CHAPTER 5

Part 1. Elliptic modular functions $\bmod p$ and $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$.

Our purpose in Part 1 of this chapter is to formulate and prove a fundamental relation between the classes $\bmod \mathfrak{P}(\mathfrak{P} \mid p)$ of the special values of elliptic modular functions $J(z)$ and the group $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ (Theorems $\left.1,1^{\prime} ; \S 5\right)$. This is a fruit of
(i) Deuring' s work on complex multiplication of elliptic curves [4] [6] [7],
(ii) a new standpoint.

Roughly speaking, (ii) is of:
"A fixed p and variable imaginary quadratic fields and lattices",
instead of "a fixed imaginary quadratic field and variable p ", which was the standpoint of classical complex multiplication theory. However, besides this new standpoint, nothing more is to be added to Deuring' s work. In fact, the proof of Theorems $1,1^{\prime}$ based on Deuring's results is quite elementary.

As described in [18], our Theorems $1,1^{\prime}$ give a starting point of our problems. Generalizations to congruence subgroups of Γ (announced in $\S 10$) will be given in Part 2 of this chapter.

$$
\text { Elliptic modular functions mod } p \text { and } \Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right) .
$$

§1. Throughout this chapter, p is a fixed prime number and Π is the cyclic subgroup of \mathbf{Q}^{\times}generated by p. Put $\mathbf{Z}^{(p)}=\Pi \cdot \mathbf{Z}=\cup_{n=0}^{\infty} p^{-n} \mathbf{Z}$, and put

$$
\begin{equation*}
\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right) \tag{1}
\end{equation*}
$$

It is a discrete subgroup of

$$
G=G_{\mathbf{R}} \times G_{p}=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(\mathbf{Q}_{p}\right)
$$

We already know that the quotient G / Γ has finite invariant volume and that $\Gamma_{\mathbf{R}}, \Gamma_{p}$ are dense in G_{R}, G_{p} respectively (see Chapter $1, \S 1, \S 2$). Put

$$
\begin{equation*}
\Gamma^{*}=\left\{x \in G L_{2}\left(\mathbf{Z}^{(p)}\right) \mid \operatorname{det} x \in \Pi\right\} / \pm \Pi . \tag{*}
\end{equation*}
$$

Then this is a discrete subgroup of $G^{*}=G_{\mathbf{R}} \times G_{p}^{*}$, where

$$
\begin{equation*}
G_{p}^{*}=\left\{x \in G L_{2}\left(\mathbf{Q}_{p}\right) \mid \operatorname{det} x \in \Pi\right\} / \pm \Pi . \tag{2}
\end{equation*}
$$

Since Γ is isomorphic to $\left\{x \in G L_{2}\left(\mathbf{Z}^{(p)}\right) \mid \operatorname{det} x \in \Pi^{2}\right\} / \pm \Pi$, Γ can be considered as a subgroup of Γ^{*} of index two, and in the same manner, G_{p} and G can be considered as subgroups of G_{p}^{*} and G^{*} respectively with index two. So, it is clear that G^{*} / Γ^{*} has finite invariant volume, the projections $\Gamma_{\mathbf{R}}^{*}, \Gamma_{p}^{*}$ of Γ^{*} are dense in $G_{\mathbf{R}}, G_{p}^{*}$ respectively, and that $\Gamma^{*} \cap G=\Gamma$.
§2. $\varphi(\Gamma)$ and $\wp\left(\Gamma^{*}\right)$. Now let $\wp(\Gamma)$ be as in $\S 3$ of Chapter 1. So, it is the set of all Γ-equivalence classes of all Γ-fixed points on $\mathfrak{S}=\{z \in \mathbf{C} \mid \operatorname{Im} z>0\}$. Recall that a point $z \in \mathfrak{G}$ is called a Γ-fixed point if its stabilizer in Γ (identified with $\Gamma_{\mathbf{R}}$) is infinite. Since $\Gamma^{*} \cong \Gamma_{\mathbf{R}}^{*} \subset G_{\mathbf{R}}$, this definition also carries over at once to the group Γ^{*};

$$
\begin{equation*}
\wp\left(\Gamma^{*}\right)=\left\{\Gamma^{*} \text {-fixed points on } \mathfrak{G}\right\} / \Gamma^{*} \text {-equivalence. } \tag{3}
\end{equation*}
$$

Note that a point $z \in \mathfrak{G}$ is a Γ^{*}-fixed point if and only if it is a Γ-fixed point. In fact, if the stabilizer Γ_{z}^{*} of $z \in \mathfrak{G}$ in Γ^{*} is infinite, then $\Gamma_{z}=\Gamma \cap \Gamma_{z}^{*}$ is also infinite, for $\left(\Gamma_{z}^{*}: \Gamma_{z}\right) \leq$ $\left(\Gamma^{*}: \Gamma\right)=2$. It is also easy to see that if z is a Γ^{*}-fixed point, then the Γ^{*}-equivalence class containing z consists of either one or two Γ-equivalence classes, and that it is the latter if and only if Γ_{z}^{*} is contained in Γ. Such relations will be expressed as:

$$
\varphi\left(\Gamma^{*}\right) \ni P^{*} \Rightarrow \begin{cases}P^{*}=P ; & P \in \wp(\Gamma) \tag{4}\\ \text { or } & \\ P^{*}=P_{1} P_{2} ; & P_{1}, P_{2} \in \wp(\Gamma), P_{1} \neq P_{2}\end{cases}
$$

(Such relations between $\wp\left(\Gamma^{*}\right)$ and $\wp\left(\Gamma^{\prime}\right)$ for normal subgroups Γ^{\prime} of Γ^{*} with nonabelian quotients, and their arithmetic meanings will be the main subject of our study in Part 2 of this chapter.)
§3. Let $P^{*} \in \wp\left(\Gamma^{*}\right)$ and let z be a Γ^{*}-fixed point contained in the class P^{*}. Let Γ_{z}^{*} be the stabilizer of z in Γ^{*}. Then the argument of $\S 4$ of Chapter 1 can be applied to Γ_{z}^{*}, which asserts that $\Gamma_{z, p}^{*}$ is an infinite discrete abelian subgroup of G_{p}^{*} and that there exists $x \in G_{p}^{*}$ such that $x^{-1} \Gamma_{z, p}^{*} x \subset T_{p}^{*}$, where T_{p}^{*} is the diagonal subgroup of G_{p}^{*}. For each $\gamma^{*} \in \Gamma_{z}^{*}$, put $x^{-1} \gamma_{p}^{*} x=\left(\begin{array}{cc}t_{1} & 0 \\ 0 & t_{2}\end{array}\right)$ and $t=t_{1} t_{2}^{-1} \in \mathbf{Q}_{p}^{\times}$. Then the map $\gamma^{*} \mapsto \operatorname{ord}_{p} t$ is a homomorphism of Γ_{z}^{*} into \mathbf{Z}, and since $\Gamma_{z, p}^{*}$ is infinite and discrete in G_{p}^{*}, the image of this homomorphism is not $\{0\}$. Denote the image by $a \mathbf{Z}(a>0)$ and the kernel by $\Gamma_{z}^{* 0}$. Then, since $\Gamma_{\gamma^{*} z}^{*}=\gamma^{*} \Gamma_{z}^{*} \gamma^{*-1}$ holds for all $\gamma^{*} \in \Gamma^{*}$ and since $t_{1}: t_{2}$ is the ratio of two eigenvalues of γ_{p}^{*} for every $\gamma^{*} \in \Gamma_{z}^{*}$, the positive integer a is independent of the choice of z. So, we shall denote it by $\operatorname{Deg} P^{*}$. Also, for each $\gamma^{*} \in \Gamma_{z}^{*}$ we put $\operatorname{Deg} \gamma^{*}=\left|\operatorname{ord}_{p} t\right|$. Then it is clear that $\Gamma_{z}^{* 0}$ is the torsion subgroup of Γ_{z}^{*} and that $\operatorname{Deg} P^{*}=\operatorname{Deg} \gamma^{*}$ holds if γ^{*} is a generator of Γ_{z}^{*} modulo $\Gamma_{z}^{* 0}$. Now
recall Chapter $1(\S 4, \S 5)$ for the definition of $\operatorname{deg} P(P \in \wp(\Gamma))$. Then we can check easily that

$$
\operatorname{Deg} P^{*}= \begin{cases}\operatorname{deg} P & \cdots P^{*}=P, P \in \wp(\Gamma), \tag{5}\\ 2 \operatorname{deg} P_{i}(i=1,2) & \cdots P^{*}=P_{1} P_{2}, P_{1}, P_{2} \in \wp(\Gamma) .\end{cases}
$$

holds for all $P^{*} \in \wp\left(\Gamma^{*}\right)$. Moreover, $\operatorname{Deg} P^{*}$ is odd in the former case.
§4. Let k be an algebraically closed field. Then, for each elliptic curve E over k, a number $j \in k$ called the absolute invariant of E is defined, and the map $E \rightarrow j$ gives a one-to-one correspondence between the set of all (k-isomorphism classes of) elliptic curves over k and that of all elements of the field k. If the characteristic of k is neither 2 nor 3 , then E is k-isomorphic to an elliptic curve defined by the equation $y^{2}=4 x^{3}-g_{2} x-g_{3}$ $\left(g_{2}, g_{3} \in k ; g_{2}^{3}-27 g_{3}^{2} \neq 0\right)$, and j is given by $j=12^{3} \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}$. In the case of characteristic 2 or $3, j$ is also defined, and the bijectivity of the map $E \mapsto j$ is proved in M. Deuring [5].

Let $k=\mathbf{C}$. Then, elliptic curves over \mathbf{C} are given by complex tori $\mathbf{C} /\left[\omega_{1}, \omega_{2}\right]$. For each $z \in \mathfrak{G}$, we shall denote by $J(z)$ the absolute invariant of the elliptic curve given by the torus $\mathbf{C} /[1, z]$. It is well-known that $J(z)$, called elliptic modular function, is an automorphic function with respect to $P S L_{2}(\mathbf{Z})$.

Now let k be of characteristic $p \neq 0$, let \mathbf{F}_{p} be the prime field, and let $\overline{\mathbf{F}}_{p}$ be the algebraic closure of \mathbf{F}_{p} (hence $\overline{\mathbf{F}}_{p} \subset k$). For each elliptic curve E over k, we denote by $\mathcal{A}(E)$ the endomorphism ring of E. Then, (i) if $j \notin \overline{\mathbf{F}}_{p}, \mathcal{A}(E) \cong \mathbf{Z}$; (ii) if $j \in \overline{\mathbf{F}}_{p}$, $\notin S$, then $\mathcal{A}(E)$ is an order of an imaginary quadratic field; (iii) if $j \in S$, then $\mathcal{A}(E)$ is a maximal order of a certain quaternion algebra over \mathbf{Q}. Here, S is a certain finite set contained in $\mathbf{F}_{p^{2}}$, and elements of S are called supersingular (cf. Deuring [4]). Put $S=S_{1} \cup S_{2}$ with $S_{1}=S \cap \mathbf{F}_{p}, S_{2}=S-S_{1}=S \cap\left(\mathbf{F}_{p^{2}}-\mathbf{F}_{p}\right)$. Then S_{2} (and hence also S) is invariant by the automorphisms of $\mathbf{F}_{p^{2}}$ over \mathbf{F}_{p}, and we have the following formulae for the cardinalities of S and S_{1} (cf. [4] ${ }^{1}$).

$$
|S|= \begin{cases}1 & \cdots p=2,3 \tag{6}\\ \frac{p-1}{12}, \frac{p+7}{12}, \frac{p+5}{12}, \frac{p+13}{12} & \cdots p \equiv 1,5,-5,-1(\bmod 12)\end{cases}
$$

respectively;

$$
\left|S_{1}\right|=\left\{\begin{array}{ccc}
1 & \cdots & p=2,3 \tag{7}\\
\varepsilon h & \cdots & p \neq 2,3
\end{array}\right.
$$

where h is the class number of $\mathbf{Q}(\sqrt{-p})$ and $\varepsilon=1 / 2,2,1$ for $p \equiv 1(\bmod 4), 3(\bmod 8)$, $7(\bmod 8)$ respectively.
§5. Now we are going to state our Theorem. We use the following notations:
$\overline{\mathbf{Q}}$: the algebraic closure of \mathbf{Q} in \mathbf{C}.
$\overline{\mathbf{Z}}$: the ring of integers of $\overline{\mathbf{Q}}$
\mathfrak{P} : a prime divisor of p in $\overline{\mathbf{Q}}$, and fix an isomorphism $\overline{\mathbf{Z}} / \mathfrak{P} \cong \overline{\mathbf{F}}_{p}$.

[^0]$j_{1} \sim j_{2}\left(j_{1}, j_{2} \in \overline{\mathbf{F}}_{p}\right) \leftrightarrow j_{1}, j_{2}$ are conjugate over \mathbf{F}_{p},
$j_{1} \approx j_{2}\left(j_{1}, j_{2} \in \mathbf{F}_{p}\right) \leftrightarrow j_{1}, j_{2}$ are conjugate over $\mathbf{F}_{p^{2}}$,
The degree of \sim-class of $j_{1}=$ the degree of j_{1} over F_{p}, denoted by $\operatorname{Deg}\left\{j_{1}\right\}$,
The degree of \approx-class of $j_{2}=$ the degree of j_{2} over $\mathbf{F}_{p^{2}}$, denoted by $\operatorname{deg}\left\{j_{2}\right\}$.
Theorem 1. Let P^{*} be an element of $\wp\left(\Gamma^{*}\right)$, and let z be a Γ^{*}-fixed point which defines the class P^{*}. Then $J(z)$ is contained in \mathbf{Z}, and the map
\[

$$
\begin{equation*}
\mathcal{J}^{*}: P^{*} \mapsto J(z) \quad \bmod \mathfrak{P} \tag{8}
\end{equation*}
$$

\]

gives a one-to-one correspondence between $\wp\left(\Gamma^{*}\right)$ and $\left(\overline{\mathbf{F}}_{p}-S\right) / \sim$. Moreover,

$$
\begin{equation*}
\operatorname{Deg} \mathcal{J}^{*}\left(P^{*}\right)=\operatorname{Deg}\left(P^{*}\right) \tag{9}
\end{equation*}
$$

holds for all $P^{*} \in \wp\left(\Gamma^{*}\right)$.
The corresponding Theorem for $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$ is the following:
Theorem 1^{\prime}. Let P be an element of $\varphi(\Gamma)$, and let z be a Γ-fixed point which defines the class P. Then $J(z)$ is contained in $\overline{\mathbf{Z}}$, and the map

$$
\mathcal{J}: P \rightarrow J(z) \quad \bmod \mathfrak{P}
$$

gives a one-to-one correspondence between $\varphi(\Gamma)$ and $\left(\overline{\mathbf{F}}_{p}-S\right) / \approx$.
Moreover,

$$
\operatorname{deg} \mathcal{J}(P)=\operatorname{deg} P
$$

holds for all $P \in \mathscr{\varnothing}(\Gamma)$.
These results are entirely based on the theory of complex multiplication of elliptic curves mainly by M. Deuring [4] [6] [7]. So, before the proof, we shall give a summary of the main results of Deuring.

Deuring's results. ${ }^{\mathbf{2}}$

§6. Let Q^{\prime} be an imaginary quadratic field. Then, a lattice \mathfrak{A} in Q^{\prime} is a free \mathbf{Z}-module in Q^{\prime} with rank two, and two lattices $\mathfrak{A}, \mathfrak{U}^{\prime}$ are equivalent (or belong to the same class) if $\mathfrak{U}^{\prime}=\rho \mathfrak{A}$ holds with some $\rho \in Q^{\prime \times}$. An order O in Q^{\prime} is a subring of Q^{\prime} containing 1 which is at the same time a lattice in Q^{\prime}. The ring of all algebraic integers is an order, denoted by O_{1}. Then all orders O are contained in O_{1}, and for every positive integer f, there is one and only one order O such that $\left(O_{1}: O\right)=f$. So, $O \leftrightarrow f$ is one-to-one. We shall denote as $O=O_{f}$ and call f the conductor of O. If \mathfrak{A} is a lattice, then $O_{\mathfrak{I}}=\left\{x \in Q^{\prime} \mid x \mathfrak{A} \subset \mathfrak{U}\right\}$ is an order, called the order of \mathfrak{A}. In this case, \mathfrak{A} is called a proper $O_{\mathfrak{A}}$-ideal. It is clear

[^1]that equivalent lattices have a common order. Given an order O, the set of all proper O ideal classes form a finite multiplicative group, denoted by G_{O}. Therefore, we have the following one-to-one correspondence:
\[

$$
\begin{equation*}
\text { All lattice classes in } Q^{\prime} \underset{1: 1}{\longleftrightarrow} \bigcup_{f=1}^{\infty} G_{O_{f}} \tag{10}
\end{equation*}
$$

\]

§7. Let $O=O_{f}$ be an order of an imaginary quadratic field Q^{\prime}. By $\left(\frac{o}{p}\right)=1$, we mean that both $\left(\frac{Q^{\prime}}{p}\right)=1$ and $f \neq 0(\bmod p)$ hold;

$$
\left(\frac{O}{p}\right)=1 \longleftrightarrow\left\{\begin{array}{l}
\left(\frac{Q^{\prime}}{p}\right)=1, \text { and } \tag{11}\\
f \equiv 0 \quad(\bmod p) .
\end{array}\right.
$$

For each O with $\left(\frac{O}{p}\right)=1$, put $\mathfrak{p}=\mathfrak{P} \cap Q^{\prime}$ and $\mathfrak{p}_{O}=\mathfrak{p} \cap O$, where \mathfrak{P} is the fixed prime divisor of p in $\overline{\mathbf{Q}}$. Denote by $\left\{\mathfrak{p}_{O}\right\}$ the class of \mathfrak{p}_{O} in G_{O}, by P_{O} the cyclic subgroup of G_{O} generated by $\left\{p_{O}\right\}$, and by d_{O} the number of elements of P_{O};

$$
\begin{equation*}
G_{O} \supset P_{O}=\left\{\{O\},\left\{\mathfrak{p}_{O}\right\}, \cdots,\left\{\mathfrak{p}_{O}^{d_{O}-1}\right\}\right\} \tag{12}
\end{equation*}
$$

Finally, for any lattice \mathfrak{A} in any imaginary quadratic field, we denote by $j(\mathfrak{H})$ the absolute invariant of the elliptic curve given by the complex torus $\mathbf{C} / \mathfrak{A}$. Then it is well-known that $j(\mathfrak{A}) \in \overline{\mathbf{Z}}$. Now, denoting by $\bar{j}(\mathfrak{H})$ the element of $\overline{\mathbf{F}}_{p}(\cong \overline{\mathbf{Z}} / \mathfrak{P})$ defined by $j(\mathfrak{H}) \bmod \mathfrak{P}$, we can formulate a main result of Deuring [6] [7] as follows:

Theorem D (M. Deuring). Let O run over all orders of all imaginary quadratic fields such that $\left(\frac{O}{p}\right)=1$. Then the map

$$
\begin{equation*}
\{\mathfrak{A}\} \rightarrow \widetilde{j}(\mathfrak{A}) \tag{13}
\end{equation*}
$$

gives a one-to-one correspondence between $\bigcup_{\left(\frac{o}{p}\right)=1} G_{O}$ and $\overline{\mathbf{F}}_{p}-S$.
Remark 1. Deuring has also proved that if \mathfrak{A} is a lattice in Q^{\prime} such that $\left(\frac{Q^{\prime}}{p}\right) \neq 1$, then $\bar{j}(\mathfrak{H}) \in S$ (cf. [4]).

Moreover, by the congruence relation for the modular equation of degree p, we have the following Theorem (cf. e.g., [4]).

Theorem C. Let \mathfrak{A} be a lattice in an imaginary quadratic field, and let \mathfrak{A}^{\prime} be another lattice contained in \mathfrak{A} such that $\left(\mathfrak{U}: \mathfrak{X}^{\prime}\right)=p$. Then we have

$$
\begin{equation*}
\tilde{j}\left(\mathfrak{A}^{\prime}\right)=\tilde{j}(\mathfrak{A})^{p^{ \pm 1}} \tag{14}
\end{equation*}
$$

Corollary . Let $\mathfrak{A}, \mathfrak{A}^{\prime}$ be two lattices in an imaginary quadratic field such that $\mathfrak{U}^{\prime} \subset \mathfrak{A}$ and $\left(\mathfrak{H}: \mathfrak{A}^{\prime}\right)=p^{n}$ with some n. Then $\widetilde{j}(\mathfrak{H})$ and $\widetilde{j}\left(\mathfrak{H}^{\prime}\right)$ are conjugate over \mathbf{F}_{p}. If moreover n is even, then they are conjugate over $\mathbf{F}_{p^{2}}$.

Now, by Theorem C, if $\left(\frac{o}{p}\right)=1,\{\mathfrak{A}\} \in G_{O}$, and $\mathfrak{A}^{\prime}=\mathfrak{p}_{0} \mathfrak{A}$ so that $\mathfrak{A} \subset \mathfrak{U}$ and $(\mathfrak{A}$: $\left.\mathfrak{U}^{\prime}\right)=p$ hold, then $\widetilde{j}\left(\mathfrak{p}_{o} \mathfrak{U}\right)=\widetilde{j}(\mathfrak{A})^{p^{ \pm 1}}$. But in such a special case, we have a more precise result, which is well-known in complex multiplication theory (cf. e.g., [7]); namely,

$$
\begin{equation*}
\bar{j}\left(\mathfrak{p}_{O} \mathfrak{A}\right)=\widetilde{j}(\mathfrak{A})^{p^{-1}} . \tag{15}
\end{equation*}
$$

Therefore, by (15) and by the injectivity of the map (13), the complete set of conjugates of $\widetilde{j}(\mathfrak{H})$ over \mathbf{F}_{p} is given by

$$
\begin{equation*}
\widetilde{j}(\mathfrak{A}), \tilde{j}\left(\mathfrak{p}_{O} \mathfrak{A}\right), \cdots, \tilde{j}\left(p_{O}^{d_{O}-1} \mathfrak{A}\right) . \tag{16}
\end{equation*}
$$

In particular, its degree over \mathbf{F}_{p} is equal to d_{O},

$$
\begin{equation*}
\operatorname{Deg} \bar{j}(\mathfrak{A})=d_{0} \tag{17}
\end{equation*}
$$

Remark. By the same reason, the degree of $\widetilde{j}(\mathfrak{Q})$ over $\mathbf{F}_{p^{2}}$ is the cardinality of P_{o}^{2}; hence it is equal to d_{O} (if d_{O} is odd) or to $\frac{1}{2} d_{O}$ (if d_{O} is even).

Proof of Theorems 1, $\mathbf{1}^{\prime}$.

§8. Here, we shall prove Theorem 1. Then, the proof will show that Theorem 1^{\prime} is an immediate consequence of Theorem 1 and the corollary of Theorem C.

Let z be a Γ^{*}-fixed point. Let γ be an element of Γ_{z}^{*} of infinite order represented by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbf{Z}),(a, b, c, d)=1, a d-b c=p^{n}$. Then, by the ellipticity of γ, we have $c \neq 0$, and since γ is moreover of infinite order, n cannot be 0 . Hence $n>0$. Put $\lambda=c z+d$. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{z}{1}=\lambda\binom{z}{1}$; hence λ is a quadratic integer with $N(\lambda)=p^{n}$. Moreover, by $\lambda=c z+d, \lambda$ is imaginary; hence, in particular, irrational. Let m be a positive integer and apply this result for γ^{m}. Then we see that λ^{m} is also irrational. Therefore, λ^{m} is not of the form (a power of p) \times (a root of unity), for if λ^{m} were of such a form, its suitable (positive integral) power must be rational. In particular, the ideal (λ^{2}) cannot be a power of (p). But since (λ) is integral with p-power norm, it must be of the form $(\lambda)=\mathfrak{p}^{a}$ if $\left(\frac{\mathbb{Q}(\lambda)}{p}\right) \neq 1$, where \mathfrak{p} is the unique prime factor of p in $\mathbf{Q}(\lambda)$. But then, we get $\left(\lambda^{2}\right)=\mathfrak{p}^{2 a}=(p)^{a}$ or $(p)^{2 a}$, which is impossible. Therefore, we get $\left(\frac{Q(z)}{p}\right)=\left(\frac{Q(1)}{p}\right)=1$.

Now let us prove that the map \mathcal{J}^{*} is well-defined. First, $J(z) \in \overline{\mathbf{Z}}$ is trivial, for we have $J(z)=j([1, z])$. Let $\delta \in \Gamma^{*}$, and put

$$
\delta=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in M_{2}(\mathbf{Z}), A D-B C=p^{r}
$$

Put $z^{\prime}=\delta z$. Then $J\left(z^{\prime}\right)=j\left(\left[1, z^{\prime}\right]\right)$ and $\left[1, z^{\prime}\right] \sim[A z+B, C z+D] \subset[1, z]$, and the group index is p^{r}. Therefore, by the Corollary of Theorem $\mathrm{C}, \bar{j}([1, z])$ and $\widetilde{j}\left(\left[1, z^{\prime}\right]\right)$ are conjugate over \mathbf{F}_{p}. Hence $J(z) \bmod \mathfrak{P} \sim J\left(z^{\prime}\right) \bmod \mathfrak{P}$. Moreover, if $\delta \in \Gamma$, then r is even; hence we get $J(z) \bmod \mathfrak{P} \approx J\left(z^{\prime}\right) \bmod \mathfrak{P}$ by the same corollary. Now, to show that $J(z) \bmod \mathfrak{P} \in \overline{\mathbf{F}}_{p}-S$, put $\mathfrak{A}=[1, z]$ and let $O=O_{f}$ be the order of \mathfrak{A}. Put $f=f_{0} p^{\nu}$
with $f_{0} \not \equiv 0(\bmod p)$, and put $O_{0}=O_{f_{0}}, \mathfrak{A}_{0}=O_{0} \mathfrak{A}$. Then $\mathfrak{A} \subset \mathfrak{A}_{0}$, and $\left(\mathfrak{A}_{0}: \mathfrak{A}\right)=p^{\nu}$. Therefore, $\widetilde{j}(\mathfrak{A})$ is conjugate to $\widetilde{j}\left(\mathfrak{A}_{0}\right)$ over \mathbf{F}_{p}. But since \mathfrak{A}_{0} is a proper O_{0}-ideal and since $f_{0} \not \equiv 0(\bmod \underline{p})$, we get $\bar{j}\left(\mathfrak{A}_{0}\right) \in \overline{\mathbf{F}}_{p}-S($ Theorem D$)$. Therefore, $J(z) \bmod \mathfrak{P}=\tilde{j}(\mathfrak{U})$ is contained in $\overline{\mathbf{F}}_{p}-S$. Therefore, the map \mathcal{J}^{*} is well-defined.

Surjectivity of \mathcal{J}^{*}. Let $\widetilde{j} \in \overline{\mathbf{F}}_{p}-S$. Then by Theorem $\mathrm{D}, \widetilde{j}=\widetilde{j}(\mathfrak{H})$ with some $\{\mathfrak{A}\} \in G_{O},\left(\frac{O}{p}\right)=1$. By multiplying some scalar to \mathfrak{A}, we can assume that $\mathfrak{A}=[1, z]$ with $z \in \mathfrak{H}$. Put $\mathfrak{P} \cap O=\mathfrak{p}_{O}, \mathfrak{p}_{O}^{d_{O}}=\pi_{O} \cdot O$, and put

$$
\pi_{O}\binom{z}{1}=\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right)\binom{z}{1}
$$

with $a_{0}, b_{0}, c_{0}, d_{0} \in \mathbf{Q}$. Then, since $\pi_{O} \in O$ and O is the order of $\mathfrak{A}, a_{0}, b_{0}, c_{0}, d_{0}$ must be integral. Moreover, $a_{0} d_{0}-b_{0} c_{0}=\pi_{O} \bar{\pi}_{O} \in \Pi$. Therefore, $\gamma_{0}^{*}=\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$ is an element of Γ^{*}, and $\gamma_{0}^{*} \cdot z=z$. Since all positive integral powers of π_{O} are irrational, γ_{0}^{*} is of infinite order in Γ^{*}. Therefore, z is a Γ^{*}-fixed point. Therefore, by

$$
J(z) \bmod \mathfrak{P}=\widetilde{j}(\mathfrak{H})=\widetilde{j},
$$

we get the surjectivity of \mathfrak{J}^{*}.
Injectivity of $\mathcal{J}^{* 3}$. Let z, z^{\prime} be two Γ^{*}-fixed points, put $\mathfrak{A}=[1, z], \mathfrak{A}^{\prime}=\left[1, z^{\prime}\right]$; put $O=$ $O_{\mathfrak{U}}=O_{f}, O_{0}=O_{f_{0}}, \mathfrak{A}_{0}=O_{0} \cdot \mathfrak{A}$ as above, and let $O^{\prime}, O_{0}^{\prime}, \mathfrak{A}_{0}^{\prime}$ be the correspondings for \mathfrak{A}^{\prime}. Suppose that $J(z) \bmod \mathfrak{P}$ and $J\left(z^{\prime}\right) \bmod \mathfrak{P}$ are conjugate over \mathbf{F}_{p} so that $\bar{j}(\mathfrak{X}) \sim \bar{j}\left(\mathfrak{A}^{\prime}\right)$. Then, since we have $\bar{j}(\mathfrak{A}) \sim \bar{j}\left(\mathfrak{A}_{0}\right)$ and $\bar{j}\left(\mathfrak{H}^{\prime}\right) \sim \widetilde{j}\left(\mathfrak{A}_{0}^{\prime}\right)$, we get $\bar{j}\left(\mathfrak{H}_{0}\right) \sim \bar{j}\left(\mathfrak{H}_{0}^{\prime}\right)$. So, by the last part of $\S 7$, we obtain $\bar{j}\left(\mathfrak{H}_{0}^{\prime}\right)=\widetilde{j}\left(\mathfrak{A}_{0} \mathfrak{p}_{O}^{m}\right)$ for some m. But then, by Theorem $\mathrm{D}, \mathfrak{A}_{0}$ and $\mathfrak{A}_{0}^{\prime}$ belong to the same field Q^{\prime} and $\mathfrak{A}_{0}^{\prime}=\rho \mathfrak{U}_{0} \mathfrak{p}_{O}^{m}$ holds for some $\rho \in Q^{\prime}$. Therefore,

$$
\mathfrak{U}^{\prime} \otimes_{\mathbf{Z}} \mathbf{Z}^{(p)}=\mathfrak{A}_{0}^{\prime} \otimes_{\mathbf{Z}} \mathbf{Z}^{(p)}=\rho \mathfrak{A}_{0} \otimes_{\mathbf{Z}} \mathbf{Z}^{(p)}=\rho \mathfrak{U} \otimes_{\mathbf{Z}} \mathbf{Z}^{(p)} ;
$$

hence $\left[z^{\prime}, 1\right]_{\mathbf{Z}^{(p)}}=[\rho z, \rho]_{\mathbf{Z}^{(p)}}$. Therefore, we have

$$
\rho\binom{z}{1}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{z^{\prime}}{1} \text { with some }\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in G L_{2}\left(\mathbf{Z}^{(p)}\right)
$$

But since $\operatorname{Im} z, \operatorname{Im} z^{\prime}>0$, we get $A D-B C>0$, and hence $A D-B C \in \Pi$. Therefore, z and z^{\prime} are Γ^{*}-equivalent.

That \mathcal{J}^{*} is Degree-preserving. Let the notations be as in the proof of the surjectivity of \mathcal{J}^{*}. By the definition of Deg, we have

$$
\operatorname{Deg} \gamma_{0}^{*}=\left|\operatorname{ord}_{\mathfrak{P}} \pi_{O} \bar{\pi}_{O}^{-1}\right|=\operatorname{ord}_{\mathfrak{B}} \pi_{O}=d_{O}
$$

On the other hand, by (17), we have $\operatorname{Deg} \bar{j}(\mathfrak{H})=d_{0}$. Therefore, it suffices to prove that γ_{0}^{*} generates Γ_{z}^{*} modulo the torsion subgroup $\Gamma_{z}^{* 0}$ of Γ_{z}^{*} (see §3). For this purpose, let $\gamma^{*} \in \Gamma_{z}^{*}$ be any element of infinite order and put

$$
\gamma^{*}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbf{Z}) \text { with }(a, b, c, d)=1 \text { and } a d-b c=p^{n}(n>0) .
$$

[^2]Then, if we put $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{z}{1}=\lambda\binom{z}{1}$, we have $\lambda \in O$ and $\lambda \notin p O$. Therefore, λO is a positive power of either \mathfrak{p}_{O} or $\overline{\mathfrak{p}}_{O}$. But d_{O} is the smallest positive integer, for which $\mathfrak{p}_{O}^{d_{O}}$ is principal. Therefore, we see that $d_{O} \mid n$, and that either $\lambda / \pi_{o}^{n / d_{0}}$ or $\lambda / \pi_{o}^{n / d_{o}}$ is a root of unity. Therefore, $\lambda / \bar{\lambda}$ is a power of $\pi_{O} / \bar{\pi}_{O}$ modulo a root of unity. Therefore by $\S 2, \gamma_{0}^{*}$ must be a generator of Γ_{z}^{*} modulo $\Gamma_{z}^{* 0}$.

A corollary and an announcement of generalizations.

§9.
Corollary. Let $\zeta_{\Gamma^{\cdot}}(u)$ and $\zeta_{\Gamma}(u)$ be defined by

$$
\prod_{P^{*} \in \in_{p}\left(\Gamma^{*}\right)}\left(1-u^{\operatorname{Deg} P^{*}}\right)^{-1} \text {, and } \prod_{P \in \mathscr{P}(\mathbb{T})}\left(1-u^{\operatorname{deg} P}\right)^{-1}
$$

respectively. Then we have

$$
\begin{gather*}
\zeta_{\Gamma \cdot}(u)=\frac{1}{(1-u)(1-p u)} \times(1-u)^{1+\left|S_{1}\right|} \times\left(1-u^{2}\right)^{\frac{1}{2}\left|S_{2}\right|}, \tag{*}\\
\zeta_{\Gamma}(u)=\frac{1}{(1-u)\left(1-p^{2} u\right)} \times(1-u)^{1+|S|} \tag{18}
\end{gather*}
$$

Proof. By Theorem 1, there is a Degree-preserving one-to-one correspondence between $\varphi\left(\Gamma^{*}\right)$ and $\left(\overline{\mathbf{F}}_{p}-S\right) / \sim$. But there is also a Degree-preserving natural one-to-one correspondence between $\overline{\mathbf{F}}_{p} / \sim \cup\{\infty\}$ and the set of all prime divisors of the rational function field over \mathbf{F}_{p}. Therefore, the computation of $\zeta_{\Gamma^{*}}(u)$ reduces to the computation of the congruence ζ function of the rational function field over \mathbf{F}_{p}, which is nothing but $\frac{1}{(1-u)(1-p u)}$. This proves $\left(18^{*}\right)$. The formula (18) for $\zeta_{\Gamma}(u)$ is obtained exactly in the same manner, by using Theorem 1^{\prime}.
§10. As above, identify the set $\overline{\mathbf{F}}_{p} / \sim \cup\{\infty\}$ with the set of all prime divisors of the rational function field K^{*} over \mathbf{F}_{p} and denote by $\mathfrak{p}\left(K^{*}\right)$ the set of all prime divisors of K^{*} which do not belong to $S \cup\{\infty\}$. Then by Theorem $1, \mathcal{J}^{*}$ gives a one-to-one correspondence between $\varphi\left(\Gamma^{*}\right)$ and $\varphi\left(K^{*}\right)$. In Part 2 of this chapter, we shall generalize this and prove the following theorem.

Let Γ^{\prime} be any congruence subgroup ${ }^{4}$ of Γ^{*} and let $\iota: \wp\left(\Gamma^{\prime}\right) \rightarrow \wp\left(\Gamma^{*}\right)$ be the natural map defined by the inclusion $\Gamma^{\prime} \subset \Gamma^{*}$. Then there exists a finite extension K^{\prime} of K^{*} whose constant field is either \mathbf{F}_{p} (if $\Gamma^{\prime} \not \subset \Gamma$) or $\mathbf{F}_{p^{2}}$ (if $\Gamma^{\prime} \subset \Gamma$), and a degree preserving one-to-one correspondence \mathcal{J}^{\prime} between $\wp\left(\Gamma^{\prime}\right)$ and $\wp\left(K^{\prime}\right)$ such that the following diagram (19)

[^3]is commutative. Here, $\wp\left(K^{\prime}\right)$ denotes the set of all prime divisors of K^{\prime} which lie above $\wp\left(K^{*}\right)$.
\[

$$
\begin{array}{rlcl}
\wp\left(\Gamma^{\prime}\right) & \xrightarrow{\mathcal{J}^{\prime}} & \wp\left(K^{\prime}\right) \tag{19}\\
\downarrow \iota & & \downarrow & \text { the natural projection } \\
\wp\left(\Gamma^{*}\right) & \xrightarrow{\mathcal{J}} & \wp\left(K^{*}\right)
\end{array}
$$
\]

Moreover, the prime divisors of K which belong to S are "essentially" decomposed completely in K^{\prime} in a certain sense.

This theorem will give the law of decomposition of prime divisors of K^{*} in K^{\prime} completely, and hence will solve our Congruence Monodromy Problems partly for the group $\Gamma=P S L_{2}\left(\mathbf{Z}^{(p)}\right)$. Its relation with J. Igusa's work [14] will be explained.

[^0]: ${ }^{1}$ A table of S for $p<100$ is given in [4].

[^1]: ${ }^{2}$ Cf. [4] for H. Hasse's contribution which precedes Deuring's.

[^2]: ${ }^{3}$ The injectivity of \mathcal{J} follows easily by well-definedness and surjectivity of \mathcal{J}, and by the decomposition (4). Therefore, we need not worry about it here.

[^3]: ${ }^{4}$ I.e. a subgroup of Γ^{*} containing some principal congruence subgroup. See Chapter $4 \S 3$, and J. Mennicke [23].

