CHAPTER 4

Part 1. Examples of Γ .

In Part 1 of this chapter, we shall give some examples of Γ . They are obtained from quaternion algebras A over totally real algebraic number fields F; and up to commensurability, they are the only examples of Γ that we know at present. We shall also prove that if L is a quasi-irreducible G_p -field over $\mathbb C$ such that the corresponding discrete subgroup is commensurable with one obtained from a quaternion algebra A over F, then the field k_0 (defined by Theorem 5 of Chapter 2) contains F (see Theorem 1, §5).

Examples of Γ .

§1. Quaternion algebra. By a quaternion algebra over a field F, we mean a simple algebra A with center F and with [A:F]=4. The simplest example is $A=M_2(F)$, and all other quaternion algebras are division algebras. In the following, we shall make no distinction between two quaternion algebras over F which are isomorphic over F. If F is algebraically closed (e.g., if $F=\mathbb{C}$), then $A=M_2(F)$ is the only quaternion algebra over F. If $F=\mathbb{R}$ or $F=k_p$ (p-adic number field), then there is a *unique* division quaternion algebra over F, which will be denoted by $D_{\mathbb{R}}$ or D_p respectively.

Now let F be an algebraic number field, and let \mathfrak{p} be a prime divisor (finite or infinite) of F. Denote by $F_{\mathfrak{p}}$ the \mathfrak{p} -adic completion of F, so that either $F_{\mathfrak{p}} \cong \mathbb{C}$, or $F_{\mathfrak{p}} \cong \mathbb{R}$, or $F_{\mathfrak{p}}$ is a \mathfrak{p} -adic number field. For each quaternion algebra A over F, put $A_{\mathfrak{p}} = A \otimes_F F_{\mathfrak{p}}$; hence $A_{\mathfrak{p}}$ is a quaternion algebra over $F_{\mathfrak{p}}$. Therefore, if $F_{\mathfrak{p}} \cong \mathbb{C}$, $A_{\mathfrak{p}}$ must be $M_2(\mathbb{C})$, and if $F_{\mathfrak{p}} \neq \mathbb{C}$, then there are two possibilities for $A_{\mathfrak{p}}$; namely, $M_2(F_{\mathfrak{p}})$ or $D_{\mathfrak{p}}$ (or $D_{\mathfrak{R}}$ if $F_{\mathfrak{p}} \cong \mathbb{R}$). A prime divisor \mathfrak{p} of F is called *unramified* in F if $F_{\mathfrak{p}} \cong F_{\mathfrak{p}} = F_{\mathfrak{p}} = F_{\mathfrak{p}}$. Denote by $F_{\mathfrak{p}} = F_{\mathfrak{p}} = F_{\mathfrak{p$

$$A \underset{1:1}{\leftrightarrow} \delta.$$

In particular, $A = M_2(F)$ corresponds to $\delta = \phi$.

Let A be a quaternion algebra over an algebraic number field F. For each p, put

(2)
$$A_{\mathfrak{p}}^{1} = \{x_{\mathfrak{p}} \in A_{\mathfrak{p}} \mid N_{A_{\mathfrak{p}}/F_{\mathfrak{p}}}x_{\mathfrak{p}} = 1\}.$$

Then A_p^1 is a locally compact group under multiplication, and

(3)
$$\begin{cases} A_{\mathfrak{p}}^{1} \cong SL_{2}(F_{\mathfrak{p}}) & \cdots & \mathfrak{p} \notin \delta, \\ = \text{compact} & \cdots & \mathfrak{p} \in \delta. \end{cases}$$

Let S_{∞} be the set of all infinite prime divisors of F, and let S be any *finite* set of prime divisors of F containing S_{∞} . Put

(4)
$$A_S^1 = \prod_{p \in S} A_p^1 \quad \text{(direct product)}.$$

Let \mathfrak{o} be the ring of integers of F, and let $\mathfrak{o}^{(S)}$ be the ring of all elements of F of the form α/β with $\alpha,\beta\in\mathfrak{o}$ such that all prime factors of $\beta\mathfrak{o}$ are contained in S; or in short,

(5)
$$\mathfrak{o}^{(S)} = \bigcup_{n=0}^{\infty} (\mathfrak{p}_1 \cdots \mathfrak{p}_s)^{-n}, \quad S - S_{\infty} = {\mathfrak{p}_1, \cdots, \mathfrak{p}_s}.$$

In particular, $\mathfrak{o}^{(S_{\infty})} = \mathfrak{o}$. By an $\mathfrak{o}^{(S)}$ -order $O^{(S)}$ of A, we mean a subring of A containing 1 which is a finite $\mathfrak{o}^{(S)}$ -module and which satisfies $O^{(S)} \otimes_{\mathfrak{o}^{(S)}} F = A$. Then, it is easy to see that all $\mathfrak{o}^{(S)}$ -orders are given by $O \otimes_{\mathfrak{o}} \mathfrak{o}^{(S)}$ with some \mathfrak{o} -order O. Now let $O^{(S)}$ be an $\mathfrak{o}^{(S)}$ -order of A, and put

(6)
$$\Gamma^{(S)} = \{x \in O^{(S)} \mid N_{A/F}x = 1\}.$$

By the diagonal embedding, we shall consider $\Gamma^{(S)}$ as a subgroup of A_S^1 ;

(7)
$$\Gamma^{(S)} \subset A_S^1.$$

Then $\Gamma^{(S)}$ is a discrete subgroup of A_S^1 ; the quotient $A_S^1/\Gamma^{(S)}$ has finite invariant volume and is compact if and only if $A \neq M_2(F)$; if $\mathfrak{p}_0 \in S$, $\mathfrak{p}_0 \notin \delta$, then the projection of $\Gamma^{(S)}$ to $\prod_{\mathfrak{p} \in S - \{\mathfrak{p}_0\}} A_{\mathfrak{p}}^1$ is dense in the latter. These are special cases of more general theorems on arithmetic of algebraic groups (cf. [2], [9], [20]). Since $A_{\mathfrak{p}}^1$ for $\mathfrak{p} \in \delta$ are compact, it is clear that if we replace A_S^1 by $A_{S-\delta}^1 = \prod_{\mathfrak{p} \in S, \notin \delta} A_{\mathfrak{p}}^1$ and consider $\Gamma^{(S)}$ as a subgroup of $A_{S-\delta}^1$, then we still get the same results as those italicized above.

§2. Now let k_p be a given p-adic number field, and let us construct discrete subgroups of $SL_2(\mathbb{R}) \times SL_2(k_p)$ by the above method. Thus, the problem is to find F, S, and $\delta \ (\leftrightarrow A)$ such that $A_{S-\delta}^1 \cong SL_2(\mathbb{R}) \times SL_2(k_p)$. First, $S-\delta$ cannot contain complex prime divisors. But S must contain all infinite prime divisors of F, and δ cannot contain complex prime divisors. Therefore, F cannot have complex prime divisors at all, so that F must be totally real. Since $S-\delta$ contains one and only one real prime divisor, δ contains all real prime divisors of F except one. Also, F must have a finite prime divisor $p \notin \delta$ such that $F_p \cong k_p$.

¹We shall call this ring $o^{(S)}$ the ring of all elements of F which are integral except at S.

Therefore, the necessary and sufficient conditions (on F, δ , S) for $A_{S-\delta}^1$ to be isomorphic to $SL_2(\mathbb{R}) \times SL_2(k_p)$ are the following:

(8)
$$\begin{cases} F: & \text{totally real, } \exists \text{ a finite prime divisor } \mathfrak{p} \text{ of } F \\ & \text{such that } F_{\mathfrak{p}} \cong k_{\mathfrak{p}}; \\ \delta: & \text{contains all real prime divisors of } F \text{ but one,} \\ & \text{and } \delta \not\ni \mathfrak{p}; \\ S = S_{\infty} \cup \{\mathfrak{p}\}. \end{cases}$$

It is clear that there exist such F, δ and S. Take any such F, δ , put $S = S_{\infty} \cup \{p\}$, and denote as $\mathfrak{o}^{(S)} = \mathfrak{o}^{(p)}$. Then, by taking an $\mathfrak{o}^{(p)}$ -order $O^{(p)}$ and defining $\Gamma^{(p)}$ to be the subgroup of $O^{(p)}$ formed of all elements of norm 1, we get a discrete subgroup $\Gamma^{(p)}$ of $SL_2(\mathbb{R}) \times SL_2(k_p)$ whose quotient has finite invariant volume and whose projection to each factor is dense in that factor. Therefore, we have proved the following proposition.

PROPOSITION 1. Let F be a totally real algebraic number field, and let A be a quaternion algebra over F in which all real prime divisors of F but one (denoted by $\mathfrak{p}_{\infty,1}$) are ramified. Let \mathfrak{p} be a finite prime divisor of F which is unramified in A, and let $\mathfrak{o}^{(\mathfrak{p})}$ be the ring of all elements of F which are integral except at \mathfrak{p} . Let $O^{(\mathfrak{p})}$ be any $\mathfrak{o}^{(\mathfrak{p})}$ -order of A, and put

(9)
$$\Gamma = \{x \in O^{(p)} | N_{A/F} x = 1\} / \pm 1.$$

Then, by the diagonal embedding of Γ into

$$A_{\mathfrak{p}_{\infty,1}}^1/(\pm 1) \times A_{\mathfrak{p}}^1/(\pm 1) \cong PSL_2(\mathbf{R}) \times PSL_2(F_{\mathfrak{p}}),$$

 Γ is regarded as a discrete subgroup of $G = PSL_2(\mathbb{R}) \times PSL_2(F_p)$ whose quotient has finite invariant volume and whose projection to each factor is dense in that factor. The quotient is compact if and only if $A \not\cong M_2(\mathbb{Q})$.

COROLLARY. Let k_p be a p-adic number field. Then there exists a discrete subgroup Γ of $PSL_2(\mathbf{R}) \times PSL_2(k_p)$ with compact quotient and with dense image of projection in each component of G.

In particular, by taking $A = M_2(\mathbf{Q})$ and $O^{(p)} = M_2(\mathbf{Z}^{(p)})$, where $\mathbf{Z}^{(p)} = \bigcup_{n=0}^{\infty} p^{-n}\mathbf{Z}$ (p: a prime number), we get $\Gamma = PSL_2(\mathbf{Z}^{(p)})$. This was the only example of Γ discussed in the preceding chapters (of Volume 1).

§3. Up to commensurability, the examples of Γ given in §2 are the only examples of Γ that we know at present. On the other hand, if Γ is such as given in §2, then we can define its congruence subgroups in the usual manner (the modulus must be coprime to \mathfrak{p}); and a problem arises whether all subgroups of Γ with finite indices contain some congruence subgroup. Recently, this problem was solved affirmatively for the group $\Gamma = PSL_2(\mathbb{Z}^{(p)})$ by J. Mennicke [23] and J. P. Serre [26]. But it remains open in the case $A \not\cong M_2(\mathbb{Q})$.

That k_0 contains F.

§4. To prove Theorem 1 (§5), we need the following proposition.

PROPOSITION 2.² Let F, A and Γ be as in Proposition 1. Then we have $F = \mathbf{Q}((\operatorname{tr} \gamma_{\mathbf{R}})^2 \mid \gamma_{\mathbf{R}} \in \Gamma_{\mathbf{R}})$; and if $A \not\cong M_2(\mathbf{Q})$, then the quaternion algebra attached to Γ (defined in Chapter 3 (§12)) is nothing but A.

PROOF. It is clear that if $A = M_2(\mathbf{Q})$, then $F = \mathbf{Q}((\operatorname{tr} \gamma_R)^2|\gamma_R \in \Gamma_R)$ holds. Now assume that $A \not\equiv M_2(\mathbf{Q})$, so that A is a division algebra and G/Γ is compact. Let Γ^* be the intersection of all normal subgroups of Γ whose quotients are finite $(2, \dots, 2)$ type, and let $A^* = \mathbf{Q}[\Gamma^*]$ be the subalgebra of A generated over \mathbf{Q} by Γ^* . We shall prove $A^* = A$, which, by virtue of Proposition 6 (Chapter 3, §13), would prove our Proposition. For that purpose, put $F^* = F \cap A^*$ and let $x \mapsto \overline{x}$ be the canonical conjugation of A over F. Then since $\overline{\gamma}^* = \gamma^{*-1}$ for each $\gamma^* \in \Gamma^*$, we have $\overline{A}^* = A^*$; hence A^* is a division algebra. By the same reason, $A^* \cdot F$ is also a divison algebra and $F \subset A^* \cdot F \subset A$ holds. But since Γ^* is non-commutative, we get $A^* \cdot F = A$. Therefore, A^* contains four elements x_i $(1 \le i \le 4)$ that are linearly independent over F. Then we have $\det((\operatorname{tr}_{A/F}(x_ix_j))) \ne 0$, and $\operatorname{tr}_{A/F}(x_ix_j) = x_ix_j + \overline{x_ix_j} \in A^* \cap F = F^*$. This shows that $A^* = F^*x_1 + \dots + F^*x_4$; hence we have $A \cong A^* \otimes_{F^*} F$ over F. But if $F^* \ne F$, then it cannot happen that all but one infinite prime divisor of F are ramified in $A^* \otimes_{F^*} F$ (the number of unramified infinite prime divisors must be divisible by $[F:F^*]$). Therefore, $F^* = F$; hence $A^* = A^*F = A$, which proves our Proposition.

COROLLARY. Let F, A, Γ, G be as in Proposition 1. Then all subgroups of G which are commensurable with Γ are contained in the image of the diagonal embedding of A^{\times}/F^{\times} into $PL_2(\mathbf{R}) \times PL_2(F_p)$.

Proof. Let $\varphi_{\mathbf{R}}, \varphi_{\mathfrak{p}}$, and φ be our embeddings $A \to M_2(\mathbf{R}), A \to M_2(F_{\mathfrak{p}})$, and $A \to M_2(\mathbf{R}) \times M_2(F_{\mathfrak{p}})$ (diagonal) respectively, and let $\varphi_{\mathbf{R}}^{\times}, \varphi_{\mathfrak{p}}^{\times}$, and φ^{\times} be the embeddings $A^{\times}/F^{\times} \to PL_2(\mathbf{R}), \to PL_2(F_{\mathfrak{p}})$, and $\to PL_2(\mathbf{R}) \times PL_2(F_{\mathfrak{p}})$ that are induced by $\varphi_{\mathbf{R}}, \varphi_{\mathfrak{p}}$, and φ respectively. Let Γ' be a subgroup of $G = PSL_2(\mathbf{R}) \times PSL_2(F_{\mathfrak{p}})$ which is commensurable with Γ , and put $\Gamma'' = \Gamma \cap \Gamma'$. Then $\mathbf{Q}[\Gamma_{\mathbf{R}}^{'*}] = \mathbf{Q}[\Gamma_{\mathbf{R}}^{'*}] = \mathbf{Q}[\Gamma_{\mathbf{R}}^{*}]$ (Corollary of Proposition 6 of Chapter 3), and it is isomorphic over the center F to A. But then, it is clear that $\mathbf{Q}[\Gamma_{\mathbf{R}}^{*}] = \varphi_{\mathbf{R}}(A)$. Now, by $\Gamma_{\mathbf{R}}' \subset \mathbf{Q}[\Gamma_{\mathbf{R}}^{'*}]^{\times}/F^{\times} \subset PL_2(\mathbf{R})$ (Proposition 6 of Chapter 3), we get $\Gamma_{\mathbf{R}}' \subset \varphi_{\mathbf{R}}(A)^{\times}/F^{\times} = \varphi_{\mathbf{R}}^{\times}(A^{\times}/F^{\times})$. Put $\Delta = \varphi_{\mathbf{R}}^{\times -1}(\Gamma_{\mathbf{R}}')$. Then $\varphi^{\times}(\Delta)$ is a discrete subgroup of $PSL_2(\mathbf{R}) \times PL_2(F_{\mathfrak{p}})$, and is commensurable with Γ . Therefore, $\varphi^{\times}(\Gamma)$ is commensurable with Γ' and $\varphi^{\times}(\Delta)_{\mathbf{R}} = \Gamma_{\mathbf{R}}'$. Therefore, by Supplement §3 (Remark 2), we get $\Gamma' = \varphi^{\times}(\Delta)$.

The notations being as above, put $\varphi^{\times -1}(G) = A_0/F^{\times}$, so that

(10)
$$A_0 = \{ x \in A \mid N_{A/F}(x) \in (\mathbb{R}^{\times})^2, \in (F_{\mathfrak{p}}^{\times})^2 \}.$$

² To be more precise, we should write $\mathfrak{p}_{\infty,1}(F)$ instead of F. The only reason for excluding the case of $A \cong M_2(\mathbb{Q})$ is that "the quaternion algebra attached to Γ " was defined only when G/Γ is compact (see Chapter 3).

§5. Now we shall prove the following theorem.

THEOREM 1. Let F, A, Γ , G be as in Proposition 1, and let Γ' be a subgroup of G which is commensurable with Γ . Let L be the $G_{\mathfrak{p}}$ -field over \mathbb{C} which corresponds to Γ' , and suppose that L contains a full $G_{\mathfrak{p}}$ -subfield over a field $k \subset \mathbb{C}$. Then k contains F. In particular, if L is quasi-irreducible, then the field k_0 (defined by Theorem 5 of Chapter 2) contains F.

(Here, to be more precise, we should write $\mathfrak{p}_{\infty,1}(F)$ instead of F (see Proposition 1 for the definition of $\mathfrak{p}_{\infty,1}$), but since it is always of this meaning whenever we consider F as a subfield of \mathbb{R} or \mathbb{C} , we denote it simply as F.)

REMARK. By the Corollary of Proposition 2, Γ' is of the form $\varphi^{\times}(\Delta)$ with $\Delta \subset A_0/F^{\times}$. By Corollary 4 of Theorem 3 in Chapter 2, we have $(N(\Gamma'):\Gamma')<\infty$; hence by the former corollary, $N(\Gamma')$ is also contained in $\varphi^{\times}(A_0/F^{\times})$. Therefore, L is quasi-irreducible if and only if the normalizer of Δ in A_0/F^{\times} is Δ itself.

PROOF. Since Γ' is of the form $\varphi^{\times}(\Delta)$ and φ is the diagonal embedding, it is clear that Γ' satisfies the condition given in Lemma 12 of Chapter 2. Hence our Theorem is a direct consequence of Theorem 8 (Chapter 2, §36) and Proposition 2 of this chapter.

Further study of these Γ will be left to the succeeding parts of this chapter.