CHAPTER 4

Part 1. Examples of T".

In Part 1 of this chapter, we shall give some examples of I'. They are obtained from
quaternion algebras A over totally real algebraic number fields F'; and up to commensu-
rability, they are the only examples of I that we know at present. We shall also prove that
if L is a quasi-irreducible G,-field over C such that the corresponding discrete subgroup
is commensurable with one obtained from a quaternion algebra 4 over F, then the field 4o
(defined by Theorem 5 of Chapter 2) contains F (see Theorem 1, §5).

Examples of T

§1. Quaternion algebra. By a quaternion algebra over a field F, we mean a simple
algebra A with center F and with [4 : F] = 4. The simplest example is 4 = M,(F), and
all other quaternion algebras are division algebras. In the following, we shall make no
distinction between two quaternion algebras over F which are isomorphic over F. If F is
algebraically closed (e.g., if F = C), then A = My(F) is the only quaternion algebra over
F.IfF = Ror F = k, (p-adic number field), then there is a unique division quaternion
algebra over F, which will be denoted by Dg or D, respectively.

Now let F be an algebraic number field, and let p be a prime divisor (finite or infinite)
of F. Denote by F, the p-adic completion of F, so that either F, = C, or F;, = R, or
F, is a p-adic number field. For each quaternion algebra 4 over F, put 4, = 4 ® F;
hence 4, is a quaternion algebra over F,. Therefore, if F}, = C, 4, must be M,(C), and if
F, # C, then there are two possibilities for 4,; namely, M(F,) or D, (or Dg if F, = R).
A prime divisor p of F is called unramified in A if A, = M,(F,) holds, and ramified if
A, # My(F,). Denote by §(4) the set of all prime divisors of F which are ramified in 4.
Then it is well-known that 6(4) is finite and that its cardinal number is even. Conversely,
if & is any finite set of prime divisors of F not containing complex prime divisors and
having even cardinal number, then there exists a quaternion algebra 4 over F, unique up
to an isomorphism over F, such that § = 6(4);
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In particular, 4 = M;(F) corresponds to § = ¢.
Let A be a quaternion algebra over an algebraic number field F. For each p, put

V) Ay ={xp, € 4y | Ny jp,x, = 1).

Then 4} is a locally compact group under multiplication, and

Al =SLyF;) ---pgs,
= compact --- p €.

3)

Let S, be the set of all infinite prime divisors of F, and let S be any finite set of prime
divisors of F containing S ... Put

) A} = l_[Af, (direct product).

peS
Let o be the ring of integers of F, and let o) be the ring of all elements of F of the form
a/B with @, B € o such that all prime factors of 8o are contained in S; or in short!

) o = Jorp), S =Se=1ip1,oe, ).

n=0
In particular, 0=) = 0. By an 0®-order O') of 4, we mean a subring of A4 containing
1 which is a finite 0)-module and which satisfies O) ® ) F = 4. Then, it is easy to
see that all 0®)-orders are given by O ®, o) with some o-order O. Now let O be an
o®)-order of 4, and put

(6) I = (x € O9) | Nypx = 1).
By the diagonal embedding, we shall consider I'S) as a subgroup of 4};
@) ' c 4.

Then T is a discrete subgroup of A}, the quotient A} /T® has finite invariant volume
and is compact if and only if A # My(F); if po € S, po € 8, then the projection of T'®) to
Toes—(po) 42 is dense in the latter. These are special cases of more general theorems on
arithmetic of algebraic groups (cf. [2], [9], [20]). Since 4] for p € & are compact, it is
clear that if we replace 4§ by A5_; = [T,es,¢5 41 and consider I'®) as a subgroup of 4} _,,

then we still get the same results as those italicized above.

§2. Now let k, be a given p-adic number field, and let us construct discrete subgroups
of S L,(R) x S Ly(k;) by the above method. Thus, the problem is to find F, S, and 6 (& A)
such that 45_, = SLy(R) x S L,(k,). First, S — & cannot contain complex prime divisors.
But §' must contain all infinite prime divisors of F, and é cannot contain complex prime
divisors. Therefore, F cannot have complex prime divisors at all, so that F must be totally
real. Since S - & contains one and only one real prime divisor, § contains all real prime
divisors of F except one. Also, F' must have a finite prime divisor p ¢ 6 such that F, = k.

1We shall call this ring o) the ring of all elements of F which are integral except at §.
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Therefore, the necessary and sufficient conditions (on F, 6, §) for A_l?_ 5 to be isomor-
phic to S L,(R) x S L,(k,) are the following:

F : totally real, 3 a finite prime divisor p of F
such that F,, = k,;

®) 16 : contains all real prime divisors of F but one,
and § 3 p;
S= S,.Uip).

It is clear that there exist such F, § and S. Take any such F, §, put S = S, U{p}, and denote
as 0®) = o®, Then, by taking an 0®-order O™ and defining I'™ to be the subgroup of
O™ formed of all elements of norm 1, we get a discrete subgroup I'® of S L,(R) xS L,(k,)
whose quotient has finite invariant volume and whose projection to each factor is dense in
that factor. Therefore, we have proved the following proposition.

PropostTiON 1. Let F be a totally real algebraic number field, and let A be a quaternion
algebra over F in which all real prime divisors of F but one (denoted by v.. ) are ramified,
Let p be a finite prime divisor of F which is unramified in A, and let o be the ring of all
elements of F which are integral except at p. Let O be any 0®-order of A, and put

o T={xeO0PNyrx=1}/ £ 1.
Then, by the diagonal embedding of T into
A, /(£1)x 4}/(£1) = PSLy(R) X PS Ly(Fy),

I is regarded as a discrete subgroup of G = PSLy(R) x PS L,(F,) whose quotient has
finite invariant volume and whose projection to each factor is dense in that factor. The
quotient is compact if and only if A # M>(Q).

CoRoOLLARY . Let k, be a p-adic number field. Then there exists a discrete subgroup T’
of PS L,(R) x PS L,(k,) with compact quotient and with dense image of projection in each
component of G.

In particular, by taking 4 = M;(Q) and O® = My(Z¥)), where Z®) = U2 p™Z (p: a
prime number), we get ' = PS L,(Z®). This was the only example of I' discussed in the
preceding chapters (of Volume 1).

§3. Up to commensurability, the examples of I given in §2 are the only examples of
I that we know at present. On the other hand, if T" is such as given in §2, then we can define
its congruence subgroups in the usual manner (the modulus must be coprime to p); and
a problem arises whether all subgroups of I" with finite indices contain some congruence
subgroup. Recently, this problem was solved affirmatively for the group I' = PS L,(Z¥)
by J. Mennicke [23] and J. P. Serre [26]. But it remains open in the case 4 # M;(Q).
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That &, contains F.

§4. To prove Theorem 1 (§5), we need the following proposition.

ProposiTiON 2.? Let F,A and T" be as in Proposition 1. Then we have F =
Q(tryr)’ | Yr € TR), and if A # M(Q), then the quaternion algebra attached to T
(defined in Chapter 3 (§12)) is nothing but .

Proor. 1t is clear that if 4 = M;(Q), then F = Q((tryr)*lyr € I'r) holds. Now
assume that 4 # M,(Q), so that 4 is a division algebra and G/T" is compact. Let I'* be the
intersection of all normal subgroups of I' whose quotients are finite (2, - - - , 2) type, and
let 4* = Q[I'*] be the subalgebra of 4 generated over Q by I'*. We shall prove 4* = 4,
which, by virtue of Proposition 6 (Chapter 3, §13), would prove our Proposition. For
that purpose, put F* = F N 4* and let x - x be the canonical conjugation of 4 over F.
Then since y* = y*~! for each y* € I'*, we have 4* = 4*; hence A* is a division algebra.
By the same reason, 4* - F is also a divison algebra and F ¢ A* - F C A4 holds. But
since I'* is non-commutative, we get 4 - F = A. Therefore, 4* contains four elements
x; (1 < i < 4) that are linearly independent over F. Then we have det((tr,,#(x;x;,))) # 0,
and tryr(xix;) = x;x; + X;x; € A* N F = F*. This shows that 4* = F*x; + -+ + F*xy;
hence we have 4 = 4A* ®. F over F. But if F* # F, then it cannot happen that all but
one infinite prime divisor of F are ramified in A* ®p. F (the number of unramified infinite
prime divisors must be divisible by [F : F*]). Therefore, F* = F; hence A* = A*F = A,
which proves our Proposition. m]

CoroLLARY . Let F, A, T, G be as in Proposition 1. Then all subgroups of G which are

commensurable with T are contained in the image of the diagonal embedding of A*|F*
into PL,(R) x PL,(F,).

Proor. Let ¢r,¢,, and ¢ be our embeddings 4 — M[R), 4 — M, (F,), and
A — My(R) x My(F,) (diagonal) respectively, and let ¢, ¢;, and ¢* be the embeddings
A*|F* — PL,(R), = PLy(Fy,), and — PL;(R) X PL,(F,) that are induced by ¢g, ¢,, and
¢ respectively. Let I”” be a subgroup of G = PSL,(R) x PSL,(F,) which is commen-
surable with ', and put I’ = T N I". Then Q[I'y] = Q[I'y’] = Q[I'y] (Corollary of
Proposition 6 of Chapter 3), and it is isomorphic over the center F to 4. But then, it is
clear that Q[I'g] = ¢r(4). Now, by I'y C Q[l’“,;]" [F* c PL,(R) (Proposition 6 of Chapter
3), we get Iy C pr(A)*/F* = @r(4%/F™). Put A = % '(Ty). Then ¢*(A) is a discrete
subgroup of PS L,(R) X PL,(F,), and is commensurable with I'. Therefore, ¢*(I") is com-
mensurable with I'” and ¢*(A)r = I'y. Therefore, by Supplement §3 (Remark 2), we get
I = ¢*(A). o

The notations being as above, put ¢~} (G) = 4o/F, so that
(10) Ao = {x € A| Nyr(x) € R, € (F).

2 To be more precise, we should write p.1(F) instead of F. The only reason for excluding the case
of A = M>(Q) is that “the quaternion algebra attached to I’ was defined only when G/T is compact (see
Chapter 3).
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§5. Now we shall prove the following theorem.

TueoreM 1. Let F, A,T, G be as in Proposition 1, and let T’ be a subgroup of G which
is commensurable with T. Let L be the G,-field over C which corresponds to I, and
suppose that L contains a full G,-subfield over a field k ¢ C. Then k contains F. In
particular, if L is quasi-irreducible, then the field ko (defined by Theorem 5 of Chapter 2)
contains F.

(Here, to be more precise, we should write p,, 1 (F) instead of F (see Proposition 1 for
the definition of p.. ), but since it is always of this meaning whenever we consider F as a
subfield of R or C, we denote it simply as F.)

ReMARk . By the Corollary of Proposition 2, I is of the form ¢*(A) with A ¢ 4q/F*.
By Corollary 4 of Theorem 3 in Chapter 2, we have (N(I') : I") < oo ; hence by the
former corollary, N(I") is also contained in ¢*(4o/F*). Therefore, L is quasi-irreducible
if and only if the normalizer of A in Ao/ F> is A itself.

Proor. Since I” is of the form ¢*(A) and ¢ is the diagonal embedding, it is clear that
I" satisfies the condition given in Lemma 12 of Chapter 2. Hence our Theorem is a direct
consequence of Theorem 8 (Chapter 2, §36) and Proposition 2 of this chapter. O

Further study of these I" will be left to the succeeding parts of this chapter.
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