\left[f_{n}\left(X_{0}\right) \ldots f_{N}\left(X_{N-n}\right) r^{L_{\infty}^{x_{0}}}\right]
\end{align*}
$$

Hence, for all y_{0}, \ldots, y_{n} :

$$
\begin{align*}
& f_{0}\left(y_{0}\right) \ldots f_{n-1}\left(y_{n-1}\right) r^{\sum_{k=0}^{n-1} \mathbf{1}_{y_{k}=x_{0}}} K\left(y_{n}\right) \\
& =\mathbb{Q}_{y_{n}}\left[f_{0}\left(y_{0}\right) \ldots f_{n-1}\left(y_{n-1}\right) f_{n}\left(X_{0}\right) \ldots f_{N}\left(X_{N-n}\right) r^{\sum_{k=0}^{n-1} \mathbf{1}_{y_{k}=x_{0}}+L_{\infty}^{x_{0}}}\right] \tag{4.2.5}\\
& =\mathbb{Q}_{y_{n}}\left[F\left(y_{0}, \ldots, y_{n}=X_{0}, X_{1}, \ldots\right)\right]=M\left(F, y_{0}, y_{1}, \ldots, y_{n}\right)
\end{align*}
$$

Therefore:

$$
\begin{equation*}
\mathbb{Q}_{x}(F)=\mathbb{E}_{x}\left[M\left(F, X_{0}, \ldots, X_{n}\right)\right] \tag{4.2.6}
\end{equation*}
$$

which proves Theorem 4.2 .1 for these particular functionals F and for $T=n$.
By monotone class theorem, we can extend (4.2.6) to the functionals $F=r^{L_{\infty}^{x_{0}}} . G$, where G is any positive functional, and by monotone convergence (r increasing to 1), Theorem 4.2.1 is proven for all F and $T=n$.
Now, let us suppose that T is a stopping time.
For $n \geq 0, M\left(F \mathbf{1}_{T=n}, X_{0}, X_{1}, \ldots, X_{n}\right)=\mathbf{1}_{T=n} M\left(F, X_{0}, \ldots, X_{n}\right)$, because $\{T=n\}$ depends only on $X_{0}, X_{1}, \ldots, X_{n}$; hence,

$$
\begin{equation*}
\mathbb{Q}_{x}\left(F \mathbf{1}_{T=n}\right)=\mathbb{E}_{x}\left[\mathbf{1}_{T=n} M\left(F, X_{0}, \ldots, X_{n}\right)\right] \tag{4.2.7}
\end{equation*}
$$

Summing from $n=0$ to infinity, we obtain the general case of Theorem 4.2.1.
Corollary 4.2.2 For any functional $F \in L^{1}\left(\mathbb{Q}_{x}\right),\left(M\left(F, X_{0}, X_{1}, \ldots, X_{n}\right)\right)_{n \geq 0}$ is a \mathcal{F}_{n}-martingale (with expectation $\mathbb{Q}_{x}(F)$).
The correspondance with the Brownian case is the following :

Markov chain	Brownian motion
$F \in L_{+}^{1}\left(\mathbb{Q}_{x}, \mathcal{F}_{\infty}\right)$	$F \in L_{+}^{1}\left(\mathbf{W}_{x}, \mathcal{F}_{\infty}\right)$
$\left(M\left(F, X_{0}, \ldots, X_{n}\right), n \geq 0\right)$	$\left(M_{t}(F), t \geq 0\right)$ a $\left(\mathcal{F}_{t}, t \geq 0, W_{x}\right)$
a $\left(\mathcal{F}_{n}, n \geq 0, \mathbb{P}_{x}\right)$ martingale such that	martingale such that
$(*) \quad \mathbb{Q}_{x}\left[\Gamma_{n} F\right]=\mathbb{P}_{x}\left[\Gamma_{n} M\left(F, X_{0}, \ldots, X_{n}\right)\right]\left(\Gamma_{n} \in \mathcal{F}_{n}\right)$	$\mathbf{W}_{x}\left[\Gamma_{t} F\right]=W_{x}\left[\Gamma_{t} M_{t}(F)\right]\left(\Gamma_{t} \in \mathcal{F}_{t}\right)$
$\mathbb{Q}_{x}(F)=\mathbb{P}_{x}\left[M\left(F, X_{0}, \ldots, X_{n}\right)\right]$	$\mathbf{W}_{x}(F)=W_{x}\left(M_{t}(F)\right)$

Here, $(*)$ is a consequence of (4.2.2) with $T=n . \mathbf{1}_{\Lambda_{n}}+(+\infty) . \mathbf{1}_{\Lambda_{n}^{c}}$.
Now, we are able to describe the properties of the canonical process under \mathbb{Q}_{x}.
4.2.2. Properties of the canonical process under $\left(\mathbb{Q}_{x}, x \in E\right)$.

We have already proven that $L_{\infty}^{x_{0}}$ is almost surely finite under \mathbb{Q}_{x}. In fact, the following proposition gives a more general result :
Proposition 4.2.3 Under \mathbb{Q}_{x}, the canonical process is a.s. transient, i.e $L_{\infty}^{y_{0}}<\infty$ for all $y_{0} \in E$.

Proof of Proposition 4.2.3: Let y_{0} be in E, and r be in $] 0,1$. If, for $k \geq 1, \tau_{k}^{\left(y_{0}\right)}$ denotes the k-th hitting time of y_{0} for the canonical process X, then for all $n \geq 0$:

$$
\begin{align*}
\mu_{x}^{(r)}\left[L_{n-1}^{y_{0}} \geq k\right] & =\mu_{x}^{(r)}\left[\tau_{k}^{\left(y_{0}\right)}<n\right]=\mathbb{E}_{x}\left[\mathbf{1}_{\tau_{k}^{\left(y_{0}\right)}<n} L^{L_{n-1}^{x_{0}}} \psi_{r}\left(X_{n}\right)\right] \\
& =\mathbb{E}_{x}\left[\mathbf{1}_{\tau_{k}^{\left(y_{0}\right)}<n} r^{L^{\tau_{k}^{\left(y_{0}\right)}-1}} \psi_{r}\left(y_{0}\right)\right] \tag{4.2.8}
\end{align*}
$$

by strong Markov property (applied at time $\tau_{k}^{\left(y_{0}\right)} \wedge n$), and by the fact that $\mathbb{E}_{y_{0}}\left[r^{L_{m-1}^{x_{0}}} \psi_{r}\left(X_{m}\right)\right]=$ $\psi_{r}\left(y_{0}\right)$ for all $m \geq 0$ (from Proposition 4.1.1).
Hence :

$$
\mu_{x}^{(r)}\left[L_{n-1}^{y_{0}} \geq k\right] \leq \psi_{r}\left(y_{0}\right) \mathbb{E}_{x}\left[\begin{array}{r}
L^{L_{0}} r_{k}^{\left.\tau_{0}\right)}-1 \tag{4.2.9}
\end{array}\right]
$$

and by monotone convergence :

$$
\begin{equation*}
\mu_{x}^{(r)}\left[L_{\infty}^{y_{0}} \geq k\right] \leq \psi_{r}\left(y_{0}\right) \mathbb{E}_{x}\left[r^{L^{x_{0}} \tau_{k}^{\left(y_{0}\right)}-1}\right] \underset{k \rightarrow \infty}{\rightarrow} 0 \tag{4.2.10}
\end{equation*}
$$

(since $L_{\tau_{k}^{\left(y_{0}\right)}}^{x_{0}} \underset{k \rightarrow \infty}{\rightarrow} \infty, \mathbb{P}_{x}$-a.s.); this implies Proposition 4.2.3.
Now, we have the following decomposition result which gives a precise description of the canonical process under $\mathbb{Q}_{y}(y \in E)$:
Proposition 4.2.4 For all $y, y_{0} \in E$, one has :

$$
\begin{equation*}
\mathbb{Q}_{y}=\mathbb{Q}_{y}^{\left[y_{0}\right]}+\sum_{k \geq 1} \mathbb{P}_{y}^{\tau_{k}^{\left(y_{0}\right)}} \circ \widetilde{\mathbb{Q}}_{y_{0}} \tag{4.2.11}
\end{equation*}
$$

where $\mathbb{Q}_{y}^{\left[y_{0}\right]}=\mathbf{1}_{\forall n \geq 0, X_{n} \neq y_{0}} \mathbb{Q}_{y}$ is the restriction of \mathbb{Q}_{y} to trajectories which do not hit y_{0}, $\widetilde{\mathbb{Q}}_{y_{0}}=\mathbf{1}_{\forall n \geq 1, X_{n} \neq y_{0}} \mathbb{Q}_{y_{0}}$ is the restriction of $\mathbb{Q}_{y_{0}}$ to trajectories which do not return to y_{0}, and $\mathbb{P}_{y}^{\tau_{k}^{\left(y_{0}\right)}} \circ \widetilde{\mathbb{Q}}_{y_{0}}$ denotes the concatenation of \mathbb{P}_{y} stopped at time $\tau_{k}^{\left(y_{0}\right)}$ and $\widetilde{\mathbb{Q}}_{y_{0}}$, i.e. the image of $\mathbb{P}_{y} \otimes \widetilde{\mathbb{Q}}_{y_{0}}$ by the functional Φ from $E^{\mathbb{N}} \times E^{\mathbb{N}}$ such that :

$$
\begin{equation*}
\Phi\left(\left(z_{0}, z_{1}, \ldots, z_{n}, \ldots\right),\left(z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}, \ldots\right)\right)=\left(z_{0}, z_{1}, \ldots, z_{\tau_{k}^{\left(y_{0}\right)}}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right) \tag{4.2.12}
\end{equation*}
$$

This formula (4.2.11) can be compared to (3.2.20) or (1.1.40).
Proof of Proposition 4.2.4 : We apply Theorem 4.2.1 to the stopping time $T=\tau_{k}^{\left(y_{0}\right)}$, and to the functional :

$$
\begin{equation*}
F=G H\left(X_{\tau_{k}^{\left(y_{0}\right)}}, X_{\tau_{k}^{\left(y_{0}\right)}+1}, \ldots\right) \mathbf{1}_{\forall u \geq 1, X_{\tau_{k}^{\left(y_{0}\right)}+u} \neq y_{0}} \tag{4.2.13}
\end{equation*}
$$

where G, H are positive functionals such that $G \in \mathcal{F}_{\tau_{k}^{\left(y_{0}\right)}}$.
For $k \geq 1$, we obtain :

$$
\begin{align*}
& \mathbb{Q}_{y}\left[G H\left(X_{\tau_{k}^{\left(y_{0}\right)}}, X_{\tau_{k}^{\left(y_{0}\right)}+1}, \ldots\right) \mathbf{1}_{L_{\infty}^{y_{0}=k}}\right] \\
& =\mathbb{E}_{y}\left[\mathbf{1}_{\tau_{k}^{\left(y_{0}\right)}<\infty} G\left(X_{0}, \ldots, X_{\left.\tau_{k}^{\left(y_{0}\right)}\right)}\right)\right] \widetilde{\mathbb{Q}}_{y_{0}}[H], \tag{4.2.14}
\end{align*}
$$

which implies :

$$
\begin{equation*}
\mathbb{Q}_{y}\left[G H\left(X_{\tau_{k}^{\left(y_{0}\right)}}, X_{\tau_{k}^{\left(y_{0}\right)}+1}, \ldots\right) \mathbf{1}_{L_{\infty}^{y_{0}}=k}\right]=\mathbb{E}_{y}[G] \widetilde{\mathbb{Q}}_{y_{0}}[H] \tag{4.2.15}
\end{equation*}
$$

because $\tau_{k}^{\left(y_{0}\right)}<\infty, \mathbb{P}_{y}$-a.s. (the canonical process is recurrent under \mathbb{P}_{y}). Moreover :

$$
\begin{equation*}
\mathbb{Q}_{y}\left[H \mathbf{1}_{L_{\infty}^{y_{0}=0}}\right]=\mathbb{Q}_{y}^{\left[y_{0}\right]}(H) \tag{4.2.16}
\end{equation*}
$$

by definition. Now, $L_{\infty}^{y_{0}}<\infty, \mathbb{Q}_{y}$-a.s. by Proposition 4.2.3, so there exists $k \geq 0$ such that $L_{\infty}^{y_{0}}=k$: the equalities (4.2.15) and (4.2.16) imply the Proposition 4.2.4 by monotone class theorem.
4.2.3 Dependence of \mathbb{Q}_{x} on x_{0}.

The next Theorem shows that in the construction of the family $\left(\mathbb{Q}_{x}\right)_{x \in E}$, the choice of the point x_{0} in E is in fact not so important. More precisely, the following result holds :
Theorem 4.2.5. For all $y_{0} \in E$, let us define the function $\phi^{\left[y_{0}\right]}$ by :

$$
\begin{equation*}
\phi^{\left[y_{0}\right]}(y)=\mathbb{Q}_{y}^{\left[y_{0}\right]}(1) \tag{4.2.17}
\end{equation*}
$$

Then the following holds :
i) $\phi^{\left[x_{0}\right]}$ is equal to ϕ and for all $y_{0} \in E$, $\phi^{\left[y_{0}\right]}-\phi$ is a bounded function.
ii) For all $y_{0} \in E$:

- $\phi^{\left[y_{0}\right]}$ is finite and harmonic outside of y_{0}, i.e. for all $y \neq y_{0}$:

$$
\mathbb{E}_{y}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]=\phi^{\left[y_{0}\right]}(y) .
$$

- $\phi^{\left[y_{0}\right]}\left(y_{0}\right)=0$.
- $\widetilde{\mathbb{Q}}_{y_{0}}(1)=\mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]$.
iii) By point ii), y_{0} and the function $\phi^{\left[y_{0}\right]}$ can be used to construct a family $\left(\mathbb{Q}_{x}^{\left(\phi^{\left[y_{0}\right]}, y_{0}\right)}\right)_{x \in E}$ of σ-finite measures by the method given in Section 4.1. Moreover, this family is equal to the family $\left(\mathbb{Q}_{x}=\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}\right)_{x \in E}$ constructed with ϕ and x_{0}.
iv) For all $y_{0}, y \in E$, the image of the measure \mathbb{Q}_{y} by the total local time at y_{0} is given by the following expressions :
- $\mathbb{Q}_{y}\left[L_{\infty}^{y_{0}}=0\right]=\phi^{\left[y_{0}\right]}(y)$.
- For all $k \geq 1, \mathbb{Q}_{y}\left[L_{\infty}^{y_{0}}=k\right]=\mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]$.

Proof of Theorem 4.2.5. Let y_{0} and y be in E. For all $\left.r \in\right] 0,1[, n \geq 1$:

$$
\begin{align*}
\mu_{y}^{(r)}\left[L_{n-1}^{y_{0}} \geq 1\right] & =\mu_{y}^{(r)}\left[\tau_{1}^{\left(y_{0}\right)}<n\right]=\mathbb{E}_{y}\left[r^{\left.L_{n-1}^{x_{0}} \cdot \mathbf{1}_{\tau_{1}^{\left(y_{0}\right)}<n} \cdot \psi_{r}\left(X_{n}\right)\right]}\right. \\
& =\mathbb{E}_{y}\left[r^{\left.L^{\tau_{0}^{\left(y_{0}\right)}-1} \cdot \mathbf{1}_{\tau_{1}^{\left(y_{0}\right)}<n}\right] \psi_{r}\left(y_{0}\right)}\right. \tag{4.2.19}
\end{align*}
$$

from (4.1.7) and the martingale property. Hence :

$$
\mu_{y}^{(r)}\left[L_{\infty}^{y_{0}} \geq 1\right]=\psi_{r}\left(y_{0}\right) \mathbb{E}_{y}\left[\begin{array}{r}
\left.L^{x_{0}}{ }_{r}^{\tau_{1}^{\left(y_{0}\right)}-1}\right] . . . ~ . ~ \tag{4.2.20}
\end{array}\right.
$$

If $y_{0}=x_{0}$, this implies :

$$
\begin{equation*}
\mu_{y}^{(r)}\left[L_{\infty}^{x_{0}} \geq 1\right]=\psi_{r}\left(x_{0}\right) \tag{4.2.21}
\end{equation*}
$$

Therefore :

$$
\begin{align*}
\phi^{\left[x_{0}\right]}(y) & =\mathbb{Q}_{y}\left[L_{\infty}^{x_{0}}=0\right]=\mu_{y}^{(r)}\left[L_{\infty}^{x_{0}}=0\right] \\
& =\mu_{y}^{(r)}(1)-\psi_{r}\left(x_{0}\right)=\psi_{r}(y)-\psi_{r}\left(x_{0}\right)=\phi(y) \tag{4.2.22}
\end{align*}
$$

as written in Theorem 4.2.5. If $y_{0} \neq x_{0}$, let us define the quantities:

$$
\begin{equation*}
p_{y, y_{0}}^{\left(x_{0}\right)}=\mathbb{P}_{y}\left[\tau_{1}^{y_{0}}<\tau_{1}^{x_{0}}\right] \tag{4.2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{y_{0}}^{\left(x_{0}\right)}=\mathbb{P}_{x_{0}}\left[\tau_{1}^{y_{0}}>\tau_{2}^{x_{0}}\right] \tag{4.2.24}
\end{equation*}
$$

We have :

$$
\begin{equation*}
\mathbb{P}_{y}\left[L_{\tau_{1}^{\left(y_{0}\right)}-1}^{x_{0}}=0\right]=p_{\left.y, y_{0}\right)}^{\left(x_{0}\right)} \tag{4.2.25}
\end{equation*}
$$

and, for $k \geq 1$, by strong Markov property :

$$
\begin{equation*}
\mathbb{P}_{y}\left[L_{\tau_{1}^{\left(y_{0}\right)}-1}^{x_{0}}=k\right]=\left(1-p_{y, y_{0}}^{\left(x_{0}\right)}\right)\left(q_{y_{0}}^{\left(x_{0}\right)}\right)^{k-1}\left(1-q_{y_{0}}^{\left(x_{0}\right)}\right) \tag{4.2.26}
\end{equation*}
$$

Summing all these equalities, one obtains :

$$
\begin{equation*}
\mathbb{E}_{y}\left[r^{L^{x_{0}} \tau_{1}^{\left(y_{0}\right)}-1}\right]=p_{y, y_{0}}^{\left(x_{0}\right)}+\frac{r\left(1-p_{y, y_{0}}^{\left(x_{0}\right)}\right)\left(1-q_{y_{0}}^{\left(x_{0}\right)}\right)}{1-r q_{y_{0}}^{\left(x_{0}\right)}} \tag{4.2.27}
\end{equation*}
$$

and from (4.2.21) and (4.2.27) :

$$
\begin{align*}
\mu_{y}^{(r)}\left[L_{\infty}^{y_{0}} \geq 1\right] & =\left[\frac{r}{1-r} \mathbb{E}_{x_{0}}\left[\phi\left(X_{1}\right)\right]+\phi\left(y_{0}\right)\right] \\
& \times\left[p_{y, y_{0}}^{\left(x_{0}\right)}+\frac{r\left(1-p_{\left.y, y_{0}\right)}^{\left(x_{0}\right)}\right)\left(1-q_{y_{0}}^{\left(x_{0}\right)}\right)}{1-r q_{y_{0}}^{\left(x_{0}\right)}}\right] . \tag{4.2.28}
\end{align*}
$$

(from (4.2.20) and (4.1.2)). Moreover :

$$
\begin{equation*}
\mu_{y}^{(r)}(1)=\psi_{r}(y)=\frac{r}{1-r} \mathbb{E}_{x_{0}}\left[\phi\left(X_{1}\right)\right]+\phi(y) . \tag{4.2.29}
\end{equation*}
$$

By hypothesis, there exists $n \geq 0$ such that $\mathbb{P}_{x_{0}}\left(X_{n}=y_{0}\right)>0$; it is easy to check that it implies : $q_{y_{0}}^{\left(x_{0}\right)}<1$.
Hence, by considering the difference between (4.2.28) and (4.2.29) and taking $r \rightarrow 1$, one obtains :

$$
\begin{equation*}
\phi^{\left[y_{0}\right]}(y)=\mathbb{E}_{x_{0}}\left[\phi\left(X_{1}\right)\right] \frac{1-p_{y}^{\left(x_{0}\right)}}{1-q_{y_{0}}^{\left(x_{0}\right)}}+\left[\phi(y)-\phi\left(y_{0}\right)\right] . \tag{4.2.30}
\end{equation*}
$$

Therefore :

$$
\begin{equation*}
\phi(y)-\phi\left(y_{0}\right) \leq \phi^{\left[y_{0}\right]}(y) \leq \frac{\mathbb{E}_{x_{0}}\left[\phi\left(X_{1}\right)\right]}{1-q_{y_{0}}^{\left(x_{0}\right)}}+\left[\phi(y)-\phi\left(y_{0}\right)\right] \tag{4.2.31}
\end{equation*}
$$

which implies point i) of the Theorem, and in particular the finiteness of $\phi^{\left[y_{0}\right]}$. By applying Theorem 4.2.1 to $T=1$ and $F=\mathbf{1}_{L_{\infty}^{y_{0}=0}}$, one can easily check that $\phi^{\left[y_{0}\right]}$ is harmonic everywhere except at point y_{0} (where it is equal to zero).
By taking $T=1$ and $F=\mathbf{1}_{L_{\infty}^{y_{0}}=1}$, one obtains the formula : $\widetilde{\mathbb{Q}}_{y_{0}}(1)=\mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]$. Hence, we obtain point $i i$) of the Theorem, and the point $i v$) by formula (4.2.11). Now, by taking the notation : $\mu_{y}^{(r), y_{0}}=r^{L_{\infty}^{y_{0}}} \cdot \mathbb{Q}_{y}$, one has (for all positive and \mathcal{F}_{n}-measurable functionals F_{n}), by applying Theorem 4.2.1 to $T=n$ and $F=F_{n} r^{L_{\infty}^{y_{0}}}$:

$$
\begin{equation*}
\mu_{y}^{(r), y_{0}}\left(F_{n}\right)=\mathbb{Q}_{y}\left[F_{n} r^{L_{\infty}^{y_{0}}}\right]=\mathbb{E}_{y}\left[F_{n} r^{L_{n-1}} \alpha\left(X_{n}\right)\right] \tag{4.2.32}
\end{equation*}
$$

where $\alpha(z)=\mathbb{Q}_{z}\left[r^{L_{\infty}^{y_{0}}}\right]$. By point $i v$) of the Theorem (already proven), one has :

$$
\begin{align*}
\alpha(z) & =\phi^{\left[y_{0}\right]}(z)+\left(\sum_{k=1}^{\infty} r^{k}\right) \mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right] \\
& =\frac{r}{1-r} \mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]+\phi^{\left[y_{0}\right]}(z) \tag{4.2.33}
\end{align*}
$$

Hence :

$$
\begin{equation*}
\mu_{y}^{(r), y_{0}}\left(F_{n}\right)=\mathbb{E}_{y}\left[F_{n} r^{L_{n-1}^{x_{0}}}\left(\frac{r}{1-r} \mathbb{E}_{y_{0}}\left[\phi^{\left[y_{0}\right]}\left(X_{1}\right)\right]+\phi^{\left[y_{0}\right]}\left(X_{n}\right)\right)\right] \tag{4.2.34}
\end{equation*}
$$

This formula implies that $\mu_{y}^{(r), y_{0}}$ is the measure defined in the same way as $\mu_{y}^{(r)}$, but from the point y_{0} and the function $\phi^{\left[y_{0}\right]}$, instead of the point x_{0} and the function ϕ. By considering the new measure with density $r^{-L_{\infty}^{y_{0}}}$ with respect to $\mu_{y}^{(r), y_{0}}$, one obtains the equality :

$$
\begin{equation*}
\mathbb{Q}_{y}=\mathbb{Q}_{y}^{\left(\phi^{\left[y_{0}\right]}, y_{0}\right)} \tag{4.2.35}
\end{equation*}
$$

which completes the proof of Theorem 4.2.5.
There is also an important formula, which is a direct consequence of (4.2.1), (4.2.5) and Theorem 4.2.5. :
Corollary 4.2.6 Let F_{n} be a positive \mathcal{F}_{n}-measurable functional, y, y_{0} be in E and $g_{y_{0}}$ be the last hitting time of y_{0} for the canonical process. Then the following formula holds :

$$
\begin{equation*}
\mathbb{Q}_{y}\left[F_{n} \mathbf{1}_{g_{y_{0}<n}}\right]=\mathbb{E}_{y}\left[F_{n} \phi^{\left[y_{0}\right]}\left(X_{n}\right)\right] \tag{4.2.36}
\end{equation*}
$$

In particular, one has :

$$
\begin{equation*}
\mathbb{Q}_{y}\left[F_{n} \mathbf{1}_{g_{x_{0}}<n}\right]=\mathbb{E}_{y}\left[F_{n} \phi\left(X_{n}\right)\right] \tag{4.2.37}
\end{equation*}
$$

and $\left(\phi^{\left[y_{0}\right]}\left(X_{n}\right), n \geq 0\right),\left(\phi\left(X_{n}\right), n \geq 0\right)$ are two \mathbb{P} submartingales.
The correspondance with the Brownian case is the following :

Markov chain	Brownian motion
$\mathbb{Q}_{y}\left[F_{n} \mathbf{1}_{g_{x_{0}}<n}\right]=\mathbb{E}_{y}\left[F_{n} \phi\left(X_{n}\right)\right]$	$\mathbf{W}_{x}\left(F_{t} 1_{g<t}\right)=W_{x}\left(F_{t}\left\|X_{t}\right\|\right)$
$\mathbb{Q}_{y}\left[F_{n} \mathbf{1}_{g_{y_{0}}<n}\right]=\mathbb{E}_{y}\left[F_{n} \phi^{\left.y_{0}\right]}\left(X_{n}\right)\right]$	$\mathbf{W}_{x}\left(F_{t} 1_{\sigma_{a}<t}\right)=W_{x}\left(F_{t}\left(\left\|X_{t}\right\|-a\right)_{+}\right)$
$F_{n} \in \mathcal{F}_{n}$	$F_{t} \in \mathcal{F}_{t}$

By Theorem 4.2.5, the construction of a given family $\left(\mathbb{Q}_{x}\right)_{x \in E}$ can be obtained by taking any point y_{0} instead of x_{0}, if the corresponding harmonic function $\phi^{\left[y_{0}\right]}$ is well-chosen.
4.2.4 Dependence of \mathbb{Q}_{x} on ϕ.

In fact, this family of σ-finite measures depends only upon the equivalent class of the function ϕ, for an equivalence relation which will be described below. More precisely, if α and β are two functions from E to \mathbb{R}_{+}, let us write : $\alpha \simeq \beta$, iff α is equivalent to β when $\alpha+\beta$ tends to infinity ; i.e, for all $\epsilon \in] 0,1[$, there exists $A>0$ such that for all $x \in E, \alpha(x)+\beta(x) \geq A$ implies $1-\epsilon<\frac{\alpha(x)}{\beta(x)}<1+\epsilon$. With this definition, one has the following result :
Propostion 4.2.7 The relation \simeq is an equivalence relation.
Proof of Proposition 4.2.7 The reflexivity and the symmetry are obvious, so let us prove the transitivity.
We suppose that there are three functions α, β, γ such that $\alpha \simeq \beta$ and $\beta \simeq \gamma$.
There exists $\epsilon: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$, tending to zero at infinity, such that $\alpha+\beta \geq A$ implies $\left|\frac{\alpha}{\beta}-1\right| \leq \epsilon(A)$, and $\beta+\gamma \geq A$ implies $\left|\frac{\beta}{\gamma}-1\right| \leq \epsilon(A)$. For a given $x \in E$, let us suppose that $\alpha(x)+\gamma(x) \geq A$ for $A>4 \sup \{z, \epsilon(z) \geq 1 / 2\}$. There are two cases :

- $\alpha(x) \geq A / 2$. In this case, $\alpha(x)+\beta(x) \geq A / 2$; hence, $\left|\frac{\alpha(x)}{\beta(x)}-1\right| \leq \epsilon(A / 2) \leq 1 / 2$, which implies : $\beta(x)+\gamma(x) \geq \beta(x) \geq \alpha(x) / 2 \geq A / 4$.
Therefore : $\left|\frac{\beta(x)}{\gamma(x)}-1\right| \leq \epsilon(A / 4)$. Consequently, there exist u and $v,|u| \leq \epsilon(A / 2) \leq 1 / 2$, $|v| \leq \epsilon(A / 4) \leq 1 / 2$, such that $\frac{\alpha(x)}{\gamma(x)}=(1+u)(1+v)$, which implies :

$$
\begin{align*}
\left|\frac{\alpha(x)}{\gamma(x)}-1\right| & \leq|u|+|v|+|u v| \leq \epsilon(A / 2)+\epsilon(A / 4)+\epsilon(A / 2) \epsilon(A / 4) \\
& \leq \frac{3}{2}(\epsilon(A / 2)+\epsilon(A / 4)) \tag{4.2.38}
\end{align*}
$$

- $\alpha(x) \leq A / 2$. In this case, $\gamma(x) \geq A / 2$, hence we are in the same situation as in the first case if we exchange $\alpha(x)$ and $\gamma(x)$

The above inequality implies : $\alpha \simeq \gamma$, since $\epsilon(A / 2)+\epsilon(A / 4)$ tends to zero when A goes to infinity. Hence,\simeq is an equivalence relation.

This equivalence relation satisfies the following property :
Lemma 4.2.8 Let ϕ_{1} and ϕ_{2} be two functions from E to \mathbb{R}_{+}which are equal to zero at a point $y_{0} \in E$ and which are harmonic at the other points i.e. for all $y \neq y_{0}, E_{y}\left[\phi_{i}\left(X_{1}\right)\right]=$ $\phi_{i}(y), i=1,2$. If $\phi_{1} \simeq \phi_{2}$, then $\phi_{1}=\phi_{2}$.
Proof of Lemma 4.2.8 By the martingale property, for all $x \in E, A>0$:

$$
\begin{align*}
\phi_{1}(x) & =\mathbb{E}_{x}\left[\phi_{1}\left(X_{\left.n \wedge \tau_{1}^{\left(y_{0}\right)}\right)}\right)\right] \\
& =\mathbb{E}_{x}\left[\phi_{1}\left(X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right) \mathbf{1}_{\left.\phi_{1}\left(X_{n \wedge \tau_{1}}\left(y_{0}\right)\right)+\phi_{2}\left(X_{n \wedge \tau_{1}\left(y_{0}\right)}\right) \geq A\right]+K}\right. \tag{4.2.39}
\end{align*}
$$

where $|K| \leq A \mathbb{P}_{x}\left(\tau_{1}^{\left(y_{0}\right)}>n\right)$. Now, if $\phi_{1}(y)+\phi_{2}(y) \geq A$, one has :

$$
\begin{equation*}
(1-\epsilon(A)) \phi_{1}(y) \leq \phi_{2}(y) \leq(1+\epsilon(A)) \phi_{1}(y) \tag{4.2.40}
\end{equation*}
$$

where $\epsilon(A)$ tends to zero when A tends to infinity. Therefore :

$$
\begin{equation*}
\phi_{1}(x)=\alpha \mathbb{E}_{x}\left[\phi_{2}\left(X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right) \mathbf{1}_{\left.\phi_{1}\left(X X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right)+\phi_{2}\left(X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right) \geq A\right]+K, ~, ~, ~}\right. \tag{4.2.41}
\end{equation*}
$$

where $1-\epsilon(A) \leq \alpha \leq 1+\epsilon(A)$. Moreover :

$$
\begin{equation*}
\phi_{2}(x)=\mathbb{E}_{x}\left[\phi_{2}\left(X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right) \mathbf{1}_{\phi_{1}(X}^{\left.n \wedge \tau_{1}^{\left(y_{0}\right)}\right)+\phi_{2}\left(X_{n \wedge \tau_{1}^{\left(y_{0}\right)}}\right) \geq A}{ }^{\prime},\right. \tag{4.2.42}
\end{equation*}
$$

where $\left|K^{\prime}\right| \leq A \mathbb{P}_{x}\left(\tau_{1}^{\left(y_{0}\right)}>n\right)$. Hence :

$$
\begin{equation*}
\phi_{1}(x)=\alpha\left(\phi_{2}(x)-K^{\prime}\right)+K \tag{4.2.43}
\end{equation*}
$$

Now, if A is fixed, $|K|+\left|K^{\prime}\right|$ tend to zero when n goes to infinity. Therefore :

$$
\begin{equation*}
(1-\epsilon(A)) \phi_{1}(x) \leq \phi_{2}(x) \leq(1+\epsilon(A)) \phi_{1}(x) . \tag{4.2.44}
\end{equation*}
$$

This inequality is true for all $A \geq 0$; hence : $\phi_{1}=\phi_{2}$, which proves Lemma 4.2.8. We now give another lemma, which is quite close to Lemma 4.2.8:
Lemma 4.2.9 Let ϕ be a function from E to \mathbb{R} which is equal to zero at a point $y_{0} \in E$ and harmonic at the other points. If ϕ is bounded, it is identically zero.
Proof of Lemma 4.2.9 Since ϕ is bounded, there exists $A>0$ such that $|\phi(x)|<A$. The harmonicity of ϕ implies, for every $n \geq 0$ and $x \neq y_{0}$:

$$
\phi(x)=\mathbb{E}_{x}\left[\phi\left(X_{n \wedge \tau_{1}^{y_{0}}}\right)\right]
$$

Consequently, since $\phi\left(y_{0}\right)=0$, we get :

$$
|\phi(x)| \leq A \mathbb{P}_{x}\left(\tau_{1}^{y_{0}}>n\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

since $\left(X_{n}, n \geq 0\right)$ is recurrent. Hence, ϕ is identically zero.
If ϕ is bounded and positive, then ϕ is equivalent to zero (by definition of \simeq). Hence, in this case, Lemma 4.2.9 may be considered as a particular case of Lemma 4.2.8.
Now, let us state the following result, which explains why we have defined the previous equivalence relation :
Proposition 4.2.10 Let x_{0}, y_{0} be in E, ϕ a positive function which is harmonic except at x_{0} and equal to zero at x_{0}, ψ a positive function which is harmonic except at y_{0} and equal to zero at y_{0}. In these conditions, the family $\left(\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}\right)_{x \in E}$ of σ-finite measures is identical to the family $\left(\mathbb{Q}_{x}^{\left(\psi, y_{0}\right)}\right)_{x \in E}$ if and only if $\phi \simeq \psi$. Therefore this family can also be denoted by $\left(\mathbb{Q}_{x}^{[\phi]}\right)_{x \in E}$, where $[\phi]$ is the equivalence class of ϕ.
Proof of Proposition 4.2.10 If the two families of measures are equal, for all $x \in E$, $\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}=\mathbb{Q}_{x}^{\left(\psi, y_{0}\right)}$. Now, it has been proven that $\psi(x)=\mathbb{Q}_{x}^{\left(\psi, y_{0}\right)}\left(L_{\infty}^{y_{0}}=0\right)$. Hence, if $\phi^{\left[y_{0}\right]}(x)=$ $\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}\left(L_{\infty}^{y_{0}}=0\right)$, one has $\psi=\phi^{\left[y_{0}\right]}$.
Since $\phi-\phi^{\left[y_{0}\right]}$ is bounded (point i) of Theorem 4.2.5), $\phi-\psi$ is bounded, which implies that ϕ is equivalent to ψ. On the other hand, if ϕ is equivalent to ψ, and if $\phi^{\left[y_{0}\right]}=\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}\left(L_{\infty}^{y_{0}}=0\right)$, ψ and $\phi^{\left[y_{0}\right]}$ are two equivalent functions which are harmonic except at point y_{0}, and equal
to zero at y_{0}. Hence, by Lemma $4.2 .8, \psi=\phi^{\left[y_{0}\right]}$, and by Theorem 4.2.5, for all $x \in E$, $\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}=\mathbb{Q}_{x}^{\left(\phi^{\left[y_{0}\right]}, y_{0}\right)}$.
Therefore, $\mathbb{Q}_{x}^{\left(\phi, x_{0}\right)}=\mathbb{Q}_{x}^{\left(\psi, y_{0}\right)}$, which proves Proposition 4.2.10.
In the next Section, we give some examples of the above construction.

4.3 Some examples.

4.3.1 The standard random walk.

In this case, $E=\mathbb{Z}$ and for all $x \in E, \mathbb{P}_{x}$ is the law of the standard random walk. The functions $\phi_{+}: x \rightarrow x_{+}, \phi_{-}: x \rightarrow x_{-}$and their sum $\phi: x \rightarrow|x|$ satisfies the harmonicity conditions above at point $x_{0}=0$.
Let $\left(\mathbb{Q}_{x}^{+}\right)_{x \in \mathbb{Z}},\left(\mathbb{Q}_{x}^{-}\right)_{x \in \mathbb{Z}}$ and $\left(\mathbb{Q}_{x}\right)_{x \in \mathbb{Z}}$ be the associated σ-finite measures. For all $a \in \mathbb{Z}$, let us take the notations : $\phi_{+}^{[a]}(x)=\mathbb{Q}_{x}^{+}\left[L_{\infty}^{a}=0\right], \phi_{-}^{[a]}(x)=\mathbb{Q}_{x}^{-}\left[L_{\infty}^{a}=0\right]$ and $\phi^{[a]}(x)=\mathbb{Q}_{x}\left[L_{\infty}^{a}=0\right]$. The function $\phi_{+}^{[a]}$ satisfies the harmonicity conditions at point a and is equivalent to ϕ_{+}. Now, these two properties are also satisfied by the function $x \rightarrow(x-a)_{+}$; hence, by Lemma 4.2.8, $\phi_{+}^{[a]}(x)=(x-a)_{+}$. By the same argument, $\phi_{-}^{[a]}(x)=(x-a)_{-}$and $\phi^{[a]}(x)=|x-a|$.
Therefore, we have the equalities for every positive and \mathcal{F}_{n}-measurable functional F_{n}, and for every $x, a \in \mathbb{Z}$:

$$
\begin{align*}
\mathbb{Q}_{x}^{+}\left[F_{n} \mathbf{1}_{g_{a}<n}\right] & =\mathbb{E}_{x}\left[F_{n}\left(X_{n}-a\right)_{+}\right] \tag{4.3.1}\\
\mathbb{Q}_{x}^{-}\left[F_{n} \mathbf{1}_{g_{a}<n}\right] & =\mathbb{E}_{x}\left[F_{n}\left(X_{n}-a\right)_{-}\right] \tag{4.3.2}\\
\mathbb{Q}_{x}\left[F_{n} \mathbf{1}_{g_{a}<n}\right] & =\mathbb{E}_{x}\left[F_{n}\left|X_{n}-a\right|\right] . \tag{4.3.3}
\end{align*}
$$

These equations and the fact that the canonical process is transient under $\mathbb{Q}_{x}^{+}, \mathbb{Q}_{x}^{-}, \mathbb{Q}_{x}$ characterize these measures. Moreover, by using equations (4.3.1), (4.3.2) and (4.3.3), it is not difficult to prove that for all $x \in \mathbb{Z}$, these measures are the images of $\mathbb{Q}_{0}^{+}, \mathbb{Q}_{0}^{-}$and \mathbb{Q}_{0} by the translation by x.
Now, for all $a, x \in \mathbb{Z}$, and for all positive and \mathcal{F}_{n}-measurable functional F_{n} :

$$
\begin{equation*}
\mathbb{Q}_{x}^{+,[a]}\left[F_{n}\right]:=\mathbb{Q}_{x}^{+}\left[F_{n} \mathbf{1}_{L_{\infty}^{a}=0}\right]=\mathbb{E}_{x}\left[F_{n}\left(X_{n \wedge \tau_{1}^{(a)}}-a\right)_{+}\right] \tag{4.3.4}
\end{equation*}
$$

Hence, if $x \leq a, \mathbb{Q}_{x}^{+,[a]}=0$, and if $x>a, \mathbb{Q}_{x}^{+,[a]}$ is $(x-a)$ times the law of a Bessel random walk strictly above a, starting at point x (cf [LG] for a definition of the Bessel random walk). By the same arguments, if $x \geq a, \mathbb{Q}_{x}^{-,[a]}=0$, and if $x<a, \mathbb{Q}_{x}^{-,[a]}$ is $(a-x)$ times the law of a Bessel random walk strictly below a, starting at point x. Moreover, $\mathbb{Q}_{x}^{[a]}$ is the $|x-a|$ times the law of a Bessel random walk above or below a, depending on the sign of $x-a$. The same kind of arguments imply that (with obvious notations) :

- $\widetilde{\mathbb{Q}}_{a}^{+}$is $1 / 2$ times the law of a Bessel random walk strictly above a.
- $\widetilde{\mathbb{Q}}_{a}^{-}$is $1 / 2$ times the law of a Bessel random walk strictly below a.
- $\widetilde{\mathbb{Q}}_{a}$ is the law of a symmetric Bessel random walk, strictly above or below a with equal probability.

The equalities given by Proposition 4.2 .4 are the following :

$$
\begin{equation*}
\mathbb{Q}_{x}^{+}=\mathbb{Q}_{x}^{+,[a]}+\sum_{k \geq 1} \mathbb{P}_{x}^{\tau_{k}^{(a)}} \circ \widetilde{\mathbb{Q}}_{a}^{+} \tag{4.3.5}
\end{equation*}
$$

$$
\begin{align*}
\mathbb{Q}_{x}^{-} & =\mathbb{Q}_{x}^{-,[a]}+\sum_{k \geq 1} \mathbb{P}_{x}^{\tau_{k}^{(a)}} \circ \widetilde{\mathbb{Q}}_{a}^{-} \tag{4.3.6}\\
\mathbb{Q}_{x} & =\mathbb{Q}_{x}^{[a]}+\sum_{k \geq 1} \mathbb{P}_{x}^{\tau_{k}^{(a)}} \circ \widetilde{\mathbb{Q}}_{a} \tag{4.3.7}
\end{align*}
$$

Moreover, one has :

- $\mathbb{Q}_{x}^{+}\left[L_{\infty}^{a}=0\right]=(x-a)_{+}$and $\mathbb{Q}_{x}^{+}\left[L_{\infty}^{a}=k\right]=1 / 2$ for all $k \geq 1$.
- $\mathbb{Q}_{x}^{-}\left[L_{\infty}^{a}=0\right]=(x-a)_{-}$and $\mathbb{Q}_{x}^{-}\left[L_{\infty}^{a}=k\right]=1 / 2$ for all $k \geq 1$.
- $\mathbb{Q}_{x}\left[L_{\infty}^{a}=0\right]=|x-a|$ and $\mathbb{Q}_{x}\left[L_{\infty}^{a}=k\right]=1$ for all $k \geq 1$.

Hence, by applying Theorem 4.2 .1 and Corollary 4.2 .2 to the functional $F=h\left(L_{\infty}^{a}\right)$ for a positive function h such that $\sum_{n \in \mathbb{N}} h(n)<\infty$, and for $a \in \mathbb{Z}$, one obtains that for all $x \in \mathbb{Z}$:

$$
\begin{align*}
& M_{n}^{+}=\left(X_{n}-a\right)_{+} h\left(L_{n-1}^{a}\right)+\frac{1}{2} \sum_{k=L_{n-1}^{a}+1}^{\infty} h(k), \tag{4.3.8}\\
& M_{n}^{-}=\left(X_{n}-a\right)_{-} h\left(L_{n-1}^{a}\right)+\frac{1}{2} \sum_{k=L_{n-1}^{a}+1}^{\infty} h(k), \tag{4.3.9}
\end{align*}
$$

and their sum

$$
\begin{equation*}
M_{n}=\left|X_{n}-a\right| h\left(L_{n-1}^{a}\right)+\sum_{k=L_{n-1}^{a}+1}^{\infty} h(k) \tag{4.3.10}
\end{equation*}
$$

are martingales under the probability \mathbb{P}_{x}. Other martingales can be obtained by taking other functionals F.
4.3.2 The "bang-bang random walk".

In this case, we suppose that $E=\mathbb{N}$ and that $\left(\mathbb{P}_{x}\right)_{x \in \mathbb{N}}$ is the family of measures associated to transition probabilities : $p_{0,1}=1, p_{y, y+1}=1 / 3$ and $p_{y, y-1}=2 / 3$ for all $y \geq 1$. Informally, under \mathbb{P}_{x} (for any $x \in \mathbb{N}$), the canonical process is a Markov process which tends to decrease when it is strictly above zero, and which increases if it is equal to zero.
The family of measures $\left(\mathbb{Q}_{x}\right)_{x \in \mathbb{N}}$ can be constructed by taking $x_{0}=0$ and $\phi(x)=2^{x}-1$ for all $x \in \mathbb{N}$.
For $y \in \mathbb{N}$, the function $\phi^{[y]}: x \rightarrow \mathbb{Q}_{x}\left[L_{\infty}^{y}=0\right]$ is harmonic except at y where it is equal to zero, and it is equivalent to ϕ.
Since the function : $x \rightarrow\left(2^{x}-2^{y}\right) \cdot \mathbf{1}_{x \geq y}$ satisfies the same properties, by Lemma 4.2.8, we get : $\phi^{[y]}(x)=\left(2^{x}-2^{y}\right) \cdot \mathbf{1}_{x \geq y}$. For all $x \in \mathbb{N}$, the measure \mathbb{Q}_{x} is characterized by the transience of the canonical process, and by the formula:

$$
\begin{equation*}
\mathbb{Q}_{x}\left[F_{n} \mathbf{1}_{g_{a}<n}\right]=\mathbb{E}_{x}\left[F_{n}\left(2^{X_{n}}-2^{a}\right)_{+}\right] \tag{4.3.11}
\end{equation*}
$$

which holds for all $a, n \in \mathbb{N}$ and for every positive \mathcal{F}_{n}-measurable functional F_{n}.
Adopting obvious notations, it is not difficult to prove the formula :

$$
\begin{equation*}
\mathbb{Q}_{x}^{[a]}\left(F_{n}\right)=\mathbb{E}_{x}\left[F_{n}\left(2^{X}{ }_{n \wedge \tau_{1}^{(a)}}^{(a)}-2^{a}\right)\right] \mathbf{1}_{x \geq a} \tag{4.3.12}
\end{equation*}
$$

and for $n \geq 1$:

$$
\begin{equation*}
\widetilde{\mathbb{Q}}_{a}\left(F_{n}\right)=\mathbb{E}_{a}\left[F_{n}\left(2^{X}{ }_{n \wedge \tau_{2}^{(a)}}-2^{a}\right) \mathbf{1}_{X_{1}=a+1}\right] . \tag{4.3.13}
\end{equation*}
$$

Moreover :

- The total mass of $\mathbb{Q}_{x}^{[a]}$ is zero if $x \leq a$, and $2^{x}-2^{a}$ if $x>a$.
- The total mass of $\widetilde{\mathbb{Q}}_{a}$ is 1 if $a=0$, and $2^{a} / 3$ if $x \geq 1$.
- For $x>a$ and under the probability $\overline{\mathbb{P}}_{x}^{[a]}=\mathbb{Q}_{x}^{[a]} /\left(2^{x}-2^{a}\right)$, the canonical process is a Markov process with probability transitions : $\bar{p}_{x, x+1}=\frac{2.2^{x-a}-1}{3.2^{x-a}-3}$ and $\bar{p}_{x, x-1}=$ $\frac{2^{x-a}-1}{3.2^{x-a}-3}$. We remark that $\bar{p}_{x, x+1}$ tends to $2 / 3$ when x goes to infinity, and $\bar{p}_{x, x-1}$ tends to $1 / 3$ (the opposite case as the initial transition probabilities).
- Under the probability $\frac{\widetilde{\mathbb{Q}}_{a}}{\left(2^{a} / 3\right) \mathbf{1}_{a \geq 1}+\mathbf{1}_{a=0}}$, the canonical process is a Markov process with the same transition probabilities as under $\overline{\mathbb{P}}_{x}^{[a]}$, with $X_{1}=a+1$ almost surely.

For all $a, x \in \mathbb{N}$, the image of \mathbb{Q}_{x} by the total local times is given by the equalities :

$$
\begin{equation*}
\mathbb{Q}_{x}\left[L_{\infty}^{a}=0\right]=\left(2^{x}-2^{a}\right) \mathbf{1}_{x>a}, \tag{4.3.14}
\end{equation*}
$$

and for all $k \geq 1$:

$$
\begin{equation*}
\mathbb{Q}_{x}\left[L_{\infty}^{a}=k\right]=K(a), \tag{4.3.15}
\end{equation*}
$$

where $K(0)=1$ and $K(a)=2^{a} / 3$ for $a \geq 1$.
Moreover, if h is an integrable function from \mathbb{N} to \mathbb{R}_{+}, and if $a, x \in \mathbb{N}$,

$$
\begin{equation*}
M_{n}=h\left(L_{n-1}^{a}\right)\left(2^{X_{n}}-2^{a}\right)_{+}+K(a) \sum_{k=L_{n-1}^{a}+1}^{\infty} h(k) \tag{4.3.16}
\end{equation*}
$$

is a martingale under the initial probability \mathbb{P}_{x}.
4.3.3 The random walk on a tree.

We consider a random walk on a binary tree, which can be represented by the set $E=$ $\{\varnothing,(0),(1),(0,0),(0,1),(1,0),(1,1),(0,0,0), \ldots\}$ of k-uples of elements in $\{0,1\}(k \in \mathbb{N})$.
Obviously, k is the distance to the origin \varnothing of the tree.
The probability transitions of the Markov process associated to the starting family of probabilities $\left(\mathbb{P}_{x}\right)_{x \in E}$ are $p_{\varnothing,(0)}=p_{\varnothing,(1)}=1 / 2$, and for $k \geq 1: p_{\left(x_{1}, x_{2}, \ldots, x_{k}\right),\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)}=1 / 2$, $p_{\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}, \ldots, x_{k}, 0\right)}=p_{\left(x_{1}, \ldots, x_{k}\right),\left(x_{1}, \ldots, x_{k}, 1\right)}=1 / 4$.
In particular, under \mathbb{P}_{x} (for all $x \in E$), the distance to the origin is a standard reflected random walk.
If the reference point x_{0} is \varnothing, we can take for ϕ the distance to the origin of the tree. But there are other possible functions ϕ for the same point x_{0}. For example, if $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is an infinite sequence of elements in $\{0,1\}$ it is possible to take for ϕ the function such that for all $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in E$, one has $\phi\left(x_{0}, x_{1}, \ldots, x_{k}\right)=2^{p}-1$, where p is the smallest element of \mathbb{N} such that $p>k$ or $x_{p} \neq a_{p}$. In particular, if $a_{p}=0$ for all p, one has $\phi(\varnothing)=0, \phi((0))=1$, $\phi((1))=0, \phi((0,0))=3, \phi((0,1))=1, \phi((1,0))=\phi((1,1))=0, \phi((0,0,0))=7$, etc.

Each choice of the sequence $\left(a_{p}\right)_{p \in \mathbb{N}}$ gives a different function ϕ and hence a different family $\left(\mathbb{Q}_{x}^{[\phi]}\right)_{x \in E}$ of σ-finite measures.
4.3.4 Some more general conditions for existence of ϕ.

The following proposition gives some sufficient conditions for the existence of a function ϕ which satisfies the hypothesis of Section 4.1.2 :
Proposition 4.3.1 Let $\left(\mathbb{P}_{x}\right)_{x \in E}$ be the family of probabilities associated to a discrete time Markov process on a countable set E. We suppose that for all $x \in E$, the set of $y \in E$ such that the transition probability $p_{x, y}$ is strictly positive is finite. Furthermore, let us consider a function ϕ which satisfies one of the two following conditions (for a given point $x_{0} \in E$):

- There exists a function f from \mathbb{N} to \mathbb{R}_{+}^{*} such that $f(n) / f(n+1)$ tends to 1 when n goes to infinity, and such that for all $x \in E$:

$$
\begin{equation*}
\mathbb{E}_{x}\left[\tau_{1}^{\left(x_{0}\right)} \geq n\right] \underset{n \rightarrow \infty}{\sim} f(n) \phi(x) \tag{4.3.17}
\end{equation*}
$$

where $\tau_{1}^{\left(x_{0}\right)}$ is the first hitting time of x_{0}, for the canonical process.

- For all $x \in E, \mathbb{P}_{x}\left(X_{k}=x_{0}\right)$ tends to zero when k tends to infinity, and :

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{x}\left(X_{k}=x_{0}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \phi(x) . \tag{4.3.18}
\end{equation*}
$$

In these conditions, ϕ is harmonic, except at point x_{0} where this function is equal to zero.
Proof of Proposition 4.3.1 Let us suppose that the first condition is satisfied. For all $x \neq x_{0}$ and for all $y \in E$ such that $p_{x, y}>0$:

$$
\begin{equation*}
\mathbb{E}_{y}\left[\tau_{1}^{\left(x_{0}\right)} \geq n\right] \underset{n \rightarrow \infty}{\sim} f(n) \phi(y) . \tag{4.3.19}
\end{equation*}
$$

By adding the equalities obtained for each point y and multiplied by $p_{x, y}$, we obtain :

$$
\begin{equation*}
\sum_{y \in E} p_{x, y} \mathbb{E}_{y}\left[\tau_{1}^{\left(x_{0}\right)} \geq n\right] \underset{n \rightarrow \infty}{\sim} f(n) \sum_{y \in E} p_{x, y} \phi(y), \tag{4.3.20}
\end{equation*}
$$

which implies :

$$
\begin{equation*}
\mathbb{E}_{x}\left[\tau_{1}^{\left(x_{0}\right)} \geq n+1\right] \underset{n \rightarrow \infty}{\sim} f(n) \mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right] . \tag{4.3.21}
\end{equation*}
$$

Moreover :

$$
\begin{equation*}
\mathbb{E}_{x}\left[\tau_{1}^{\left(x_{0}\right)} \geq n+1\right] \underset{n \rightarrow \infty}{\sim} f(n+1) \phi(x) \tag{4.3.22}
\end{equation*}
$$

By comparing these equivalences and by using the fact that $f(n)$ is equivalent to $f(n+1)$ and is strictly positive, one obtains :

$$
\begin{equation*}
\phi(x)=\mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right] . \tag{4.3.23}
\end{equation*}
$$

Since $\phi\left(x_{0}\right)$ is obviously equal to zero ($\mathbb{E}_{x_{0}}\left[\tau_{1}^{\left(x_{0}\right)} \geq n\right]=0$), Proposition 4.3.1 is proven if the first condition holds.
Now let us assume the second condition holds.

If $x \neq x_{0}$, for all y such that $p_{x, y}>0$:

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{y}\left(X_{k}=x_{0}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \phi(y) . \tag{4.3.24}
\end{equation*}
$$

Therefore :

$$
\begin{equation*}
\sum_{y \in E} p_{x, y}\left[\sum_{k=0}^{N}\left(\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{y}\left(X_{k}=x_{0}\right)\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \sum_{y \in E} p_{x, y} \phi(y) . \tag{4.3.25}
\end{equation*}
$$

This equality implies :

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)\right]-\sum_{k=1}^{N+1}\left[\mathbb{P}_{x}\left(X_{k}=x_{0}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right] . \tag{4.3.26}
\end{equation*}
$$

Now, $\mathbb{P}_{x}\left(X_{0}=x_{0}\right)=0\left(\right.$ since $\left.x \neq x_{0}\right)$ and when N goes to infinity, $\mathbb{P}_{x}\left(X_{N+1}=x_{0}\right)$ tends to zero by hypothesis. Hence :

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{x}\left(X_{k}=x_{0}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right], \tag{4.3.27}
\end{equation*}
$$

which implies :

$$
\begin{equation*}
\phi(x)=\mathbb{E}_{x}\left[\phi\left(X_{1}\right)\right], \tag{4.3.28}
\end{equation*}
$$

as written in Proposition 4.3.1.
Remark 4.3.2 If the condition:

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{x}\left(X_{k}=x_{0}\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \phi(x) \tag{4.3.29}
\end{equation*}
$$

is satisfied for a function ϕ, then ϕ is automatically positive. Indeed :

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{x_{0}}\left(X_{k}=x_{0}\right)-\mathbb{P}_{x}\left(X_{k}=x_{0}\right)\right]=\mathbb{E}_{x_{0}}\left[\sum_{k=0}^{N} \mathbf{1}_{X_{k}=x_{0}}\right]-\mathbb{E}_{x}\left[\sum_{k=0}^{N} \mathbf{1}_{X_{k}=x_{0}}\right], \tag{4.3.30}
\end{equation*}
$$

where, by the strong Markov property :

$$
\begin{align*}
\mathbb{E}_{x_{0}}\left[\sum_{k=0}^{N} \mathbf{1}_{X_{k}=x_{0}}\right] & \geq \mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{1}^{\left(x_{0}\right)}+N} \mathbf{1}_{X_{k}=x_{0}}\right] \\
& \geq \mathbb{E}_{x}\left[\sum_{k=0}^{N} \mathbf{1}_{X_{k}=x_{0}}\right] . \tag{4.3.31}
\end{align*}
$$

4.3.5 The standard random walk on \mathbb{Z}^{2}.

In this case, $E=\mathbb{Z}^{2}$ and $\left(\mathbb{P}_{x}\right)_{x \in \mathbb{Z}^{2}}$ is the family of probabilities associated to the standard random walk. If we take $x_{0}=(0,0)$, the problem is to find a function ϕ which satisfies the hypothesis of Section 4.1.2: it can be solved by using Proposition 4.3.1.
More precisely, by doing some classical computations (see for example [Spi]), we can prove that for all $(x, y) \in \mathbb{Z}^{2}$, and for all $k \in \mathbb{N}$:

$$
\begin{equation*}
\mathbb{P}_{(x, y)}\left[X_{k}=(0,0)\right]=\mathbf{1}_{k \equiv x+y(\text { mod. } 2)} \frac{C}{k+1}+\epsilon_{(x, y)}(k), \tag{4.3.32}
\end{equation*}
$$

where for all $(x, y), k^{2} \epsilon_{(x, y)}(k)$ is bounded and C is a universal constant.
Therefore, for all N :

$$
\begin{align*}
\sum_{k=0}^{N} \mathbb{P}_{(x, y)}\left[X_{k}=(0,0)\right] & =C \sum_{k \leq N, k \equiv x+y(\text { mod. } 2)} \frac{1}{k+1}+\sum_{k=0}^{N} \epsilon_{(x, y)}(k) \\
& =\frac{C}{2} \log (N)+\eta_{(x, y)}(N), \tag{4.3.33}
\end{align*}
$$

where for all $(x, y) \in \mathbb{Z}^{2}, \eta_{(x, y)}(N)$ converges to a limit $\eta_{(x, y)}(\infty)$ when N goes to infinity. Therefore :

$$
\begin{equation*}
\sum_{k=0}^{N}\left[\mathbb{P}_{(0,0)}\left(X_{k}=(0,0)\right)-\mathbb{P}_{(x, y)}\left(X_{k}=(0,0)\right)\right] \underset{N \rightarrow \infty}{\rightarrow} \phi((x, y)):=\eta_{(0,0)}(\infty)-\eta_{(x, y)}(\infty) . \tag{4.3.34}
\end{equation*}
$$

By Proposition 4.3.1, the function ϕ is harmonic except at $(0,0)$, and can be used to construct the family of probabilities $\left(\mathbb{Q}_{(x, y)}\right)_{(x, y) \in \mathbb{Z}^{2}}$, as in dimension one. Moreover, it is not difficult to check that $\mathbb{Q}_{(x, y)}$ is the image of $\mathbb{Q}_{(0,0)}$ by the translation of (x, y).

