Chapter 1. On a remarkable o-finite measure W on path space,
which rules penalisations for linear Brownian motion

1.0 Introduction.

1.0.1 (Q, (X, Fi)y t >0, Foo, Wy(z € R)) denotes the canonical realisation of 1-dimensional
Brownian motion. @ = C(Ry — R), (X, ¢ > 0) is the coordinate process on this space and
(Ft, t > 0) denotes its natural filtration ; Foo = t\>/0 F:. For every x € R, W, denotes Wiener

measure on (§2, Foo) such that W, (X = z) = 1. We write W for Wy and if Z is ar.v. defined
on (Q, Foo), we write W(Z) for the expectation of Z under the probability W.

1.0.2 In a series of papers ([RVY7 i, i=1,11,--- ,X) we have studied various penalisations
of Wiener measure with certain positive functionals (F;, ¢ > 0) ; that is for each functional
(Fy, t > 0) in a certain class, we have been able to show the existence of a probability WX on
(Q, Fso) such that : for every s > 0 and every I’y € b(F), the space of bounded Fg measurable
variables :

W - wET,) (1.0.1)

In this paper, we shall construct a positive and o-finite measure W on (2, Foo) which, in
some sense, “rules all these penalisations jointly”.

1.0.3 In Section 1.1 of this chapter, we show the existence of W and we describe some of its
properties.

In Section 1.2, we show how to associate to W a family of ((.7-}, t > 0),W) martingales
(Mt(F), t > O) (F e Ll (]-"OO,W)). We study the properties of these martingales and give
many examples.

In Section 1.3, we describe links between W and a o-finite measure A which is defined as
the ”law” of the total local time of the canonical process under W in Chapter 3 of [RY, M].
In particular, we construct an invariant measure A for the Markov process ((Xt, L), t> 0)
(and A is intimately related to A). Here, L? denotes the local times process (LY, z € Ry),
so that this Markov process (X, L®) takes values in R x C(R — R_).

1.0.4 Notations : As certain o-finite measures play a prominent role in our paper, we write
them, as a rule, in bold characters. Thus, no confusion should arise between the o-finite
measure W, and the Wiener measure W,.

1.1 Existence of W and first properties.

Our aim in this section is to define, via Feynman-Kac type penalisations, a positive and o-
finite measure W on (9, Foo). Moreover, independently from this penalisation procedure, we
give several remarkable descriptions of W.

1.1.1 A few more notations.

(Q, (Xt, Fr)e>0, Foo, Wy (z € R)) denotes the canonical realisation of 1-dimensional Brownian
motion.
We denote by Z the set of positive Radon measures ¢(dz) on R, such that :

oo
0< / (1 + |]) g(dz) < o0 (1.1.1)
0
For every q € 7, (qu), t > 0) denotes the additive functional defined by :

A ::/RL;? q(dy) (1.1.2)
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where (LY, t > 0,y € R) denotes the jointly continuous family of local times of Brownian
motion (X, t > 0). When the Radon measure ¢ admits a density with respect to the Lebesgue
measure on R (and then we denote again this density by ¢) the density of occupation formula
yields :

Aﬁq)=/RLi’ q(dy)z/O q(Xs)ds (1.1.3)

We denote by b(F;) (resp. b+(]-'s)) the vector space of bounded and real valued (resp. the
cone of bounded and positive) Fy measurable r.v.’s.

As our means to construct W, we use a penalisation result obtained in [RVY, I (sce also
[RY, M]). In the next subsection, we recall this result.

1.1.2 A Feynman-Kac penalisation result.
Theorem 1.1.1. Let g € 7 and :

DY) =W, (exp (—% A@)) (1.1.4)
(@) P <_% qu))
Wee = DY Wy (1.1.5)

1) For everys > 0 and T's € b(Fs), Wé?t) (Ts) admits a limit as t — oo, denoted by Wé?go(Fs),
e :

w(r W (T 1.1.6

D)) — W (r,) (1.1.6)

We express this property by writing that ng?t) converges, as t — oo, to ngqgo along the

filtration (Fs, s > 0).
2) W;,quo induces a probability on (2, Foo) such that :

WD, = ML Wa,, (1.1.7)
where (Magqs)v 5> 0) is the ((-7:5, s> 0), Ww) martingale defined by :
pe) o= 2K (_1 qu)> (118)
' Pq() 2

In particular, Mi?g =1 W, a.s.
The function @4 : R — Ry which is featured in (1.1.8) is strictly positive, continuous, convex
and satisfies :

eufa) ol (119)

3) @4 may be defined via one or the other of the two following properties :

i) @q is the unique solution of the Sturm-Liowville equation :

¢" =p-q (in the sense of distributions) (1.1.10)

which satisfies the boundary conditions :

¢'(+00) = —¢/(-o0) =1 (1.1.11)



i) \/? W, (Cxp (—; Aﬁq))) — () (1.1.12)

4) Under the family of probabilities ( f?go, x € R), the canonical process (X, t > 0) is a
transient time homogeneous diffusion. More precisely, there exists a (Q, (Fi, t > 0)7W§§>)
Brownian motion (Bg, t > 0) such that :

t o
g (Xs)
X; :;z:—f—Bt—i—/ q ds (1.1.13)
0 Pq(Xs)
In particular, this diffusion process (X, t > 0) admits the following function vy, as its scale
function :
4 (@) ::/ (1.1.14)
! A

(and : |yg(d00)| < o0).

We note that the function ¢, featured in Theorem 1.1 is not exactly the one found in [RY,

M]. It differs from it by the factor \/g ; we have made this slight change in order to simplify

some further formulae.
1.1.3 Definition of W.

We now use Theorem 1.1.1 to construct the o-finite measure W. In fact, we define, for
every x € R, a positive and o-finite W, which is deduced from W via the following simple
translation by x :

WI(F(XS, s> O)) = W(F(ac + X5, s> 0)) (1.1.15)

for every positive functional F'. This formula (1.1.15) explains why, most of the time, we may
limit ourselves to consider Wy, which we denote simply by W.

Theorem 1.1.2. (Ezistence of W)
There exists, on (Q, Fs) a positive and o-finite measure W, with infinite total mass, such
that, for everyqe T :

W = ¢4(0) exp (% Ag%)) W@ (1.1.16)
or
wo = Lo <_l Ag@) W (1.1.16))
©q(0) 2

In other terms, the RHS of (1.1.16) does not depend on q € Z. In particular :

1
W (exp <§ ASg))) = ¢,(0) (1.1.17)
or more generally, from (1.1.15) :

W, (exp (% Ag@)) = (). (1.1.17')



As we shall soon see, the measure W is such that, for every ¢ > 0 and for every r.v. I'; €
by (Ft), W(T't) equals 0 or +00 depending whether W (I';) = 0 or is strictly positive. Thus,
the measure W, although, as we show later, it is o-finite on (2, F ), is not o-finite on either
of the measurable spaces (2, ), t > 0.

Proof of Theorem 1.1.2.
i) We shall establish that, for every ¢ € Z, the measure on (2, Foo) :

©q(0) exp <% Aé’é)) WY

does not depend on ¢, which allows to define W from formula (1.1.16). Then, we shall prove
that W, thus defined, is (2, Fo) o-finite.

ii) Lemma 1.1.3. For every ¢ € Z and every x € R :

1) ifa<1 Wi, (exp% AS;Q) <00 (1.1.18)
~ () A @) =
2) A>T W% (exp 5 AV ) = +o0 (1.1.19)

Proof of Lemma 1.1.3.
From (1.1.7), for every X €]0,1] :

A (Xy) 1—X
(9) A 4@ _ PglAt (1T AN 4@
Wit (e 4l ) =i (25 o (- (157) 4) )

S B () e

We have been able to write (1.1.20) because the functions ¢, and ¢(;_y), are strictly positive.
On the other hand, since for every ¢ € Z, pq(x) ‘ ‘N ||, there exist two constants :
T|—00

0< Cl()‘7q) S 02()‘7Q) < o0

such that :

. ©q(y) ©q(y)
Ci(\q) < inf ——2— <sup —L2— < Cy(\,q 1.1.21
1(%9) veR ©(1-x0)q(¥) T yerR Pa-r)q(Y) 2(%9) ( )

Thus, from (1.1.20) :

A Pa-ayq(®) ©q(y) _ Ca(N, q)
Wi, <exp - A(q)) < 7 sup — 4 wl-Na) (1) < 1.1.22
ooy A N R e R e AWy B

We now let ¢ — oo and we use the monotone convergence Theorem to obtain point 1) of
Lemma 1.1.3.
We now write relation (1.1.20) with A =1:

W), <exp% qu)) =W, <fg;();)) ~ k(z)VE (1.1.23)



1 2
with k(z) = ——- \/j > 0, since pg(x) ~ |z|. It then remains to let t — oo in (1.1.23),
pglz) Vo || — o0

then to apply once again the monotone convergence Theorem to obtain point 2) of Lemma
1.1.3.

44i) Formula (1.1.16) is then a consequence of :

1
Lemma 1.1.4. The measure pq(x)exp (5 Ag‘?) . ngo)o does not depend on q € T.

x,00

We note that the measure oq(x)exp (; AE;Q) - WD, is well defined since, from point 1) of
Lemma 1.1.3, the r.v. A((;Z,) is ngqgo a.s. finite. On the other hand, the measure

©q(x)exp (; Ag‘?) . Wéqgo has infinite total mass from point 2) of Lemma 1.1.3.

Proof of Lemma 1.1.4.

Let q1,92 € Z. Then, from (1.1.7), we have for every I'y, € by (F,), with u <t :

Wi (Tugn@lexs (5 40)) = We(Tupn (X))

= (rey #e)

— (g2) P, (Xt) L (@)
W% (Fuap@(;r) SOqQ(Xt)exp 3 A, (1.1.24)

Since the relation (1.1.24) takes place for every 'y, € by (F,) for any u < t, we may replace
Ty, by T'yexp (—5A§q1+q2)) (e > 0). We obtain :

1
Wac,olo |:Fu(pq1 (:L‘) €xp ((5 - E) qul)) : exp( - €A§q2)):|

Xt) 1
= Wéqgg [Fu x M exp ((— — E> A(Q2)) cexp( — eAl) ] 1.1.25
) (o) 25 e (=) A7) - exp( - cai®?) (1.1.25)

However — this is point 4) of Theorem 1.1.1 — | X| 20 ngqgg a.s. and the function
—00

x
r — <Pq1_() is bounded and tends to 1 when |z|] — oo. The dominated convergence

Pgo ()
Theorem - which we may apply thanks to Lemma 1.1.3 - implies then, by letting ¢ — oo in

(1.1.25) :
©q (x)ngqgg {Fu exp <<% - 5) Aé‘éﬂ) exp( - 6A<(>%2))}

1
= goqz(a:)WgE?ég [Fu (exp ((2 - e) Ag%2)> ~exp( — sAg‘él))} (1.1.26)
Since (1.1.26) holds for every Ty, € by (F,) the monotone class Theorem implies that (1.1.26)

is still true when we replace I'y, € by (F,,) by T' € by (Foo). It then remains to let e — 0 and
to use the monotone convergence Theorem to obtain : for every T' € by (Fu) :

eu @) (Tew (342))) = e (rew (5 420
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This is Lemma 1.1.4 and point 1) of Theorem 1.1.2.

iv) We now show that W has infinite mass, but is o-finite on F, .
Firstly, it is clear, from point 2) of Lemma 1.1.3, that :

W(1) = g, (0)V (exp (% AE;Q)) — too (1.1.27)

On the other hand, from point 1) of Lemma 1.1.3, Ag%) < o0 Wég) a.s. Hence :

1A§Z)§n T1 Wég) a.s.
Thus :
1 n
W(AD <n) = p,(0) W <<6XP <2 Agff})) : 1A£f33gn> < pq(0)ez (1.1.28)

which proves that W is (§2, F,) o-finite.

v) We now show that, for every I'y € by (F;), W(I't) =0 or +o0.
By definition of W, we have :

W) = ¢,(0) WO (rt exp <% Ag;g))

= ,(0) W@ <Ft exp (% Aﬁ‘”) Wi <exp G A&))) (1.1.29)

1
from the Markov property. But, from Lemma 1.1.3, ngqo)o (exp <§ Aé@)) = 400 for every

x € R. Thus, W(I'}) equals 0 or 400 according to whether Wég)(l“t) is 0 or is strictly positive,
i.e. according to whether W (I';) equals 0 or is strictly positive since, from (1.1.7) and (1.1.8),
the probabilities W and chg) are equivalent on F;.

The careful reader may have been surprised about our use in the proof of Lemma 1.1.4 of
the r.v. exp( —€ A§q1+q2)). This is purely technical and ”counteracts” the fact that W takes
only the values 0 and +oco on F;.

We shall now give several other descriptions of the measure W. In order to obtain these
descriptions we use a particular case of Theorem 1.1.1, which shall play a key role in our
study. This particular case is that of ¢ = §y (or more generally ¢ = A\dy), the Dirac measure
in 0. We begin by recalling a result in this case.

1.1.4 Study of the canonical process under W§§5°).

Theorem 1.1.5 below has been obtained in [RVY, II], Theorem 8, p. 339, with ht(z) =

h=(z) = exp (-%3”) (\z > 0).

Theorem 1.1.5. (A particular case of Theorem 1.1.1, with ¢ = A\dg, hence qu) =AML, t> 0,
where (Ly, t > 0) is the Brownian local time at 0.)

1) The function @ys, defined by (1.1.10), (1.1.11) equals :

2

2
Oxso (@) = x|+ =5 hence, @i, (0) = X (1.1.30)

A



while the martingale (MS(MO) 5> 0) (see (1.1.8)) equals :

)

MP%) = (1 + %|Xs|> exp (—% Ls> (1.1.31)

2) Under W) .
i) The r.v. g :==sup{u >0; X, =0} is w2 g.s. finite and Loo(= Lg) has density :
(\&g) A a
() = 5 € R () (1.1.32)
i) The processes (Xy, u < g) and (Xgyu,u > 0) are independent.
iii) The process (Xgiu,u > 0) is distributed with PéS’ ) here :

sym 1 D
PO(& ym) _ 5 (PO(B) + p(§3)) (1.1.33)

with P (resp P ) denoting the law of 3-dimensional Bessel process (resp. its opposite)
starting from 0.

i) Conditionally on Loo(= Lg) = 1, (Xu, v < g) is a Brownian motion starting from 0,
considered until its local time at 0 reaches level [, that is up to the stopping time :

=inf{t>0; Ly > 1} (1.1.34)

We write W' for the law of this process.

3) W) = % /0 2 (Wto P ™)) gy (1.1.35)

In (1.1.35), we write W' o PO(3’ M) for the image of the probability W' ® PO(S’ sym) by the
concatenation operation o :
0:0xN—0Q

defined by (note that X, =0) :

Xt( ) if t<7'l(w)

Xi(wow) = { X, 1)@ i . ; () (1.1.36)

Such a notation o has been used by Biane-Yor [BY] to whom we refer the reader. Let us note
that formula (1.1.35) is nothing else but the translation of the results of point 2) of Theorem
1.1.5.

1.1.5 Some remarkable properties of W.

We may now describe the measure W independently from any penalisation. We introduce :

g :=sup{t; X; =0}, ga :=sup{t; X; = a} (1.1.37)
Oap = sup{t, X; € [a,b]} (a<b) (1.1.38)
04 :=sup{t, X; € [~a,a]} (a>0) (1.1.39)



Theorem 1.1.6. The following identities hold :

1) W= [Zd (WeePP™) (1.1.40)
2) i) For every (Fi, t > 0) stopping time T and for any r.v. T'r which is positive and Fr
measurable :

W lger 1rcoo) = W(Lp| Xr|lrcoo) (1.1.41)
it) The law of g under W is given by :
dt
Wi(g € dt) = ot (t>0) (1.1.42)

iii) Conditionally on g = t, the process (X, u < g) under W is a Brownian bridge with
length t. We denote by Hg% the law of this bridge.

iv) = J3° S (o r*™™) (1.1.43)
v) For every premszble and positive process (¢s, s > 0) we have :

=W (/Ooo qudLS) (1.1.44)

3) i) For every (F, t > 0) stopping time T, the law under W of Loo — Ly, on T < 00 is
given by :

W (Lo — Ly €dl, T <o0) = W(T < 0) ljgoq(l)dl + W (| X7|11<o0 ) d0(dl)
= W(T < 00) 1jg o0 (D)dl + W(g < T < 00)do(dl)

In particular, for T =1t :
2t
W(Leo — Ly € dl) = 1jg o (1)dl + 4/ — do(dl) (1.1.45)

it) For every 1 > 0, conditionally on Loo — Ly =1, T < 00, (Xy, u <T) is a Brownian motion
indezed by [0,T] (1.1.46)

iii) The density of (g, Loo) under W equals :

l
W P ( 2“)

gL (U 110,00 () 10,00 (1) (1.1.47)

Vorud

Remark 1.1.7.
1) We deduce from formulae (1.1.43) and (1.1.17) that :

w (exp <—% Ag‘?))
/ C;t - H(()z) (exp <—% qu)>> ~P(§3’Sym) <exp <—% AE@)) (1.1.48)
0o V2w

2) It is proven in Biane-Yor ([BY], see also [Bi]) that :

/Ooleﬂ—/oo dt_ )
0 0 0o V2nt .
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Thus, from this identity, we deduce easily that (1.1.40) implies (1.1.43).

3) Formula (1.1.41) (see also formulae (1.1.52), (1.1.54), (1.1.55), (1.1.56), (1.1.73)) yields
a “representation” of the Brownian sub-martingale (|Xt|, t > 0) in terms of the increasing
process (14<¢, t > 0). (By a "representation” of a (P, (Fp, t > 0)) submartingale (Z;, t > 0),
we mean a couple (Q, (Cy, t > 0)) where @ is a o-finite measure and (Cy, ¢t > 0) is a increasing
process such that, for every I'y € b(F;) : Q(I'y - Cy) = Ep[I'y - Z4).) Here, (W, 14<4,t > 0) is
a representation of the submartingale (| Xy, ¢ > 0).

Before we prove Theorem 1.1.6, we present a slightly different version of it. We shall not prove
this version, whose proof relies on close arguments to those we needed to obtain Theorem
1.1.6.

Theorem 1.1.8. Let a > 0 ; the following formulae hold :

1) For every (Fy, t > 0) stoppmg time T and for every r.v. I'p positive and Fr measurable :

W(FT 1(aa<T<oo)) = W(FT(lXT| - a)+1T<OO) (1.1.49)
a2
2) i) W(Ja € dt) = §E dt (t>0) (1.1.49")
i) = AL **;( 0 oP@3)411{) op(-ed)) (1.1.50)

where Hg)ﬁ denotes the law of the Brownian bridge of length t starting from o and ending in

6 and where P@3) (resp. P(_“’?’)) is the law of the process (a + Ry, t > 0) (resp. (—a — Ry,
t > 0)) where (R, t > 0) is a 3-dimensional Bessel process starting from 0. In particular,

1
the law of (Xy, u < 0y), conditionally on o, =t is 5(1’[(()2 + Héfla)

i11) For every positive and previsible process (¢n,u > 0), we have :

W(¢o,) = (/ Pu du L“) (1.1.51)

We note that points 1) and 2) of Theorem 1.1.6 are particular cases of the corresponding ones
in Theorem 1.1.8 when a = 0. On the other hand, in the same spirit as for (1.1.49) we have,
with the same kind of notation :

~ 1
with L := = (Ly + Ly ").

W(Tr (X7 — a)41r<so) = WH(Trlg,<reco) (1.1.52) 4
W(Cp(Xr —a)-1rcoo) = W (Trly,c7<o0) (1.1.52)_
where : Lo g

Wt = —/ n® o p® 1.1.53

2 0 \/ﬁ 0,0 0 ( )+
-_ LAt Lo pe

= m o P 1.1.53)_

A%Y% 5 /0 5= o0 o Py (1.1.53)

Adding (1.1.52)4 and (1.1.52)_ yields :

W(Tr| X1 — a|lr<oe) = W(Trlg<T<00) (1.1.54)



and also, with a < b :

W(Tr (X7 = b)+ + (a = X1)4)11<c) = W(Prlo, \<T<oc) (1.1.55)

and
W(FT(lXTl — a)+1T<OO) = W(FTlga<T<oo) (CL Z 0) (1156)

Proof of Theorem 1.1.6.
Here is the plan of our proof. We shall use formula (1.1.16) with ¢ = dy :

W = 5,(0) e2 oo . W0 = 2 e3 Lo (00) (1.1.57)
(from (1.1.30)), as well as the properties of W) recalled in Theorem 1.1.5.

i) We prove (1.1.40) .
Let F and G be two positive functionals. We have, from (1.1.57) :

W(F(X,, s < g)- G(Xyra 52 0)
= 2W) (2P F(X,, s < g) G(Xgrs, s > 0))
2WE) (2 L9 F(X,, 5 < g) G(Xgiar 5 2 0))
(since Loo = Lyg)
2W ) (€29 (X, s < g)) - BP™(G(X,, 5> 0))
(from Point 2)ii) of Theorem 1.1.5 and from (1.1.33))
= ( W<50> (e2L9F(X,, s < g)|Ly = z)% e—%dz> - PEYM(G(X,, 5> 0))

(from 1132)

N | —

< e2W (F(X,, s < 7)) e%dz> - PEYM(G(X, 5> 0))

/ AWt o B&™) (F(X,, 5 < g) - G(Xgisr 5> 0))
0

from point 2, i) of Theorem 1.1.5.

ii) We now prove (1.1.41).
For this purpose, we apply formula with ¢ = Ady. Thus :

2
qu) =AL; and, from (1.1.30), x5 (z) = X + |z).

Thus, from (1.1.7), (1.1.30), (1.1.31), (1.1.16) and Doob’s optional stopping Theorem :

2 2
W <FT (X + |XT) 1T<oo> = 3 W) (3 1100 1720

— W(Ir lyereno) + W(Tp Lyspe 2 (Fe=l1)) (1.158)

We then let A — oo in (1.1.58) and note that Lo — Ly > 0 on g > T. The monotone
convergence Theorem implies :

W (7| X7|1r<00) = W1 Lg<rooo)
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This is precisely relation (1.1.41). Relation (1.1.42) is an easy consequence of (1.1.41).
iii) We prove (1.1.45) and (1.1.46).
We note that (1.1.41) and (1.1.58) imply :

§W(FT lress) = W (FT Ly exp (—%(Loo - LT))) (1.1.59)

W(r 1reoo) </ e—éldz>
0

Thus, by injectivity of the Laplace transform, for every function ¢ : Ry — Ry Borel and
integrable :

W 1r<s0) h Y(U)dl | = W (Tr¢(Loo — L7)1g>7) (1.1.60)
0

and
W(\XT|1T<OO) =W({@g<T<0)=W(Lx —Lr=0,T < ) (1.1.61)

In other terms, we have :
W (Lo — Ly € dl, T < 00) = W(T < 00)1jg o(1)dl + W (| X7|17<00) do(dl)

and, under W, conditionally on Looc — Ly =1 (I > 0), (X, u <T) is a Brownian motion
indexed by [0,T]. This is (1.1.45) and (1.1.46).

iv) We now prove point 2, i) of Theorem 1.1.6.

For this purpose, we write (1.1.41), choosing for I't ar.v. of the form @ ), where (@, u > 0)

is a previsible positive process, and where ¢ := sup{s <t, X, =0}.
The RHS of (1.1.41) becomes, with T'=1¢ :

W(/OttbdeS)

(from the balayage formula (cf [ReY], Chap. VI, p. 260))

tW(<I>5|XS = 0) W (dLs)

W (| X @y0)

S

ds
V2mrs

since W(Ly) =W (|X4|) = ﬁ)

W(@,ilg<t) = W(Pglp<y)
(since g= g(t) on the set {g < t})
/tW(<I> g =s) ds (1.1.63)
: g Nor 1.
from (1.1.42). Thus :
ds ds

/OW(@S|XS=0)\/% /Ow(@gm:s)%

11

o— S—

W (®,X, =0) (1.1.62)

N

The LHS of (1.1.41) writes :




This relation implies W(@s\g = s) = W(Q)S\Xs = O), i.e. point 2, i) of Theorem 1.1.6.
We also note that we deduce from the equality between (1.1.62) and (1.1.63) :

t t dS
w b, dL, ) = W(d,|lg =
</0 ) /o ( olg S) V2ms
that :

w (/OOO o, dLS> = /OOOW(CI)g|g =5)W(g € ds)

= W(d,) (1.1.64)

i.e. point 2, v) of Theorem 1.1.6.

v) We now prove point 2, iv) of Theorem 1.1.6.
We obtain, with the help of (1.1.57), for two positive functionals F' and G :

W(F(Xs, s <g) G(Xg4s, 5> 0))
2 W) (F(X,, s < g)erX9G (X, 14 550))
2WO(20)(F(XS, s < g)e2 ) P(ssym)(G(X57 5>0))
(from point 2 i) and 2 444) of Theorem 1.1.5)
= W(F(X,, s<g)) P""™(G(X,, s> 0))

(using once again (1.1.57))
> dt (3.sym)
- W(F(X,, s < g)lg =1)——— | - P®™ (Q(X,, s>0
([ W s <ols =022 ) - B (60 s 2 0)
(from (1.1.42))
dt ®)
= I
| =i

(from point 2 i) of Theorem 1.1.6

e dt ,Sym
:A = (i o P™) (F(X, 5 < 9) G(Xypss 5 2 0)):

vi) Formula (1.1.47) is a consequence of (1.1.42), (1.1.43) and the fact that :

Under H(()t}), L, is distributed as v/2te, where ¢ is a standard exponential r.v.
Remark 1.1.9.
1) We have, from (1.1.16) and Theorem 1.1.5 :

A

X, s <1) - B (G(X,, 5> 0))
)

=3 Loo W = Jy00) (1.1.65)

But, from Theorem 1.1.1, under VVO‘(SO :

b sen X,
x=m [
0 )\+| s|

Hence (see [RY7 M], Chap. 4) : W(MO) — Pé&sym).

A—0o0

Thus % (e72le)yW — P(s sym) (1.1.66)

A—00
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This convergence holds in the sense of weak convergence with respect to the topology of
uniform convergence on compacts in C ([0, co[— R).

2) Formula (1.1.41) may be proven in a different manner than by the way we have indicated.
Indeed, from (1.1.57) (where, to simplify, we choose T' = t)
Wy lgy) = 2WE Dy 1gep ez ™)
2WL0) (T 1<y e2 1)
(since Log = Ly on the set (g < t))
2W (T ez Lew (%) (1,,| 7)) (1.1.67)

But
W) (14| 7)) = W (Ty 06, = 00| F)
= W) (Ty = o) (1.1.68)

with To = inf{¢t > 0; X; = 0}, by Markov property. But, from (1.1.14), the scale function of
the process (X¢, t > 0) under ( S&g, x € R) equals :

x
Y5, () = m (1.1.69)
We deduce from (1.1.69) :
W (T = o) = 2 1.1.70
Plugging (1.1.70) and (1.1.68) in (1.1.67), we obtain :
1 Xy
T, 1 — 9 (d0) T L ‘ t
W( t gﬁt) Woo < t€? 2+|Xt‘
o D2
= 2W (T 3 Lt g Mt
( R S
(from (1.1.31), with A = 1, and (1.1.7))

= W(T¢|Xe|)

Formulae (1.1.54), (1.1.56), (1.1.57) may be proven following the same arguments.

3) Let g € 7 such that the convex hull of its support equals the interval [a,b] (¢ < b). From
(1.1.7) and (1.1.6) we have :

_2 4@
W (org(Xe) - Th) = 03g(0) WL (Dye 347
= W(D e 3 (AE-A")
= W 10, ,<r) + W (Dpe s A=A (1.1.71)

On the other hand, we have proven in [RY, IX] (see also [RY, M], Chap. 2) that there exists,
for every = € R, a positive and o-finite measure ug(gq) such that :

| ¥ ) = o) (1.1.72)
0
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Tt remains to let A — oo in (1.1.72) to obtain, since AY — qu) > 0 on the set (0,5 > t) :
W (i ({0}) = W(Ty 1y, <) (1.1.73)

Hence, v? ({O}) depends only on supp(q) and ( ({0}) t > 0) is a sub-martingale. Formula
(1.1.55) (with T'=t) is a particular case of (1.1. 73) since :

VO ({0}) = (& — )4 + (a— )4 (L1.74)

(see [RY, IX]).
1.1.6. Another approach to Theorem 1.1.6.
Let, for ¢ € Z, the probability W'? be defined by (1.1.7). Then :

©q(Xt) o3 Al®

W(q)‘ﬁ 2u(0) W, (1.1.75)

In Theorem 1.1.2, we have defined the measure W from the formula :

W = ¢, (0) 3 4% @ (1.1.76)
then, we have shown that :
< dt 5 sym)
\ / —= (115 ™) (1.1.77)
o 0,0 ©

(cf Theorem 1.1.6, relation (1.1.43)). We now ”forget” our previous results and proceed in a
reverse way. For this purpose, we define, for the time being, the measure :

W = /0o dt 1) o p{®5m) (1.1.78)
\/27r

We shall show that, for every q € 7 :

Theorem 1.1.10.
Let W be defined by (1.1.78) and Wéo be defined by (1.1.75). Then, for every q € T :

1 _1 A(‘I> =
ez W =W 1.1.79
©q(0) ( )
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Proof of Theorem 1.1.10.
We compute the value of Wo(g) when integrating the following general class of functionals
which are F;-measurable and positive :

F(Xu, u < g9) G(X,01,, u<t—g") (1.1.80)
We have :
WO (F(Xy, u< g®) G(Xy0 5 u<t—g"))
- % W [F(Xu, u < g®) G( Xy v<St— 9"y exp (_% qu)> (pq(Xt)]

(from(1.1.75))
1 1
= [P 0o (<A )-GO =)
q

“pq(Xi) exp (—%(Aﬁq) - A;‘f%))] (1.1.81)

We now consider the probability W restricted to F;, denoted as W® | which we disintegrate
with respect to the law of g® :

¢ du
WO - / @) o pylusym) 1.1.82
0 W\/m( 00 ) ( )
with :
W(g" e du) = du u<t

T/ u(t —u)

and where Hgfg denotes the law of the Brownian bridge with length u and M &™) is the law
of a symmetric Brownian meander of length ¢. Thus, (1.1.81) becomes :

WO [F(X,, u < %) G(Xy 40y v <t —gP)]

oo

D (F (X, v < we 2 A)

_ 1 t du (
~ py(0) /0 T/ u(t — u) =

.M(tfu,sym) (Spq(thu)eié Afi)u . G(Xh [ <t— u))

Using now Imhof’s relation (see [RY, M], Chap. 1, Item G) :

t 1
Ay (8 sym) \/E _—_ pBsym) 1.1.83
9 |Xt‘ 0 |]:f, ( )

we obtain :

WO [F(Xy, u < g9)G(X 4, v <t —g¥)]

1 /t du, () _1 4@
I (F( Xy v <u)e 24w
Soq(o) 0T /7u(t7u) 0,0( ( ) )
GX, l<t—u) [m 1 4@

. (3,sym) T+ — t—u
P (i) S L (¢ ) %) (1.181)
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We observe that the factor v/t — u simplifies on the RHS of (1.1.84). We then let ¢t — oo in

(1.1.84), by using the fact that <pq(x)| |~ |z|. We obtain, since g(*) o9 as under W.?
x|—00 — 0

(cf Theorem 1.1.1) :
W (F(Xu, v < ) G(Xgpo, v >0))

1 m _1
~ 2(0) </ j;u_ MG (F(X, v < “)eéASﬁ) PEI(G(X,, 1> 0) e 2 AY)
q 0 U ’

1 (a)
= —  W(e 2N F(X,, u<g)G(Xg, 1 >0))
‘Pq(o)
This is the statement of Theorem 1.1.10.

1.1.7 Relations between W and other penalisations (than the Feynman-Kac ones).

We have shown - this is Theorem 1.1.2 - that for every ¢ € 7 :
1
W = ¢4(0)exp (5 Aé?) WY

\% (exp <; Ag@)) - exp (; AS;Q) W (1.1.85)

Of course, this formula is very much linked with the penalisation of the Wiener measure by the

1
multiplicative functional (Ft = exp (2 qu)> , t> O). Here, we shall prove that formulae

analogous to (1.1.85) are true for other penalisations than these Feynman-Kac ones.
We now fix some notations :

Sy :=sup X, I;:=inf X, (1.1.86)
s<t s<t
Iy ={weQ; tlim Xi(w) = +oo}, T_:={w € Q,tlim Xi(w) = —o0} (1.1.87)
—00 — 00
Wh=1p, W, W =1y -W (1.1.88)
04 :=sup{t; S; < S}, 0 :=sup{t; I > Io} (1.1.89)

Let ¢4 (resp. 1_) a Borel and integrable function from R, to R4 (resp. from R_ to R4).
We denote by (M?J’(S), 5> 0) (resp. (]\4,3}_(1)7 s > 0)) the Azéma-Yor martingale defined
by :

My = <w+<ss> (Ss — X,) + /S h ¢+<y)dy> (1.1.90)

( I w+<y>dy)

1

oeom)

Let W) (resp Wgé’(])) denote the probability on (€, Fo) characterized by :

Is
My-0 = ¢_(y)dy> (1.1.91)

(w_us) (X, — 1) +

S _(
WL =S ew o Wl O = a0 w (1.1.92)
(see [RVY, II] for more informations about these probabilities).
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The analogue of formulae (1.1.85) and (1.1.41) is here :
Theorem 1.1.11. Let 'z/ur,dj_ as above, with 1/)+(oo) =1_(—o00) =0.

v 1 . W
0 W (o)) Y (Ino) - W (1.1.94)
2)For everyt > 0 and T'y € by (F) :
W (Tu(S: — X)) = W (T 1g, <) (1.1.95)
WXy — L)) = WH(Ty 1g_<) (1.1.96)

Proof of Theorem 1.1.11.
i) We have, from (1.1.85), for ¢ € Z, and T'; € by (F) :

= ¢g(0) W(Ty)
— W (T, (X A7)
(from (1.1.7) and (1.1.8))

_1 A
— (/Oo w(y)dy> WS | Ty Po(Xi)e QAto; (1.1.97)
0 Y(Se) (St — Xi) + ; Y(y)dy

from (1.1.92) and (1.1.90), and we have written, to simplify, ¢ for ¢),. Formula (1.1.97) being

true for every I'y € by (F), we may take I'y = I'y 1y(s,)>a * Ls,—xi>b)x0] 1fs (y)dy>c With
0<b<1,a,c>0forany I', € Fy, u <t. We obtain thus :
WL 3% 1ysymalsi—xosnix) Ljee yiy)dy>c)
1 (Q)
pqg(Xi)e e 24
= wydy)wgﬁ,(s)F Ly(s0)>a
([ o PSS~ X0 + [ oy 0>
Lsi—xisoixl Lz y y)dy>c} (1.1.98)

We shall now let ¢t — oo in (1.1.98) with u being fixed. On the LHS, we have :
W as. Ly(si)>a — 0 (since S; — +oo and ¢(S;) — 0, since 1(+00) = 0)
t—o0 t—o0

W™ a.s. 11/1(Sf,)>a t—>—o>o 11/1(Soo)>a
1St—Xt>b|Xt] t—>—O>O 1 (1199)

L pwy>e = 112 pwdy>e

Thus, from Lebesgue’s dominated convergence Theorem, the LHS of (1.1.98) converges, as
t — oo, towards L, with :

L=W(T,lr e 2% 1,4 so 112 pyse) (1.1.100)
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We now consider the RHS of (1.1.98). On the set :

(’(/)(St) > a) N (St - X > b|Xt|> N < Soo ’(/J(y)dy > C) s

we have :
(X _ dt]x]
(St (St — Xp) + [g, ¥(y)dy ~ ablXe| +c
since |¢q(x)| < d+ |z| ; thus, we may apply the dominated convergence Theorem to obtain,

since under Wodé(s) (see [RVY, II]) . @ F~ —oo and S; oS a.s., the convergence of the

RHS of (1.1.98) to R, with :

e T 1 4@
S u 5 A
R= (/O ’LZ}(y)dy) . M/odc))( ) (w(s ) e 2 1’4[1(5' )>a 1f§o 1/1(y)dy>(:> (11101)

(since pq(x) ~ |x|) Hence, letting a,¢ — 0 and applying the monotone class Theorem,

|x|—00

the equality between (1.1.100) and (1.1.101) implies, for every I" € by (Foo) :

—e-ta@y _ ([T we) (L 1@
W) = ([ o) i (g et )

(9)
then, replacing Te 3z A% by I' :

W) = </0°° w(y)dy) W <¢(gw)>

— W (1(Sk0)) W) <¢<gm>>

— W ((5)) WL (wgoo))

since 1(00) =0 and Soo = 00 WT aus.

We note that there is no problem to divide by ¥(Ss) since ¥(So) > 0 W;Q(S) a.s. (under
W) 5. admits ¢ as density (see [RVY, I1])).

We have proven (1.1.93), and the proof of (1.1.94) is similar.

it) We now prove (1.1.95).

For this purpose, we use the penalisation by (e*%St, t > 0)ie (1.1.90) and (1.1.92), with
Yy (z) = e, We obtain :

A
MPHS) <1 +2 s Xt)) 35 (1.1.102)

Hence, for every t > 0 and Iy € by (F) :

2 2 AS
O
= W (e 2==5T,)  (from (1.1.93))
= W (T g, <) + W (T e 2 Som501, ) (1.1.103)
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We then let A — +o0 in (1.1.103) by noting that Sec — S; > 0 on (64 > t). We obtain :
W(Lu(S; — X)) = W (T 1g, <)

This is (1.1.95). By symmetry, (1.1.96) now follows.
Remark 1.1.12 We deduce from(1.1.103) and (1.1.95) that :

W (T,) </ e—éydy> =W (T e 25=501, )
0

and operating as in the proof of point 3), i) of Theorem 1.1.6, we obtain :

Wi(Soo - S € dl) = 1[0,00[(l)dl + W(St — Xt) (So(dl)

2t
= ool 4/ — do(dl) (1.1.104)

and, conditionally on Soo — S; =1, I > 0, (X, u < t) is, under W, a Brownian motion
indexed by [0, ¢]. Theorem 1.1.11 is the prototype of similar results which we may obtain for
other penalisations. Here are, without proof, some examples.

Theorem 1.1.11°. ~
1) Let h*,h~ : Ry — Ry such that | (AT +h7)(y)dy < co. Let W' denote the

probability defined by (see [RVY, II]) :

W =M W, (1.1.105)
with
- 1 -
M = { (3 b (L) + X7 (L)
3 | @y
0
]
+/ —(ht +h~ )(y)dy)} (1.1.106)
L 2
Then :
W:{W+((h+(Loo))+W—(h—(Loo))} I, — 41— W (107)
T ht(Leo) " h (L) >
In other words :
. 1
Ip, Whhh™ = W (L) W 1.1.108
* W (L)) + Wb (L) ) (111059
Ip_ Whih™ = ! h™(Loo) ‘W~ (1.1.109)

W ((h*(Loo)) + W~ (h™ (Loo))
2) Let ¢ : Ry — Ry be Borel and integrable, and let us define :

M“ﬁ(sq) <2 ( g(t))|Xt|+¢(Sf, St / 1[) dy) f (1.1.110)
0
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with g := sup{s <t, X, =0}. If WL s given by :
AP VAl L e (1.1.111)

(see [RY, VIII)), then :

; ¥(Sg) _ _ ¥(Sg)

1 W =—7—"-2~ - W 1.1.112
/ > w (%)) ( )
i) If p == sup{u < g, Syw) < Sg}, then, for allt and for allT'y € by (Fy) :

1
WDy 1<) = W <rt <2 | X¢| + (Sy — Xj)1st_sy)>> (1.1.113)

We could also present analogous results for penalisations associated to the numbers of down-
crossings (see [RVY, II]) or the length of the longest excursion before g(*) (see [RVY, VII]),
etc...

We use, in Section 2, Theorem 1.1.11 and 1.1.11° to give explicit examples of martingales
(My(F), t >0), F € L} (W). These martingales are defined in Theorem 1.2.1

1.2 W-Brownian martingales associated to W.

The notation in this Section 1.2 is the same as in Section 1.1. Our aim here is to associate
to every r.v. in L}F(Q,]—'OO,W) a W-martingale and to study a few of its properties. Thus,
W appears as ”a machine to construct W-martingales”. We shall also prove (see Theorem
1.2.5) a decomposition Theorem which is valid for every positive Brownian supermartingale.

1.2.1 Definition of the martingales (M(F), t > 0).

Theorem 1.2.1. Let F € LY (Q, Foo, W). There exists a positive (necessarily continuous)
((F, t = 0),W) martingale (My(F), t > 0) such that :

1) For everyt >0 and T'y € b(F) :
W(F - Ty) = W(M(F) - T}) (1.2.1)

In particular, for everyt >0 :

W(F) = W (My(F)) (1.2.2)
2) (My(F),t > 0) may be computed via the ”characteristic formula” :

My(F) = W, (F(w, @) (1.2.3)

(¢f Point 1 of Remark 1.2.2 for this notation)
3) M(F) P~ 0 W as. (1.2.4)
—00
In particular, the martingale (Mt(F), t> 0) s mot uniformly integrable.
4) For everyqe T :
M,(F) = M W (F ez AY 1.2
t(F) = ¢q(0) M7 WP (F ez~ |F) (1.2.5)

where Mt(Q), pq and Wo(g) are defined in Theorem 1.1.1.
Remark 1.2.2.
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1. We now give some explanation about the notation in (1.2.3). If w € C(R; — R), then wy
(resp. w?) denotes the part of w before ¢ (resp. after t) :

w = (wg,w?)
that is, precisely :

o Xuwr)  if u<t
X“(“)_{ Xy (@) i u>t

and our notation WXt (F(wy,@")) stands for the expectation of F(w¢,e) with respect to
WXt(w)‘

2. To every r.v. G in LEF(Q,]:OO,W) we may of course associate the positive martingale
(]\Z(G) := W(G|F), t > 0). But, contrarily to the description for M;(F) given in Theorem
1.2.1, this is a uniformly integrable martingale.

3. Formula (1.2.5) may seem ambiguous, since the r.v. chg) (F e%A(OZ)']_—t) is only defined

Wég) a.s. But since from (1.1.7), the probability Wég) is absolutely continuous on F; with
respect to W, there is in fact no ambiguity. On the other hand, from (1.1.16) :

W(F) = ¢,(0) W2 (Fexp (% AS;Q)) < o0 (1.2.6)

assoon as F € L*(W). Thus, the ((F, ¢ > 0), Wég)) martingale (Wég) (F exp(3 Ag%))|ft) > 0)
is Wég)—uniformly integrable.
4. Of course, (Mt(F), t> 0) is continuous, as it is a ((]-"t, t>0), W) martingale.

5. On the injectivity of F — (My(F), ¢t > 0) : assume that, for F; and F, belonging to
LY (Q, Foo, W) we have : My(Fy) = M(F) as., for every t > 0. Then F; = F; W as.
Indeed, from (1.2.1) :

W (To(My(Fy) — My(Fp)) = 0 = W (T4(Fy — Fy))

As this relation is true for every ¢t > 0 and I’y € b(F;), the monotone class Theorem implies
that, for every I' € b(F) :

W(F(Fl — F2)> = 0, i.e. F1 = FQ W a.s.

Later in this Section (see Lemma 1.2.8), we shall obtain a more direct ”construction” of F'
from (M(F), t > 0).

Proof of Theorem 1.2.1.

i) We show point 1.

We denote by W the finite positive measure on (2, F,) defined by :

WH(G) = W(F-Q) (1.2.7)

Let Ty € by (F;) such that W(I'y) = 0. From (1.1.7), for every ¢q € Z, Wég)(f‘t) = 0 hence,
from (1.1.16) :

WE(T,) = W(F - Ty) = ,(0) WO (F e 4¥T,) = 0
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from (1.2.6). Thus :
I/Vll;—t < VV\ft

Consequently, from the Radon-Nikodym Theorem, there exists a W integrable, positive r.v.
M, (F), such that
WE, = My(F) - Wi, (1.28)

This is a rewriting of formula (1.2.1). Formula (1.2.2) is obtained from (1.2.1) by taking
I'y = 1. The fact that (M(F), t >0) is a ((F, t >0), W) martingale follows from (1.2.8).
We also note that, as every Brownian martingale, the process (Mt(F)7 t > O) admits a
continuous version (which we shall always consider).

it) We show point 4.
From (1.2.1), (1.1.16) and (1.1.7), we have for every I'; € by (F)

W(LF) = W(DM/(F))
g (WL (T, FesAY ) (from (1.1.16))
= OWD (WO (F e A | 7))
= o OW (LMW (Fez AL |F,)) (from (1.1.7))

(1.2.5) follows.
i4i) We show point 3.
e For every s > 0 and I's € b(Fs), we have for s <t from (1.2.1) :

W(T, - F) = W (T - My(F)) (1.2.9)

Since the ((.7-}, t > 0), W) martingale (Mt(F), t> O) is positive, it converges W a.s. towards
Mo (F). Letting t — oo in (1.2.9) and using Fatou’s Lemma, we have :

W (T Moo (F)) < W(T, - F)
Choosing I's = 1 (5)5,, With g®) = sup{u < 5, X, = 0} we obtain :
W (1,050 - Moo(F)) S W(1y5, - F) (1.2.10)
Letting s — oo in (1.2.10) and noting that :

Lyrsq — 1 W a.s.
lg(s)za — 1g2a W a.s..
we obtain :
W (Moo (F)) < W(lg>q - F)

Now, from Theorem 1.1.6 we know that g < co W a.s., hence we get : W(lg>, - F) — 0.

Thus : o
W(Mx(F)) =0 and My (F)=0 W a.s.
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e Another way to prove point 3. consists in writing, for s <t :

W(M(F) = 0,00 WL MOWED (F et A% |F))  (from (1.2.5))

= o OWO (WD (Fer A7) (from (117))  (L.2.11)

(9)
But, since the Wo(g) martingale ( ég) (F e3 A |Fe), t > 0) is uniformly integrable it converges

(9)
a.s. and in Ll(WCSg)) towards F ez 4% as t — oo. Thus, letting t — oo in (1.2.11) and using
again Fatou’s Lemma, we obtain :

)
W (DaMoo (F)) < 0q(0) WD (D, F e A% (1.2.12)
We then choose I'y = 1{A<'q)>a} and obtain
W (1 M (F)) < W@, Fe 3% 1.2.13
(1 4@ 5 q) Moo(F)) < 0g() WL (140, Fem2) (1.2.13)

We then let s — oo and note that :

1 AD s, T 1 W a.s. (since Brownian motion is recurrent)
1qu)2a — 1A<<,g)2a Wo(g) a.s.
Hence : L@
W (Moo (F)) < g (0) WD “Aé?zaFejA“ ) (1.2.14)

(9)
It now suffices to let a — oo, using the fact that A(()%) < 0 Wo(g) a.s., and that Fe34% ¢

Ll(Wo(g)) (from (1.2.6)) to obtain :
W(Mx(F)) =0 and hence : My (F) =0 W as.

iv) We prove point 2, i.e. the ”characteristic formula” for M;(F).
We have, from (1.2.5) :

M(F) = ¢(0) MO W (Fe 4|7
= X AW (Pt A7)
(from the definition (1.1.8) of Mt(Q))
= (X)W (24D F(wy, 51))
(from the Markov property)
= WXt (F(w,0Y), from (1.1.16)

(q)
t

1.2.2 Examples of martingales (M;(F), t > 0).

Formula (1.2.3) which provides an ”explicit” expression for M;(F) is not always, practically,
easy to compute.

1.2.2.1 A first method to obtain examples of (M;(F), ¢t > 0).

To begin with, we present a ”computation principle” to obtain M;(F).

”Computation principle”
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Let (NN, t > 0) denote a ((F;, t > 0), W) positive martingale such that No = 1. Let W2
be the probability on (2, Foo) which is characterized by :

W25 =N W, (1.2.15)
Let us assume that there exists a r.v. F € L1 (Q, F, W) such that :
F-W=W(F) w2 (1.2.16)

Then
My(F) = W(F) - N (1.2.17)

Proof of the ”Computation principle”.
We have, for every ¢t > 0 and T’y € b(F3), from (1.2.1) :

W(F -Ty) = W(M(F) - T)
On the other hand, from the hypothesis (1.2.16) :
W(F-T;) = W(F) WX(T))
Hence, this quantity also equals :
W(F)W (T - Ny) (1.2.18)
from (1.2.15). Since I'; denotes any J; measurable set in (1.2.18), one obtains :

M;(F)=W(F)-N, W as.

X 1
Example 1. Let ¢ € Z and Ny := Sﬁq((ot)) exp <—§ Ag%)).
¥q
From (1.1.16) and (1.1.7), the hypotheses of the ”Computation principle” are satisfied with

1
F =exp <—§ Ag%)). Thus :

1 4@ _14@, pg(Xy) ( 1 ())
M (e—24%) = W(e 24x). 4 exp [ —= A1
(C ) ) 2

1
= (X)) exp (—5 AE‘”) (1.2.19)

since, from (1.1.17), W (exp (f% AEE))) = g(0).
Example 2. Let h: Ry — R, Borel and integrable and :

1 oo
Ni = T hy)dy (h(Lt)|Xt| + /Lt h(y)dy> (1.2.20)

From Theorem 1.1.11°, the hypotheses of the ”Computation principle” are satisfied with

F = h(Ls) (we note from point 3, i) of Theorem 1.1.6 : W (h(Ls)) = / h(l)dl < oo).
0

Thus :

[o.°]

Mi{H(Lo)) = HLOLX:] + [ )y (1.221)
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(cf [RVY, ] for the use of this martingale).

Example 3. Let S; := sup X, and ¢ : Ry — R, Borel and integrable, such that 1(+00) = 0.
s<t

Due to Theorem 1.1.11, the ”Computation principle” applies with F' = 1(S) and

Ny = m (w(St)(St - Xi) + /;O w(y)dy>
We note that, from (1.1.104) (taken with ¢ = 0) :
W (4(5x)) = /Oow(l)dl < oo. (1.2.22)
0
Thus : -
My (9(So0)) = P(Se) (St — X) + 8 V(y)dy (1.2.23)

Another manner to obtain (1.2.23) may be to invoke Lévy’s Theorem :
(law)
((StaSt - Xt)7 t> 0) = ((Lt7 |Xt|)7 t> 0)

then to use (1.2.21).
The reader may refer to [RVY, 11| for links between the Azéma-Yor martingale (w(St) (St—X4)

oo
+ Y(y)dy, t > O) and the penalisation problem with the process (1/1(5}), t> O).
St

Example 4. Let ¢ : R — R a Borel, integrable function with 1(co) = 0. The ”Computa-
tion principle”, with the help of Theorem 1.1.11°, yields to, with F' = ¢(Sy) :

M(S0)) = b(S,0)|Xil +9(S)(S) — X;) + :’w@)dy (1.2.24)

= Y(S,m) - Xt + My (¥(S))

2
1
2

where M; (¢(Sx)) is defined by (1.2.23). We note that, from (1.1.104), since 1(400) =0 :

W (¢(Sy)) = W (¢(S)) = /Ooo P(l)dl < oo (1.2.25)
Example 5. Let a < b and :
7 = inf{t >0; X; > b}, T® =inf{t >TW ; X, < a}
TCH) = inf{t > T ; X; > b}, T2 = inf{t > TC"D . X, < a}
Define :
DI =3 Lgany

n>1
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Dia’b] is the number of down-crossings on the interval [a, ] before time t. Let h : N — Ry
such that h is decreasing, h(0) = 1, h(+o0) = 0 and denote Ah(n) := h(n) — h(n 4+ 1). The
”Computation principle” and an extension to this situation of Theorem 1.1.11° lead to :

M, (AR(DE) =" {1[T(2">,T(2"+1)[(t) {h(;) (1 + bb_—)cit> * h(n; : ()lit—_aa)}

n>0
h(n+1 b—X h(n) (X:—a
+1[T(2n+1)7T<2n+2)[(t) [% <1 + - at> + (2 ) ( bt— o )]} (1.2.26)

The reader may refer to [RVY, II] for more information relative to this martingale.

Example 6. Let X ) denote the length of the longest excursion of Brownian motion
(Xu, u > 0) before g) := sup{s < t ; X, = 0}. Let h : Ry — R, such that

z|W (2)|dz < co. Then, the ”Computation principle” and an extension of Theorem 1.1.11’,

0
lead to :
| X
My (VI(S)) = VR(S,0) - [ Xe| + by (A)D | — e
(Eg0 — At)+
> — 2 X? v2
+/4 /(1) ~ A+ hi <At + v_2t> (exp <—?)> dv (1.2.27)
0

with

oo 2
A=t —gW, &(z):= / exp <—%> dv

hi(z) == — /; zh!(2)dz

(see [RY, VIII] or [RY, M], Chap. 3).
1.2.2.2 A second manner to compute explicitly martingales of the form (Mt(F), t> O).

This method hinges upon the following Theorem 1.2.3. (F,, u > 0) denotes a positive
predictable process such that :
W(F,) < o (1.2.28)

We note that from Theorem 1.1.6, this condition is equivalent to :

W (/OOO F, dLs) <0 (1.2.29)

or equivalently after the change of variable [ = Ly, to :

OOW(FTl)dl:W T FdL) < (1.2.30)
/ (f ra)

with :
7 =inf{t > 0; Ly > 1} (1.2.31)
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Theorem 1.2.3. Let (F,, u > 0) denote a positive predictable process such that :
oo
W(F,) = / W (Fy,)dl < oo (1.2.32)
0

Then, the martingale (Mt(Fg), t> 0) may be expressed as :

My(Fy) = Fyu-|Xi|+ /t Pu—t(Xe) IS (Fu|F) du (1.2.33)
o0
= Fg<t>-|Xt\+/L W (Fy|F) dl (1.2.34)
t ' [e%s)
= /OFg<s>sgn(X5)dXs+W</O Fndl]-'t> (1.2.35)

In (1.2.33), H(()ug denotes the law of Brownian bridge of length u and :

1 712
ps(z) == Tons e % (1.2.36)

Proof of Theorem 1.2.3.
i) We first prove (1.2.33).
For every t > 0 and T'; € b(F;) we have by (1.2.1) :

Wi Fy) = W(T My(Fy))
= W Fylg<e) + Wt Fy 1goy)
= W(Iy Fyo Lo<t) + W( Fy 1g54)
(since g =g on the set (g < t))
= (1) + (20) (1.2.37)
We study successively (1;) and (2;) :

(1)

WLy Fy Ly<i)

W Ty Fyo 1X4) (1.2.38)
( from point 2, ) of Theorem 1.1.6.)

(2) = W(I Fy 1g>t)

* du

— Noro W (L Fylg=u)  (from (1.1.42))

t

T W, B) (from point 2)i) of Theorem 1.1.6)
= + By TOm poin 11l rem 1.1.

t  V2mu 0.0

* du u u
= \ m H((),g (Ft H((),(%(Fuu:t))

We now use the (partial) absolute continuity formula for the law of the Brownian bridge with
respect to that of Brownian motion :

(u) _ Pu—t (Xt)

0017 = pu(0) Wiz (u>t) (1.2.39)



to obtain :

* du Ly pu—t(Xe) - (u) >
2t) = w 1Ly o (Fu|F
@) = [ (M e
= / duW (Ty pu—t(Xo) T (Fu| 7)) (1.2.40)
t
1
since p,,(0) = o Gathering (1.2.40), (1.2.37) and (1.2.38), we obtain (1.2.33).

i1) We now prove (1.2.34).
Of course, (1.2.34) is equivalent to :

/ Put(Xe) 1Y) (Ful ) du = / W (Fy | 7)dl (1.2.41)
t Lt
or to : - ~
w (rt / Pu—e(Xe) I (Fu|}})du> =W (Ft : / F, dl) (1.2.42)
t Ly

for any T'; € b(F;). But we have :

oo oo
w <Ft . / FTldl> = W <Ft/ F, dLu)
Ly t

(after the change of variable [ = L,,)

* du ”
= . V2ru Hé,g (Fu )
*© du u u
= | i ity (Ft ity (Fu|7:t))

© du Pu—t(Xt) (u) )
w (1, Bt g
L Ve (f pu(0) oo (Fult)

(by the absolute continuity formula (1.2.39))

W (rt / put(X) TS (Fum)du)
t

ii’) We give now a direct proof - i.e. without using (1.2.33) - of (1.2.34). We have, for every
t>0and I'; € b+(ft) :

W(Fg Ft) = W(Fg Iy 19St) + W(Fg Iy 1g>t)
= W(Fu ilg<t) + W(Tg Fy)

(since g = g® on the set (¢ < t)), and we have used the notation :

(Tuy u>0) = (Ty L o0q(u), u>0)

=W(Ty Fyo | X:| + W ( / T, Fy, dl)
0

(from point 2 i) of Theorem 1.1.6 and from formula (1.1.44)).
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Hence :

W(F,T,) = W(Fth(t)|Xt|)+W<Ft lyer, Fy, dl)

F, dl)
Ly

o0
_ W(I‘th(t)|Xt|)+W(Ft / W(FTl|]-“t)dl)

Lt

\0\8

W (D Fyo | Xe|) + W (rt

which implies (1.2.34).
iti) We now prove (1.2.35).
To go from (1.2.34) to (1.2.35), we use the balayage formulae, which yields :

t t
Foo - | Xy = / F) sgn(Xs) dX +/ F,dLy,
0 0

oo

o0
and we add this expression to W FTl|_7-"t =W </ F, dLu|_7:t> on the RHS. It is
L ¢

now clear that (1.2.34) implies (1.2.35).

Corollary 1.2.4.
1) Formula (1.2.84) expresses the martingale (Mt(Fg), t> 0) as the sum of a submartingale

o0

(F, RO% | X:], t > 0) and a supermartingale <W </ Frlose dl]—"t> , > O) both of which
0

converge to 0 a.s., as t — oo.

o0
2) The variable /0 F;(u>du is finite a.s. but it satisfies :

W ((/Ooo 2 du)l> = 400 (1.2.43)

unless Fg =0, W a.s.

Proof of Corollary 1.2.4.

The first statement is obvious since F ) | X¢| is the absolute value of the martingale F, g0 Xt

Moreover, |Fyu) - X¢| < My(Fy), hence since M;(Fy) 2 0 a.s. (see Theorem 1.2.1) the same
—00

is true for Fgm X;. To prove the second item, assume that :

W(< [ du)l) e

t
Then, the martingale (/ Fo sgn(Xs) dXs, t > O> would be in H' ; a fortiori it would be
0

o0
uniformly integrable. From (1.2.35), since W </ F, dl) < 00, (Mt(Fg), t> 0) would also
0

be uniformly integrable ; but this is only possible, since this martingale converges a.s. to 0
(see Theorem 1.2.1) if it is identically equal to 0, that is F;, = 0 W a.s. (see point 5 of
Remark 1.2.2).
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Of course, if we want to compute (Mt(F ), t > 0) in a completely explicit manner, we need
(o0}

to compute H% (Fu\ft), fort <uw (or W (/ F, dl|.7-'t> . This is what has been done in
0

the Examples 4 and 6 above. Here is an example where this computation is immediate.
Example 7. Let ¢ : Ry — Ry Borel such that :

o dt
/O ¥(t) Nz (1.2.44)
Then : oy g
My (¥(g)) = (9| Xy +/0 \/;_u e T ap(t + u) (1.2.45)

To obtain (1.2.45), we apply Theorem 1.2.3 with the (deterministic) process (Fy,, u > 0) :=
(¢(u), u>0) and we use :

5% (FulF2) = 115 ((w)| F2) = o (u)

We then make the change of variable u — ¢ = v in (1.2.33).
More generally (see Theorem 1.1.8), with g, := sup{t ; X; = a}, we have :

M;[¥(g4)] = ¥(g)|X; — al +/Oo du e*i(xtzl“ﬂw(wu) (1.2.46)
0 V2mu
with :
gW = sup{s <t; X, =a} (1.2.47)

Back to Example 2. Formula (1.2.21) is a particular case of (1.2.34). Indeed, if we apply
(1.2.34) with (F,, u > 0) := (h(Ly), u > 0), we obtain :

My(h(Lo)) = My(h(Ly))

= h(Lyw)|Xe| +W (/L

oo

h(Lt)|Xt|+/ h(l)dl

Ly

h(LTl)dl|}"t>

t

since Ly = Ly and Ly, = L.
In the same spirit, for h: Ry x Ry — Ry Borel such that :

/Oo/ooh(z ) Le did (1.2.48)
) —— dldu < oo 2.
o Jo V2ru3
then (see (1.1.47)) W (h(Luo,g)) < 0o and
ML) = L0, 1561+ ([~ (a7, )
L
= BT g®) - 1% + T, ( JRR v)dLv) (1.2.49)
0

1.2.2.3 A third manner to obtain explicit examples of martingales (Mt(F), t> 0).
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e We begin with a definition. We shall say that a family of r.v.’s (F;, ¢ > 0) converges, as
t — oo, towards F' W a.s. if for some G > 0, G € Li(fm,W) Ftt—> F W€ as. We recall :

WE(I) := W(GT), T € b(F). Clearly, this definition does not depend on the r.v. G chosen
1
in the above class. In particular, it may be convenient to take for G the r.v. exp<§ AS;Q)

for some ¢ € 7 ; hence, the a.s. W-convergence is precisely the Wo(g) a.s. convergence.

This definition may seem complicated. However, its aim is to take care of the difficulty arising
from the fact that for every I'y € by (F;), W(T';) equals either 0 or +00 (see point v) of the
proof of Theorem 1.1.2).

Equivalently, F} 2 F W as. if and only if W(A) =0 with A = {w; F(w) /= F(w)}
— 0 t—oo

e In Section 1.2.3 below we shall obtain the following result : (it is a Corollary of Theorem
1.2.5, in the same Section 1.2.3)

Corollary 1.2.6. A positive ((]—"t, t> O),W) martingale My, t > 0 is of the form (Mt(F),
t> O) for some F € L (Foo, W) if and only if :

M,
tlg& T\fXﬂ exists W-a.s.
and
M;
My=W | lim ———
’ (M 1+Xt|>

and, in this case :

M,
m —'" Was.

F=1li
im0 1+ | X

e We now illustrate with 3 examples how due to this Corollary, we may compute explicitly
(My(F), t > 0) for some F € L} (Foo, W).

1
Back to Example 1. Let ¢ € Z and M; := ¢q(Xt) exp <—§ A,@). Since

©q(x) Noo|x| and |Xt|tjo>om W as.

|z[—
we have :

M,

1
ot _~A@ ) .—
151X P eXp( 2Aoo>. F W as.

On the other hand,
Mo = ¢4(0) = W (eXp (—% Ag@)) (from (1.1.17))

Thus, from Corollary 1.2.6. :

1 1
M, (exp (—2 Ag‘?)) = pq(Xt) exp <—2 A§Q))
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Back to Example 2. Let h: Ry — Ry Borel and integrable and :
e}
Myi= LR+ [ hl)dy
Ly
It is clear that :

M,
%) . h(Ls) W as.

and that from point 3)i) of Theorem 1.1.6. :

My = /OOO h(y)dy = W (h(Lso))

Thus, from Corollary 1.2.6 :

o0
Mi(b( L)) = WLDIXe] + [ by
Lt
Back to Example 3. Let ¢ : Ry — R, Borel and integrable, with 1(c0) = 0. Let
o0
My = (Sp) (S — Xi) + i P(y)dy
t
Then :

M,

1+ (X th)O?/J(Soo) W as. (see (1.1.99))

From (1.2.22) :

W((s) = [l =
Hence :

o0
My (1(Se0)) = (Se) (St — Xi) + g Y(y)dy
t
1.2.3 A decomposition Theorem for positive Brownian supermartingales.
Here is the most inportant result of this Section 1.2.
Theorem 1.2.5. Let (Z;, t > 0) denote a positive ((F;, t > 0),W) supermartingale. We

denote Zog = tlim Z;y (W a.s.). Then :

1)
= i Zi ists W (1.2.50)
Zoo 1= lim 51X exists W a.s. 2.
and W(zs0) < 00 (1.2.51)

2) (Z;, t > 0) decomposes in a unique manner in the form :
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where (My(2s0), t > 0) and (W (Zx|F:), t > 0) denote two ((F, t > 0), W) martingales
and :

(&, t>0) isa ((.7-}, t>0), W) positive supermartingale

such that :
i) Zoo € LY (Foo, W), hence W (Zuo|Fy) converges W a.s. and in L*(Foo, W) towards Zs,.

W(Zoou:t)JrEt

—00
i) Mi(z00) + &t P~ 0 W a.s. (1.2.54)

After proving Theorem 1.2.5, we shall give a number of examples of ((J-",g7 t >0), W) super-
martingales for which we can compute explicitly the decomposition (1.2.52).
We refer the reader to subsection 1.2.2.3 for the definition of the a.s. W convergence.

Corollary 1.2.6. (Chamcterisation of martingales of the form (Mt(F), t> O))
A ((.7-}, t > 0), W) positive martingale (Zy, t > 0) is equal to (Mt(F), t > O) for an
F € L} (Fo, W) if and only if :

Z
Zo=W | lim ——— 1.2.
=W (i 5 xy) (1:25)

Note that tlim

VA
n Trxt' exists W a.s. from (1.2.50).

Proof of Corollary 1.2.6.
We write, from (1.2.52) :

Zy = Mi(200) + W(Zoo| Ft) + &
(where, in this situation, (&, ¢ > 0) is a positive martingale). Hence :
Zo =W (Mo (2x0)) + W (W (Zso|Fo)) + W (&)
i.e., from (1.2.55) and (1.2.2) :
Zy = W(200) = W(zo0) + W(Zeo) + W(&0)
hence :
W(Zx)=W() =0 and W(Zo|F) =& =0, ie Z;=M(200)

Proof of Theorem 1.2.5.
This proof hinges on the three following Lemmas.

Lemma 1.2.7. Let F,G € L} (Foo,W) and G >0 W a.s. Then :

M(F)  a(F G
e =" G’]—} WE as. (1.2.56)
Consequently :
M (F) F

G
— — s. (h .S. 1.2.
V(G) o G W* a.s. (hence W a.s.) (1.2.57)
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Lemma 1.2.8. Let F € L! (F,W). Then :

My (F) . F
1—|—‘Xt| t—o0

W as. (1.2.58)

Lemma 1.2.9. Let (Z;, t > 0) denote a positive ((.7-",5, t> 0),W) supermartingale. Then :

1) Zoo = lim,_, % exists W a.s. (1.2.59)
Furthermore :

W (200) < 0 (1.2.60)
2) For everyt>0: M(z00) < Zy W a.s. (1.2.61)

Proof of Lemma 1.2.7.
We have, for every ¢t > 0 and 'y € b(F) :

w¢ (rt %ﬁgg;) = W <FtG %ﬁéé;) (by definition of W)
_ My(F) .
= W <I‘t M(G) Mt(G)) (by definition of M;(G))
= W(Iy My(F))
= W([I}F) (by definition of M;(F))
= w¢ (rt g) (by definition of W)

v (3]

F
This is (1.2.56). Now, (1.2.57) is an immediate consequence of (1.2.56) since G € LY(WE).
r F
Indeed : W (5) =W (G- 5) = W(F) < oc0.

Proof of Lemma 1.2.8. )
i) We first apply Lemma 1.2.7 with G := exp <—§ Ag%)), for any g € Z. Then, recall that

(Example 1) My(G) = ¢q(X¢) exp (—% qu)> and, since ¢q(x) ~ |z| as |z| — oo, we get :

M(G) L o) =
1_~_|Xt|t_mexp< 21400 =G W as.

1
which is the statement of Lemma 1.2.8 with F' = exp (5 Ag‘é)).
ii) For a general F € L1 (Foo, W), we write :

My(F)  M(F) M(GQ) F
= . — — -G W as.
11X, M(G) T+ [X]t— G s

by applying Lemma 1.2.7, and the result of point i) above.
Proof of Lemma 1.2.9.
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i) We begin with an argument similar to the one we used to prove Lemma 1.2.8, that is :
we write :
Zy _ Zy  M(G)
1+ X Mi(G) 1+[Xy

Z
My(G)
hence it converges W& a.s. to a r.v. ¢ ; consequently :

We now use the fact that ( , t> 0) is a ((ft, t>0), WG) positive supermartingale;

7,
Zoo 1= tli)rgo Tth\ exists W& a.s.
and we have :
Zoo =C- G
Z
it) Since ¢ := lim ! , W% as., is the limit as ¢ — oo of a WC supermartingale, we
t—oo Mt(G)
have :
Zy
w¢ < — hence :
@)= My(G)
2y
W(zo0) = WE(C) < (@) < 00

iii) For any t > 0 and T'y € by (F;), we have :

Z
W (T = W (I lim 2%~
Cize) = W (T Jim )

uU—00

Zy
(tugﬁo X )

< U%W (I‘t #{LXU\ 1g<u> (from Fatou’s Lemma)

= lim W (Ft i|Xu|> (from point 2 i) of Theorem 1.1.6)
s ERbo

< lim W(I'yZ,) <since Xl < 1>
=00 L+ | Xy

< Wz

since (Z;, t > 0) is a supermartingale. Finally :

which is equivalent to point 2 of Lemma 1.2.9.

We may now end the proof of Theorem 1.2.5.

Let Z;:=Zp — My(20)  (t>0)
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Since (Mi(20), t > 0) is a ((F, t > 0), W) martingale, the process (Z;, t > 0) is still a
((F:, t = 0), W) positive (from (1.2.61)) supermartingale, and since Mt(zoo)t—> 0 W as.

from Theorem 1.2.1, we obtain :

Z — Zso W a.s.
t—o00

Since (Z, t > 0) is a positive supermartingale, we obtain :
W(Zoo| F1) < Z4

We now write :
& =2 —W(Zo|F) t>0

This is a positive supermartingale such that tlim & =0 W as. On the other hand, W a.s. :
— 00

. & . Zy
im —— = 1i

M ——— = 200 — %00 = 0
t—00 ]_—|—‘Xt| t—00 1+|Xt|

The uniqueness of decomposition (1.2.52) being immediate, Theorem 1.2.5 is proven.

1.2.4 A decomposition result for the martingale (My(F), t > 0).

A difference with the preceding subsection is that the r.v.’s F' which we now consider belong
to L'(Fao, W), but are not necessarily positive.

We shall now prove a decomposition result of the ((]—}, t>0), W) martingale (Mt(F), t>
0). For this purpose, we shall use the following lemma.

Lemma 1.2.10. Let F € LY(Fyp, W)

1) There exists a predictable process (ks(F), s > 0) which is defined dLs(w)W (dw) a.s., and
1s positive if F' is positive, such that :

W ([ )L ) = Wk () < W(F) < o (1262

and such that for every bounded predictable process ($s, s > 0)

W(P,F) = W(/oocbsks(F)dLs> (1.2.63)
0
= W(®,ky(F)) (1.2.64)
Thus : W(F|Fy) = ky(F) (1.2.65)

2) We have W ([ky(F)|) < oo (from (1.2.62))
W (|ky(F)|) < W(|F|) < o0 (1.2.66)

and
(ks(kg(F), s >0)) = (ks(F), s >0) dLg(w) W(dw) a.s. (1.2.67)
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3) If (hs, s > 0) is a predictable process such that W (|hg|) < 0o, then :

(ks(hg), s >0) = (hs, s> 0) dLg(w)W (dw) a.s. (1.2.68)

Proof of Lemma 1.2.10.
It suffices, by linearity, to prove this Lemma when F' > 0.

i) Formula (1.2.64), written for FF =1 and ks(F) =1 :

W(®d,) =W (/Ooo o, dLS> (1.2.69)

is formula (1.1.44). Let us define the measure pp, on the predictable o-field, and more
generally on the set of positive predictable processes by :

1p(®) = W(D, - F) (1.2.70)

Clearly, pp is absolutely continuous, on the predictable o-field, with respect to i, which
is the measure pup for F = 1. Thus, from (1.2.69), up is absolutely continuous on the
predictable o-field with respect to the measure dLs(w)W (dw). Thus, there exists, from the
Radon-Nikodym Theorem, a process (kS(F ), s > O) which is predictable such that, for every
® > 0 predictable :

pp(®) = W(d, - F) =W (/OOO D, kS(F)dLS>

This is relation (1.2.64). The further relations (1.2.65) and (1.2.66) follow immediately.

ii) The other points of Lemma 1.2.10 are elementary. We show, for example, (1.2.68). We
have, from (1.2.63) and (1.2.69), for every predictable and bounded process @ :

W(®,h,) = W</Ooo(psks(hg)dLs>

o0
= W </ By hy dLS>
0

Hence, ® being arbitrary, (1.2.68). Relation (1.2.67) is obtained by application of (1.2.68)
with (hs, s > 0) = (ks(F), s >0).

Here is now the announced decomposition Theorem.

Theorem 1.2.11. Let F € L' (F,W). There exist two continuous positive processes
(Et(F), t> 0) and (At(F), t> 0) such that, for everyt >0 :

My(F) = Sy(F) + Ay(F) (£ >0) (1.2.71)

with :
1):) For every t > 0 and I'y € b(F) -

W (T 1<y F) = W (T 354(F)) (1.2.72)
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i) (Zu(F), t > 0) is a quasimartingale (a positive submartingale if F > 0) which vanishes
on the zero set of (X, u > 0). Its Doob-Meyer decomposition writes :

t
24F3::_44?“3+:/ ks (F) dL, (1.2.73)
0
In particular, the bounded variation part of this decomposition is absolutely continuous with

respect to dLs. In (1.2.73), (MtZ(F), t> 0) is a ((]-",g7 t>0), W) martingale satisfying, if
F>0:

t
wMsz/%mﬂs (1.2.74)
s<t 0
lim MEE) = pEE) = / ks (F) dLy = sup M) (1.2.75)
— 0 >0

In particular, this martingale is not uniformly integrable.
i11) We have the ”explicit formula” :

SU(F) = |X,| - BS) (F(wr, @) (1.2.76)

(see point 1 of Remark 1.2.2 for such a notation).
In (1.2.76), the expectation is taken with respect to Wy, the letter wy, and Xy, being frozen ;

Eg?t) denotes the expectation relatively to a 3-dimensional Bessel process starting from Xy, if
X; >0, and the expectation with respect to the opposite of a 3-dimensional Bessel process, if
X, <0.

iv) The application F — (Zt(F), t> O) is injective since :

12_5?” b W as. (1.2.77)
v) We have, for everyt >0 :
WA{S(F) = X4 (kg(F)) | Fyn } =0 (1.2.78)
2)i) For everyt >0 and Ty € b(F) :
W (T 1gst F) = W (T Ay(F)) (1.2.79)

i) (Ay(F), t > 0) is a quasimartingale (a positive supermartingale if F > 0). Its Doob-
Meyer decomposition writes :

t
At(F):MtA(F)—/ kis(F)dL, (1.2.80)
0

where MA(F)7 t>0) is the ((Fi, t >0), W) martingale given by :
t

MAE) —w (/O ks (F) dL5|]-'t> (1.2.81)
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In particular, since from (1.2.62), / ks(F)dLs € LY Fuo, W), this martingale is uniformly
0
integrable.

iti) The application F — (Ay(F), t > 0) is not injective since :
(Ay(F), t >0) = (Ay(kg(F)), t >0) (1.2.82)
(and ky(F) # F when F is not F, measumble).
3) The martingale (M;(F), t > 0) satisfies :

(W (M(F)|Fy0), t > 0) = (W (M (kg(F))|Fy), t > 0) (1.2.83)

The following Theorem is an important consequence of Theorem 1.2.11.
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Theorem 1.2.12. Let F € L'(F, W).

Then, the ((F;, t >0), W) martingale (My(F), t > 0) vanishes on the zeros of (Xy, u > 0)
if and only if ke(F) = 0.

Remark 1.2.13

1) If F = F,, with (F,,, u > 0) a positive previsible process Theorem 1.2.3 implies, in this
particular case :

Et(Fg) = Fg(t) . |Xt‘7 At(Fg) == W(F-,—J.E) dl
Ly

2) If F > 0, the supermartingale (At(F)7 t > 0) satisfies :

Ay(F) — 0 W as., since 0 < Ay(F) < My(F)

t—o0

and

A(F) M (F) S(F)
= — — F—F =0 W a.s.

from Lemma 1.2.8 and (1.2.77). Hence, in the decomposition (1.2.52) of the supermartingale
Ay (F), there remains uniquely the term (&, ¢ > 0).

3) When F > 0, gathering the terms (1.2.71), (1.2.73), (1.2.80) and (1.2.81), we have :

My(F) = —MPP) 4w ( /O ks<F>dLs|ft)

This formula implies (from (1.2.75)) that (MtE(F)

it were, then (M;(F), t > 0) would be null.
4) From relation (1.2.83) there exists an application
m: LYF,W) — ./\/l((fg<t), t>0), W)
F — (my(F), t>0)

, t > 0) is not uniformly integrable since if

where /\/l((]-"g(t), t > 0), W) denotes the set of ((Fy0, t > 0), W) martingales ; this
application m is such that :

mi(F) = W (My(kg(F))|Fy0) (1.2.84)

and

AlF) = [T kg ()i g0
W(/ ks(F) dLs|F yr)
0

If F >0, (0u(F), t >0) resp. (6;(F), t>0)isa ((F,, t>0), W) submartingale (resp.
).

g
((fgu), t>0), W) supermartingale

6:(F)
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5) We recall that by definition, a process (Z;, t > 0) is a quasimartingale if, for every ¢ > 0 :

n—1
sup W <Z |W(Zti+1 — Ztl.) ’.7-}1) < 00

i=1

the sup being taken over the set of subdivisions 0 < ¢; < --- < t, < t. In fact, such a process
is the difference of two supermartingales (see [R]) On the other hand, the Follmer measure
(see [F]) pz - with finite mass - of a supermartingale (Z;, ¢ > 0) (or of a quasimartingale) is
the measure defined on the predictable o-field and characterised by :

pzTi ) = W(Ty - Zt) (Ty € b(F))
Hence formulae (1.2.65), (1.2.70) and (1.2.79) imply that the measure pp defined by (1.2.70)

is the Follmer measure of the quasimartingale (A;(F), t > 0).

Proof of Theorem 1.2.11.
i) We define ¥;(F) via :

(1.2.85)

(F) = My(F 19Sa)|a=t

Hence, for every I'y € b(F;) :
W 1g<; - F) = W (L S¢(F)) (1.2.86)

It is easy to deduce from (1.2.86) that (X,(F) = Sy(F1)—%(F7), t > 0) is a semimartingale,
as the difference of two submartingales and we shall show below (see point vi) of this proof)
that it is in fact a quasimartingale which admits a continuous version.

it) We show (1.2.73).

By linearity, it suffices to prove (1.2.73) for F' > 0. From (1.2.86), we have for s < t and
I's € b(Fy) :

WL, Lger F) = - 5.(F)))

w(r. (e
= ( dLu> (1.2.87)

by using Lemma 1.2.10 with (®, := s 1j54 (u), u > 0). (1.2.73) follows immediately from

(1.2.87).
iii) We show (1.2.74) and (1.2.75).
Since, if F' > 0, then 34(F) > 0, we have :

¢
sup M>F) < / ky(F)dL, and
0

s<t

g® +
sup MZF) > sup MZF) = / ky(F)dL, = / ky(F)dL,
0 0

s<t s<g(®)

since X () (F') = 0 from (1.2.76) (which is proven below).
On the other hand, since 0 < ¥,(F) < M;(F) and since M(F) P~ 0 W a.s. from Theorem
—00

1.2.1, we have X;(F) . 0 W as., and thus, from (1.2.73) :
—00

oo
lim M) = AEF) = / ko (F) dL = sup M=)
0

t—o00 t>0
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which, in particular, proves, that (ME(F), t > 0) is not uniformly integrable.

iv) We show (1.2.76).
For this purpose, we shall use the notation and results of subsection 1.1.4. We have, for every
t>0and I'; € b(ft) :

W (T 34(F))
= W1, F)  (from (1.2.86))
= 2WUO(T 1ye; Fezle)

= 2W (%) (I‘t e3 Lt ly<t F) (since Lo = Ly on the set (g < t))
= 2WE(T, e2 W) (1<, - FIF))
27 00) (T, e Ly o) 1T009f —oo - 7)) (since (9 < t) = (T 06 = 0))
= (1" e3 Lt W (1To oo (wy,@"))
(by the Markov property)

1 —
= 2WE) (Tyez 1 WL (Fw, )| Ty = o0) - WL (Ty = o)) (1.2.88)
But, from (1.1.70) :
60) (7 _ ooy = Xt
WXt,oo( 0 OO) 2+|Xt|

and, from Theorem 1.1.5, conditionally on (T = o0), Wéﬁ%ﬂ is the law of a Bessel (3) process
(resp. of the opposite of a Bessel (3) process) started at z if x > 0 (resp. if x < 0). Then :

_ 5 i, 1Xil am) ~
WL (F)) = 2w <Fte2 tTIXtI EY, (Flw,o")

_ 1L IXi| =23) PN
= W(l_‘te tmEXt(F(wt,w))e 2 t(2+|Xt|)

(from (1.1.31) and (1.1.7)).
Finally W (T; 5y(F)) = W(Ft|Xt| EY) (F(w, wt)))

It is relation (1.2.76). Observe that this relation implies (3(F), ¢ > 0) vanishes on the zeros
of (X4, t > 0). On the other hand, (1.2.76) implies (1.2.77), since, under W, |X;| T 00 as.
—00

v) We show (1.2.83) and (1.2.78).
For every positive, bounded and predictable process (®,, u > 0), we have :

W (@) Mi(F)) = W(® ) - F) (1.2.89)

by definition of M;(F). But, the o-algebra F ) is contained in F,. Hence the RHS of (1.2.89)
equals from (1.2.64) :

W (D0 by (F)) = W (@0 My (ky(F)))
Finally :

W( o0 kg(F)) = W(‘I)g(t) M, (kg(F)))

Thus W (My(F) — )|, (t)) =0 i.e. (1.2.83) is satisfied. (1.2.78) is proven by using
the same arguments
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vi) We show (1.2.79).
We define A (F) by :

Ay(F) == My(F 1g5q)|a=t
It is clear that :

My(F) = Zu(F) + Ay(F)
and that, for every ¢t > 0 and I'y € b(F) :
W(T) 15y F) = W (T Ay(F))

Then writing Ay(F) = Ay(FT) — Ay(F~) we deduce easily from this formula that (A, (FE),
t > O) are two positive supermartingales and then (At( ), t > O) is a quasimartingale.
Since X4(F) = My(F) — Ay(F) = My(FT) — My(F~) — Ay(FT) + Ay(F7), it is clear that
(S¢(F), t > 0) is still a quasimartingale. Formula (1.2.80) then results from (1.2.73) and
(1.2.71). Finally, thanks to (1.2.80) and (1.2.73), (A(F), t > 0) and (Z¢(F), ¢t > 0) admit
continuous versions.

vii) We show (1.2.81).

We have, from (1.2.79), for every I'y € b(F;)

W1y F) = W(TA(F))
= W(fg - F)
(With (fu, u>0) = (Ft L oo (1), u > O))

= W </ Ty ku(F )dLu> (from Lemma 1.2.10)

w (o [ i)
- w (e ( s

(s

w (]

Hence : A¢(F) = W F)dL, ]-"t)

]-'t> - /O t ke (F)dL,

This equality implies (1.2.80) and (1.2.81).
viii) We show (1.2.82).
It suffices, to prove (1.2.82), to show that for every ¢t > 0 and T'; € b(F;), we have :

W (T Ay(F — kg(F))) =0
But :
W (s Ay(F = kg(F))) = W(Ty 1gsy (F — kyg(F))
= W (Ty(F — ky(F))
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(with (T =Ty Ly (w), w2 0))

_w <rt / " (ku(F) — kulky(F))) dLu> (from (1.2.63))
-0 t
since  ky(F) = ky(kg(F)), from (1.2.67).
iz) Observe that, by using (1.2.82), (1.2.83) is a consequence of (1.2.78). Indeed :
My(F —ky(F)) = X(F —ky(F)) + Ay(F — ky(F))
= X (F —ky(F))  from (1.2.82)
Thus :
W (M (F — kg(F))|Fy) = W(E:(F — kg(F))|Fy0) =0 from (1.2.78)
This ends the proof of Theorem 1.2.11.

Proof of Theorem 1.2.12.
For this purpose, we need the following result, due to Azéma and Yor (see [AYQ]) i a
((F, t > 0), W) martingale (M;, t > 0) vanishes on the zeros of (X,, u > 0) if and
only if for every t > 0 :

W(Mt|.7:g(t)) =0. (1.2.90)
Suppose kq(F) =0
From (1.2.83), we have : W (M(F)|F ) = W (M (kg (F))|.7:g<t>) = 0. Thus, from (1.2.90),
(My(F), t > 0) vanishes on the zeros of (X,, u > 0).

Conversely, suppose that (M;(F), t > 0) vanishes on the zeros of (X, > 0). Then we have
from (1.2.90) and (1.2.83), for every s and ¢, s < ¢ and 'y € b(F;), since T's Licgm is a Fym
measurable r.v. :

0 = W(lslgw Miky(F)))
= W(Fs 1s<g(t) kg(F)) — W(FS ls<g kg(F))

t—o0
since g(t) — g W as.
t—oo

Thus :
W (L Ly by (F)) = 0

We deduce from the monotone class Theorem that, for every bounded F; measurable r.v. @ :
W (D ky(F)) = 0. (1.2.91)
ie. kg(F)=0 since ky(F) is Fg-measurable. |

We end this subsection with some examples of decomposition (1.2.71).

A
Example 8. Let F := exp <—§ LOO>. We have shown (Example 2) that :
2 _xp
My(F) = (41X ) ez (1.2.92)

44



We then have :
2
S(F) = | X, e 25, AyF) =S e 2kt (1.2.93)
Indeed, from (1.2.72) :
Wy lgepe 30 = W(D 37 h))
= W{Tilg<e —s L t) (since Loo = Ly on the set (g < t))
= WIXife 2 ")
from point 2 ¢) of Theorem 1.1.6.
Thus : R N
Si(em2 b)) = [Xylem2
1
Example 9. This example generalises Example 8. Let ¢ € 7 and F' := exp <—§ Aé‘?). We
know (see Example 1) that :

My(e34%) = . (X,) exp (_%A?)) (1.2.94)
Then :
Eue#4Y) = g (X e 3 A, A HAY) = (g — ) (Xp)e 3T (1.2.05)
with 1,4 solution of :
¥ =q¢ onR\{0}
() ~ |z, ¢(0)=0 (1.2.96)

|z|—00
Proof of (1.2.95). We have :

Al
W lgcre 24%) = 0 (0) WO(Ty1,,)  (from (1.1.16)),

(with the notation of Theorems 1.1.1 and 1.1.2)
= ¢q(0) (Q)(Ftw(q( g<t|]:t)>
= g0) WO (T, WY (Ty = x)) (1.2.97)

But, by using the scale function v, of the Markov process (X;, ¢ > 0) under Wo(g), we have,
with v, given by (1.1.14) :

WO =0 = JOITNG it
REURS
- () T <o (1.2.98)
= Aq(x)
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(@)
Hence, by definition of X;(e™2 3 A K

W (TS (2 4%)) = ,(0) WD (T Ay (X))

_1 409
= W(Trog(X)Ag(Xp)e 2 4)) (1.2.99)
Thus : W A0
Si(e72A%) = g (Xy) 2 4
with
Yq(@) = Ag(@) pq(x) (1.2.100)
It is clear, from (1.2.100), (1.2.98) and since cpq(ac)‘ ‘N || that :

Po(x) ~ x| and  g(0) =

‘Z‘HOO

On the other hand, the relation 1/}{1’ = g4 on R is the consequence of direct calculation using
the explicit form of v, given by (1.1.14) (see Lemma 1.3.3 below for such a computation). We
deduce from (1.2.95) and from It6-Tanaka :

t
e 1A<q) / % 1A<Q)dXS+£/ (%(0+) _w;(oi)) "A@dL

1 A(a)

iLe. MEE) = d/ (X,)e 24" ax,

1 4(9) 1 14
e A — = A(a Y e_EAS_

Example 10. Let ¢ : R4 — R, Borel and integrable with ¢(c0) = 0 and F' := ¢(S). We
know (see Example 3) that :

o0

My ($(Ss0)) = P(Se)(S — Xy) + . W(y)dy (1.2.101)
We have :
2 (¥(S0)) = v(S)X;,  A(¥(Sx0)) = ¥(Se)(Se — X;7) + : W(y)dy (1.2.102)
Indeed :
W(Ft Lo<t 1/’(500)) =W~ (Ft Ly<t 1/’(59))
(since P(00) = 0,8, = 00 on I'y, S =85, on 1"_).
= W~ (Ft Ty< 't/)(Sg(t))) (Since g®) =gon (g < t))
= W(Tey(S,m)X;) (from (1.1.52))
= (Pt’l/J(St) " ) (SiHCG Sg(t) =5 if X;< O)
Thus S (1(S0)) = 1(Se) X
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Example 11. In some sense, the present example stands midway between Examples 9 and
10. Let ¢ : R — R4 such that g(z) =0if z <0, ¢g(z) > 0if x > 0, lim g¢(z) > 0. We have

r—00
shown, in [RY, IX] (see also [RY, M]) the existence for every € R of a o-finite measure v,
on Ry such that :

M, (h(AD)) = /R WA +y) v (dy) (1.2.103)
+
for h : Ry — R, sub-exponential at infinity.
We then have :
S (MAY)) = hAD). X (1.2.104)

o0

A(h(AD)) = /R B(AL + ) (W9 (dy) — X o(dy)

/R WA +y) i (dy) (1.2.105)
+

where ng’a denotes the absolute continuous part of I/ggt). Relation (1.2.104) is obtained from

the same arguments as those used for relation (1.2.102) by noting that 1x,<o dAEq) =0 and
(1.2.105) results from :

if £ <0, v9(dy) = v9%dy)+ 2 8 (dy)
if >0, v9(dy) = v\9%dy) (see [RY, IX])

Example 12. Let ¢ : R — R, such that :

0
/ (1+1z])g(z)dx < 0o ; lim 2**q(z) >0 forsomea < 1

—00 T—00

t

and ASI) = / q(Xs)ds. Let pq the solution of ¢” = qp, ¢'(—o0) = -1, ¢(+o0) = 0.
0

Then, we have :

1 1
M, (exp ~3 Ag@) = pg(Xt) exp (—5 qu)) (1.2.106)
and e 34 W = W(e 3 AY) @ (1.2.107)

where the probability Wo(g) is characterised by

@), - ¥aXt) @),
Woo |]:t (,Oq(O) exp 2At W‘]:t (1.2.108)

(see [RVY, I], the one-sided case, p. 209). We then have :
(q) ()
Si(e 2 A%) = gy (Xy)e 2 A (1.2.109)
with

Ye(x) =0 if >0
Vy(z) Noo|m\ and ) = qip, on R_
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Hence

Aoty _ [ (e ) if X, > 0
, _
(g —g) (Xe) e 24" i X, <0

(1.2.109) is obtained by following the same arguments as those in Example 9. What changes
(2)

is that, under the probability W3 o, we have X; — —oo a.s., for every « (see Theorem 5.1 in

[RVY, 1)).

Example 13. Let ¢ : R, — R, Borel and integrable, such that / Y(y)dy = 1. Then we
0

have, from (1.2.24)

Mi{(Sy)) = 5 w(Sy0)1 X + w(SH(S — X0+ [ vty (12.110)

(see Example 4, (1.2.24) and (1.2.25)) ;

W (6(5,)) = W(1(Sx)) = /0 byl
On the other hand, we have :

WL lg<t¥(Sy)) = WX ((S,)))
W (T 1y w(Sg(t))) (since g = g® on (g< t))
W (Tt 9(Syw)|Xi])  (from point 2 i) of Theorem 1.1.6.)

Hence :

e (¥(Sg)) = ¥(Sy0) Xl (1.2.111)
and, from (1.2.110) :

oo

A (1(Sg)) = (S (St — X)) + g P(y)dy (1.2.112)

1.2.5 A penalisation Theorem, for functionals in class C

In Section 1 of this Chapter, we constructed the measure W from the penalisation results,
and more particularly from Feynman-Kac type penalisations. We shall now operate in a
reverse order : starting from the existence and the properties of the measure W which we
just established, we shall obtain penalisation results.

Here is the class of functionals (F;, ¢ > 0) for which we shall obtain such a penalisation result.
Definition 1.2.13. Let (F;, t > 0) denote an adapted, positive process. We shall say that
this process belongs to the class C if

i) (Ft, t > 0) is a decreasing process, i.e. if s <t :

0<E<F, Was. (1.2.113)

In particular, since 0 < F; < Fp and since Fy is a.s. constant, this process is bounded by a
constant C' = Fy.
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i1) There exists a > 0 such that for every t > o,, with :
0q:=sup{t >0; Xy € [—a,a|}

we have :
F,=F, =Fy (1.2.114)

iii)
W(Fy) = W(F,,) < o0 (1.2.115)

One of the advantages of this class C is that it contains a large number of processes (Fy, t > 0)
for which we have already obtained a penalisation result. More precisely, let ¢ : R® — R
Borel. Then :

Ft = @(Lgla T L?T» A)qu)a e AEqS)v Dt[ahﬁl]v T Diamﬁu]v Sg(‘h _Ig(t))

(see Examples 1 to 9 for these notations) belongs to the class C (if (1.2.115) is satisfied) as
soon as qi,- -+ ,qs are elements of Z with compact support (if we choose a large enough) and
 is a function which is decreasing with respect to each of its arguments. We may add Sy and
(—1I¢) to the list of the arguments of ¢, if ¢ has compact support in these arguments.

One can give some examples of functionals (F}, ¢t > 0) which are not in the class C and for
which the statement of Theorem 1.2.14 below does not apply. One of these examples is the

functional : -
(Ft = exp <—/ (th/)2 dy> , 6> O)
—00

(see [N3] for a study of this functional).
Here is the first step towards a penalisation result.
Theorem 1.2.14. Let (Fy, t > 0) be a process which belongs to C. Then :

1)
\/? W(F) — W(Fx) (1.2.116)
2)

W(F. | X:|) — W(Fyo) (1.2.117)

t—o00
Proof of Theorem 1.2.14.
1) We start with the proof of point 1)
We write F; in the form :

(| X¢| —a)y I L+ X)) = (X —a)+

F. =F Xi| —
T t 11 |X,))2 (X%l —a)s
2
[+ X)) — (1X¢| — a) 4] ) (3)
F; = F; F; F; 1.2.11
i (1+ [X])2 CoThe T —

and we study each term of this decomposition of F;.
i) Study of W(Ft(l)).
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For A > 0, we have :

/ e—,\tw(ﬂ(l))dt:/ MY <Ft (1| —a)+)> dt
0 0

14| X
oo F
-\t t
= e "W 1, dt
/0 <1 + [ X a<t>

(by Theorem 1.1.8, relation (1.1.49) )
& 1
—At 0a<t
= W | F, dt f 1.2.114
[ e w (g ) (om 02019)

& du
=W | F,, eiAU“/ e/\u7>
< 7 0 1+ |X<7a+u‘

(after the change of variable ¢t = o, + u)

= W(Foe o) EY (/ e—A“diu) (1.2.119)
0

l1+a+ R,

from point 2 of Theorem 1.1.8, where in (1.2.119) (R,, u > 0) denotes a Bessel process of
dimension 3 started at 0. But

: 1 2
EW ~ 4=
O 114a+ Ry | u—oo V mu
and is a decreasing function of u. By the (easy part of the) Tauberian Theorem (see [Fe]) :

%0 2
/ e MW (EMdt ~ W(Fo)y/ = (1.2.120)
0 A—0 A
ii) Study of W (EF?).
For A > 0, we have :

RSV 2 % xt (1X:] —a)+)
W(F")dt < (1+ / W (F — | dt
/0' € ( t ) ( a/) 0 (& t (1 + |Xt|)2

(from (1.2.118) and since : 0 < 1+ |Xy| — (| X¢| —a)+ < 1+a)

= (14 a)W(Fy e 99) B /00 e_)‘uidu
o \Uo (1+a+ Ry)?

(by using the same argument as in point ))

<(1 +a)W(Foo)/oo e gD <;)3> du

0 1+a+R,
<(1+a)W(Fx)O (}\—E) =o0 (%) (A—0) (1.2.121)

iii) Study of W (F*)).

@)y < 2 1
W(ED) < (1+a) CW(1+|Xt|2>
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from (1.2.118). Hypothesis i) : 0 < F; < C imply :

,/%t w(F®) —0 (1.2.122)
Thus : - )
—\t (3)
e "W(F)dt =0 — A—0 1.2.123
[TewaEa-o(5) -0 (1:2.123)
Gathering (1.2.120), (1.2.121) and (1.2.123) we obtain :
o 2
/ e MW(F)dt ~ (/= W (Fy) (1.2.124)
0 A—0 VA
W (F;) being by hypothesis a decreasing function in ¢, the Tauberian Theorem implies :
t
\JEW(F) — W(Fy)
2 t—oo

This is precisely the statement of point 1) of Theorem 1.2.14.
2) We now prove point 2 of Theorem 1.2.14

We write
W(F- X)) = W(E(IX]—a),) +W(EX] - (1Xe] —a),)
= (1) +(2)
and we study successively (1;) and (2;).
(1) = W(E(NX]—a)t) = W(F 1o,<) (from Theorem 1.1.8)
= W(Fyle,<t) (from (1.2.114))
b W(Fy) (by the monotone convergence Theorem)
(since Fy € L} (Foo, W))
(2t) = W(Ft<‘Xt| — (|Xt| — a)+) S a W(Ft)
We now write :
1+‘Xt|* (|Xt|fa) (|Xt\fa)
W(F) = W|F L)+ w (R —t 1.2.125
(F) ( T TR (1.2.125)

= (3)+ (4) and we have
(3) = W(Ft 1+Xt|_(|Xt|_a)+> <(1+a)W <Ft>

1+ Xy 1+ ] Xq|
1
<(1 cCW | —— 0
s (1+a) <1+|Xt|)t?;o
since (Fy, t > 0) is bounded
(1Xt| = a) F,
4 - W|lF——f]|=wWw|——1, from Th. 1.1.8.
(4¢) ( t e <1+|Xt| ag) (from )

F,
= W|[—=-1, f 1.2.114
(1 ) (om (2010)

— 0 since | X 2 +o0o W a.s. and we apply the dominated convergence
—00

Theorem.
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This ends the proof of Theorem 1.2.14. We are now able to state the announced penalisation
Theorem.

Theorem 1.2.15. (General penalisation Theorem)

Let (F;, t > 0) be a process belonging to C. Then, for every s >0 and T's € b(Fy) :

T,F,
WF) it (1.2.126)

1) The limit, as t —» o0, —————~
: W)

2) This limit equals :

W(D.F)  W(TsMy(Fy))

li = =wE(T 1.2.12
e TW(E) W (Fs) Weol(Ts) ( ")
The probability WL | which is characterised by (1.2.127) satisfies :
F.
wh=_-2_.W 1.2.128
© W(Fw) ( )

By comparing (1.2.128) with (1.1.16%), (1.1.93), (1.1.94), (1.1.108), (1.1.109) and (1.1.112),
one can see that Theorem 1.2.15 is a general Theorem which implies many results given in
Section 1.1 of this monograph, for example Theorems 1.1.1, 1.1.2, 1.1.11 and 1.1.11".

Proof of Theorem 1.2.15.

i) We shall use the following notations : let ws € C([0,s] — R) and (Ft(ws), t > 0) the
functional defined by :

F) (X, w > 0) 1= Fryy (w0 (w4(s) + Xu, u>0)) (1.2.129)

With this notation, we have the following Lemma.

Lemma 1.2.16. If (F;, t > 0) € C, then, for W-almost every ws € C([0,s] — R) (Ft(ws)7 t>
0)ecC.

Proof of Lemma 1.2.16.
i) It is clear that (Ft(ws)7 t > 0) is a monotone function of ¢ and that, from (1.2.129) and
(1.2.114) we have, for t > o, (s)[4a

F) (X, u>0) = FL) (X, u > 0) = FE) (X, u>0)

Tlws(s)|+a
i1) We need to prove that W(chgs)) < 0o. We note that :

W(Fo(gjs)) = W(Foo(ws o (Ws(s) + Xy, u > O))
= M(Fso)(ws) (from(1.2.3))

Hence :

W(W(EL))) = W (My(Fs)) = W(Fo) <00 (from (1.2.2))
In particular :

W(FY)) < 0o W as.

This is Lemma 1.2.16.
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1) We may now end the proof of Theorem 1.2.15. We have, for t > s :

W(Fi|Fs) = W(F ry ) (from the Markov property)
W(F) W(Ft)
NERT109% ()
R Wirx') (1.2.130)

ﬁW(Ft) o W)

(from Theorem 1.2.14 applied to (F;, t > 0) and to (E(ws), t > 0) due to Lemma 1.2.16.)

~ M(Fy)
- W(Fy)
(from point 2 of Theorem 1.2.1.)

To show Theorem 1.2.15, it now suffices to see that the convergence is (1.2.130) also holds in
LY(Fs,W). However, from Scheffé’s Lemma (see [M], T. 21) this is implied by the equality

W (MS(F“)) =1 for every s > 0, which follows immediately from Theorem 1.2.1 (equality

W(Fa)
(1.2.2)).

Remark 1.2.17. -
Let ¢ : R4 — R, Borel such that : / o(z)(1 + 2%)dz < oo and let :
0

F? = o(Sa) x50 (t>0)

FY = o(S) x50 (£>0)

It is shown in [RY, VIII] that :

i) EFY) Hoog’/ms?)/ o(z)a2de (1.2.131)
H)o,/ t3/ Ya2de (1.2.132)

i) for every s > 0 and I'y € b(F,

ET,F"
[57(?)} — BT, MY)  (i=1,2) (1.2.133)
E(F,") 7
where the martingale (Msw, s> O) is defined by :

MY = (5.)(Se — X.) + /S " )y

and (o) = p(o)e +2 [ T olwydy  (220)

We now inspect Theorem 1.2.15 in the light of this result. If we assume that llr_{l o(y) =0,
y—-+o0

we obtain :
lim F( ) - =0 W a.s.

t—o0

and, from (1.2.131) and (1.2.132).

lim VEE[FD =0 (i=1,2)
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Thus, we are working here in a degenerate case of Theorem 1.2.15 and of Theorem 1.2.14,
i.e. : in a case where F,,, = 0. However, from (1.2.133), this situation is not so ”degenerate”,
since it allows to obtain a non-trivial penalisation.

1.2.6 Some other results about the martingales (M;(F’), t > 0).

Let us first state the following definition :

Definition 1.2.18. Let (F;, t > 0) denote an adapted, positive process. We shall say that
this process belongs to the class Cif:

i) (Fy, t > 0) is a decreasing process, i.e., if s <t :

0<FE<F, Was. (1.2.134)

In particular, since 0 < F; < Fy and since Fy is a.s. constant, this process is bounded by a
constant C' = Fy.
i1) There exists a > 0 such that, for every ¢ > o, with

Oq 1= Sup{t Z 0, Xt S [_a’7a]}

F=F, =Fyx (1.2.135)
and there exists £ > 0 such that
sup Wy(Fs) <k (1.2.136)
z€[—a,a]

iii) For every random time T' < oo a.s. and every u > 0 :
Friy(w) < Fu(0rw) (1.2.136").

Of course, there is the inclusion C C C. As the class C, the class C contains many interesting

functionals (F, t > 0). The following result holds : N

Theorem 1.2.19. Let (F;, t > 0) be a process in the class C and Fyo := tlim F;. Then,
—00

there exists a bounded process (Yy, t > 0) :
0< Yy <e (1.2.137)
such that :

Examples
1) Let (F; := h(Ly), t > 0) with h : Ry — R Borel, such that

/000 h(y)dy = 1.

Then, (see (1.2.21)) :

o0

My(h(Loo)) = h(Lo)| X | + /L h(y)dy

i.e. thisis (1.2.138) with
vi= [ htw)d.
L

t

o4



2) Let (Ft 1= exp (—%qu)) , t> O) with ¢ € 7 and ¢ with compact support. Then (see

(1.2.19)) :

My (¢34 ) = gy () A

_14@ _1 4@
=200 | X 4+ €72 (0g(X0) — 1Xa])

i.e. (1.2.138) with

Vi = e 34 (p,(X) - X))
and we note that

0 <Yyl < lpg(Xi) — [ Xl < K

since g is convex and ¢q(x) is equivalent to |z| as |z| goes to infinity.

Proof of Theorem 1.2.19.
i) Tt is sufficient to prove

My(Fse) = Ful1X] — a)s + Vi
with |Y;| < ¢. Indeed, if (1.2.139) is satisfied, then :
|My(Foo) = Fi| Xil| = [Fo(1X0| — @)y + Vi — Fu.| X
= Vi + F((|Xe] — a)y — [ Xa)]
<|Vil+ak<d +ak=¢".

it) We now prove (1.2.139)
From point 2) of Theorem 1.2.1, we know that :

Mt Xt (Foo Wi, W )
= Wxt( (Wi, @) 1oy (wr0t)<t)
(

oo(wtaw ) 10'a(UJt wt)>t)
= (D)e + (2)

Study of (1),
(1) = Wi, (Foo (@i @) 1o, (wp 0y <2)
= W, (Foo (@) Loy (wr.t)<t)
since, on o, < t, Foo = F; (from (1.2.135)). Hence :
(1) = Fi(w) Wy, (Log@rat)<t)-
But one can easily check that :
W, (Lo wraty<t) = (1Xe] — a).

Indeed, we have :

(1.2.139)

(1.2.140)

(1.2.141)

(1.2.142)

(1.2.142')



Since, from (1.1.17’) and relation (1.1.30) of Theorem 1.1.5, we have :

1 2
W, (exp <2 )\LOO>> =5 + |z|.

W, (Ty = ) = |z|.
Hence, we obtain (1.2.142’) by translation. By (1.2.142), we deduce :

Letting A — 0o, we have

(1)t = W, (Foo (@i, 0") Lo,y 0t)<t) = Fr-(|Xe] — a)4). (1.2.143)
Study of (2);
(21 = W, (Foo (@1, &) Lo, (.0 t)
o If | X¢| < a, then o4 (w, @) >t and

WXf ( (wtaw )1aa(wt wt)>t) WXt ( (tht))

< sup W,(Fy) <k (1.2.144)
z€[—a,d]

(from (1.2.136)).
o If Xy(=1z) ¢[—a,d:

o~

W, (Fw(wt,@t)lga(wt,dﬁ)>t) = Wm (Foo(wt; )1,1’-7 <oo)

where 7}, is the hitting time for &' of a or —a (it does not depend on wy).

Hence

— —~

W. (Fm(wtv@t)laa(%@tbt) < W, (FOO (0@ (d}t)) 17A“a<oo)

since, from (1.2.136") :
Foo(wr, @) < Foo (07, (&)

on the event {(og(wy, @) > t) N T,(&") < oco}. Hence,

W, (Foo(wt, @) 1oy (wr.0t)>t)

< a0 () W) (€35 P(01,0) 17, <oc
(from (1.1.57))

= (2) W) (41017, oW (ehE F))
(from the Markov property)

= 8060—(55) ngg (17, <00 Wa(F))
¥so (a)

(from (1.1.57) and since Ly, = 0 Wﬁgg a.s. for |z| > a)

©50(T) 1 1-(50)
=W, (Fy W% (Tg < 00).
( ) 5050(0‘) ' ( )
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But, s, () = 2+ |«| and
2

W%(T, < o)

(see (1.1.70)).
Hence :
sup s, () Wz(fgo) (F(Wt,@t)la—a(wt7wt)>t) <’ (1.2.145)
z€[—a,al
Gathering (1.2.145), (1.2.144) and (1.2.143), we obtain Theorem 1.2.19.
Corollary 1.2.20. B
Let (Fy, t > 0) and (G, t > 0) be two processes in C. Then :

1)
Mt(Foo)Mt(Goo)
W <W> o W(FxGao) (1.2.146)
2)
;\/jt W (My(F) My(Goc)) — W(Fro.Grc) (1.2.147)

Note that, since (F, t > 0) and (Gy, t > 0) are in C, one has :
W(Fy.Gx) < kW(Gy) < 0.

Proof of Corollary 1.2.20.
1) We start with point 1)
We have :

1% Mt(Foo)Mt(Goo)
1+ | Xq|
=W | F,, ——¢
( X
(from Theorem 1.2.1)
=W (Foo Gt|Xt| + Y;‘,G>
14X
(from Theorem 1.2.19)
o2 W(FGo)

ﬁill))?tl\ < Gy < k, Fy € LY(W), Gy decreases to G when t — oo, and |Y,¢| < c.

2) We now prove point 2) (briefly)

By polarization, it is sufficient to prove (1.2.147) when Fo, = G&. In this case, t —
W (M?(Fy)) is an increasing function of ¢ and one can apply the Tauberian Theorem. Let
us compute :

since

/Oo e W (M (Foo))dt = /Ooe_AtW [(F- e +Y2)°] .
0 0
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It is not difficult to see that in this expression, the terms Y,? and F}|X;|.Y; are negligible,
so we only need to deal with the term F?|X;|?>. By doing as in the proof of the point 1) of
Theorem 1.2.14, one has :

20 v |2 \Xt| (|1 Xi] —a)y
B = 1+ [ X
1+ [X] = (| Xe| —a)
+F‘112|Xt|2 ( +|X |) + (|Xt|_a’)+
+F? X (14 | Xy = (IXe| —a)y)
(1+ | X¢])?
= (D) +2)e + (3) (1.2.148)

Now :
(1) = / MW (D))t

sy |Xt (|1 X¢] — a)+
W F dt
< I+ x]

F2 |Xt|2
1y - | dt
1+ X, 7t

(from Theorem 1.1.16)

oM | X2
W o dt
< 7 14| Xy| “<t>

(from (1.2.135))

—w (e [T Kl )
0 1+ |X0a+u|

(after the change of variables t = o, + u)

o 2
_ 2 _—Aoa) (3 (@t Ru)®
_W(Fgae )EO (/0 e 1+a+Rudu
(from Theorem 1.2.1)

00 2
E(()S) / e (a+ Ry)” du) ~ ﬁ,
0 1 +a+ Ru A—0 )\3/2

V2

(1)t )\:0 W(Foo) W

Since, by scaling :
one has :

It is now easy, by using the same arguments as in the proof of point 1) of Theorem 1.2.14, to
see that (2); and (3); are, when X tends to zero, negligible with respect to (1);. Finally, from
Tauberian Theorem :

Remark 1.2.21.
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1) By using the same arguments as in Corollary 1.2.20, one can see that if FO_ F®) are
k processes in the class C, then :

I, 7 T
¢ i=1
and

k k

(k=1)/2 (@) (@)

t W <H FOO> —aW (H FOO> (1.2.150)
i=1 i=1

where ¢ is a universal constant.

Note that, at first sight, (1.2.149) and (1.2.150) seem quite strange since one knows (from

Theorem 1.2.1) that Mt(Fo(é)) P~ 0, Was. foralli=1,..., k.

2) Let (Fy, t > 0) and (Gy, t > 0) be two processes in C. We penalise Wiener measure by
the process (Fi, t > 0) (see Theorem 1.2.15) and we denote by W£ the probability obtained
with this penalisation. Now, let us penalise the probability WOIZ by (G, t > 0) : we obtain
the probability WOI;’G. On the other hand, if we penalise Wiener measure by the functional
(F:.Gy, t > 0), we obtain the probability WOI;'G. It is not difficult to see, by using Theorem
1.2.19, that WL = WEC,

3) Let (Fi, t > 0) be an adapted, positive and increasing process, such that, for some Ay > 0,
(e~ t>0) is in C, and such that for all z, W, (e *F>) < co. Then, for all z € R, there

exists a positive and o-finite measure VQS;F”), carried on R, and such that for all continuous
functions h with compact support :
VIWIE)] [ hd™) ) (1.2.151)
+

This Theorem is a generalization of a result in [RY, IX]. In [RY, IX], it is obtained when
(Foo

(Fi, t > 0) is an additive functional. In fact, the measure vy ) is the image of W, by
Fy : Q — Ry. The proof of (1.2.151) is essentially a consequence of Theorem 1.2.14.

1.3 Invariant measures related to W, and A,.
We shall now show that the measure W, and the measure A which we shall define very soon,
are closely related to invariant measures of some Markov process taking values in certain
functional spaces.
1.3.1 The process (X, ¢t > 0).

As before, (Q, (Xt, Ft)t>0, Foos Wy (z € ]R)) denotes the canonical realisation of Brownian
motion, starting at zero. Let Xy € Q@ = C(Ry — R). We define the process (X;, ¢ > 0) taking
values on C(R; — R), and issued from AXp, by :

Xo(u—1) if w>t

Xe(u) == { Xo(0) + X; o<t (1.3.1)

It is easy enough to see that this process is Markov (we denote by (P, t > 0) the semigroup
associated with this Markov Process (X}, t > 0)) and that the measure :

W::/dz W, (1.3.2)
R
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is an invariant measure for this process. However, this process admits other invariant mea-
sures. More precisely :

Theorem 1.3.1. Let a,b >0, witha+b> 0, and :
Wl = o Wi + bW, (1.3.3)

Then :
wab .= / dx Wb (1.3.4)
R
is an invariant measure for the process (X, t > 0). Recall that W} and W, are defined in

(1.1.88) by :
W; = 1F+ -W,, W, =1r - W,

Proof of Theorem 1.3.1.

By symmetry, it suffices to prove that the measure W+ defined by W+ := / dz W is
R
invariant. For every measurable and positive functional F': Q — R, we have :

/d:z:/ W (dX)P,F(X)
R Q
= / dx/ W X)W (F(z+ Xy, u< t5; X(v—1t), v>1)) (from (1.3.1))
R Q
:/dx WIdX)W (F(z+ Xy — Xy, u<t; X(v—1t), v=>1))
R Q

(since (X;—y, u < t) has the same law under W as (X; — Xy, u < t))
— [ayw ([ Wi @0FG =X uses 2w-0,020)
(from Fubini and after making the change of variable x + X; = y)
= / dy W </ Wy—x,(dX)F(y — Xy, u<t; X(v—1t), v>t) 1r+(X)>
R Q

(from the definition of W+ and since X € I'y. if and only if : lim X (v —t) = +00)

V—00

= / dy Wy (/ Wi, (dX)F( Xy, u<t; X(v—1t),v>1) 1p+(X)>
R Q
since (X, v > 0) and (—X,, u > 0) have the same law under Wy. We now write :

/ W, (dX)F(Xy, u<t; X(v—1), v > 1) Ip, (X)
Q

= Wy, (Flp, (v, &%)
where w; € C([0,t] — R), &' € C(Ry — R), and :

wi(u) = X, foru<t,
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Olv) = Xy 4+ X(v) forv>0

(see point 1 of Remark 1.2.2 for such a notation). In the preceding relation, w; is frozen and
expectation is taken with respect to &'. Hence, from the ”characteristic formula” (1.2.3) for
the martingale (M;(F1r, ), t > 0), we have:

/ W, (dX)F(Xo, u < & X(v— 1), v > )Ir, (X)
Q

= My(F1p, ) (wy).
Hence:
/ de / W (dX)PF(X)
R Q
:/RdyWy(Mt(Flh))
:/RdyWy(Mo(Flﬁ))
_ / dy W, (Flr,)
R

(from (1.2.2) where we replace W (= Wy) by W,).
= / dy W (F)
R
(from the definition of W)
= WH(F).

This is Theorem 1.3.1.
1.3.2 The measure A,.
Let = C(R—Ry)and L:Q — ﬁ, the application "total local time” defined by :

L(Xy, t>0)= (LY, yeR). (1.3.5)
We denote by A, the image of W, by L. It is possible to give a very simple description of
A, (see [RY, M]). Here is this description :

- Let u,, 8 € Ry and = € R. We denote by Qﬁi;ﬁ the law of the process (Y, v € R) defined
as follows :

Y.=u

(Yy4t, t > 0) is the square of an a-dimensional Bessel process

(Yz—¢, t > 0) is the square of a B-dimensional Bessel process, independent from
(Yygt, t >0).

Then : 1 oo
A=t /0 du (Q%2 +Q20) (1.3.6)
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Sketch of the proof of (1.3.6).
By translation, it suffices to prove (1.3.6) for « = 0. Then, we use (1.1.40) :

W = / dv (W] o P35™)
0

and the following facts :

e From the second Ray-Knight Theorem (see [ReY], Chap. IX) for Brownian motion, the
process (LY, y > 0) is a 0-dimensional squared Bessel process, starting from I.

e For a 3-dimensional Bessel process, starting from 0, (L%, y > 0) is a 2-dimensional squared
Bessel process, starting from 0. This constitutes the ”third” Ray-Knight Theorem.

o If (Z!, t > 0), i = 1,2, are two squared Bessel processes with respective dimensions d; and
do, starting respectively from uy and wug, then (Zt(l) + Zt@), t > 0) is a squared Bessel process
with dimension dy + dy starting from uq + us.

Other properties about the measure A, may be found in ([RY, M], Chap. 2). It is easily
deduced from (1.3.6) that the r.v. LY, under W, admits the "law” :

W, (LY, € du) = |y — x| do(du) + du (u>0) (1.3.7)
(see also (1.1.45)).

1.3.3 Invariant measures for the process ((Xt, L), t> O).

The process ((X¢, Lf), t > 0), where Ly = (L{, y € R) denotes the local times process (in
the space variable) at time ¢, for Brownian motion (X, ¢ > 0) is a Markov process taking
values in R x Q = R x C(R — R,). In fact, if Xp is a function which has a finite total local
time at each level, ((Xy, L} 4+ L3, (Xp), t > 0) is the image of the process (X, t > 0) (see
(1.3.1)) by the application :

H:Q—-Rx

defined by :
H(Yi, ¢ > 0) = (Yo, %) (1.33)

Of course, H is only defined a.s. (with respect to the law of the process (X, t > 0)), i.e. it is
only defined for the trajectories w € € for which local time exists. As a Corollary of Theorem
1.3.1, the image of W%? by H is an invariant measure for the process ((Xt, L), t> O). This

image, which we denote by A% is equal, from (1.3.6), to :

~a,b 1 >
AT = —/ dx/ du (a Q%% +0Q%2) (1.3.9)
2Jr Jo ’ ’

Thus, we have obtained :
Theorem 1.3.2. The measure A%Y is an invariant measure for the process ((Xt, L), t > O).

We shall now give a different proof of Theorem 1.3.2 than the one we have just indicated.
This proof has the further advantage that it hinges on arguments which shall be useful in the
sequel. We begin with the :

Lemma 1.3.3 Let g€ Z
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(9) (2)
1) Define of (x) :== W (6_%‘40%) =W, (e‘%ADZ Ir,). Then, @ is the unique solution of

Sturm-Liouville equation :

" =qp with boundary conditions :
1
—o0 P2(Y)

(q) (q)
2) Define ¢, (x) := W (e_%’%g ) =W, (e_%’%% 1p_). Then, ¢g 18 the unique solution of
the Sturm-Liouville equation :

o =qp with boundary conditions :
1
pla) ~ x| plz) — C:= /ooidy (1.3.11)
—oo P2(y)
Proof of Lemma 1.3.3.
It suffices, by symmetry, to prove point 1. We have
()
W, (e 2% 1r,) = ¢ (x) W (Ty)  (from (1.1.16))
= lim pq(x) WO (T, < Ty)
a——00 ’
b—+o0
But, from (1.1.14), this limit equals :
Vq(®) = 79(=20) V(@) — o
pq(x = () ———— 1.3.12
Q( ) QDq(OO)—’Yq(—OO) q( ) ﬂ—a ( )
where 7, is given by (1.1.14). Hence :
Yq(2) — @
g () = pq(@) qﬂ — (1.3.13)
It remains to prove that ¢/ satisfies the announced conditions. But (with -y for ) :
A\ o 1 V(I) - / 7/(x) ’Y”(x)
@) = et (T0) 20 ) T

- (2222) 4 26(0)

1 eq(z) (- @y(x) -
F—a 20 +ﬁ_a< 2 > (from (1.1.14))

i-a 20
= v (1950) = a0 P = ot o) (1314)
On the other hand :
(@) = ) TLZIER) |y o g (1.3.15)
1 1 7(00) - ’Y(—OO) z—o0 ' d T—00 o
|
2 T
WHM%@)iﬁé?%lw ﬁ;L+QC«}@,
/m 22(y) /foo v2(y)
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(since ¢4(y) is equivalent to |y| when y goes to —o0).
This proves Lemma 1.3.3. |

‘We now prove Theorem 1.3.2.

Of course, by symmetry, it suffices to show that the measure : At = / dr A, where A}

R
is the image of W by L, is invariant for the process ((X¢,L{), t > 0). We note that from
(1.3.6), we have :

T,u

~ 1 o0
A = —/ du Q20 (1.3.16)
0

We denote by (Q;, t > 0) the semi-group which is associated to the Markov process ((Xt, L), t>
0), and we consider F : R x Q — R, of the form :

F(z,l) = f(x) exp (—; <q,l >> (1.3.17)

= [f(z)exp <—%/Rl(y)q(y)dy>

for ¢ € Z and f Borel, bounded. Then, for such an F', we obtain, by definition of the process
(X¢,LY), t>0) :

QiF (z,1) =W (f(x +X,) exp {—% <ql> —% /th(x + Xs)ds}> (1.3.18)

Now, from the monotone class theorem, Theorem 1.3.2 shall be obtained once we show that :
/ da;'/~ AS(dl) QiF (x,1) = / d:L'/~ AL (dl)F(x,1) (1.3.19)
R Q R Q
for every t > 0. But, from Lemma 1.3.3, we have :
L j@
W, | exp —3 AL 1,
1
/NA:(dl)eXp <—2 <aq,l >) = i (z) (1.3.20)
Q

since A is the image of W} by L.
Thus, the left-hand side of (1.3.19) writes :

W <exp f% Al

~
I

LHS = <QiF,1>5,
— /dx/~A;(dZ)W(f(x+Xt)e—%<‘ﬂ>—%J'SQ<x+Xs>d8)
R Q

(from (1.3.18))

W </R dr o} (2)f(z + X2) exp <_% /Ot oz + Xs)ds>>

(from Fubini and (1.3.20))

- /Rf(y)dyW (gag(y ~ X)) exp <; /Ot aly — X; + Xs)ds)> (1.3.21)
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after making the change of variables x + X; = y. On the other hand, the right-hand side of

(1.3.19) equals :
d At(d X _1 >
/]I y/~ y(l)f(y)ep< 2<laQ>

/R fy) o5 (y)dy (1.3.22)

RHS

from (1.3.20). Thus, Theorem 1.3.2 is an immediate consequence of the following :

Lemma 1.3.4. For everyq €Z, x real and t > 0:

W (e (y — Xi) exp <_%/0 qly — X + Xs)ds> ) =¢d(y) (1.3.23)

Furthermore, (1.8.23) is also true when goar is replaced by @, or ¢q.
Proof of Lemma 1.3.4.

w <<p§{(y — X;) exp (—% /Ot qaly — Xi + Xs)d8>)
W <<pq+(y ~ X)) exp (-% /O Caly— X+ Xtr)dr>>

(after making the change of variables s =¢ —r).

=W (@I(y — X3) exp (; /Ot qly — Xr)dr)>

(since the process (X; — X;—, 0 < r <) has the same law as (X, 0 <r < t))

=W, (Sﬁ(Xt) exp <—% /th(Xr)dr>>

(since (—X,, 7 > 0) has the same law as (X,, r > 0))

1 t
because, from (1.3.10) and Itd’s formula, (go;r(Xt) exp (—5/ q(Xr)dr> ,t> O) is a
0

((#, t = 0), W,) martingale.
Remark 1.3.5.
1) We denote by G the infinitesimal generator of the process ((Xt, JLD), t > 0). For a function
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F' of the form given by (1.3.17), we obtain :

GF(x,1)
% Ly QsF (D)
% L (f(x + X,) exp (—% <gql> —% /Osq(x +Xr)dr>>
(from (1.3.18))
— exp (—% <ql >> . E (@) - lq(x)f(ac)} (1.3.24)

2
1 8°F 1

Another way to prove Theorem 1.3.2 consists in showing that, for every F of the form (1.3.17),
we have :

<GF 1>100=0 (1.3.26)

Let us prove (1.3.26). N N
By symmetry, it suffices to prove (1.3.26) by replacing A®? by A*. Now, we obtain, for F' of
the form (1.3.17) with f of class C?, with compact support :

<GF 1> = /dx/A (dl) —-<ql>< f'(@) = %q(w)f(m))
(from (1.3.24))

= [ it (— @) - )0
(from Lemma 1.3. 3)
= [ 5@ ) @)~ ale)e} @) do
(after integrating by parts)
=0 (from Lemma 1.3.3.)

2) Theorem 1.3.2 invites to ask the following question : is the process ((Xt, L), t > O)
reversible with respect to the measure A%, i.e. : does the following hold :

< QsF, G >zap=< F, Q.G > S (1.3.27)

for every F,G : R x Q — R, measurable and positive ? The answer to this question is
negative. In particular, the operator G is not symmetric, i.e., in general :

<GF, G >1apv#< F, GG >1ap (1.3.28)

1 ~ ~
‘We now show (1.3.28), with F'(z,l) = f(z) exp (—5 <q,l >>, G(z,1) = g(z), A=A

= ALL Assuming that the equality would hold in (1.3.28), we would obtain, after an
elementary computation :

<GF G>; = /Rgaq(x)g(x) (% () - %q(m)f(:v)) dx

— [ i@ @iz =< F. GG >
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Thus, the preceding equality would imply, after integrating by parts and use of the relation
/"
Pq=4%q *

—2q(x)pq(2) f(2) = 204 (2) f'(z)

for every f in class C2, with compact support, which is absurd.

3) Of course, the preceding point implies that the measure Wb which is invariant for the
process (X;, t > 0) is not reversible.

4) The following relation, which has been obtained from Lemma 1.3.3 and the definition of
AL

W, [@;t(xt) exp <_%A§q>)] - /@ AZ(dl) exp (—% <ql >> (1.3.29)

is a particular case of the following result, which is found in ([RY, M], Chap. 2) :

Let F: Q — R, measurable, and ”sub-exponential at infinity”, (i.e. : there exists ¢ € 7 and

C > 0 such that, for every [ € S~2, Fl)<cC eXp(— <q,l> )), then :

(/ﬁ Ay, (d)F(L+LY), t > o> (1.3.30)
isa ((F, t >0), W) martingale ; hence :
W, (/5 Kit(dZ)F(HL;)) - W, </§ Kio(dl)F(l)>

/Nxf(dl)F(l) (1.3.31)
Q

1
If F(I) =exp (—5 <q,l >>, we have :

/@ AL@F1+ 1) = /~ A% (dl) exp (; <ql> f% /R q(x)Lfdx>

Q

1
= gpf]t(Xt)eXp <—§A§q)>

1
Thus, when : F(I) = exp <—§ <q,l >>, (1.3.31) is nothing else but (1.3.29) since :

W (s e (~540) ) = i o)

5) Theorem 1.3.2 also invites to ask the question : are the measures (Ka’b, a,b > 0) the only
invariant measures of the process ((Xt, L), t> 0). Here is a partial answer to this question.

Let A be an invariant measure for this process.

i) Since the first component of ((Xt, L), t > ()) is a Brownian motion, and that process
admits as its only invariant measure (up to a multiplicative factor) the Lebesgue measure on
R, the measure A admits a disintegration of the form :

A(dz,dl) = dz A (dl) (1.3.32)

67



and, denoting by @, the function defined by :
~ ~ 1
Pglx) = Ay <exp—§ <q,l >> (1.3.33)

the computations which lead to (1.3.21) and to (1.3.22) imply, if A is invariant :

auta) = . (a0 (-5 [ t )

It follows from this formula, using It6’s Lemma, that :

3 = a8, (1.3.34)

The vector space of the solutions of the Sturm-Liouville equation has dimension 2 ;
hence, there exist two constants Cy(g) such that :

Pq(z) = Ci(@)ef () + C_(q)py (x) (1.3.35)

it) The invariant measure A% which we described in Theorem 1.3.2, and which writes :

~a, 1 _
o 2 / dz(aAf +bAL) = / dz AP (1.3.36)
2 J/r R
1
with ASY .= §(aA;“+bA;) (1.3.37)

enjoys the following property : both limits

1 1 1
lim — A‘;’b <exp—§ <q,l >> and lim —

r——+00 I T——00 |£U‘

1
AP <exp —5 <l >> (1.3.38)

do not depend on g € Z. Indeed,

a

x T—00 2

1 1 1 _
- Ag’b (exp —3 <q,l >> =3 (ag@&"(x) + b, (x)) —

r——00 2

1 1
from Lemma 1.3.3 and m AP <exp—§

iii) We now assume that the invariant measure A, which equals : A(dz,dl) = dazA,(dl) also
satisfies that both limits :

) b
<qg,l>] — =

o~ ~

1 1
lim — A, <exp—§ <q,l >> and lim — A, <exp—— <q,l >>

T—00 I T——00 ‘,’L’| 2

~ ~ab
exist and do not depend on ¢ € Z. Then, there exist a and b positive, such that : A = A
Indeed, from (1.3.35), together with Lemma 1.3.3 and (1.3.33), we have :

lim lfxx (exp (—% < q,l >>> = lim 2162

Tr—00 I T—00 T

o CH@9f @) +C(@)ey @)

T—00 T

= 04 (q) (1.3.39)
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Thus, C4(¢) (and C_(q), by symmetry) are constants, which we shall denote respectively as
g and 5 Thus, we have :

5 5 Pq (2)
_ Aa_,b(e—%<q,l>)

~ 1 a b
Aw<exp—§<q,l>> = —903'( x)+ =

—~ ~ ~a,b
Hence : A, = A;’b and A=A"

1.3.4 Invariant measures of the process (L™, t > 0).

1.3.4.1 For t > 0, we define the random measure p; via :

pe(f) =/0 F(Xi — Xs)ds (1.3.40)

with f positive, continuous and bounded. It is proven in [DMY] that (g, t > 0) is a Markov
process taking values in the space of positive measures on (R, B(R)). Due to the density of
occupation formula, we may write (1.3.40) in the form :

w(f) = / f(Xy —y)Lidy
- / FLE dz (1.3.41)
R
We deduce that :
pe(dz) = L¥™7 dz (1.3.42)

Hence, rather than working in the space of measures on R, we shall consider the Markov
process (L;*™*, t > 0) which takes values in Q = C(R — Ry).
1.3.4.2 Of course, this Markov process is the image of the process ((Xt,LZ), t> 0) by the
application :
0:RxQ—Q
defined by : N
Oz, D)(y) =l(x —y) z,yeR, 1€ (1.3.43)

This application € is not bijective since :
O(z,1) = 0(z',1")
as soon as :
l(x—a"+2)=1(z2) (1.3.44)
for every z € R i.e. : as soon as I’ is an adequate translate of [.

i) We begin by verifying directly, i.e. : without using the result of Donati-Martin-Yor recalled

above - that the process (L;*"®, t > 0), which takes values in C(R — R ) is Markovian, in
the natural filtration of the process ((XhL;)7 t > O). For this purpose, using Dynkin’s
criterion (see [D]), and denoting by (Q:, ¢ > 0) the semi-group associated to the process
(X, L}), t > 0), one needs to verify that :

Qu(F 0 0)(x,1) = Qu(F 0 0)(z, 1) (1.3.45)
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for every t > 0 and F': Q— R, measurable, as soon as :
0(z,1) = 0(z',1")

Of course, from the monotone class theorem, it suffices to prove (1.3.45) for F' of the form
F,, g €1, with :

Fy(l) = exp <—% < gl >> (le) (1.3.46)

We have, from (1.3.43) :

1
F,00(z,l) = exp <—§<q,l(x—-) >>

= exp <—%/}Rq(y)l(m - y)dy) = exp (-% <yl >> (1.3.47)
with &) = qlz —y) (1.3.48)

Thus, from (1.3.18) :

1 1/t
Qu(Fy00)(z,l) =W (exp <—§ < >]/$+Xt,l > —5/ gz + Xy — (x + Xr))dr>> (1.3.49)
0
However :

Vv
x> = / ala + X, — y)i(y)dy
R

/ 4(X; + 2)i(x — 2)dz (1.3.50)
R
Thus, from (1.3.44), if 0(x,1) = 0(a’,1"), we have :

!/ / v v !/
l(x—2z)=1(z'—2) hence < dyix,,l>=<qpix,,I'>
It now follows from (1.3.49) that :
Qu(Fy00)(x,1) = Qi(F,00)(a',1')

1.3.4.3 Invariant measures for the process (L;*™°, ¢ > 0).

Of course, from Theorem 1.3.2, the image of Aab by 6 (deﬁned by (1.3.43)) is an invariant
measure for the process (LtXﬁ', t > 0). Unfortunately, an elementary computation shows
that this measure is identically infinite. Thus, we need to find directly - without refering to
A%’ - invariant measures for (L;%"™°, ¢ > 0).

Theorem 1.3.6. Let a,b > 0, and :

A = aAf + DAy (1.3.51)

Then, A®® is an invariant measure for (LtXt_', t>0).
We recall that Ag is the image of Wg = W+ by the application £. In particular :

1
Ag—“(emp—5 <ql>)=¢;(0) (¢eI) (1.3.52)
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We now show Theorem 1.3.6.
We denote by (Q, s > 0) the semi-group associated to the Markov process (L;*™°, t > 0).
Thus, we have, for (1.3.49) :

Q.(F)1) =W (exp (-% <q(Xo+ )0 > —% /O a(X, - Xr)dr)) (1.3.53)

1
with : Fy(l) = exp (—5 <q,l >>.

On the other hand, by symmetry, it suffices to show that the measure AT := Aar is invariant
for (L*~*, t > 0). We compute :

/ﬁmz)(@s(Fq))(n

= [ ara@w (e (—5 <ottt 0> -5 [ a0t - X0 ))

= W{(exp—%/osq(Xs—XT)dr) -/ﬁAJ“(dl)eXp (—% <q(Xs+~),l>>}

(from Fubini)

— {exp <_; /0 g(X, — Xr)dr) -@&Xﬁ,)(O)}

(from (1.3.52)). Now, it is easy to check that :
902_(X5+-)(0) = o7 (Xs) (1.3.54)
Thus :
— 1 [3
/ﬁAJr(dl)(Qs(Fq)(l)) = W ((p;r(XS)exp (—5/0 q(Xs —Xr)dr>>

= ¢S (0)

from Lemma 1.3.4 (replacing (Xy, t > 0) by (—=Xy, ¢t > 0))

:/~A+(dl)Fq(l) (from (1.3.52))
Q

This is Theorem 1.3.6. |
Remark 1.3.7.

1) Arguing as in point 2 of Remark 1.3.5, it is easily shown that none of the measures A%
is reversible for the process (L™, t > 0).

2) Here is another way to prove that A®’ is invariant. (We give the details for AT). We
1
have, with Fy(l) = exp —3 < q,l >, from (1.3.53) :

QU1 =W <eXp (_% < q(Xot )l > —% /0 q(XT)dr)) (1.3.55)
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We proceeded from (1.3.53) to (1.3.55) by making the change of variable r = s — u and using

the fact that, under W, (X; — Xs—p, 7 < ) (lgv)(X,), r < s). Thus, denoting by G the

infinitesimal generator of the semi-group (Q,, s > 0), we obtain :

— d
ds | s=
dii s_: w [g(Xs)exp (; /OS q(Xﬁdr)}

<with g(x) = exp <—% <q(z+-),1 >) )

'(0) — 5 4(0) 9(0)

g
[8952 2=0 < (_% <aqlz+),1 >> —q(0) exp (—% <ql >>]

<GF, 1>\ = /N§Fq(l)A+(dl)

= /A+ (dl) ( exp( % l>>—q(0)exp<—%<q,l>>>

= (670 ~ a0 0) = (1.3.56)

S

Q,(Fy)(1)

1
2
1
2

Thus :

after interverting the second derivative and integration with respect to A*(dl), using Lemma
1.3.3 and the fact that gp:;(“.)(O) = @ (x). From relation (1.3.56), we deduce of course that :

<Q,F;,1>,+=<F,,1 >+, ie. that AT is invariant.

72





