Part 3A. The canonical S-operator and the canonical class of linear differential equations of second order on algebraic function field L of one variable over \mathbf{C}, and their algebraic characterizations when L is "arithmetic".

The S-operators.

§37. The symbol $\langle\eta, \xi\rangle$. Let L be any field, let $D(L)$ be a one-dimensional vector space over L, and let $d: L \rightarrow D(L)$ be a map satisfying $d(x+y)=d x+d y, d(x y)=$ $x d y+y d x$ for all $x, y \in L$. For each positive integer h, denote by $D^{h}(L)$ the tensor product $D(L) \otimes \cdots \otimes D(L)$ (h copies) over L (so that $\operatorname{dim}_{L} D^{h}(L)=1$), and call the elements of $D^{h}(L)$ differentials of degree h (in L). Put $D(L)^{\times}=D(L) \backslash\{0\}$. Then if ξ is any fixed element of $D(L)^{\times}$, the elements of $D^{h}(L)$ are expressed uniquely in the form $a \cdot \xi^{h}(a \in L)$. Here, ξ^{h} will always denote $\xi \otimes \cdots \otimes \xi$ (h copies). For any $\xi \in D(L)^{\times}$and $\eta \in D(L)$, the number $a \in L$ with $\eta=a \xi$ will be denoted by η / ξ. Finally, we shall denote by k the constant field, i.e., $k=\{x \in L \mid d x=0\}$. It is clear that k is a subfield of L.

Now for each $\xi, \eta \in D(L)^{\times}$, an element $\langle\eta, \xi\rangle$ of $D^{2}(L)$ is defined in the following way. Put $w_{1}=\eta / \xi, w_{i+1}=d w_{i} / \xi(i \geq 1)$. Then

Defintition .

$$
\langle\eta, \xi\rangle=\frac{2 w_{1} w_{3}-3 w_{2}^{2}}{w_{1}^{2}} \xi^{2} .
$$

In particular, if $x, y \in L \backslash k$, then we have

$$
\begin{equation*}
\langle d y, d x\rangle=\frac{2\left(\frac{d y}{d x}\right)\left(\frac{d^{3} y}{d x^{3}}\right)-3\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}{\left(\frac{d y}{d x}\right)^{2}}(d x)^{2}, \tag{76}
\end{equation*}
$$

where $\frac{d^{i}}{d x^{i}}=\left(\frac{d}{d x}\right)^{i}(i \geq 1)$. Thus $\langle\eta, \xi\rangle$ is, so to speak, the "algebraic Schwarzian derivative". The following Proposition is classically well-known for the analytic Schwarzian derivative.

Proposition 7. (i) For any $\xi, \eta, \zeta \in D(L)^{\times}$, we have

$$
\begin{equation*}
\langle\eta, \zeta\rangle-\langle\xi, \zeta\rangle=\langle\eta, \xi\rangle . \tag{77}
\end{equation*}
$$

(ii) Let $\eta \in D(L)^{\times}$and $x \in L \backslash k$. Then $\langle\eta, d x\rangle=0$ if and only if η is of the form $\eta=d x_{1}$ with $x_{1}=\frac{a x+b}{c x+d},\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(k) .{ }^{20}$

[^0]Corollary. We have

$$
\left\{\begin{array}{l}
\langle\xi, \xi\rangle=0 \tag{78}\\
\langle\xi, \eta\rangle=-\langle\eta, \xi\rangle
\end{array}\right.
$$

for any $\xi, \eta \in D(L)^{x}$.
The Corollary follows immediately from (i) by putting $\zeta=\eta=\xi$, and $\zeta=\eta$.
Proof. (i) is obtained by a straightforward computation.
(ii) Put $\eta=z d x(z \in L)$, so that $\langle\eta, d x\rangle=0$ is equivalent to $(\sharp) 2 z z_{x x}=3\left(z_{x}\right)^{2}$, where the suffix x denotes the effect of the derivation $\frac{d}{d x}$. First, let $\operatorname{ch}(L)=2$. Then $\langle\eta, d x\rangle=0 \Longleftrightarrow z_{x}=0 \Longleftrightarrow z \in k \Longleftrightarrow \eta=d x_{1}$ with $x_{1}=a x, a \in k^{x}$. On the other hand, $d\left(\frac{a x+b}{c x+d}\right)=(a d-b c)(c x+d)^{-2} d x$, and since $c h(L)=2$, all square elements of L are contained in k. This settles the case of $\operatorname{ch}(L)=2$. Now let $\operatorname{ch}(L) \neq 2$ and put $z=y^{-1}$. Then the equation ($\#$) is equivalent to (b) $y_{x}^{2}=2 y y_{x x}$. By applying $\frac{d}{d x}$ on (b), we obtain $2 y y_{x x x}=0$; hence $y_{x x x}=0$; hence y is a quadratic polynomial of x over k. From this follows easily that the general solution of (b) is $y=a(b x+c)^{2}(a, b, c \in k)$. Therefore, $\langle\eta, d x\rangle=0$ if and only if z is of the form $a^{-1}(b x+c)^{-2}$; which settles (ii).
§38. The S-operators. Let the notations be as in §37. A map $S: D(L)^{\times} \rightarrow D^{2}(L)$ will be called an S-operator (on L) if

$$
\begin{equation*}
S\langle\eta\rangle-S\langle\xi\rangle=\langle\eta, \xi\rangle \tag{79}
\end{equation*}
$$

holds for all $\xi, \eta \in D(L)^{\times}$. Thus by Proposition 7 (i), if ζ is any fixed element of $D(L)^{\times}$, the map S_{ζ} defined by $S_{\zeta}\langle\xi\rangle=\langle\xi, \zeta\rangle$ gives an S-operator (an inner S-operator), and it is clear that all other S-operators are given by $S\langle\xi\rangle=S_{\zeta}\langle\xi\rangle+C$, where C is an arbitrary constant in $D^{2}(L)$. In general, not all S-operators are inner (or equivalently, not all elements of $D^{2}(L)$ are of the form $\left\langle\zeta, \zeta^{\prime}\right\rangle\left(\zeta, \zeta^{\prime} \in D(L)^{\times}\right)$), and as is shown later, a certain outer S-operator plays a central role in our problems.

The canonical S-operator on algebraic function field of one variable over \mathbf{C}, and its algebraic characterization in ample (arithmetic) cases.

§39. The canonical S-operator on the field of automorphic functions. Let X be any Riemann surface, compact or open. Let L_{X} be the field of meromorphic functions on X, and let $D\left(L_{X}\right)$ be the space of all meromorphic differential forms on X (of degree one), considered as a vector space over L_{X}. Let $d: L_{X} \rightarrow D\left(L_{X}\right)$ be the ordinary differentiation. Then the sympol $\langle\eta, \xi\rangle$ for this situation is essentially ${ }^{21}$ the same as the classical Schwarzian derivative. If σ is any automorphism of X, then σ acts on $D^{n}\left(L_{X}\right)$ as $\omega \rightarrow \omega^{\sigma}=\omega \circ \sigma$, and it is clear that $\langle\eta, \xi\rangle^{\sigma}=\left\langle\eta^{\sigma}, \xi^{\sigma}\right\rangle$.

[^1]Now let $\mathfrak{G}=\{\tau \in \mathbf{C} \mid \operatorname{Im} \tau>0\}$. We consider τ as a function on \mathfrak{H};

$$
\begin{equation*}
\tau \in L_{\mathfrak{j}} . \tag{80}
\end{equation*}
$$

Put $G_{\mathbf{R}}=\mathrm{PSL}_{2}(\mathbf{R})=\operatorname{Aut}(\mathfrak{H})$ (by the usual action; see Chap.1, §3). Let $\sigma \in G_{\mathbf{R}}$ and $f(\tau) \in$ $L_{\mathfrak{j}}$ with $f(\tau) \neq 0$. Then since τ^{σ} is a linear fractional transform of τ, Proposition 7 shows that $\langle f(\tau) d \tau, d \tau\rangle^{\sigma}=\left\langle(f(\tau) d \tau)^{\sigma}, d \tau^{\sigma}\right\rangle=\left\langle(f(\tau) d \tau)^{\sigma}, d \tau\right\rangle$; hence if $f(\tau) d \tau$ is invariant by σ, so is $\langle f(\tau) d \tau, d \tau\rangle$.

Let Δ be a fuchsian group, i.e., a discrete subgroup of G_{R} with finite-volume quotient. Let $(\Delta \backslash \mathfrak{H})^{*}$ denote the compact Riemann surface obtained by compactification and normalization of the quotient $\Delta \backslash \mathfrak{F}$, so that $L_{(\Delta \mid \mathfrak{F})^{*}}$ is nothing but the field of automorphic functions with respect to Δ. Consider $L_{(\Delta \mid \mathfrak{F})^{*}}$ and $D^{h}\left(L_{(\Delta \mid \mathfrak{F})^{*}}\right)$ as a subfield and a subspace of $L_{\mathfrak{5}}$ and $D^{h}\left(L_{\mathfrak{5}}\right)$ respectively. Then $f(\tau)(d \tau)^{h} \in D^{h}\left(L_{\mathfrak{5}}\right)$ belongs to $D^{h}\left(L_{(\Delta \mid \mathfrak{F})^{*}}\right)$ if and only if $f(\tau)$ is a meromorphic automorphic form of weight $2 h$ with respect to Δ. Now consider the inner S-operator

$$
\begin{equation*}
D\left(L_{\mathfrak{5}}\right)^{\times} \ni f(\tau) d \tau \rightarrow\langle f(\tau) d \tau, d \tau\rangle \in D^{2}\left(L_{\mathfrak{5}}\right) \tag{81}
\end{equation*}
$$

on $L_{\mathfrak{5}}$. We shall show that (81) induces an (outer) ${ }^{22} S$-operator on $L_{(\Delta \mid \mathfrak{D})}$. by restriction. It is enough to check that if $f(\tau) d \tau \in D\left(L_{(\Delta \mid \mathfrak{F})}\right)^{\times}$, then $\langle f(\tau) d \tau, d \tau\rangle \in D^{2}\left(L_{(\Delta \mid \mathfrak{F})^{*}}\right)$. Put $\langle f(\tau) d \tau, d \tau\rangle=\varphi(\tau)(d \tau)^{2}$. Then $\varphi(\tau)=\frac{2 f(\tau) f^{\prime \prime}(\tau)-3 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}$, where ${ }^{\prime}$ denotes the derivative with respect to τ. Since $f(\tau) d \tau$ is Δ-invariant, $\langle f(\tau) d \tau, d \tau\rangle$ is also Δ-invariant; hence $\varphi(\delta \tau)=\varphi(\tau)(c \tau+d)^{4}$ holds for all $\delta=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Delta$. Moreover, by a simple estimation of $|\varphi(\tau)|$ as each cusp of Δ, it follows easily that $\varphi(\tau)$ is a meromorphic automorphic form of weight 4 with respect to Δ. Therefore, $\langle f(\tau) d \tau, d \tau\rangle$ belongs to $D^{2}\left(L_{(\Delta \mid \mathfrak{s})^{*}}\right)$. So we have proved:

Proposition 8. Let Δ be a fuchsian group. Then if $f(\tau) d \tau \in D\left(L_{(\Delta \mid \mathfrak{F})}\right)^{\times}$, we have
 on $L_{\mathfrak{5}}$ induces an outer S-operator on $L_{(\Delta \mid \mathfrak{F})}$.

As we have seen above, this is equivalent to the classically known fact that if $f(\tau)$ is a (meromorphic) automorphic form of weight 2, then $\varphi(\tau)=\frac{2 f(\tau) f^{\prime \prime}(\tau)-3 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}$ is a (meromorphic) automorphic form of weight 4.

Defintion. This special S-operator on $L_{(\Delta \mid \mathfrak{5})}$. will be called the canonical S-operator on $L_{(\Delta \mid \mathfrak{F})^{*}}$, and denoted by S^{Δ}.

Remark 1. Let $\sigma \in G_{\mathrm{R}}, \Delta^{\prime}=\sigma^{-1} \Delta \sigma$, and put $L=L_{(\Delta \mid \mathfrak{F})^{*}}, L^{\prime}=L_{\left(\Delta^{\prime} \mid \mathfrak{F}\right)^{*}}$. Let ι_{σ} be the isomorphism $L \rightarrow L^{\prime}$ defines by $f(\tau) \rightarrow f(\sigma \tau)$, and let $\iota_{\sigma h}(h \geq 1)$ be the map $D^{h}(L) \rightarrow D^{h}\left(L^{\prime}\right)$ induced by ι_{σ}. Then,

$$
\begin{equation*}
\iota_{\sigma 2} \circ S^{\Delta}=S^{\Delta^{\prime}} \circ \iota_{\sigma 1} \tag{82}
\end{equation*}
$$

This follows immediately by using Proposition 7 (ii).

[^2]Remark 2. Let Δ^{\prime} be a subgroup of Δ with finite index. Then $L_{(\Delta \mid \mathfrak{s})^{*}} \subset L_{\left(\Delta^{\prime} \backslash(5)^{*}\right.}$, and the restriction of $S^{\Delta^{\prime}}$ to $D\left(L_{(\Delta \mid \mathfrak{5})^{*}}\right)^{\times}$gives S^{Δ}. This is obvious by the definition of S^{Δ}.
840. The canonical S-operator on algebraic function field over \mathbf{C} (First formulation).
[1]. In this section, $\{L, e\}$ will denote the following pair:

- L is a finitely generated one-dimensional algebraic function field over \mathbf{C} (\mathbf{C} : the field of complex numbers);
- $e=e(P)$ is a $\{1,2,3, \ldots ; \infty\}$-valued function defined on the set of all prime divisors P of L, and satisfies:
(i) $e(P)=1$ for almost all P,
(ii) the quantity

$$
\begin{equation*}
V\{L, e\}=2 g-2+\sum_{P}\left(1-\frac{1}{e(P)}\right) \tag{83}
\end{equation*}
$$

is positive, g being the genus of L.
Then, as is well-known, $\{L, e\}$ are in one-to-one correspondence with the fuchsian groups Δ, where $\{L, e\}$ are counted up to isomorphisms, ${ }^{23}$ and Δ, up to conjugacy in G_{R};

$$
\begin{equation*}
\{L, e\} \underset{1: 1}{\longleftrightarrow} \Delta \tag{84}
\end{equation*}
$$

Starting from Δ, this correspondence is defined as follows: Take L to be the field of automorphic functions $L_{(\Delta \mid 5)^{*}}$. (So, the prime divisors of $L_{(\Delta \mid \xi)^{*}}$ are identified with the points on $(\Delta \backslash \mathfrak{H})^{*}$.) Define the function $e=e_{\Delta}$ by

$$
e_{\Delta}(P)=\left\{\begin{array}{lll}
\infty & \cdots & P \text { is a cusp of } \Delta \tag{85}\\
e_{0} & \cdots & P \text { is an elliptic fixed point } \\
& & \text { of } \Delta \text { of order } e_{0}>1, \\
1 & \cdots & \text { otherwise }
\end{array}\right.
$$

Then $\Delta \rightarrow\left\{L_{(\Delta \mid \mathfrak{F})^{*}}, e_{\Delta}\right\}$ defines the above one-to-one correspondence.
Remark 1. The automorphism group of $\left\{L_{(\Delta \mid 5)^{*}}, e_{\Delta}\right\}$ is naturally identified with $N(\Delta) / \Delta$, where $N(\Delta)$ is the normalizer of Δ in $G_{\mathbf{R}}$.

Remark 2. As is well-known,

$$
\begin{equation*}
V\left\{L_{(\Delta \mid \mathfrak{S})}, e_{\Delta}\right\}=\frac{1}{2 \pi} \int_{\Delta \backslash \mathfrak{S}} \frac{d x d y}{y^{2}} \quad(\tau=x+y i) \tag{86}
\end{equation*}
$$

Example. Let $g=0 ; e(P)=2, n, \infty$ for three P and $=1$ for all other P, where $n \geq 3$. Then $v\{L, e\}=\frac{1}{2}-\frac{1}{n}>0$, and Δ is the Hecke's group generated by $\left(\begin{array}{cc}1 & \lambda_{n} \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, where $\lambda_{n}=2 \cos \frac{\pi}{n}$. If $n=3, \Delta=P S L_{2}(Z)$; and in general, Δ is commensurable with $P S L_{2}(Z)$ if and only if $n=3,4,6, \infty$.

[^3][2]. Now let $\{L, e\}$ be given. Let $\left\{\sigma^{-1} \Delta \sigma \mid \sigma \in G_{\mathbf{R}}\right\}$ be the corresponding $G_{\mathbf{R}}$-conjugacy class of fuchsian groups, and take a representative Δ. Let ι_{Δ} be any isomorphism ι_{Δ} : $\{L, e\} \simeq\left\{L_{(\Delta \mid \mathfrak{F})^{*}}, e_{\Delta}\right\}$. Let S^{Δ} be the canonical S-operator on $L_{(\Delta \mid \mathfrak{F})^{*}}$ and put $S^{\{L, e\}}=\iota_{\Delta 2}^{-1}$ 。 $S^{\Delta} \circ \iota_{\Delta 1}$, where $\iota_{\Delta h}(h \geq 1)$ is the map $D^{h}(L) \rightarrow D^{h}\left(L_{(\Delta \mid \mathfrak{F})}\right)$ induced by ι_{Δ} :
\[

$$
\begin{array}{ccc}
D(L)^{\times} & \xrightarrow{s^{(L, e)}} & D^{2}(L) \tag{87}\\
\downarrow \iota_{\Delta 1} & & \downarrow \iota_{\Delta 2} \\
D\left(L_{(\Delta \mid \mathfrak{s})^{*}}\right)^{\times} & \xrightarrow{s^{\Delta}} & D^{2}\left(L_{\left.(\Delta \mid \xi)^{\prime}\right)}\right)
\end{array}
$$ \quad (commutative).
\]

Then by the Remark 1 of $\S 39$ and Remark 1 of $\S 40, S^{\{L, e\}}$ is well-defined by $\{L, e\}$ and is independent of the choice of representative Δ of $\left\{\sigma^{-1} \Delta \sigma \mid \sigma \in G_{\mathrm{R}}\right\}$. By this, it is also clear that $S^{(L, e)}$ commutes with every automorphism ε of $\{L, e\}$; i.e., $S^{\{L, e\rangle}=\varepsilon_{2}^{-1} S^{\{L, e)} \varepsilon_{1}$, where ε_{h} is defined from ε in the same manner as above.

Defintion. We shall call this special S-operator $S^{(L, e)}$ on L the canonical S-operator attached to $\{L, e\}$.
[3]. Thus, the notion of S-operators on algebraic function field L is algebraic, and the canonical S-operator $S^{[L, e)}$ is one of them defined analytically. Since all S-operators on L are of the form $S\langle\xi\rangle=\langle\xi, \zeta\rangle+C$, where ζ is any fixed element of $D(L)^{\times}$and C is an arbitrary constant in $D^{2}(L), S$-operators are determined by its special value $C=S\langle\zeta\rangle$. Thus, we meet an interesting problem to find out (an algebraic formula for) $S^{(L, e)}\langle\zeta\rangle$, when $\{L, e\}$ and ζ are explicitly given algebraically. However, for the general $\{L, e\}$, this problem seems to be quite difficult! For example, to my best knowledge, the following is an open problem:

Problem. Let $L=\mathbf{C}(x, y), y^{2}=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, where $n \geq 5$ and $\alpha_{1}, \cdots, \alpha_{n}$ are distinct (hence $g \geq 2$). Let $e(P)=1$ for all P, and let $S=S^{(L, e)}$ be the canonical S-operator attached to $\{L, e\}$. Then, what is $S\langle d x\rangle$?

For the special types of $\{L, e\}$ however, there are some principles for determining (or characterizing) $S^{\{L, e\}}$ algebraically. In fact, there are two such principles, of which the second is more important:
[4] The first principle. This is based on the following Propositions 9, 10:
Proposition 9. Let $\xi \in D(L)^{\times}$and put $S^{(L, e)}\langle\xi\rangle=-4 \beta$. Let P be any prime divisor of L. Then,
(i) ${ }^{24} \operatorname{ord}_{P} \beta \geq-2$;
(ii) Put $e=e(P), n=\operatorname{ord}_{P} \xi$; let t be a prime element of $P($ in the completion of L at $P)$, and put

$$
\begin{equation*}
\xi=\operatorname{ct}^{n}\left(1+c_{1} t+\cdots\right) d t, c \neq 0, c_{1}, c_{2}, \cdots \in \mathbf{C} . \tag{88}
\end{equation*}
$$

[^4]Then we have

$$
\begin{equation*}
\beta=\left\{\frac{\beta_{0}}{t^{2}}+\frac{\beta_{1}}{t}+\beta_{2}+\cdots\right\}(d t)^{2} \tag{89}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\beta_{0}=\frac{1}{4}\left\{(n+1)^{2}-\frac{1}{e^{2}}\right\} \quad \cdots \text { at any } P \tag{90}\\
\beta_{1}=\frac{1}{2} n c_{1} \quad \cdots \text { if } e(P)=1 .
\end{array}\right.
$$

The proof may be obtained directly, but an indirect proof will be given in §42 [5]. There, it is also shown that if S is any S-operator on L and if we put $S\langle\xi\rangle=-4 \beta$, then (i) (ii) hold for all ξ if and only if they hold for one ξ (thus, (i) (ii) are conditions on S). The meaning of these conditions will also become clear there.

Defintion. $\left\{L^{\prime}, e^{\prime}\right\}$ is called an admissible extension of $\{L, e\}$ if
(i) L^{\prime} is a finite extension of L, and
(ii) $e(P)=e^{\prime}\left(P^{\prime}\right) e\left(P^{\prime} / P\right)$ holds for all prime divisors P^{\prime} of L^{\prime}, where P is the restriction of P^{\prime} to L, and $e\left(P^{\prime} / P\right)$ is the ramification index of P^{\prime} / P.

It is clear that if Δ is the fuchsian group corresponding to $\{L, e\}$, then the admissible extensions of $\{L, e\}$ are those pairs $\left\{L^{\prime}, e^{\prime}\right\}$ that correspond to the subgroups Δ^{\prime} of Δ with finite indices. From this, and from the definition of $S^{(L, e)}$, we obtain immediately:

Proposition 10. Let $\left\{L^{\prime}, e^{\prime}\right\}$ be an admissible extension of $\{L, e\}$. Then $S^{\{L, e\}}$ is the restriction of $S^{\left(L^{\prime}, e^{\prime}\right)}$ to $D(L)^{\times}$, and $S^{\left(L^{\prime}, e^{\prime}\right)}$ is the unique S-operator on L^{\prime} with this property.

The second point is obvious since S-operator is determined by its special value.
Now, Proposition 9 determines $S^{(L, e)}$ up to $\left(3 g-3+\sum_{P ; e(P)>1} 1\right)$ - dimensional subspace of $D^{2}(L)$. In fact, fix ξ and put $\beta_{1}=\beta+\mu\left(\mu\right.$: a variable in $\left.D^{2}(L)\right)$. Then β_{1} also satisfies the conditions (i) (ii) of Proposition 9 if and only if μ is a multiple of $\prod_{e(P)>1} P^{-1}$. Therefore, if we put $W=(\xi)$ (the divisor of ξ), the dimension of μ is given by $\ell\left(W^{-2} \prod_{e(P)>1} P^{-1}\right)=$ $3 g-3+\sum_{e(P)>1} 1$.

Remark 3. This number $3 g-3+\sum_{e(P)>1} 1$ is equal to the dimension of the connected moduli variety of $\{L, e\}$. But we do not know why.

So, Proposition 9 determines $S^{\{L, e)}$ uniquely only when $3 g-3+\sum_{e(P)>1} 1=0$; i.e., only when $g=0$ and $\sum_{e(P)>1} 1=3$ (called the triangular case). ${ }^{25}$ In this case, we can determine $S^{\{L, e\}}$ easily by a direct application of Proposition 9. We have:

Proposition 11. Let $L=\mathbf{C}(x)$ (the rational function field), and let $e(P)=1$ except at three points P. We may assume that these three points are given by $x \equiv 0,1, \infty(\bmod P)$ respectively. Call them P_{0}, P_{1}, P_{∞}, and put e $\left(P_{i}\right)=e_{i}(i=0,1, \infty)\left(\right.$ so that $\left.\frac{1}{e_{0}}+\frac{1}{e_{1}}+\frac{1}{e_{\infty}}<1\right)$. Then the canonical S-operator $S^{(L, e)}$ is given by

$$
\begin{equation*}
S^{|L, e|}\langle\xi\rangle=\langle\xi, d x\rangle+\frac{a x^{2}+b x+c}{x^{2}(x-1)^{2}} \quad\left(\xi \in D(L)^{\times}\right), \tag{91}
\end{equation*}
$$

[^5]where
\[

$$
\begin{equation*}
a=\frac{1}{e_{\infty}^{2}}-1, b=1+\frac{1}{e_{1}^{2}}-\frac{1}{e_{0}^{2}}-\frac{1}{e_{\infty}^{2}}, c=\frac{1}{e_{0}^{2}}-1 \tag{92}
\end{equation*}
$$

\]

Now, call the two $\{L, e\}$ and $\left\{L^{\prime}, e^{\prime}\right\}$ commensurable if they have a common admissible extension. (Clearly, this is equivalent to the commensurability of the corresponding fuchsian groups.) Then by Propositions 10,11 , we conclude that if $\{L, e\}$ is commensurable with the triangular pair, then $S^{(L, e)}$ is determined algebraically.
[5] The second principle. This is based on the following very simple fact:
Proposition 12. Consider the following situation:

Then $S=S^{(L, e)}$ is the unique S-operator on $\{L, e\}$ satisfying

$$
\begin{equation*}
S\left\langle D\left(L_{i}\right)^{\times}\right\rangle \subset D^{2}\left(L_{i}\right) \tag{94}
\end{equation*}
$$

for $i=1,2$ (both).
That $S^{\{L, e\}}$ satisfies (94) is an immediate consequence of Proposition 10. To see how the uniqueness follows, let $S^{\prime}=S^{\{L, e\}}+C\left(C \in D^{2}(L)\right)$ be another S-operator satisfying (94). Then C must be contained in $D^{2}\left(L_{1}\right) \cap D^{2}\left(L_{2}\right)$. But by the Corollary of Lemma 14 given in $\S 42$, we have $D^{h}\left(L_{1}\right) \cap D^{h}\left(L_{2}\right)=\{0\}(h \geq 1)$. Hence $C=0$; hence the uniqueness!

Corollary . The situation being as in Proposition 12, let ξ_{1}, ξ_{2} be any element of $D\left(L_{1}\right)^{\times}, D\left(L_{2}\right)^{\times}$respectively. Then $\left\langle\xi_{1}, \xi_{2}\right\rangle$ has a unique decomposition of the form

$$
\left\langle\xi_{1}, \xi_{2}\right\rangle=\omega_{1}-\omega_{2} ; \quad\left\{\begin{array}{l}
\omega_{1} \in D^{2}\left(L_{1}\right) \tag{95}\\
\omega_{2} \in D^{2}\left(L_{2}\right)
\end{array}\right.
$$

Moreover, these ω_{1}, ω_{2} are given by $\omega_{1}=S^{\{L, e\}}\left\langle\xi_{1}\right\rangle, \omega_{2}=S^{\{L, e\}}\left\langle\xi_{2}\right\rangle$.
That (95) holds for $\omega_{i}=S^{\{L, e\rangle}\left\langle\xi_{i}\right\rangle(i=1,2)$ is obvious. Uniqueness is an immediate consequence of $D^{2}\left(L_{1}\right) \cap D^{2}\left(L_{2}\right)=\{0\}$.

The importance of this simple principle lies on the fact that if $\{L, e\}$ is such that the corresponding fuchsian group Δ is arithmetically defined, or more generally, if the commensurability group of Δ in $G_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$, then $\{L, e\}$ is always commensurable with a situation (93). Call such a commensurability family of $\{L, e\}$ ample or arithmetic. Then, we conclude by Proposition 12 that $S^{(L, e)}$ can be characterized algebraically if $\{L, e\}$ belongs to an ample (arithmetic) commensurability family. Now we shall proceed to obtain
a better formulation of this than Proposition 12: for although Proposition 12 is convenient for the understanding of this principle in the simplest form, it is not convenient for applications or generalizations.

Remark 4. By a result of Každan [19], the commensurability group of the Hecke's group $\Delta=\Delta_{n}$ for $n \neq 3,4,6, \infty$ is Δ itself; hence the commensurability family of the triangular $\{L, e\}$ with $e\left(P_{i}\right)=2, n, \infty(n \neq 3,4,6, \infty)$ is not ample.
§41. The canonical S-operator on algebraic function field over \mathbf{C} (second formulation), and its algebraic characterization in ample (arithmetic) cases.
[1]. In this section, L will denote any one-dimensional extension of \mathbf{C} not assumed to be finitely generated over \mathbf{C}, but assumed to satisfy the following conditions (L1), (L2):
(L1) Let \mathcal{L}_{0} be the set of all finitely generated extensions L_{0} / C contained in L such that L / L_{0} is normally algebraic. Then \mathcal{L}_{0} is non-empty.
(L2) For each $L_{0} \in \mathcal{L}_{0}$ and a prime divisor P_{0} of L_{0}, denote by $e_{0}\left(P_{0}\right)$ the ramification index of P_{0} in L / L_{0}. Then $e_{0}\left(P_{0}\right)=1$ for almost all P_{0}, and the quantity

$$
\begin{equation*}
V\left(L_{0}\right)=2 g_{0}-2+\sum_{P_{0}}\left(1-\frac{1}{e_{0}\left(P_{0}\right)}\right) \quad\left(g_{0}: \text { the genus of } L_{0}\right) \tag{96}
\end{equation*}
$$

is positive; in short, $\left\{L_{0}, e_{0}\right\}$ satisfies the conditions (i) (ii) of $\S 40$.
Remark 1. For any $L_{0}, L_{0}^{\prime} \in \mathcal{L}_{0}$, we have

$$
\begin{equation*}
V\left(L_{0} L_{0}^{\prime}\right)=V\left(L_{0}\right)\left[L_{0} L_{0}^{\prime}: L_{0}\right]=V\left(L_{0}^{\prime}\right)\left[L_{0} L_{0}^{\prime}: L_{0}^{\prime}\right] \tag{97}
\end{equation*}
$$

by Hurwitz' formula; hence the condition (L2) is satisfied for all $L_{0} \in \mathcal{L}_{0}$ if it is satisfied for one L_{0}.
[2]. Now consider \mathcal{L}_{0} as an ordered set by the inclusion relation \supset. Then if $L_{0}, L_{0}^{\prime} \in \mathcal{L}_{0}$ with $L_{0} \subset L_{0}^{\prime}\left(L_{0}:\right.$ smaller than $\left.L_{0}^{\prime}\right)$, we have $V\left(L_{0}\right)=\frac{1}{\left[L_{0}^{\prime}: L_{0}\right]} V\left(L_{0}^{\prime}\right)$ by (97); but on the other hand, it is well-known (and easily checked) that $V\left\{L_{0}, e_{0}\right\} \geq \frac{1}{42}$ for any pair $\left\{L_{0}, e_{0}\right\}$ satisfying (i) (ii) of $\S 40$. Therefore, the ordered set \mathcal{L}_{0} is inductive (i.e., any linearly ordered subset contains a minimal element). Hence \mathcal{L}_{0} contains at least one minimal element.

Defintion. We shall call L "simple" if \mathcal{L}_{0} contains only one minimal element, and "ample" (or "arithmetic") if otherwise.

Remark 2. If L / C is finitely generated, i.e., if $L \in \mathcal{L}_{0}$, then L is simple. If fact, since $V(L)>0$, the genus of L is greater than one; hence Aut L is finite. Therefore, the fixed field of Aut $t_{C} L$ is the unique minimal element of \mathcal{L}_{0}; hence L is simple.

Proposition 13. (i) If L is simple and L_{00} is the unique minimal element of \mathcal{L}_{0}, then

$$
\begin{equation*}
\mathcal{L}_{0}=\left\{L_{0} \mid L_{00} \subset L_{0} \subset L,\left[L_{0}: L_{00}\right]<\infty\right\} . \tag{98}
\end{equation*}
$$

(ii) If L is ample and L_{0}, L_{0}^{\prime} are two distinct minimal elements, then

$$
\begin{equation*}
L_{0} \cap L_{0}^{\prime}=\mathbf{C} \tag{99}
\end{equation*}
$$

Proof. (i) is obvious. (ii) If $L_{0} \cap L_{0}^{\prime} \neq \mathbf{C}$, then $L_{0} \cap L_{0}^{\prime} \in \mathcal{L}_{0}$, which is a contradiction.
[3]. Now let $\mathrm{Aut}_{\mathrm{c}} L$ be the group of all automorphisms of the field L over \mathbf{C}. Topologize $\mathrm{Aut}_{\mathbf{C}} L$ by taking $\mathrm{Aut}_{L_{0}} L\left(L_{0} \in \mathcal{L}_{0}\right)$ as basis of neighborhoods of identity. Then the induced topology of $\mathrm{Aut}_{L_{0}} L$ coincides with the Krull topology; hence $\mathrm{Aut}_{\mathrm{C}} L$ is locally compact. It is clear that a closed subgroup of $\operatorname{Aut}_{\mathbf{C}} L$ is non-compact if and only if its fixed field is \mathbf{C}.

Proposition 14. (i) If L is simple, and L_{00} is the unique minimal element of \mathcal{L}_{0}, then

$$
\begin{equation*}
\operatorname{Aut}_{\mathbf{C}} L=\operatorname{Aut}_{L_{0}} L(=\text { compact }) . \tag{100}
\end{equation*}
$$

(ii) If L is ample, $\operatorname{Aut}_{\mathbf{C}} L$ is non-compact, and its fixed field is \mathbf{C}.

Proof. (i) Let $\sigma \in \operatorname{Aut}_{\mathbf{c}} L$. Then L_{00}^{σ} is also a minimal element of \mathcal{L}_{0}; hence $L_{00}^{\sigma}=L_{00}$. Moreover, it is clear that $e_{00}\left(P_{00}^{\sigma}\right)=e_{00}\left(P_{00}\right)$, where P_{00} is any prime divisor of L_{00} and e_{00} is the ramification index in L / L_{00}. Therefore, there is a homomorphism Aut $L \rightarrow$ $\operatorname{Aut}\left\{L_{00}, e_{00}\right\}$ with the kernel $\operatorname{Aut}_{L_{00}} L$. But $\operatorname{Aut}\left\{L_{00}, e_{00}\right\}$ is finite by Remark $1 \S 40$; hence (Aut $L: \operatorname{Aut}_{L_{00}} L$) is finite. Therefore, if L_{00}^{\prime} is the fixed field of Aut L, then $L_{00}^{\prime} \in \mathcal{L}_{0}$ and $L_{00}^{\prime} \subset L_{00}$; hence $L_{00}^{\prime}=L_{00}$; hence Aut $L=\operatorname{Aut}_{L_{00}} L$.
(ii) is obvious by Proposition 13 (ii).

Example . Let L be a G_{p}-field over \mathbf{C} (see $\S 1$). Then L satisfies (L1), (L2), and L is ample.
[4]. Now with these preparations, we shall define the canonical S-operator on L, and characterize it algebraically when L is ample. First, we must define $D(L)$ and d. Let $L_{0} \in \mathcal{L}_{0}$ and let $D\left(L_{0}\right)$ be the space of all differentials of L_{0} / \mathbf{C} in the usual sense (in the theory of algebraic functions of one variable). Let $d_{0}: L_{0} \rightarrow D\left(L_{0}\right)$ be the differentiation. Then if $L_{0}^{\prime} \in \mathcal{L}_{0}$ with $L_{0} \subset L_{0}^{\prime}$, there is a natural injection $D\left(L_{0}\right) \subset D\left(L_{0}^{\prime}\right)$ compatible with the differentiation. Now, $D(L)$ and d are defined to be the injective limits of $D\left(L_{0}\right)$ and d_{0}.

Now take any $L_{0} \in \mathcal{L}_{0}$ and let $S^{\left\{L_{0}, e_{0}\right\}}$ be the canonical S-operator attached to $\left\{L_{0}, e_{0}\right\}$. For each $\xi \in D(L)^{\times}$put $S^{L_{0}}\langle\xi\rangle=S^{\left\{L_{0}, e_{0}\right\rangle}\left\langle\xi_{0}\right\rangle+\left\langle\xi, \xi_{0}\right\rangle$, where ξ_{0} is any element of $D\left(L_{0}\right)^{\times}$. Then since $S^{\left(L_{0}, e_{0}\right)}$ is an S-operator on L_{0}, this expression is independent of ξ_{0}, and since, $\xi \rightarrow\left\langle\xi, \xi_{0}\right\rangle$ is an S-operator on $L, S^{L_{0}}$ is also an S-operator on L. Moreover, $S^{L_{0}}$ is independent of L_{0}. In fact, if $L_{0}^{\prime} \in \mathcal{L}_{0}$, then $L_{0} L_{0}^{\prime} \in \mathcal{L}_{0}$; hence it is enough to check $S^{L_{0}}=S^{L_{0}^{\prime}}$ when $L_{0} \subset L_{0}^{\prime}$. But this is an immediate consequence of Remark 2 (§39) and the definition of $S^{\left\{L_{0}, e_{0}\right\}}$. Since $S^{L_{0}}$ is independent of L_{0}, we shall denote it by

$$
\begin{equation*}
S^{L} \tag{101}
\end{equation*}
$$

and call it the canonical S-operator on L.
Remark 3. Thus the restriction of S^{L} to each $L_{0}\left(L_{0} \in \mathcal{L}_{0}\right)$ is nothing but $S^{\left(L_{0}, e_{0}\right)}$.
[5]. Now we shall define the action of Autc L on the set of all S-operators on L by $S^{\sigma}\langle\xi\rangle=S\left\langle\xi^{\sigma^{-1}}\right\rangle^{\sigma}\left(\sigma \in\right.$ Aut $\left._{c} L\right)$. Then we have:

Theorem 9. (i) The canonical S-operator S^{L} is invariant by $A u t_{C} L$.
(ii) If L is ample, S^{L} is the unique Aut $_{\mathbf{c}} L$-invariant S-operator on L. More strongly, if Φ is any closed non-compact subgroup of Aut $_{\mathrm{C}} L, S^{L}$ is already characterized by Φ-invariance.
[6]. For this proof, we need the following lemma, which will be proved in $\S 42$.
Lemma 14. Let Φ be any closed non-compact subgroup of Aut $_{C} L$, and let $h \geq 1$. Then the only Φ-invariant element of $D^{h}(L)$ is 0 .
[7]. Proof of Theorem 9. (i) Let $L_{0} \in \mathcal{L}_{0}$ and put $V=\operatorname{Aut}_{L_{0}} L$. Let ξ_{0} be any fixed element of $D\left(L_{0}\right)^{\times}$and let $\xi \in D(L)^{\times}$. Then by definition, $S^{L}\langle\xi\rangle=S^{\left(L_{0}, e_{0}\right)}\left\langle\xi_{0}\right\rangle+\left\langle\xi, \xi_{0}\right\rangle$. So, for any $\sigma \in V$, we have $\left(S^{L}\right)^{\sigma}\langle\xi\rangle=S^{\left\{L_{0}, e_{0}\right\rangle}\left\langle\xi_{0}\right\rangle^{\sigma}+\left\langle\xi^{\sigma^{-1}}, \xi_{0}\right\rangle^{\sigma}=S^{\left(L_{0}, e_{0}\right\rangle}\left\langle\xi_{0}\right\rangle+\left\langle\xi, \xi_{0}^{\sigma}\right\rangle=S^{L}\langle\xi\rangle$. Hence S^{L} is V-invariant. If L is simple, take L_{0} to be the unique minimal element of \mathcal{L}_{0}. Then $V=$ Aut $_{c} L$; hence S^{L} is Aut $t_{c} L$-invariant. Now let L be ample, and let G_{0} be the subgroup of Aut $t_{C} L$ generated by all groups of the form Aut $_{L_{0}} L\left(L_{0} \in \mathcal{L}_{0}\right)$. Then S^{L} is $G_{0^{-}}$ invariant, and moreover, G_{0} is open (hence also closed) and non-compact (by Proposition 13 (ii)). Hence by Lemma 14, the only G_{0}-invariant element of $D^{2}(L)$ is 0 . Suppose that S^{\prime} is another G_{0}-invariant S-operator on L, and put $S^{\prime}-S^{L}=C\left(C\right.$: a constant in $\left.D^{2}(L)\right)$. Then C must also be G_{0} - invariant; hence $C=0$; hence $S^{\prime}=S^{L}$. Therefore, S^{L} is the unique G_{0}-invariant S-operator. On the other hand, since any element of Aut L leaves the set \mathcal{L}_{0} invariant (as a whole), G_{0} is a normal subgroup of Aut L. Therefore, for any $\sigma \in \operatorname{Aut}_{\mathbf{c}} L,\left(S^{L}\right)^{\sigma}$ is again G_{0}-invariant; hence $\left(S^{L}\right)^{\sigma}=S^{L}$. Therefore, S^{L} is Aut L invariant. This settles (i).
(ii) Suppose that S^{\prime} is a Φ-invariant S-operator, and put $S^{L}-S^{\prime}=C$ (C : a constant in $D^{2}(L)$). Then C is Φ-invariant; hence by Lemma $14, C=0$; hence $S^{\prime}=S^{L}$. This settles (ii).
§42. Proof of Lemma 14, and its Corollary. Let L be as in $\S 41$. For each open compact subgroup V of Aut L let L_{V} denote its fixed field in L, and for each prime divisor P of L_{V} let $e_{V}(P)$ denote its ramification index in L / L_{V} (so that $L_{V} \in \mathcal{L}_{0}$, and $\left\{L_{V}, e_{V}\right\}$ satisfies the conditions (i), (ii) of $\S 40$). Assume now that L is ample. Then there exists a discrete subgroup $\tilde{\Gamma}$ of $\tilde{G}=G_{R} \times \operatorname{Aut}_{C} L$ with finite volume quotient, unique up to conjugacy in \tilde{G}, satisfying the following conditions:
(i) The projection of $\tilde{\Gamma}$ to each component of \tilde{G} is injective, and its image is dense in that component;
(ii) For each open compact subgroup V of Aut L, put $\Delta=\operatorname{proj}_{\mathbf{R}}\left\{\tilde{\Gamma} \cap\left(G_{R} \times V\right)\right\}$, so that Δ is a fuchsian group depending on V. Put $\left\{L_{V}^{\prime}, e_{V}^{\prime}\right\}=\left\{L_{(\Delta \mid \mathfrak{(5)}}, e_{\Delta}\right\}^{26}$, and $L^{\prime}=U_{V} L_{V}^{\prime}$. Then there is an isomorphism $\iota: L \rightarrow L^{\prime}$ such that (a): $\iota_{L_{V}}$ gives an isomorphism of

[^6]$\left\{L_{V}, e_{V}\right\}$ onto $\left\{L_{V}^{\prime}, e_{V}^{\prime}\right\}$ for each V, and that (b): for each $\tilde{\gamma}=\gamma_{\mathbf{R}} \times \gamma \in \tilde{\Gamma}$, the action of γ on L corresponds to the action $f(\tau) \rightarrow f\left(\gamma_{\mathrm{R}} \tau\right)$ of γ_{R} on L^{\prime} (by $\left.\iota\right)$.
This can be proved exactly in the same manner as Theorem 1 (Part 1). Now let Φ be any closed non-compact subgroup of Aut L, let $h \geq 1$, and let ω be a Φ-invariant differential in L of degree h. Since $\omega \in D^{h}\left(L_{V}\right)$ for some V, ω is also invariant by V; hence we may further assume that Φ contains V. Put $G=G_{\mathrm{R}} \times \Phi, \Gamma=\tilde{\Gamma} \cap G$, and let Γ_{R} be the projection of Γ to $G_{\mathbf{R}}$. Then since Φ is non-compact, $(\Phi: V)=\infty$; hence $\left(\Gamma_{\mathbf{R}}: \Delta\right)=\infty$; hence $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}}$. Now put $\iota(\omega)=f(\tau)(d \tau)^{h} ; \tau$ being as in $\S 39$. Then since ω is Φ-invariant, $f(\tau)$ is a meromorphic function on \mathfrak{G} and satisfies
\[

$$
\begin{equation*}
f\left(\frac{a \tau+b}{c \tau+d}\right)(c \tau+d)^{-2 h}=f(\tau) \tag{102}
\end{equation*}
$$

\]

for all $\gamma_{\mathbf{R}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\mathbf{R}}$. But since $\Gamma_{\mathbf{R}}$ is dense in $G_{\mathbf{R}},(102)$ holds for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{\mathbf{R}}$. In particular, we have $f(\tau+\lambda)=f(\tau)$ for all $\lambda \in \mathbf{R}$; hence $f(\tau)$ is a function of $\operatorname{Im}(\tau)$. But since $f(\tau)$ is meromorphic, this implies that $f(\tau)$ must be a constant. But then, since $h \geq 1$, it is clear by (102) that $f(\tau) \equiv 0$; hence $\omega=0$. This proves Lemma 14 .

As a Corollary of Lemma 14, we shall prove the following assertion, which is used in §40, §43:

Corollary. Let $\{L, e\},\left\{L_{1}, e_{1}\right\},\left\{L_{2}, e_{2}\right\}$ be as in Proposition 12. Then

$$
\begin{equation*}
D^{h}\left(L_{1}\right) \cap D^{h}\left(L_{2}\right)=\{0\} \quad(h \geq 1) \tag{103}
\end{equation*}
$$

Proof. Rewrite $\{L, e\}=\left\{L_{0}, e_{0}\right\}$ (we shall use the notation L for some other field). Let Δ_{0} be the fuchsian group corresponding to $\left\{L_{0}, e_{0}\right\}$, and for each subgroup $\Delta^{\prime} \subset \Delta_{0}$ with finite index, let $\left\{L^{\prime}, e^{\prime}\right\}$ denote the corresponding admissible extension of $\left\{L_{0}, e_{0}\right\}$. Put $L=\bigcup_{\Delta^{\prime}} L^{\prime}$, where Δ^{\prime} runs over all subgroups of Δ_{0} with finite indices. Then clearly for each prime divisor P_{0} of L_{0}, its ramification index in L / L_{0} divides $e_{0}\left(P_{0}\right)$; but moreover, it is well-known (and easily proved ${ }^{27}$) that the ramification index coincides with $e_{0}\left(P_{0}\right)$. Therefore, L satisfies the conditions (L1) (L2) of $\S 41$. Put $V_{i}=\mathrm{Aut}_{L_{i}} L(i=1,2)$, and let Φ be the subgroup of $\mathrm{Aut}_{\mathbf{c}} L$ generated by V_{1} and V_{2}. Then Φ is open (hence also closed), and since $L_{1} \cap L_{2}=\mathbf{C}, \Phi$ is non-compact. Now let $\omega \in D^{h}\left(L_{1}\right) \cap D^{h}\left(L_{2}\right)$. Then ω is Φ-invariant; hence by Lemma $14, \omega=0$.

[^7]The canonical class of linear differential equations of second order on algebraic function fields over \mathbf{C}, and its algebraic characterization in ample (arithmetic) cases.

843. The first formulation.

[1]. Let $\{L, e\}$ be as in $\S 40$. Let $\xi \in D(L)^{\times}$and let D_{ξ} denote the derivation of L defined by $L \ni y \rightarrow \frac{d y}{\xi} \in L$. By a (differential) equation $\Theta=[\xi ; A, B](A, B \in L)$, we will mean the following linear differential equation:

$$
\begin{equation*}
\left(\mathbb{D}_{\xi}^{2}+A \cdot \mathbb{D}_{\xi}+B\right) u=0 \tag{104}
\end{equation*}
$$

Let $\eta \in D(L)^{\times}$and put $w_{1}=\eta / \xi, w_{i+1}=d w_{i} / \xi(i \geq 1)$, so that $\mathbb{D}_{\xi}=w_{1} \mathbb{D}_{\eta}, \mathbb{D}_{\xi}^{2}=$ $w_{1}^{2} \mathbb{D}_{\eta}^{2}+w_{2} \mathbb{D}_{\eta}$; hence the equation Θ may be rewritten as:

$$
\left\{\begin{array}{l}
\left(\mathbb{D}_{\eta}^{2}+A_{1} \mathbb{D}_{\eta}+B_{1}\right) u=0, \quad \text { with } \\
A_{1}=A w_{1}^{-1}+w_{2} w_{1}^{-2}, B_{1}=B w_{1}^{-2}
\end{array}\right.
$$

We shall always identify two such equations (consider as different expressions of the same equation);

$$
\begin{equation*}
[\xi, A, B]=\left[\eta ; A w_{1}^{-1}+w_{2} w_{1}^{-2}, B w_{1}^{-2}\right] \quad\left(\xi, \eta \in D(L)^{\times}\right) \tag{105}
\end{equation*}
$$

Since $B_{1} \cdot \eta^{2}=B \cdot \xi^{2}$ and $A_{1} \cdot \eta-A \cdot \xi=d \log w_{1}$, the quantities $B \cdot \xi^{2}, \operatorname{Res}_{P}(A \xi)-\operatorname{ord}_{P} \xi$, $A \cdot \xi\left(\bmod d \log L^{\times}\right)$are independent of the expressions of Θ.

Let $\Theta=[\xi ; A, B]$ and $C \in L^{\times}$. By $\sqrt{C^{-1}} \Theta$, we shall mean the equation obtained by substituting u by $\sqrt{C} u$ in (104). ${ }^{28}$ Thus, by definition,

$$
[\xi ; A, B]=\sqrt{C^{-1}}\left[\xi ; A^{\prime}, B^{\prime}\right] \Leftrightarrow\left\{\begin{array}{l}
A^{\prime}=A+\frac{\mathrm{D}_{\xi}(C)}{C} \tag{106}\\
B^{\prime}=B+\frac{\mathrm{D}_{\xi}(C)}{2 C} A+\frac{2 C D_{\xi}^{2}(C)-\left(\mathbb{D}_{\xi}(C)\right)^{2}}{4 C^{2}}
\end{array}\right.
$$

The two equations Θ, Θ^{\prime} are called equivalent (or belong to the same class) if $\Theta^{\prime}=$ $\sqrt{C^{-1}} \Theta$ holds for some $C \in L^{\times}$. It is clear that this is an equivalence relation.
[2].
Proposition 15. Let S be an S-operator on L, let $\xi \in D(L)^{\times}$, and put $S\langle\xi\rangle=-4 B_{\xi} \cdot \xi^{2}$ $\left(B_{\xi}=B_{\xi}^{S} \in L\right)$. Then the class of the equation $\left[\xi ; 0, B_{\xi}\right]$ depends only on S, and is independent of ξ.

Proof. It is enough to check

$$
\begin{equation*}
\left[\eta ; 0, B_{\eta}\right]=\sqrt{\eta / \xi}\left[\xi ; 0, B_{\xi}\right] \quad\left(\xi, \eta \in D(L)^{\times}\right) . \tag{107}
\end{equation*}
$$

[^8]By (105), we have $\left[\eta ; 0, B_{\eta}\right]=\left[\xi ;-\frac{w_{2}}{w_{1}}, B_{\eta} w_{1}^{2}\right]$. Therefore, if we put $C=w_{1}=\eta / \xi$, then $\sqrt{C^{-1}}\left[\eta ; 0, B_{\eta}\right]=\left[\xi ; A^{\prime}, B^{\prime}\right]$, with $A^{\prime}=-\frac{w_{2}}{w_{1}}+\frac{D_{\xi}(C)}{C}=0$, and

$$
\begin{align*}
B^{\prime} & =B_{\eta} w_{1}^{2}+\frac{w_{2}}{2 w_{1}} \times\left(-\frac{w_{2}}{w_{1}}\right)+\frac{2 w_{1} w_{3}-w_{2}^{2}}{4 w_{1}^{2}} \tag{108}\\
& =B_{\eta} w_{1}^{2}+\frac{2 w_{1} w_{3}-3 w_{2}^{2}}{4 w_{1}^{2}}
\end{align*}
$$

hence $4 B^{\prime} \cdot \xi^{2}=4 B_{\eta} \cdot \eta^{2}+\langle\eta, \xi\rangle=-S\langle\eta\rangle+\langle\eta, \xi\rangle=-S\langle\xi\rangle$; hence $B^{\prime}=B_{\xi}$.
Defintion. In the situation of Proposition 15 , the class of $\left[\xi ; 0, B_{\xi}\right]$ will be called the S-class (corresponding to the S-operator S), and will be denoted by Ω^{S}. If $S^{\lfloor L, e\rangle}$ is the canonical S-operator attached to $\{L, e\}$, then $\Omega^{S^{(L, e)}}$ will be called the canonical class attached to $\{L, e\}$ and denoted by $\Omega\{L, e\}$.

By the following proposition, a class Ω is an S-class (for some S) if and only if it contains an equation of the form $[\xi ; 0, B]\left(\xi \in D(L)^{\times}, B \in L\right)$.

Proposition 16. Let Ω be any class containing an equation of the form $\Theta=[\xi ; 0, B]$ $(B \in L)$. Then there exists a unique S-operator S (on L) such that $\Omega=\Omega^{S}$. Moreover, if Θ and S are as above, we have $B=B_{\xi}^{S}$; and for each $\Theta^{\prime} \in \Omega^{S}$, there exists a differential $\eta \in D(L)^{\times}$, unique up to constant multiple, such that $\Theta^{\prime}=\left[\eta ; 0, B_{\eta}^{S}\right]$. Thus, there are two bijections:

$$
\begin{equation*}
S \text {-operators } \longleftrightarrow \text { 1:1 } S \text {-classes } \tag{109}
\end{equation*}
$$

by $S \leftrightarrow \mathfrak{\Omega}^{S}$, and
$\underset{(S: f i x e d)}{\operatorname{equations} \text { in } \Omega^{S}} \underset{1: 1}{\longleftrightarrow}$ the canonical divisors ${ }^{29}$ on L,
by $\left[\eta ; 0, B_{\eta}\right] \leftrightarrow$ the divisor (η) of η.
Defintion. We shall call $W^{\prime}=(\eta)$ the divisor of the equation $\Theta^{\prime}=\left[\eta ; 0, B_{\eta}\right]$. It is clear by (107) that the divisor of $\sqrt{C} \Theta^{\prime}$ is $(C) \cdot W^{\prime}$.

Proof. Let $\Theta=[\xi ; 0, B]$, and let S be the S-operator defined by $S\langle\eta\rangle=\langle\eta, \xi\rangle-4 B \cdot \xi^{2}$ (η : a variable in $D^{2}(L)$). Then $B=B_{\xi}^{S}$; hence $\Omega=\Omega^{S}$. Suppose that S^{\prime} is another S operator with $\Omega=\Omega^{S^{\prime}}$. Then $\left[\xi ; 0, B_{\xi}^{S^{\prime}}\right] \in \Omega$; hence $\left[\xi ; 0, B_{\xi}^{S^{\prime}}\right]=\sqrt{C}\left[\xi ; 0, B_{\xi}^{S}\right]$ with some $C \in L^{\times}$. But by (106), this implies $\mathbb{D}_{\xi}(C)=0$ (hence $C \in \mathbf{C}^{\times}$); hence $B_{\xi}^{S^{\prime}}=B_{\xi}^{S}$; hence $S^{\prime}\langle\xi\rangle=S\langle\xi\rangle$; hence $S^{\prime}=S$. That $B^{\prime}=B_{\xi}^{S}$ follows exactly in the same manner. Finally, let $\Theta^{\prime} \in \Omega^{S}$, and put $\Theta^{\prime}=\sqrt{C} \Theta\left(C \in L^{\times}\right)$. Put $\eta=C \cdot \xi$. Then by (107), we obtain $\Theta^{\prime}=\left[\eta ; 0, B_{\eta}^{S}\right]$.

Remark 1. Thus, if $[\xi ; A, B]$ is the equation in Ω^{S} whose divisor is (η), then $A=$ $-\frac{w_{2}}{w_{1}}, B=B_{\eta} w_{1}^{2}$.

[^9][3]. Let Δ be the fuchsian group corresponding to $\{L, e\}$, and identify $\{L, e\}$ with $\left\{L_{\left(\Delta \backslash()^{*}\right)}, e_{\Delta}\right\}$ (see $\S 40$). Let $S=S^{\{L, e\}}$ be the canonical S-operator, and put $\xi=f(\tau) d \tau$. Then $B_{\xi}=-\frac{2 f(\tau) f^{\prime \prime}(\tau)-3 f^{\prime}(\tau)^{2}}{4 f(\tau)^{4}}$; hence the equation $\left[\xi ; 0, B_{\xi}\right]$ takes the form:
\[

$$
\begin{equation*}
\mathbb{D}_{\xi}^{2} u=\frac{2 f(\tau) f^{\prime \prime}(\tau)-3 f^{\prime}(\tau)^{2}}{4 f(\tau)^{4}} u \tag{111}
\end{equation*}
$$

\]

As is well-known (and can be checked directly), the general solution of (111) is

$$
\begin{equation*}
u=(a \tau+b) \sqrt{f(\tau)} \quad(a, b \in \mathbf{C}) .^{30} \tag{112}
\end{equation*}
$$

[4]. Local properties of the equations in the canonical class. Now let $\Omega=\Omega\{L, e\}$ be the canonical class, and let Θ be the equation in Ω having a given divisor $W=\Pi_{P} P^{u(P)}$. Then Θ has the following properties:
$(\Theta-1) \Theta$ is fuchsian; i.e., regular at each prime divisor P of L.
$(\Theta-2)$ At each P, the exponents of Θ are given by

$$
\begin{equation*}
\frac{1}{2}\left\{1+w(P)+\frac{1}{e(P)}\right\}, \frac{1}{2}\left\{1+w(P)-\frac{1}{e(P)}\right\} \tag{113}
\end{equation*}
$$

thus if $e(P)=1$ or ∞, the difference of exponents is integral; but:
$(\Theta-3)$ Unless $e(P)=\infty$, the local solutions of Θ at P do not involve logarithms.
These follow immediately from the above [3] and from the following Lemma 15.
Lemma 15. Let X be any Riemann surface, X^{\prime} its finite covering, P^{\prime} a point on X^{\prime}, P the point of X lying below P^{\prime}, and let e be the ramification index of P^{\prime} / P. Let ω be a non-zero differential of degree $h(h \geq 1)$ on X. Then the order $\operatorname{ord}_{P}, \omega$ of ω (considered as a differential on X^{\prime}) at P^{\prime} is given by

$$
\begin{equation*}
\operatorname{ord}_{P^{\prime}} \omega=e\left(\operatorname{ord}_{P} \omega+h\right)-h . \tag{114}
\end{equation*}
$$

Proof of Lemma 15. Immediate by using the local coordinates.
[5]. Notes. Now a question arises "to what extent is the equation $\Theta \in \Omega\{L, e\}$ characterized by $(\Theta-1)(\Theta-2)(\Theta-3)$?" The following is to answer this question. Roughly, the result we obtain is parallel to the result in [4], [5] of §40. All statements given below can be proved directly; so their proofs are omitted.

Defintion. Let $\Theta=[\xi ; A, B]$ be any equation (in any class). Then Θ is called admissible with respect to $\{L, e\}$ if Θ satisfies $(\Theta-1)(\Theta-2)(\Theta-3)$ with some canonical divisor $W=\Pi_{P} P^{w(P)}$.

If Θ is such, W is unique. So, we shall call W the divisor of Θ.
Proposition 17. Let Θ be admissible w.r.t. $\{L, e\}$, and let W be its divisor. Let $C \in L^{\times}$. Then $\sqrt{C} \Theta$ is also admissible w.r.t. $\{L, e\}$, and its divisor is $(C) \cdot W$.

Thus, we may speak of "admissible classes."

[^10]Proposition 18. Let $\Theta=[\xi ; A, B]$. Then $(\Theta-1),(\Theta-2),(\Theta-3)$ are equivalent to the following $(\Theta-1)^{\prime},(\Theta-2)^{\prime},(\Theta-3)$ ' respectively.
$(\Theta-1): \operatorname{ord}_{P}(A \cdot \xi) \geq-1, \operatorname{ord}_{P}\left(B \cdot \xi^{2}\right) \geq-2$ at each P.
$(\Theta-2)$ ': Let t be a prime element of P, put $e=e(P), w=w(P), n=\operatorname{ord}_{P} \xi$, and

$$
\begin{cases}\xi & =c t^{n}\left(1+c_{1} t+\cdots\right) d t, \quad c \neq 0, c_{1}, c_{2}, \cdots \in \mathbf{C}, \tag{115}\\ A \cdot \xi & =\left(\frac{a_{0}}{t}+a_{1}+a_{2} t+\cdots\right) d t, \quad a_{0}, a_{1}, \cdots \in \mathbf{C}, \\ B \cdot \xi^{2} & =\left(\frac{b_{0}}{t^{2}}+\frac{b_{1}}{t}+b_{2}+\cdots\right)(d t)^{2} ; \quad b_{0}, b_{1}, \cdots \in \mathbf{C} .\end{cases}
$$

Then,

$$
\left\{\begin{array}{l}
a_{0}=n-w, \tag{116}\\
b_{0}=\frac{1}{4}\left\{(w+1)^{2}-\frac{1}{e^{2}}\right\} .
\end{array}\right.
$$

$(\Theta-3)$ ': We have

$$
\begin{equation*}
b_{1}=\frac{1}{2} w\left(c_{1}-a_{1}\right) \quad \cdots \text { if } e=1 \tag{117}
\end{equation*}
$$

Corollary. Let Ω^{S} be an S-class and let $\xi \in D(L)^{\times}$. Put $S\langle\xi\rangle=-4 \beta=-4 B_{\xi}^{S} \cdot \xi^{2}$, so that $\left[\xi ; 0, B_{\xi}^{S}\right] \in \boldsymbol{\Omega}^{S}$. Then $\boldsymbol{\Omega}^{S}$ is admissible with respect to $\{L, e\}$ if and only if β satisfies the conditions (i) (ii) of Proposition 9.

Remark 2. Since $\boldsymbol{\Omega}\{L, e\}$ is admissible, this proves Proposition 9. Moreover, this shows that the conditions (i) (ii) of Proposition 9 are independent of ξ.

Remark 3. As can be seen easily from Proposition 18, admissible classes and S classes are independent notions; i.e., there is no implication between them;

Thus, even if we restrict ourselves to S-classes, the conditions $(\Theta-1),(\Theta-2),(\Theta-3)$ do not characterize the canonical class. In fact, there is still $\left(3 g-3+\sum_{e(P)>1} 1\right)$-dimensional freedom.
[6]. Now we shall give some results parallel to those of $\S 40$ [5]. Let Θ be an equation on L, and let L^{\prime} be a finite extension of L. Consider Θ as an equation on L^{\prime}. Then this Θ will be called the extension of Θ to L^{\prime}. It is clear that the extension of Θ induces the extension of the class of Θ.

Proposition 19. Let Θ be an admissible equation with respect to $\{L, e\}$, and let $\left\{L^{\prime}, e^{\prime}\right\}$ be an admissible extension of $\{L, e\}$. Then, the extension Θ^{\prime} of Θ to L^{\prime} is also admissible with respect to $\left\{L^{\prime}, e^{\prime}\right\}$. Moreover, if $(\xi)_{L}\left(\xi \in D(L)^{\times}\right)$is the divisor of Θ, then the divisor of Θ^{\prime} is $(\xi)_{L^{\prime}}$. Finally, the induced extension map of classes:

is injective.
Use Proposition 18 to check this.
Proposition 20. Let $\Omega\{L, e\}$ be the canonical class attached to $\{L, e\}$, and let $\left\{L^{\prime}, e^{\prime}\right\}$ be an admissible extension of $\{L, e\}$. Then the extension of $\Omega\{L, e\}$ to $\left\{L^{\prime}, e^{\prime}\right\}$ is the canonical class attached to $\left\{L^{\prime}, e^{\prime}\right\}$.

This is obvious by Proposition 10.
Now we shall prove:
Proposition 21. Consider the situation (93) of Proposition 12. Suppose that there are admissible classes Ω_{1}, Ω_{2} with respect to $\left\{L_{1}, e_{1}\right\},\left\{L_{2}, e_{2}\right\}$ (respectively), such that their extensions to L are equal. Then such Ω_{1}, Ω_{2} are unique and are the canonical classes attached to $\left\{L_{1}, e_{1}\right\},\left\{L_{2}, e_{2}\right\}$ (respectively).

Proof. Let Ω be the extensions to L of Ω_{1} and of Ω_{2}. Let $\xi \in D\left(L_{1}\right)^{\times}, \eta \in D\left(L_{2}\right)^{\times}$. Let $\Theta=[\xi ; A, B]$ be the equation in Ω whose divisor is $(\eta)_{L}$. Put $w_{1}=\eta / \xi, w_{i+1}=d w_{i} / \xi$ ($i \geq 1$), and put $\Theta_{1}=\sqrt{w_{1}^{-1}} \Theta=\left[\xi ; A_{1}, B_{1}\right]$, so that

$$
\begin{equation*}
A_{1}=A+\frac{w_{2}}{w_{1}}, \quad B_{1}=B+\frac{w_{2}}{2 w_{1}} A+\frac{2 w_{1} w_{3}-w_{2}^{2}}{4 w_{1}^{2}} \tag{120}
\end{equation*}
$$

Since the divisor of Θ_{1} is $(\xi)_{L}, \Theta_{1}$ must coincide with the extension to L of the equation in Ω_{1} whose divisor is $(\xi)_{L_{1}}$. Therefore, $A_{1}, B_{1} \in L_{1}$. On the other hand, Θ can be expressed as $\Theta=\left[\eta ; A_{2}, B_{2}\right]$ with

$$
\begin{equation*}
A_{2}=\frac{A}{w_{1}}+\frac{w_{2}}{w_{1}^{2}}, \quad B_{2}=\frac{B}{w_{1}^{2}}, \tag{121}
\end{equation*}
$$

and since the divisor of Θ is $(\eta)_{L}$, we have $A_{2}, B_{2} \in L_{2}$ by the same reason as above. Now, by (120), (121), we obtain

$$
\begin{equation*}
A_{1} \cdot \xi=A_{2} \cdot \eta \tag{122}
\end{equation*}
$$

hence $A_{1} \cdot \xi=A_{2} \cdot \eta \in D^{1}\left(L_{1}\right) \cap D^{1}\left(L_{2}\right)$. But by the Corollary of Lemma 14 ($(42$),

$$
\begin{equation*}
D^{h}\left(L_{1}\right) \cap D^{h}\left(L_{2}\right)=\{0\} \quad(h \geq 1) \tag{123}
\end{equation*}
$$

hence $A_{1} \cdot \xi=A_{2} \cdot \eta=0$; hence

$$
\begin{equation*}
A_{1}=A_{2}=0 . \tag{124}
\end{equation*}
$$

Now by (120), (121) and (124), we obtain $B_{1} \cdot \xi^{2}=B_{2} \cdot \eta^{2}+\frac{1}{4}\langle\eta, \xi\rangle$; hence if we put $\alpha=-4 B_{1} \cdot \xi^{2}, \beta=-4 B_{2} \cdot \eta^{2}$, then we obtain

$$
\begin{equation*}
\langle\xi, \eta\rangle=\alpha-\beta ; \quad \alpha \in D^{2}\left(L_{1}\right), \beta \in D^{2}\left(L_{2}\right) . \tag{125}
\end{equation*}
$$

Hence by the Corollary of Proposition 12, we obtain $\alpha=S^{\{L, e)}\langle\xi\rangle=S^{\left(L_{1}, e_{1}\right)}\langle\xi\rangle, \beta=$ $S^{(L, e)}\langle\eta\rangle=S^{\left(L_{2}, e_{2}\right)}\langle\eta\rangle$. But since $\Theta_{1}=\left[\xi ; 0, B_{1}\right]$ and $\Theta=\left[\eta ; 0, B_{2}\right]$, this implies that Ω_{1} and Ω_{2} are the canonical classes attached to $\left\{L_{1}, e_{1}\right\}$ and $\left\{L_{2}, e_{2}\right\}$ respectively.

§44. The second formulation.

[1]. Now let the notations be as in $\S 41$, so that L is any one-dimensional extension of C satisfying (L1), (L2) of $\S 41$. For such an L, we can define the equations $\Theta=[\xi ; A, B]$ $\left(\xi \in D(L)^{\times} ; A, B \in L\right)$ and the classes $\left\{\sqrt{C} \Theta \mid C \in L^{\times}\right\}$exactly in the same manner as in the previous section. Moreover, Propositions 15, 16 are also valid in this case (however, we must replace the right side of (110) by $D(L)^{\times} / \mathbf{C}^{\times}$, since we have not defined "the divisor of differential in L.") Thus, we have a one-to-one correspondence:

$$
\begin{equation*}
S \text {-operators on } L \underset{1: 1}{\longleftrightarrow} S \text {-classes } \Omega^{S} \text { on } L \text {. } \tag{126}
\end{equation*}
$$

Defintion. Let $S=S^{L}$ be the canonical S-operator on L. Then the corresponding S-class Ω^{S} will be called the canonical class on Ω, and denoted by $\Omega\{L\}$.

Now Aut L acts on the set of all equations, and hence also on the set of all classes, by

$$
\begin{equation*}
\operatorname{Aut}_{\mathbf{c}} L \ni \sigma: \Theta=[\xi ; A, B] \rightarrow \Theta^{\sigma}=\left[\xi^{\sigma} ; A^{\sigma}, B^{\sigma}\right] . \tag{127}
\end{equation*}
$$

Then if S is any S-operator on L, it follows immediately from the definition of Ω^{S} that $\left(\Omega^{S}\right)^{\sigma}=\Omega^{\left(S^{\sigma}\right)}\left(\sigma \in \operatorname{Aut}_{\mathbf{c}} L\right)$. Therefore, we obtain immediately from Theorem 9 the following:

Theorem 9'. (i) The canonical class $\Omega\{L\}$ is invariant by $A^{4} L$. (ii) If L is ample, $\Omega\{L\}$ is the unique Aut C_{C}-invariant S-class on L. More strongly, if Φ is any closed noncompact subgroup of Aut $L, \Omega\{L\}$ is already characterized by Φ-invariance.

Remark. In the above (ii), the assumption " S-class" cannot be dropped. In fact, we can prove in the case of G-fields that the Aut ${ }_{C} L$-invariant classes are finite in number, but may not be unique. ${ }^{31}$ Also, we can prove in G-field cases that if we call $\left\{C^{1 / n} \Theta \mid C \in L^{\times}, n \in \mathbf{Z}\right\}$ the weaker class, then the Aut L-invariant weaker class is unique.

[^11]
[^0]: ${ }^{20}$ Here, the same notation d is used for the map $d: L \rightarrow D(L)$ and for the (2,2)-element of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. I hope that this will not confuse the readers.

[^1]: ${ }^{21}$ I.e., up to a slight modification of the definition.

[^2]: ${ }^{22}$ That this is outer on $L_{(\Delta \mid \mathfrak{S})}$ is obvious by Proposition 7 (ii).

[^3]: ${ }^{23}\{L, e\} \simeq\left\{L^{\prime}, e^{\prime}\right\}$ if there exists an isomorphism $\iota: L \simeq L^{\prime}$, identical on C , satisfying $e(P)=e^{\prime}(\iota(P))$ for all P.

[^4]: ${ }^{24}$ The definition of $\operatorname{ord}_{P} \omega$ for $\omega \in D^{h}(L), \omega \neq 0$ is obvious; if $\omega \in L$ or $\in D(L), \operatorname{ord}_{P} \omega$ is the ordinary "order" of ω at P; and for $\omega=a \xi^{h}\left(a \in L, \xi \in D(L)^{\times}\right), \operatorname{ord}_{P} \omega=\operatorname{ord}_{P} a+h \operatorname{ord}_{P} \xi$.

[^5]: ${ }^{25}$ If $g=1$ and $e(P)=1$ for all P, then $\{L, e\}$ does not satisfy the condition (ii) of $\S 40$.

[^6]: ${ }^{26}$ See $\S 40$ for the symbol $\left\{L_{(\Delta \mid \mathfrak{F}}{ }^{*}, e_{\Delta}\right\}$.

[^7]: ${ }^{27}$ See Supplement §5.

[^8]: ${ }^{28} \mathrm{So}$, "the solutions of $\sqrt{C^{-1}} \Theta$ " are $\sqrt{C^{-1}}$ times "the solutions of Θ." Clearly we have $\Theta^{\prime}=\sqrt{C^{-1}} \Theta \Leftrightarrow$ $\Theta=\sqrt{C} \Theta^{\prime}, \sqrt{C_{1} C_{2}} \Theta=\sqrt{C_{1}}\left(\sqrt{C_{2}} \Theta\right)$, and $\sqrt{C} \Theta=\Theta \Leftrightarrow C \in \mathbf{C}^{\mathrm{x}}$.

[^9]: ${ }^{29}$ I.e., the divisors of non-zero differentials (of degree one).

[^10]: ${ }^{30}$ Thus, the ratios of the two independent solutions of $\left[\xi ; 0, B_{\xi}\right]$ are $v=\frac{a \tau+b}{c \tau+d} ;\left(\begin{array}{l}a b \\ c \\ d\end{array}\right) \in G L_{2}(\mathbf{C})$. The differential equation having v as the general solution is, of course, $\langle d v, \xi\rangle=-S^{(L, e)}\langle\xi\rangle$.

[^11]: ${ }^{31}$ However, they can be obtained from the canonical class by a simple "twist," and are not important.

