
CHAPTER 2. 3A. THE CANONICAL $S$ -OPERATOR 109

Part 3A. The canonical $S$ -operator and the canonical class of linear

differential equations of second order on algebraic function field
$L$ of one variable over $C$ , and their algebraic characterizations

when $L$ is“arithmetic”

The S-operators.

\S 37. The symbol $\langle\eta,\xi\rangle$ . Let $L$ be any field, let $D(L)$ be a one-dimensional vector
space over $L$ , and let $d$ : $L\rightarrow D(L)$ be a map satisfying $d(x+y)=dx+dy,$ $d(xy)=$

$xdy+ydx$ for all $x,y\in L$ . For each positive integer $h$ , denote by $D^{h}(L)$ the tensor product
$D(L)\otimes\cdots\otimes D(L)$ ($h$ copies) over $L$ $($so that $\dim_{L}D^{h}(L)=1)$ , and call the elements of
$D^{h}(L)$ differentials of degree $h$ (in $L$). Put $D(L)^{\times}=D(L)\backslash \{O\}$ . Then if $\xi$ is any fixed

element of $D(L)^{\times}$ , the elements of $D^{h}(L)$ are expressed uniquely in the form $a\cdot\xi^{h}(a\in L)$ .
Here, $\xi^{h}$ will always denote $\xi\otimes\cdots\otimes\xi$ ($h$ copies). For any $\xi\in D(L)^{x}$ and $\eta\in D(L)$ ,

the number $a\in L$ with $\eta=a\xi$ will be denoted by $\eta/\xi$ . Finally, we shall denote by $k$ the
constant field, i.e., $k=\{x\in L|dx=0\}$ . It is clear that $k$ is a subfield of $L.$

Now for each $\xi,$ $\eta\in D(L)^{\times}$ , an element $\langle\eta,\xi\rangle$ of $D^{2}(L)$ is defined in the following way.
Put $w_{1}=\eta/\xi,$ $w_{i+1}=dw_{i}/\xi(i\geq 1)$ . Then

DEFINrTION.

$\langle\eta,\xi\rangle=\frac{2w_{1}w_{3}-3w_{2}^{2}}{w_{1}^{2}}\xi^{2}.$

In particular, if $x,y\in L\backslash k$, then we have

(76) $\langle dy,dx\rangle=\frac{2(\frac{dy}{dx})(\frac{d^{3}y}{dx^{3}})-3(\frac{d^{2}y}{dx^{2}})^{2}}{(\frac{dy}{dx})^{2}}(dx)^{2},$

where $\frac{d^{j}}{dx^{t}}=(\frac{d}{dx})^{i}(i\geq 1)$ . Thus $\langle\eta,\xi\rangle$ is, so to speak, the ”algebraic Schwarzian deriv-
ative”. The following Proposition is classically well-known for the analytic Schwarzian

derivative.

PROPOSITION 7. (i) For any $\xi,\eta,\zeta\in D(L)^{\times}$, we have

(77) $\langle\eta,\zeta\rangle-\langle\xi,\zeta\rangle=\langle\eta,\xi\rangle.$

(ii) Let $\eta\in D(L)^{\times}andx\in L\backslash k$ Then $\langle\eta,dx\rangle=0$ ifand only if $\eta$ is oftheform $\eta=dx_{1}$

with $x_{1}=\frac{ax+b}{cx+d},$ $(_{cd}^{ab})\in GL_{2}(k)^{20}$

2 Here, the same notation $d$ is used for the map $d$ : $L\rightarrow D(L)$ and for the (2, 2)-element ofthe matrix

$\left(\begin{array}{ll}a & b\\c & d\end{array}\right).$
$I$ hope that this will not confuse the readers.
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COROLLARY. We have

(78) $\left\{\begin{array}{l}\langle\xi,\xi\rangle=0\\\langle\xi,\eta\rangle=-\langle\eta,\xi\rangle\end{array}\right.$

for any $\xi,$ $\eta\in D(L)^{\times}.$

The Corollary follows immediately from (i) by putting $\zeta=\eta=\xi$, and $\zeta=\eta.$

PROOR (i) is obtained by a straightforward computation.
(ii) Put $\eta=zdx(z\in L)$ , so that $\langle\eta,dx\rangle=0$ is equivalent to $(\#)2zz_{XX}=3(z_{X})^{2},$

where the suffix $x$ denotes the effect of the derivation $\frac{d}{dx}$ . First, let $ch(L)=2$ . Then
$\langle\eta,dx\rangle=0\Leftrightarrow z_{x}=0\Leftrightarrow z\in k\approx\eta=dx_{1}$ with $x_{1}=ax,a\in k^{X}$ . On the other
hand, $d(\frac{ax+b}{cx+d})=(ad-bc)(cx+d)^{-2}dx$, and since $ch(L)=2$ , all square elements of $L$ are
contained in $k$. This settles the case of $ch(L)=2$ . Now let $ch(L)\neq 2$ and put $z=y^{-1}.$

Then the equation $(\#)$ is equivalent to (b) $y_{x}^{2}=2yy_{xx}$ . By applying $\frac{d}{dx}$ on (b), we obtain
$2yy_{xxx}=0$ ; hence $y_{xxx}=0$ ; hence $y$ is a quadratic polynomial of $x$ over $k$ From this
follows easily that the general solution of (b) is $y=a(bx+c)^{2}(a, b,c\in k)$ . Therefore,
$\langle\eta,dx\rangle=0$ if and only if $z$ is of the form $a^{-1}(bx+c)^{-2}$ ; which settles (ii). $\square $

\S 38. The $S$ -operators. Let the notations be as in \S 37. $A$ map $S$ : $D(L)^{\times}\rightarrow D^{2}(L)$

will be called an $S$ -operator (on $L$) if

(79) $ S\langle\eta\rangle-S\langle\xi\rangle=\langle\eta,\xi\rangle$

holds for all $\xi,\eta\in D(L)^{\times}$ . Thus by Proposition 7 (i), if $\zeta$ is any fixed element of $D(L)^{\times}$ , the
map $S_{\zeta}$ defined by $ S_{\zeta}\langle\xi\rangle=\langle\xi,\zeta\rangle$ gives an $S$ -operator (an inner $S$ -operator), and it is clear
that all other $S$ -operators are given by $S\langle\xi\rangle=S_{\zeta}\langle\xi\rangle+C$, where $C$ is an arbitrary constant in
$D^{2}(L)$ . In general, not all $S$ -operators are inner $(or$ equivalently, $not all$ elements $ofD^{2}(L)$

are of the form $\langle\zeta,\zeta’\rangle(\zeta,\zeta’\in D(L)^{\times}))$ , and as is shown later, a certain outer $S$ -operator
plays a central role in our problems.

The canonical $S$ -operator on algebraic function field of one variable over $C$, and its
algebraic characterization in ample (arithmetic) cases.

\S 39. The canonical $S$ -operator on the field of automorphic functions. Let $X$ be
any Riemann surface, compact or open. Let $L_{X}$ be the field of meromorphic fimctions
$mX$, and let $D(L_{X})$ be the space of all meromorphic differential foms on $X$ (of degree
one), considered as a vector space over $L_{X}$ . Let $d$ : $L_{X}\rightarrow D(L_{X})$ be the ordinary dif-
ferentiation. Then the sympol $\langle\eta,\xi\rangle$ for this situation is essentially 21 the same as the
classical Schwarzian derivative. If $\sigma$ is any automorphism of$X$, then $\sigma$ acts on $D^{n}(L_{X})$ as
$\omega\rightarrow\omega^{\sigma}=\omega\circ\sigma$, and it is clear ffiat $\langle\eta,\xi\rangle^{\sigma}=\langle\eta^{\sigma},\xi^{\sigma}\rangle.$

21 I.e., up to a slight modification ofthe definition.
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Now let $\mathfrak{H}=\{\tau\in C|{\rm Im}\tau>0\}$ . We consider $\tau$ as a function on $\mathfrak{H}$ ;

(80) $\tau\in L_{\mathfrak{H}}.$

Put $G_{R}=PSL_{2}(R)=Aut(\mathfrak{H})$ (by the usual action; see Chap. 1, \S 3). Let $\sigma\in G_{R}$ and $ f(\tau)\in$

$L_{\mathfrak{H}}$ with $f(\tau)\neq 0$ . Then since $\tau^{\sigma}$ is a linear fractional transform of $\tau$, Proposition 7 shows
that $\langle f(\tau)d\tau,d\tau\rangle^{\sigma}=\langle(f(\tau)d\tau)^{\sigma},d\tau^{\sigma}\rangle=\langle(f(\tau)d\tau)^{\sigma},d\tau\rangle$ ; hence iff$(\tau)d\tau$ is invariant by $\sigma,$

so is $\langle f(\tau)d\tau,d\tau\rangle.$

Let $\Delta$ be a fuchsian group, i.e., a discrete subgroup of $G_{R}$ with finite-volume quo-
tient. Let $(\Delta\backslash \mathfrak{H})^{*}$ denote the compact Riemann surface obtained by compactffication and
normalization of the quotient $\Delta\backslash \mathfrak{H}$ , so that $L_{(\Delta\backslash \mathfrak{H})}$. is nothing but the field of automorphic
fUnctions with respect to $\Delta$ . Consider $L_{(\Delta\backslash \mathfrak{H})}$. and $D^{h}(L_{(\Delta\backslash \mathfrak{H})}\cdot)$ as a subfield and a subspace
of $L_{\mathfrak{H}}$ and $D^{h}(L_{\mathfrak{H}})$ respectively. Then $f(\tau)(d\tau)^{h}\in D^{h}(L_{\mathfrak{H}})$ belongs to $D^{h}(L_{(\Delta\backslash \mathfrak{H})^{\nu}})$ if and only
if $f(\tau)$ is a meromorphic automorphic form ofweight $2h$ with respect to $\Delta$ . Now consider
the inner $S$ -operator

(81) $D(L_{\mathfrak{H}})^{\times}\ni f(\tau)d\tau\rightarrow\langle f(\tau)d\tau,d\tau\rangle\in D^{2}(L_{\mathfrak{H}})$

$mL_{\mathfrak{H}}$ . We shall show that (81) induces an (outer) $22S$ -operator on $L_{(\Delta\backslash \mathfrak{H})}$. by restriction.
It is enoug to eheck that if $f(\tau)d\tau\in D(L_{(\Delta\backslash \mathfrak{H})}*)^{\times}$ , then $\langle f(\tau)d\tau,$ $d\tau\rangle\in D^{2}(L_{(\Delta\backslash \mathfrak{H})}\cdot)$ . Put
$\langle f(\tau)d\tau,$ $d\tau\rangle=\varphi(\tau)(d\tau)^{2}$ . Then $\varphi(\tau)=\frac{2f(\tau)f’’(\tau)-3f’(\tau)^{2}}{f(\tau)^{2}}$ , where ’ denotes the derivative
with respect to $\tau$ . Since $ f(\tau)d\tau$ is $\Delta$-invariant, $\langle f(\tau)d\tau,d\tau\rangle$ is also $\Delta$-invariant; hence

$\varphi(\delta\tau)=\varphi(\tau)(c\tau+d)^{4}$ holds for all $\delta=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Delta$ . Moreover, by a simple estimation of

$|\varphi(\tau)|$ as each cusp of $\Delta$ , it follows easily that $\varphi(\tau)$ is a meromorphic automorphic fom
ofweight 4 with respect to $\Delta$ . Therefore, $\langle f(\tau)d\tau,d\tau\rangle$ belongs to $D^{2}(L_{(\Delta\backslash \mathfrak{H})^{*}})$ . So we have
proved:

PROPOSITION 8. Let $\Delta$ be a fuchsian group. Then if $f(\tau)d\tau\in D(L_{(\Delta\backslash \mathfrak{H})^{*}})^{\times}$ , we have
$\langle f(\tau)d\tau,$ $d\tau\rangle\in D^{2}(L_{(\Delta\backslash \mathfrak{H})^{*}})$ . In other words, the inner $S$ -operator $f(\tau)d\tau\rightarrow\langle f(\tau)d\tau,$ $ d\tau\rangle$

on $L_{\mathfrak{H}}$ induces an outer $S$ -operator on $L_{(\Delta\backslash \mathfrak{H})^{*}}.$

As we have seen above, this is equivalent to the classically known fact that if $f(\tau)$ is a
(meromorphic) automorphic fom ofweight 2, then $\varphi(\tau)=\frac{2f(\tau)f’’(\tau)-3f’(\tau)^{2}}{f(\tau)^{2}}$ is $a$ (meromor-

phic) automorphic form ofweight 4.

DEFINITION. This special $S$ -operator on $L_{(\Delta\backslash \mathfrak{H})}$. will be called the canonical $S$ -operator
on $L_{(\Delta\backslash \mathfrak{H})^{*}}$ , and denoted by $S^{\Delta}.$

REMARK 1. Let $\sigma\in G_{R},$ $\Delta’=\sigma^{-1}\Delta\sigma$, and put $L=L_{(\Delta\backslash \mathfrak{H})^{*}},$ $L’=L_{(\Delta’\backslash \mathfrak{H})^{*}}$ . Let $\iota_{\sigma}$

be the isomorphism $L\rightarrow L’$ defines by $f(\tau)\rightarrow f(\sigma\tau)$ , and let $\iota_{\sigma h}(h\geq 1)$ be the map
$D^{h}(L)\rightarrow D^{h}(L’)$ induced by $\iota_{\sigma}$ . Then,

(82) $\iota_{\sigma 2}\circ S^{\Delta}=S^{\Delta’}\circ\iota_{\sigma 1}.$

This follows immediately by using Proposition 7 (ii).

22That this is outer on $L_{(\Delta\backslash \mathfrak{H})}$. is obvious by Proposition 7 (ii).
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REMARK 2. Let $\Delta’$ be a subgroup of $\Delta$ with finite index. Then $ L_{(\Delta\backslash \mathfrak{H})}\cdot\subset L_{(\Delta’\backslash \mathfrak{H})}\cdot$ , and
ffie resb iction of $S^{\Delta’}$ to $D(L_{(\Delta\backslash \mathfrak{H})}\cdot)^{\times}$ gives $S^{\Delta}$ . This is obvious by the definition of $S^{\Delta}.$

\S 40. The canonical $S$-operator on algebraic function field over $C$ (First formula-
tion).

[1]. In this section, $\{L,e\}$ will denote the following pair:
$\circ L$ is a fimitely generated one-dimensional algebraic fimction field over $C(C$ : the field
of complex numbers);

$oe=e(P)$ is a $\{$ 1, 2, 3, $\ldots$ ; $\infty\}$-valued Mction defined on the set of all prime divisors
$P$ of $L$, and satisfies:
(i) $e(P)=1$ for almost all $P,$

(ii) the quantity

(83) $ V\{L, e\}=2g-2+\sum_{P}(1-\frac{1}{e(P)}\rangle$

is positive, $g$ being the genus of $L.$

Then, as is well-known, $\{L,e\}$ are in one-to-one correspondence with the fuchsian
groups $\Delta$ , where $\{L,e\}$ are counted up to $isomo\iota phisms^{23}$ and $\Delta$ , up to conjugacy in $G_{R}$ ;

(84) $\{L, e\}\Delta\overline{1:1}.$

Starting from $\Delta$ , this correspondence is defined as follows: Take $L$ to be the field of
automorphic fimctions $ L_{(\Delta\backslash \mathfrak{H})}\cdot$ . (So, the prime divisors of $L_{(\Delta\backslash \mathfrak{H})}$. are identified with the
points on $(\Delta\backslash \mathfrak{H})^{*}.)$ Define the fimction $e=e_{\Delta}$ by

(85) $e_{A}(P)=\left\{\begin{array}{l}\infty \cdots P is acusp of \Delta,\\P is an elliptic fixed point\\e_{0} \cdots\\of \Delta of order e_{0}>1,\\1 \cdots otherwise.\end{array}\right.$

Then $\Delta\rightarrow\{L_{(\Delta\backslash \mathfrak{H})}\cdot,e_{\Delta}\}$ defines the above one-to-one correspondence.

REMARK 1. The automorphism group of $\{L_{(\Delta\backslash \mathfrak{H})}\cdot,e_{\Delta}\}$ is naturally identified with
$ N(\Delta)/\Delta$ , where $N(\Delta)$ is the normalizer of $\Delta$ in $G_{R}.$

REMARK 2. As is well-known,

(86) $V\{L_{(\Delta\backslash \mathfrak{H})}\cdot,e_{\Delta}\}=\frac{1}{2\pi}\int_{\Delta\backslash \mathfrak{H}}\frac{dxdy}{y^{2}} (\tau=x+yl)$ .

EXAMPLE. Let $ g=0;e(P)=2,n,\infty$ for three $P$ and $=1$ for all other $P$, where $n\geq 3.$

Then $v\{L,e\}=\frac{1}{2}-\frac{1}{n}>0$ , and $\Delta$ is ffie Hecke’s $\Psi^{oup}$ gmerated by $(_{0}^{1}\lambda_{n}1)$ and $(_{-1}^{0}$ $01),$

where $\lambda_{n}=2\cos\frac{\pi}{n}$ . If $n=3,$ $\Delta=PSL_{2}(Z)$ ; and in general, $\Delta$ is commmsurable with
$PSL_{2}(Z)$ if and only if $n=3,4,6,$ $\infty.$

$23_{\{L,e\}}\simeq\{L’,e’\}$ ifthere exists an isomorphism $\iota$ : $L\simeq L’$ , identical on $C$ , satisfying $e(P)=e’(\iota(P))$ for
all $P.$
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[2]. Now let $\{L, e\}$ be given. Let $\{\sigma^{-1}\Delta\sigma|\sigma\in G_{R}\}$ be the corresponding $G_{R}$-conjugacy

class of fuchsian groups, and take a representative $\Delta$ . Let $\iota_{\Delta}$ be any isomorphism $\iota_{\Delta}$ :
$\{L, e\}\simeq\{L_{(\Delta\backslash \mathfrak{H})}\cdot, e_{\Delta}\}$ . Let $S^{\Delta}$ be the canonical $S$ -operator on $L_{(\Delta\backslash \mathfrak{H})}$. and put $ S^{\{L,e\}}=\iota_{\Delta 2}^{-1}\circ$

$S^{\Delta}\circ\iota_{\Delta 1}$ , where $\iota_{\Delta h}(h\geq 1)$ is the map $\mathscr{O}(L)\rightarrow D^{h}(L_{(\Delta\backslash \mathfrak{H})}\cdot)$ induced by $\iota_{\Delta}$ :

(87)

Then by the Remark 1 of \S 39 and Remark 1 of \S 40, $S^{\{L,e\}}$ is well-defined by $\{L,e\}$ and

is independent of the choice of representative $\Delta$ of $\{\sigma^{-1}\Delta\sigma|\sigma\in G_{R}\}$ . By this, it is also
clear that $S^{\{L,e\}}$ commutes with every automorphism $\epsilon$ of $\{L, e\}$ ; i.e., $S^{\{L,e\}}=\epsilon_{2}^{-1}S^{\{L,e\}}\epsilon_{1},$

where $\epsilon_{h}$ is defined from $\epsilon$ in the same manner as above.

DEFINITION. We shall call this special $S$ -operator $S^{\{L,e\}}$ on $L$ the canonical $S$ -operator

attached to $\{L, e\}.$

[3]. Thus, the notion of$S$ -operators on algebraic function field $L$ is algebraic, and the

canonical $S$ -operator $S^{\{L,e\}}$ is one of them defined analytically. Since all $S$ -operators on
$L$ are of the fom $S\langle\xi\rangle=\langle\xi,$ $\zeta\rangle+C$, where $\zeta$ is any fixed element of $D(L)^{x}$ and $C$ is an

arbitrary constant in $D^{2}(L),$ $S$ -operators are determined by its special value $C=S\langle\zeta\rangle.$

Thus, we meet an interesting problem to find out (an algebraic formula for) $S^{\{L,e\}}\langle\zeta\rangle,$

when $\{L, e\}$ and $\zeta$ are explicitly given algebraically. However, for the general $\{L, e\}$ , this

problem seems to be quite difficult! For example, to my best knowledge, the following is

an open problem:

PROBLEM. Let $L=C(x,y),$ $y^{2}=(x-\alpha_{1})\cdots(x-\alpha_{n})$ , where $n\geq 5$ and $\alpha_{1},$ $\cdots,\alpha_{n}$

are distinct (hence $g\geq 2$). Let $e(P)=1$ for all $P$, and let $S=S^{\{L,e|}$ be the canonical
$S$ -operator attached to $\{L, e\}$ . Then, what is $ S\langle dx\rangle$?

For the special types of $\{L, e\}$ however, there are some principles for detemining (or

characterizing) $S^{\{L,e\}}$ algebraically. In fact, there are two such principles, of which the

second is more important:

[4] The first principle. This is based on the following Propositions 9, 10:

PROPOSITION 9. Let $\xi\in D(L)^{\times}$ andput $ S^{\{L,e\}}\langle\xi\rangle=-4\beta$. Let $P$ be anyprime divisor of
$L$ . Then,

(i)24 $ord_{P}\beta\geq-2$;

(ii) Put $e=e(P),$ $ n=ord_{P}\xi,\cdot$ let $t$ be aprime element of$P$ (in the completion of$L$ at $P$),

andput

(88) $\xi=cf(1+c_{1}t+\cdots)dt, c\neq 0, c_{1},c_{2}, \cdots\in C.$

24The definition of $ord_{P}\omega$ for $\omega\in D^{h}(L),$ $\omega\neq 0$ is obvious; if $\omega\in L$ or $\in D(L),$ $ord_{P}\omega$ is the ordinary

“order” of $\omega$ at $P$; and for $\omega=a\xi^{h}(a\in L, \xi\in D(L)^{\times}),$ $ord_{P}\omega=ord_{P}a+hord_{P}\xi.$
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Then we have

(89) $\beta=\{\frac{\beta_{0}}{t^{2}}+\frac{\beta_{1}}{t}+\beta_{2}+\cdots\}(dt)^{2},$

with

(90) $\{_{\beta_{1}=\frac{1}{2}nc_{1}}$

$\cdots$ if$e(P)=1.$

$\sqrt{}0=\frac{1}{4}\{(n+1)_{F}^{2_{-}1}\rangle$ $\cdots$ at any $P$;

The proof may be obtained directly, but an indirect proof will be given in \S 42 [5].
There, it is also shown that if $S$ is any $S$ -operator on $L$ and ifwe put $ S\langle\xi\rangle=-4\beta$, then (i)
(ii) hold for all $\xi$ if and only ifthey hold for one $\xi$ (thus, (i) (ii) are conditions on $S$ ). Th
meaning ofthese conditions will also become clear there.

DEFINITION $.$

$\{L’, e’\}$ is called an admissible extension of $\{L, e\}$ if

(i) $L’$ is a finite extension of $L$ , and
(ii) $e(P)=e’(P)e(P/P)$ holds for all prime divisors $P$ of $L’$ , where $P$ is the restriction

of $P$ to $L$ , and $e(P/P)$ is the ramfficabon index of $P/P.$

It is clear that if $\Delta$ is the fuchsian group corresponding to $\{L,e\}$ , then the admissible
extensions of $\{L,e\}$ are those pairs $\{L’,e’\}$ that correspond to the subgroups $\Delta’$ of $\Delta$ with
finite indices. From this, and from the definition of $S^{\{L,e\}}$ , we obtain immediately:

PROPOSITION 10. Let $\{L’, e’\}$ be an admissible extension of $\{L, e\}$ . Then $S^{\{L,e\}}$ is the
restriction of$S^{\{L’,e’\}}$ to $D(L)^{\times},$ and $S^{\{L’,e’\}}$ is the unique $S$ -operator on $L’$ with thisproperty.

The second point is obvious since $S$ -operator is determined by its special value.
Now, Proposition 9 determines $S^{\{L,e\}}$ up to $(3g-3+\sum_{P;e(P)>1}1)-$ dimensional subspace

of $D^{2}(L)$ . In fact, fix $\xi$ and put $\beta_{1}=\beta+\mu$ ($\mu$ ; avariable in $D^{2}(L)$). Then $\beta_{1}$ also satisfies the
conditions (i) (ii) ofProposition 9 if and only if $\mu$ is a multiple of $\prod_{e(\partial>1}P^{-1}$ . Therefore,
ifwe put $W=(\xi)$ (the divisor of $\xi$), the dimension of $\mu$ is given by $\ell(W^{-2}\prod_{e(fl>1}P^{-1})=$

$3g-3+\Sigma_{e(D>1}1.$

REMARK 3. This number $3g-3+\sum_{e(P)>1}1$ is equal to the dimension ofthe connected
moduli variety of $\{L, e\}$ . But we do not know why.

So, Proposition 9 determines $S^{(L,e\}}$ uniquely only when $3g-3+\sum_{e(D>1}1=0$ ; i.e.,
only when $g=0$ and $\sum_{e(D>1}1=3$ (called the triangular case).25 In this case, we can
determine $S^{\{L,e\}}$ easily by a direct apphcation ofProposffion 9. We have:

PRoposmo$N$ 11. Let $L=C(x)$ (the rationalfunctionfield), and let $e(P)=1$ except at
threepoints P. We may assume that these three points are given by $x\equiv 0,1,$ $\infty(mod P)$

respectively. Call them $P_{0},P_{1},P_{\infty}$, andput $e(P_{i})=e_{i}(i=0,1, \infty)$ $($so that $\frac{1}{e_{0}}+\frac{1}{e_{1}}+\frac{1}{e_{\infty}}<1)$.
Then the canonical $S$ -operator $S^{\{L,e\}}$ is given by

(91) $S^{\{L,e\}}\langle\xi\rangle=\langle\xi,dx\rangle+\frac{a+bx+c}{x^{2}(x-1)^{2}} (\xi\in D(L)^{\times})$ ,

25If$g=1$ and $e(P)=1$ for all $P$, then $\{L,e\}$ does not satisfy the condition (ii) of \S 40.
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where

(92) $a=\frac{1}{e_{\infty}^{2}}-1, b=1+\frac{1}{e_{1}^{2}}-\frac{1}{e_{0}^{2}}-\frac{1}{e_{\infty}^{2}}, c=\frac{1}{e_{0}^{2}}-1.$

Now, call the two $\{L, e\}$ and $\{L’,e’\}$ commensurable ifthey have a common admissible
extension. (Clearly, this is equivalent to the commensurability ofthe corresponding fuch-
sian groups.) Then by Propositions 10, 11, we conclude that if $\{L, e\}$ is commensurable
with the triangularpair, then $S^{\{L,e\}}$ is determined algebraically.

[5] The second principle. This is based on the following very simple fact:

PROPOSm$ON$ 12. Consider thefollowing situation:

$\{L, e\}$

(93)
$\{L_{1}, e_{1}\} \{L_{2}, e_{2}\}$

$C=L_{1}\cap L_{2}$

Then $S=S^{\{L,e\}}$ is the unique $S$ -operator on $\{L, e\}$ satisfying

(94) $S\langle D(L_{i})^{\times}\rangle\subset D^{2}(L_{i})$

for $i=1,2$ (both).

That $S^{|L,e\}}$ satisfies (94) is an immediate consequence of Proposition 10. To see how
the uniqueness follows, let $S’=S^{\{L,e\}}+C(C\in D^{2}(L))$ be another $S$ -operator satisfying
(94). Then $C$ must be contained in $D^{2}(L_{1})\cap D^{2}(L_{2})$ . But by the Corollary of Lemma 14
given in \S 42, we have $D^{h}(L_{1})\cap D^{h}(L_{2})=\{0\}(h\geq 1)$ . Hence $C=0$ ; hence the uniqueness!

COROLLARY The situation being as in Proposition 12, let $\xi_{1},\xi_{2}$ be any element of
$D(L_{1})^{\times},$ $D(L_{2})^{\times}$ respectively. Then $\langle\xi_{1},\xi_{2}\rangle$ has a unique decomposition ofthe$fom$

(95) $\langle\xi_{1},\xi_{2}\rangle=\omega_{1}-\omega_{2}$ ; $\left\{\begin{array}{l}\omega_{1}\in D^{2}(L_{1}) ,\\\omega_{2}\in D^{2}(L_{2}) .\end{array}\right.$

Moreover, these $\omega_{1},$ $\omega_{2}$ are given by $\omega_{1}=S^{\{L,e\}}\langle\xi_{1}\rangle,$ $\omega_{2}=S^{\{L,e\}}\langle\xi_{2}\rangle.$

That (95) holds for $\omega_{i}=S^{\{L,e\}}\langle\xi_{i}\rangle(i=1,2)$ is obvious. Uniqueness is an immediate
consequence of $D^{2}(L_{1})\cap D^{2}(L_{2})=\{0\}.$

The importance of this simple principle lies on the fact that if $\{L, e\}$ is such that the

correspondingfiuchsian group $\Delta$ is arithmetically defined, or more generally, if the com-
mensurability group of $\Delta$ in $G_{R}$ is dense in $G_{R}$ , then $\{L,e\}$ is always commensurable with
asituation (93). Call such a commensurability family of $\{L,e\}$ ample or arithmetic. Then,

we conclude by Proposition 12 that $S^{\{L,e\}}$ can be characterized algebraically if $\{L, e\}$ be-
longs to an ample (arithmetic) commensurabilityfamily. Now we shall proceed to obtain
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a better fomulation of this than Proposition 12: for althoug Proposition 12 is conve-
nient for the understanding of this principle in the simplest fom, it is not convenient for
applications or generalizations.

REMARK 4. By a result of Kaedan [19], the commensurability group of the Hecke’s
group $\Delta=\Delta_{n}$ for $ n\neq 3,4,6,\infty$ is $\Delta$ itself; hence the commmsurability family of the
triangular $\{L,e\}$ with $e(P_{i})=2,n,$ $\infty(n\neq 3,4,6, \infty)$ is not ample.

\S 41. The canonical $S$ -operator on algebraic function field over $C$ (second formu-
lation), and its algebraic characterization $\ln$ ample (arithmetic) cases.

[1]. In this section, $L$ will denote any one-dimensional extension of $C$ not assumed to
be finitely generated over $C$ , but assumed to satisfy the following condffions (Ll), (L2):

(Ll) Let $\mathcal{L}_{0}$ be the set ofall finitely generated extensions $L_{0}/C$ contained in $L$ such that
$L/L_{0}$ is normally algebraic. Then $\mathcal{L}_{0}$ is non-empty.

(L2) For each $L_{0}\in \mathcal{L}_{0}$ and a prime divisor $P_{0}ofL_{0}$ , denote by $e_{0}(P_{0})$ the ramification
index $ofP_{0}$ in $L/L_{0}$ . Then $e_{0}(P_{0})=1$ for almost all $P_{0}$ , and the quantity

(96) $ V(L_{0})=2g_{0}-2+\sum_{P_{0}}(1-\frac{1}{e_{0}(P_{0})}\rangle$ $(g_{0}:$ the genus $ofL_{0})$

is positive; in short, $\{L_{0},e_{0}\}$ satisfies the conditions (i) (ii) of \S 40.

REMARK 1. For any $L_{0},L_{0}’\in \mathcal{L}_{0}$ , we have

(97) $V(L_{0}L_{\acute{0}})=V(L_{0})[L_{0}L_{0}’ : L_{0}]=V(L_{0}’)[L_{0}L_{0}’ : L_{\acute{0}}]$

by Hurwitz’ formula; hence the condffion (L2) is satisfied for all $L_{0}\in \mathcal{L}0$ if it is satisfied
for one $L_{0}.$

[2]. Now consider $\mathcal{L}r$ as an ordered set by ffie inclusion relation $\supset$ . Then if $L_{0},L_{0}’\in \mathcal{L}_{0}$

with $L_{0}\subset L_{0}’$ ($L_{0}$ : smaller than $L_{\acute{0}}$), we have $V(L_{0})=\frac{1}{[L_{0}:L_{0}]}V(L_{\acute{0}})$ by (97); but on the

other hand, it is well-known (and easily checked) that $V\{L_{0}, e_{0}\}\geq\frac{1}{42}$ for any pair $\{L_{0}, e_{0}\}$

satisfying (i) (ii) of \S 40. Therefore, the ordered set $\mathcal{L}_{0}$ is inductive (i.e., any linearly
ordered subset contains a minimal element). Hence $\mathcal{L}_{0}$ contains at least one minimal
element.

DEFINITION. We shall call $L$ “simple” if Lo contains only one minimal elemmt, and
“ample” (or“arithmetic’‘) if otherwise.

REMARK 2. If $L/C$ is finitely generated, i.e., if $L\in \mathcal{L}_{0}$ , then $L$ is simple. If fact, since
$V(L)>0$ , the genus of $L$ is greater than one; hence $AukL$ is finite. Therefore, the fixed
field ofAuk $L$ is the unique minimal element of $\mathcal{L}_{0}$ ; hence $L$ is simple.

PROPOSITINN 13. (i) If$L$ is simple and $L_{00}$ is the unique minimal element of $\mathcal{L}_{0}$, then

(98) $\mathcal{L}_{0}=\{L_{0}|L_{00}\subset L_{0}\subset L, [L_{0}:L_{00}]<\infty\}.$

(ii) If$L$ is ample and $L_{0},L_{\acute{0}}$ are two distinct minimal elements, then

(99) $L_{0}\cap L_{\acute{0}}=C.$
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PROOR (i) is obvious. (ii) If $L_{0}\cap L_{\acute{0}}\neq C$ , then $L_{0}\cap L_{0}’\in \mathcal{L}_{0}$ , which is a contradiction.
$\square $

[3]. Now let $AukL$ be the group of all automorphisms ofthe field $L$ over C. Topolo-
gize $AukL$ by taking $Aut_{L_{0}}L(L_{0}\in \mathcal{L}_{0})$ as basis of neigborhoods of identity. Then the

induced topology of $Aut_{L_{0}}L$ coincides with the Krull topology; hence $AukL$ is locally

compact. It is clear that a closed subgroup of $AukL$ is non-compact if and only if its
fixed field is C.

PROPOSITION 14. (i) If$L$ is simple, and $L_{00}$ is the unique minimal element of $\mathcal{L}_{0}$ , then

(100) $AukL=Aut_{L_{0}}L(=$ compact) .

(ii) $IfL$ is ample, $AukL$ is non-compact, and itsfixedfield is C.

PROOR (i) Let $\sigma\in AukL$ . Then $L_{00}^{\sigma}$ is also a minimal element of $\mathcal{L}_{0}$ ; hence $L_{00}^{\sigma}=L_{00}.$

Moreover, it is clear that $e_{00}(P_{00}^{\sigma})=e_{00}(P_{00})$ , where $P_{00}$ is any prime divisor of $L_{00}$ and
$e_{00}$ is the ramification index in $L/L_{00}$ . Therefore, there is a homomorphism $AukL\rightarrow$

Aut$\{L_{00}, e_{00}\}$ with the kemel $Aut_{L_{00}}L$ . But Aut$\{L_{00},e_{00}\}$ is finite by Remark 1 \S 40; hence
$(Aut_{C}L : Aut_{L_{00}}L)$ is finite. Therefore, if $L_{00}’$ is the fixed field ofAuk $L$ , then $L_{\acute{0}0}\in \mathcal{L}_{0}$

and $L_{\acute{0}0}\subset L_{00}$ ; hence $L_{00}’=L_{00}$ ; hence $AukL=Aut_{L_{00}}L.$

(ii) is obvious by Proposition 13 (ii). $\square $

EXAMPLE. Let $L$ be a $G_{\mathfrak{p}}$-field over $C$ (see \S 1). Then $L$ satisfies (Ll), (L2), and $L$ is

ample.

[4]. Now with these preparations, we shall define the canonical $S$ -operator on Land
characterize it algebraically when $L$ is ample. First, we must define $D(L)$ and $d$. Let
$L_{0}\in \mathcal{L}_{0}$ and let $D(L_{0})$ be the space of all differentials of $L_{0}/C$ in the usual sense (in the

theory of algebraic functions of one variable). Let $d_{0}$ : $L_{0}\rightarrow D(L_{0})$ be the differentiation.

Then if $ L_{0}’\in$ Lo with $L_{0}\subset L_{0}’$ , there is a namral injection $D(L_{0})\subset D(L_{\acute{0}})$ compatible with
the differentiation. Now, $D(L)$ and $d$ are defined to be the injective limits of $D(L_{0})$ and $d_{0}.$

Now take any $L_{0}\in \mathcal{L}0$ and let $S^{\{L_{0},e_{0}\}}$ be the canonical $S$ -operator attached to $\{L_{0}, e_{0}\}.$

For each $\xi\in D(L)^{x}$ put $ S^{L_{0}}\langle\xi\rangle=S^{\{L_{0},e_{0}\}}\langle\xi_{0}\rangle+\langle\xi,\xi_{0}\rangle$ , where $\xi_{0}$ is any element of $D(L_{0})^{\times}.$

Then since $S^{\{L_{0},e_{0}\}}$ is $mS$ -operator on $L_{0}$ , this expression is independent of $\xi_{0}$ , and since,
$\xi\rightarrow\langle\xi,\xi_{0}\rangle$ is an $S$ -operator on $L,$

$S^{L_{0}}$ is also an $S$ -operator on $L$ . Moreover, $S^{L0}$ is

independent of $L_{0}$ . In fact, if $L_{0}’\in \mathcal{L}_{0}$ , then $L_{0}L_{\acute{0}}\in \mathcal{L}_{0}$ ; hence it is enoug to check
$S^{L_{0}}=S^{L_{0}’}$ when $L_{0}\subset L_{0}’$ . But this is an immediate consequence of Remark 2 (\S 39) and

the definition of $S^{\{L_{0},e_{0}\}}$ . Since $S^{L_{0}}$ is independent of $L_{0}$ , we shall denote it by

(101) $S^{L},$

and call it the canonical $S$ -operator on $L.$

REMARK 3. Thus the restriction of $S^{L}$ to each $L_{0}(L_{0}\in \mathcal{L}_{0})$ is nothing but $S^{\{L0,e_{0}\}}.$
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[5]. Now we shall define the action of $AukL$ on the set of all $S$ -operators $mL$ by
$S^{\sigma}\langle\xi\rangle=S\langle\xi^{\sigma^{-1}}\rangle^{\sigma}(\sigma\in AukL)$ . Then we have:

THEOREM 9. (i) The canonical $S$ -operator $S^{L}$ is invariant by $AukL.$

(ii) If $L$ is ample, $S^{L}$ is the unique $Auk$ $L$-invariant $S$ -operator on L. More strongly,

if $\Phi$ is $ a\varphi$ closed non-compact subgroup of$AukL,$ $S^{L}$ is already characterized by
$\Phi$-invariance.

[6]. For this proof, we need the following lemma, which will be proved in \S 42.

LEMMA 14. Let $\Phi$ be any closednon-compact subgmup of$Aut_{C}L$, and let $h\geq 1$ . Then
the only $\Phi$-invariant element of$\mathscr{O}(L)$ is $0.$

[7]. Proof of Theorem 9. (i) Let $L_{0}\in \mathcal{L}_{0}$ and put $V=Aut_{L_{0}}L$ . Let $\xi_{0}$ be any fixed
element of $D(L_{0})^{x}$ and let $\xi\in D(L)^{\times}$ . Then by definition, $ S^{L}\langle\xi\rangle=S^{\{L_{0},e_{0}\}}\langle\xi_{0}\rangle+\langle\xi,\xi_{0}\rangle$ . So,
for any $\sigma\in V$, we have $(S^{L})^{\sigma}\langle\xi\rangle=S^{\{L_{0},eoI}\langle\xi_{0}\rangle^{\sigma}+\langle\xi^{\sigma^{-1}},\xi_{0}\rangle^{\sigma}=S^{\{L\eta,e_{0}\}}\langle\xi_{0}\rangle+\langle\xi,\xi_{0}^{\sigma}\rangle=S^{L}\langle\xi\rangle.$

Hence $S^{L}$ is $V$-invariant. If $L$ is simple, take $L_{0}$ to be the unique minimal element of 2 .
Then $V=AukL$ ; hence $S^{L}$ is $Auk$ $L$-invariant. Now let $L$ be ample, and let $G_{0}$ be the
subgroup ofAuk $L$ generated by all groups ofthe form $Aut_{L_{0}}L(L_{0}\in \mathcal{L}_{0})$ . Then $S^{L}$ is $G_{0^{-}}$

invariant, and moreover, $G_{0}$ is open (hence also closed) and non-compact (by Proposition
13 (ii) $)$ . Hence by Lemma 14, the only $G_{0}$-invariant element of $D^{2}(L)$ is $0$ . Suppose that
$S’$ is anoEier $G_{0}$-invariant $S$ -operator on $L$ , md put $S’-S^{L}=C$ ($C$ : a constant in $D^{2}(L)$).

Then $C$ must also be $G_{0^{-}}$ invariant; hence $C=0$ ; hence $S’=S^{L}$ . Therefore, $S^{L}$ is the
unique $G_{0}$-invariant $S$ -operator. On the other hand, since any element ofAuk $L$ leaves
the set $\mathcal{L}_{0}$ invariant (as a whole), $G_{0}$ is a nomlal subgroup ofAuk $L$ . Therefore, for any
$\sigma\in AukL,$ $(S^{L})^{\sigma}$ is again $G_{0}$ -invariant; hence $(S^{L})^{\sigma}=S^{L}$ . Therefore, $S^{L}$ is $AukL$-

invariant. This settles (i).

(ii) Suppose that $S’$ is a $\Phi$-invariant $S$ -operator, and put $S^{L}-S’=C(C$ : a constmt in
$D^{2}(L))$ . Then $C$ is $\Phi$-invariant; hence by Lemma 14, $C=0$ ; hence $S’=S^{L}$ . This settles
(ii). $\square $

\S 42. Proof of Lemma 14, and its Corollary. Let $L$ be as in \S 41. For each open
compact subgroup $V$ of $AukL$ let $L_{V}$ denote its fixed field in $L$ , and for each pnime
divisor $P$ of $L_{V}$ let $e_{V}(P)$ denote its ramification index in $L/L_{V}$ (so that $L_{V}\in \mathcal{L}_{0}$ , and
$\{L_{V},e_{V}\}$ satisfies the conditions (i), (ii) of \S 40). Assume now that $L$ is ample. Then there
exists a discrete subgroup $\tilde{\Gamma}$ of $\tilde{G}=G_{R}\times AukL$ with finite volume quotient, unique up
to conjugacy in $\tilde{G}$, satisfying the following conditions:

(i) The projection of $\tilde{\Gamma}$ to each component of $\tilde{G}$ is injective, and its image is dense in
that component;

(ii) For each open compact subgroup $V$ of$AukL$ , put $\Delta=proj_{R}\{\tilde{\Gamma}\cap(G_{R}\times V\gamma\}$ , so that
$\Delta$ is a Eichsian $\Psi^{oup}$ depending on $V$. Put $\{L_{V}’,e_{V}’\}=\{L_{(\Delta\backslash \mathfrak{H})}\cdot,e_{\Delta}\}^{26}$ and $L’=\bigcup_{V}L_{V}’.$

Then there is an isomorphism $\iota$ : $L\rightarrow L’$ such that (a): $\iota|_{L_{V}}$ gives an isomorphism of

26See \S 40 for the symbol $\{L_{(\Delta\backslash \mathfrak{H})}\cdot,e_{\Delta}\}.$
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$\{L_{V},e_{V}\}$ onto $\{L_{V}’,e_{V}’\}$ for each $V$, and that (b): for each $\tilde{\gamma}=\gamma_{R}\times\gamma\epsilon\tilde{\Gamma}$, the action of
$\gamma$ on $L$ corresponds to the action $f(\tau)\rightarrow f(\gamma_{R}\tau)$ of $\gamma_{R}$ on $L’$ (by $\iota$).

This can be proved exactly in the same manner as Theorem 1 (Part 1). Now let $\Phi$ be any
closed non-compact subgroup ofAuk $L$ , let $h\geq 1$ , and let $\omega$ be a $\Phi$-invariant differential
in $L$ of degree $h$ . Since $\omega\in D^{h}(L_{V})$ for some $V,$ $\omega$ is also invariant by $V$; hence we may
filrther assume that $\Phi$ contains $V$. Put $G=G_{R}\times\Phi,$

$\Gamma=\tilde{\Gamma}\cap G$, and let $\Gamma_{R}$ be the projection
of $\Gamma$ to $G_{R}$ . Then since $\Phi$ is non-compact, $(\Phi$ : $ V\gamma=\infty$ ; hence $(\Gamma_{R} : \Delta)=\infty$ ; hence $\Gamma_{R}$ is
dense in $G_{R}$ . Now put $\iota(\omega)=f(\tau)(d\tau)^{h};\tau$ being as in \S 39. Then since $\omega$ is $\Phi$-invariant,
$f(\tau)$ is a meromorphic function on $\mathfrak{H}$ and satisfies

(102) $f(\frac{a\tau+b}{c\tau+d}\rangle(c\tau+d)^{-2h}=f(\tau)$

for all $\gamma_{R}=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{R}$ . But since $\Gamma_{R}$ is dense in $G_{R},$ $(102)$ holds for all $(_{c}^{a}db\rangle\in G_{R}.$

In particular, we have $f(\tau+\lambda)=f(\tau)$ for all $\lambda\in R$; hence $f(\tau)$ is a function of ${\rm Im}(\tau)$ .
But since $f(\tau)$ is meromorphic, this implies that $f(\tau)$ must be a constant. But then, since
$h\geq 1$ , it is clear by (102) that $f(\tau)\equiv 0$ ; hence $\omega=0$ . This proves Lemma 14. $\square $

As a Corollary of Lemma 14, we shall prove the following assertion, which is used in
\S 40, \S 43:

COROLLARY. Let $\{L, e\},$ $\{L_{1}, e_{1}\},$ $\{L_{2}, e_{2}\}$ be as in Proposition 12. Then

(103) $D^{h}(L_{1})\cap D^{h}(L_{2})=\{0\} (h\geq 1)$ .

PROOR Rewrite $\{L, e\}=\{L_{0}, e_{0}\}$ (we shall use the notation $L$ for some other field).

Let $\Delta_{0}$ be the fuchsian group corresponding to $\{L_{0}, e_{0}\}$ , and for each subgroup $\Delta’\subset\Delta_{0}$

with finite index, let $\{L’, e’\}$ denote the corresponding admissible extension of $\{L_{0}, e_{0}\}$ . Put
$L=\bigcup_{\Delta},$ $L’$ , where $\Delta’$ mns over all subgroups of $\Delta_{0}$ with finite indices. Then clearly for

each prime divisor $P_{0}$ of $L_{0}$ , its ramification index in $L/L_{0}$ divides $e_{0}(P_{0})$ ; but moreover,

it is well-known (and easily $proved^{27}$) that the ramification index coincides with $e_{0}(P_{0})$ .
Therefore, $L$ satisfies the conditions (Ll) (L2) of \S 41. Put $V_{i}=Aut_{L_{i}}L(i=1,2)$ , and let
$\Phi$ be the subgroup $ofAut_{\mathbb{C}}L$ generated by $V_{1}$ and $V_{2}$ . Then $\Phi$ is open (hence also closed),

and since $L_{1}\cap L_{2}=C,$ $\Phi$ is non-compact. Now let $\omega\in D^{h}(L_{1})\cap D^{h}(L_{2})$ . Then $\omega$ is
$\Phi$-invariant; hence by Lemma 14, $\omega=0.$ $\square $

27See Supplement \S 5.
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The canonical class of linear differential equations of second order on algebraic

function fields ovcr $C$, and its algebraic characterization in ample (arithmetic)

cases.

\S 43. The first formulation.
[1]. Let $\{L,e\}$ be as in \S 40. Let $\xi\in D(L)^{\times}$ and let $D_{\xi}$ denote the derivation of $L$ defined

by $L\ni y\rightarrow 4\xi\in L$ . By $a$ (differenbal) equation $\Theta=[\xi;A,B](A,B\in L)$, we will mean
the following linear differential equation:

(104) $(\mathbb{D}_{\xi}^{2}+A\cdot \mathbb{D}_{\xi}+B)u=0.$

Let $\eta\in D(L)^{X}$ and put $w_{1}=\eta/\xi,$ $w_{i+1}=dw_{i}/\xi(i\geq 1)$ , so that $\mathbb{D}_{\xi}=w_{1}\mathbb{D}_{\eta},$ $\mathbb{D}_{\xi}^{2}=$

$w_{1}^{2}\mathbb{D}_{\eta}^{2}+w_{2}\mathbb{D}_{\eta}$ ; hence the equation $\Theta$ may be rewritten as:

(104’) $\left\{\begin{array}{l}(D_{\eta}^{2}+A_{1}\mathbb{D}_{\eta}+B_{1})u=0, wiffi\\A_{1}=Aw_{1}^{-1}+w_{2}w_{1}^{-2}, B_{1}=Bw_{1}^{-2}.\end{array}\right.$

We shall always identify two such equations (consider as different expressions ofthe same
equation);

(105) $[\xi,A,B]=[\eta;Aw_{1}^{-1}+w_{2}w_{1}^{-2},Bw_{1}^{-2}] (\xi,\eta\in D(L)^{\times})$ .

Since $B_{1}\cdot\eta^{2}=B\cdot\xi^{2}$ and $A_{1}\cdot\eta-A\cdot\xi=d\log w_{1}$ , the quanbties $B\cdot\xi^{2},$ ${\rm Res}_{P}(A\xi)-ord_{P}\xi,$

A. $\xi(mod d\log L^{\times})$ are independent ofthe expressions of $\Theta.$

Let $\Theta=[\xi;A,B]$ and $C\in L^{\times}.$ . By $\sqrt{c-1}\Theta$, we shall mean the equation obtained by

substituting $u$ by $\sqrt{C}u$ in $(104)^{28}$ Thus, by definition,

(106) $[\xi;A,B]=\sqrt{C^{-1}}[\xi;A’,B’]\Leftrightarrow\left\{\begin{array}{l}A’=A+\frac{D_{\xi}(C)}{c},\\B’=B+\frac{D_{\xi}(C)}{2C}A+\frac{2CD_{\xi}^{2}(\epsilon)-\{D_{\xi}(C)\}^{2}}{4C^{2}}.\end{array}\right.$

The two equations $\Theta,$ $\Theta’$ are called equivalent (or belong to the same class) if $\Theta’=$

$\sqrt{C^{-1}}\Theta$ holds for some $C\in L^{\times}$ . It is clear that this is an equivalence relation.

[2].

PROPOSITION 15. Let $S$ be an $S$ -operator on $L,$ let $\xi\in D(L)^{\times},$ andput $S\langle\xi\rangle=-4B_{\xi}\cdot\xi^{2}$

$(B_{\xi}=B_{\xi}^{s}\in L)$. Then the class of the equation $[\xi;0,B_{\xi}]$ depends only on $S$ , and is

independent of$\xi.$

PROOF. It is enoug to check

(107) $[\eta;0,B_{\eta}]=\sqrt{\eta/\xi}[\xi;0,B_{\xi}] (\xi,\eta\in D(L)^{\times})$ .

28So, “the solutions of $\sqrt{C^{-1}}\Theta$” are $\sqrt{C^{-1}}$-times “the solutions of $\Theta.$
” Clearly we have $\Theta’=\sqrt{C^{-1}}\Theta\Leftrightarrow$

$\Theta=\sqrt{C}\Theta’,$ $\sqrt{C_{1}C_{2}}\Theta=\sqrt{C_{1}}(\sqrt{C_{2}}\Theta)$, and $\sqrt{C}\Theta=\Theta\Leftrightarrow C\in C^{\times}.$
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By (105), we have $[\eta;0, B_{\eta}]=[\xi;_{w}^{w_{1}}-\lrcorner,B_{\eta}w_{1}^{2}]$ . Therefore, if we put $C=w_{1}=\eta/\xi,$

then $\sqrt{C^{-1}}[\eta;0,B_{\eta}]=[\xi;A’,B’]$ , wiffi $A’=-w_{1}\lrcorner w+\frac{D_{\xi}(C)}{C}=0$ , and

$B’=B_{\eta}w_{1}^{2}+\frac{w_{2}}{2w_{1}}\times(-\frac{w_{2}}{w_{1}})+\frac{2w_{1}w_{3}-w_{2}^{2}}{4w_{1}^{2}}$

(108)

$=B_{\eta}w_{1}^{2}+\frac{2w_{1}w_{3}-3w_{2}^{2}}{4w_{1}^{2}}$ ;

hence $ 4B’\cdot\xi^{2}=4B_{\eta}\cdot\eta^{2}+\langle\eta,\xi\rangle=-S\langle\eta\rangle+\langle\eta,\xi\rangle=-S\langle\xi\rangle$ ; hence $B’=B_{\xi}.$ $\square $

DEmimoN. In the situation of Proposition 15, the class of $[\xi;0,B_{\xi}]$ will be called

the $S$ -ctass (corresponding to the $S$ -operator $S$ ), and will be denoted by $\mathfrak{R}^{s}$ . If $S^{\{L,e\}}$ is

the canonical $S$ -operator attached to $\{L,e\}$ , then $\mathfrak{R}^{s^{\{L.e\}}}$ will be called the canonical class

attached to $\{L,e\}$ and denoted by $\mathfrak{R}\{L,e\}.$

By the following proposition, a class $\mathfrak{R}$ is an $S$ -class (for some $S$ ) if and only if it
contains an equation oftheform $[\xi;0,B](\xi\in D(L)^{\times}, B\in L)$ .

PROPOSITION 16. Let $\mathfrak{R}$ be any class containing an equation of the $fom\Theta=[\xi;0, B]$

$(B\in L)$ . Then there aists a unique $S$ -operator $S$ (on $L$) such that $\mathfrak{R}=\mathfrak{R}^{s}$ . Moreover, if
$\Theta$ and $S$ are as above, we have $B=B_{\xi}^{s}$ ; andfor each $\Theta’\in \mathfrak{R}^{s}$ , there exists a differential
$\eta\in D(L)^{\times}$ , unique up to constant multiple, such that $\Theta’=[\eta;0, B_{\eta}^{s}]$ . Thus, there are two

bijections:

(109) $S$ -opemtors $S$
$\xleftrightarrow[1:1]{}$

-classes,

by $S\leftrightarrow \mathfrak{R}^{S}$ , and

(110) equationsin$\mathfrak{R}^{S}(s:$

fixed)
$\xleftrightarrow[1:1]{}$

the canonical divisors29on $L,$

by $[\eta;0, B_{\eta}]\leftrightarrow$ the divisor $(\eta)$ of $\eta.$

DEFINITION. We shall call $W=(\eta)$ the divisor of the equation $\Theta’=[\eta;0,B_{\eta}]$ . It is

clear by (107) that the divisor of $\sqrt{C}\Theta’$ is $(C)\cdot W’.$

PROOR Let $\Theta=[\xi;0,B]$ , and let $S$ be the $S$ -operator defined by $S\langle\eta\rangle=\langle\eta,\xi\rangle-4B\cdot\xi^{2}$

( $\eta$ : a variable in $D^{2}(L)$). Then $B=B_{\xi}^{S}$ ; hence $\mathfrak{R}=\mathfrak{R}^{S}$ . Suppose that $S’$ is another $S$ -

operator with $\mathfrak{R}=\mathfrak{R}^{S’}$ Then $[\xi;0, B_{\xi}^{S’}]\in \mathfrak{R}$ ; hence $[\xi;0, B_{\xi}^{S’}]=\sqrt{C}[\xi;0,B_{\xi}^{s}]$ with some
$C\in L^{\times}$ . But by (106), this implies $\mathbb{D}_{\xi}(C)=0$ (hence $C\in C^{\times}$); hence $B_{\xi}^{S’}=B_{\xi}^{s}$ ; hence
$ S’\langle\xi\rangle=S\langle\xi\rangle$ ; hence $S’=S$ . That $B’=B_{\xi}^{s}$ follows exactly in the same mamer. Finally,

let $\Theta’\in \mathfrak{R}^{S}$ , and put $\Theta’=\sqrt{C}\Theta(C\in L^{\times})$ . Put $\eta=C\cdot\xi$ . Then by (107), we obtain
$\Theta’=[\eta;0, B_{\eta}^{s}].$

$\square $

REMARK 1. Thus, if $[\xi;A,B]$ is the equation in $\mathfrak{R}^{S}$ whose divisor is $(\eta)$ , then $A=$

$-\frac{w_{2}}{w_{l}},$ $B=B_{\eta}w_{1}^{2}$ .

$29I.e.$ , the divisors ofnon-zero differentials (of degree one).
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[3]. Let $\Delta$ be the fuchsian group corresponding to $\{L,e\}$ , and identify $\{L,e\}$ with

(111) $\mathbb{D}_{\xi}^{2}u=\frac{2f(\tau)f’(\tau)-3f(\tau)^{2}}{4f(\tau)^{4}}u.$

As is well-known (and can be checked directly), the general solutim of (111) is

(112) $u=(a\tau+b)\sqrt{f(\tau)} (a,b\in C)^{30}$

[4]. Local properties of the equations in the canonical class. Now let $\mathfrak{R}=\mathfrak{R}\{L,e\}$

be the canonical class, and let $\Theta$ be the equation in $\mathfrak{R}$ having a given divisor $W=\prod_{P}P^{\iota\langle P)}.$

Then $\Theta$ has the following properties:

( $\Theta$-1) $\Theta$ is fuchsian; i.e., regular at each prime divisor $P$ of $L.$

($\Theta$-2) At each $P$, the exponents of $\Theta$ are given by

(113) $\frac{1}{2}\{1+w(P)+\frac{1}{e(P)}\}, \frac{1}{2}\{1+w(P)’-\frac{1}{e(P)}\}$ ;

thus if $e(P)=1$ or $\infty$ , the difference of exponents is integral; but:
( $\Theta$-3) Unless $ e(P)=\infty$ , the local solutions of $\Theta$ at $P$ do not involve logarithms.

These follow immnediately from the above [3] and from the following Lemma 15.

LEMMA 15. Let $X$ be any Riemann surface, $X$ itsfinite covering $P’$ a point on $X,$ $P$

the point of $X$ lying below $P’$, and let $e$ be the ramfication index of $P’/P$. Let $\omega$ be a
non-zero differential ofdegree $h(h\geq 1)$ on $X$ Then the order $ord_{P}\omega$ of $\omega$ (considered

as a differential on $X$) at $P’$ is given by

(114) $ord_{P}\omega=e(ord_{P}\omega+h)-h.$

PROOF OF LEMMA 15. Immediate by using the local coordinates. $\square $

[5]. Notes. Now a question arises“to what extent is the equation $\Theta\in \mathfrak{R}\{L, e\}$ char-
acterized by $(\Theta-1)(\Theta-2)(\Theta-3)?$

” The following is to answer this question. Roughly, the
result we obtain is parallel to the result in [4], [5] of \S 40. All statements given below can
be proved directly; so their proofs are omitted.

DEFINITION. Let $\Theta=[\xi;A,B]$ be any equation (in any class). Then $\Theta$ is called ad-
missible with respect to $\{L, e\}$ if $\Theta$ satisfies $(\Theta-1)(\Theta-2)(\Theta-3)$ with some canonical divisor
$W=\prod_{P}P^{\iota\langle P)}.$

If $\Theta$ is such, $W$ is unique. So, we shall call $W$ the divisor of $\Theta.$

PROPOSITIION 17. Let $\Theta$ be admissible w.rt. $\{L,e\}$, and let $W$ be its divisor Let $C\in L^{X}.$

Then $\sqrt{C}\Theta$ is also admissible $w.r.t.$ $\{L, e\}$, and its divisor is $(C)\cdot W.$

Thus, we may speak of“admissible classes. ”

3 Thus, the ratios of the two independent solutions of $[\xi;0,B_{\xi}]$ are $v=\frac{a\tau+}{c\tau+}\partial b_{;}t_{cd}^{ab}$ ) $\in GL_{2}(C)$ . The
differential equation having $v$ as the general solution is, of course, $\langle dv,\xi\rangle=-S^{\{L.e\}}\langle\xi\rangle.$
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PROPOSITION 18. Let $\Theta=[\xi;A,B]$ . Then $(\Theta-1),$ $(\Theta-2),$ $(\Theta-3)$ are equivalent to the
following $(\Theta-1)’,$ $(\Theta-2)’,$ $(\Theta-3)$

’ respectively.

$(\Theta-1)’:ord_{P}(A\cdot\xi)\geq-1,ord_{P}(B\cdot\xi^{2})\geq-2$ at each $P$

$(\Theta-2)’$ : Let $t$ be aprime element of$P$, put $e=e(P),$ $w=w(P),$ $ n=ord_{P}\xi$, and

(115) $\left\{\begin{array}{ll}\xi & =cf(1+c_{1}t+\cdots)dt, c\neq 0, c_{1},c_{2}, \cdots\in C,\\A\cdot\xi & =(\frac{a0}{t}+a_{1}+a_{2}t+\cdots)dt, a_{0},a_{1}, \cdots\in C,\\B\cdot\xi^{2} & =(\frac{b}{t}0r+\lrcorner bt+b_{2}+\cdots)(dt)^{2}; b_{0}, b_{1}, \cdots\in C.\end{array}\right.$

Then,

(116) $\left\{\begin{array}{l}a_{0}=n-w,\\b_{0}=\frac{1}{4}\{(w+1)^{2}-\frac{1}{e^{2}}\rangle.\end{array}\right.$

$(\Theta-3)’$ : We have

(117) $b_{1}=\frac{1}{2}w(c_{1}-a_{1}) \cdots ife=1.$

COROLLARY. Let $\mathfrak{R}^{s}$ be an $S$ -class and let $\xi\in D(L)^{\times}$ . Put $S\langle\xi\rangle=-4\beta=-4B_{\xi}^{s}\cdot\xi^{2_{j}}$ so
that $[\xi;0, B_{\xi}^{s}]\in \mathfrak{R}^{s}$ . Then $\mathfrak{R}^{S}$ is admissible with respect to $\{L, e\}$ ifand only if$\sqrt{}$ satisfies
the conditions (i) (ii) ofProposition 9.

REMARK 2. Since $\mathfrak{R}\{L, e\}$ is admissible, this proves Proposition 9. Moreover, this
shows that the conditions (i) (ii) of Proposition 9 are independent of $\xi.$

REMARK 3. As can be seen easily from Proposition 18, admissible classes and $S$ -

classes are independent notions; i.e., there is no implication between them;

(118)

$e(P)>1$

Thus, even ifwe restrict ourselves to $S$ -classes, the conditions $(\Theta-1),$ $(\Theta-2),$ $(\Theta-3)$ do
not characterize the canonical class. In fact, there is still $(3g-3+\Sigma_{e(P)>1}1)$-dimensional
freedom.

[6]. Now we shall give some results parallel to those of \S 40 [5]. Let $\Theta$ be an equation
on $L$ , and let $L’$ be a fimite extensim of $L$ . Consider $\Theta$ as an equation on $L’$ . Then this
$\Theta$ will be called the extension of $\Theta$ to $L’$ . It is clear that the extension of $\Theta$ induces the
extension of the class of $\Theta.$
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PROPOSITION 19. Let $\Theta$ be an admissible equation with respect to $\{L,e\}$, and let $\{L’,l\}$

be an admissible extension of $\{L,e\}$ . Then, the extension $\Theta’$ of $\Theta$ to $L’$ is also admissible
with respect to $\{L’,e’\}$ . Moreover, if $(\xi)_{L}(\xi\in D(L)^{\times})$ is the divisor of $\Theta$, then the divisor

of $\Theta’$ is $(\xi)_{L’}$ . Finally, the inhced extension map ofclasses:

the admissible classes$\rightarrow^{extenston}$the admissible classes
(119)

$w.rt. \{L,e\} wr.t. \{L’,e’\}$

is injective.

Use Proposition 18 to check this.

PROPOSITION 20. Let $\mathfrak{R}\{L,e\}$ be the canonical class attached to $\{L,e\}$, and let $\{L’,e’\}$ be
an admissible extension of $\{L,e\}$ . Then the extension of$\mathfrak{R}\{L,e\}$ to $\{L’,e’\}$ is the canonical
class attached to $\{L’, l\}.$

This is obvious by Proposition 10.
Now we shall prove:

PROPOSITION 21. Consider the situation (93) ofProposition 12. Suppose that there are
admissible classes $\mathfrak{R}_{1},$ $\mathfrak{R}_{2}$ with respect to $\{L_{1}, e_{1}\},$ $\{L_{2},e_{2}\}$ (respectively), such that their
extensions to $L$ are equal. Then such $\mathfrak{R}_{1},$ $\mathfrak{R}_{2}$ are unique and are the canonical classes
attached to $\{L_{1},e_{1}\},$ $\{L_{2}, e_{2}\}$ (respectively).

PROOR Let $\mathfrak{R}$ be the extensions to $L$ of $\mathfrak{R}_{1}$ and of $\mathfrak{R}_{2}$ . Let $\xi\in D(L_{1})^{\times},$ $\eta\in D(L_{2})^{\times}.$

Let $\Theta=[\xi;A,B]$ be the equatim in $\mathfrak{R}$ whose divisor is $(\eta)_{L}$ . Put $w_{1}=\eta/\xi,$ $ w_{i+1}=dw_{i}/\xi$

$(i\geq 1)$ , and put $\Theta_{1}=\sqrt{w_{1}^{-1}}\Theta=[\xi;A_{1},B_{1}]$ , so that

(120) $A_{1}=A+\frac{w_{2}}{w_{1}}, B_{1}=B+\frac{w_{2}}{2w_{1}}A+\frac{2w_{1}w_{3}-w_{2}^{2}}{4w_{1}^{2}}.$

Since the divisor of $\Theta_{1}$ is $(\xi)_{L},$ $\Theta_{1}$ must coincide with the extension to $L$ ofthe equation in
$\mathfrak{R}_{1}$ whose divisor is $(\xi)_{L_{1}}$ . Therefore, $A_{1},B_{1}\in L_{1}$ . On the other hand, $\Theta$ can be expressed
as $\Theta=[\eta;A_{2},B_{2}]$ with

(121) $A_{2}=\frac{A}{w_{1}}+\frac{w_{2}}{w_{1}^{2}}, B_{2}=\frac{B}{uf_{1}},$

and since the divisor of $\Theta$ is $(\eta)_{L}$ , we have $A_{2},B_{2}\in L_{2}$ by the same reasm as above. Now,
by (120), (121), we obtain

(122) $ A_{1}\cdot\xi=A_{2}\cdot\eta$ ;

hmce $A_{1}\cdot\xi=A_{2}\cdot\eta\in D^{1}(L_{1})\cap D^{1}(L_{2})$ . But by the Corollary ofLemma 14 (\S 42),

(123) $D^{h}(L_{1})\cap D^{h}(L_{2})=\{0\} (h\geq 1)$ ;

hence $A_{1}\cdot\xi=A_{2}\cdot\eta=0$ ; hence

(124) $A_{1}=A_{2}=0.$
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Now by (120), (121) and (124), we obtain $ B_{1}\cdot\xi^{2}=B_{2}\cdot\eta^{2}+\frac{1}{4}\langle\eta,\xi\rangle$ ; hence if we put
$\alpha=-4B_{1}\cdot\xi^{2},$ $\beta=-4B_{2}\cdot\eta^{2}$ , then we obtain

(125) $\langle\xi,\eta\rangle=\alpha-\beta$; $\alpha\in D^{2}(L_{1}),\beta\in D^{2}(L_{2})$ .

Hence by the Corollary of Proposition 12, we obtain $\alpha=S^{\{L,e\}}\langle\xi\rangle=S^{\{L_{1},e\}}1\langle\xi\rangle,\beta=$

$ S^{\{L,e\}}\langle\eta\rangle=S^{\{L_{2},e_{2}\}}\langle\eta\rangle$ . But since $\Theta_{1}=[\xi;0,B_{1}]$ and $\Theta=[\eta;0,B_{2}]$ , this implies ffiat $\mathfrak{R}_{1}$ and
$\mathfrak{R}_{2}$ are the canonical classes attached to $\{L_{1},e_{1}\}$ and $\{L_{2},e_{2}\}$ respectively. $\square $

\S 44. The second formulation.
[1]. Now let the notations be as in \S 41, so that $L$ is any one-dimensional extensim of

$C$ satisfying (Ll), (L2) of \S 41. For such an $L$ , we can define the equations $\Theta=[\xi;A,B]$

$(\xi\in D(L)^{\times};A,B\in L)$ and the classes $\{\sqrt{C}\Theta|C\in L^{\times}\}$ exactly in the sam $e$ mamer as in the

previous section. Moreover, Propositions 15, 16 are also valid in this case (however, we
must replace the right side of (110) by $D(L)^{\times}/C^{\times}$ , since we have not defined“the divisor

of differential in L.”) Thus, we have a one-to-one correspondence:

(126) $S$ -operators $mL\leftrightarrow S1:1$ -classes $\mathfrak{R}^{s}mL.$

DEFINITION. Let $S=S^{L}$ be the canonical $S$ -operator $mL$ . Then the corresponding
$S$ -class $\mathfrak{R}^{s}$ will be called the canonical class on $\mathfrak{R}$ , and denoted by $\mathfrak{R}\{L\}.$

Now $AukL$ acts on the set of all equations, and hence also on the set of all classes,

by

(127) $AukL\ni\sigma:\Theta=[\xi;A,B]\rightarrow\Theta^{\sigma}=[\xi^{\sigma};A^{\sigma},B^{\sigma}].$

Then if $S$ is any $S$ -operator on $L$ , it follows immediately from the definition of $\mathfrak{R}^{s}$ that
$(\mathfrak{R}^{s})^{\sigma}=\mathfrak{R}^{(S^{\sigma})}(\sigma\in AukL)$ . Therefore, we obtain immediately from Theorem 9 the

following:

THEOREM 9’. (i) The canonical class $\mathfrak{R}\{L\}$ is invariant by $AukL$ . (ii) If $L$ is ample,
$\mathfrak{R}\{L\}$ is the unique $Auk$ $L$-invariant $S$ -class on L. More stmngly if $\Phi$ is any closed non-

compact subgroup ofAuk $L,$ $\mathfrak{R}\{L\}$ is already characterized by $\Phi$-invariance.

REMARK. In the above (ii), the assumptim $S$ -class” cannot be dropped. In fact,

we can prove in the case of G-fields that the $Auk$ $L$-invariant classes are finite in num-
ber, but may not be unique.31 Also, we can prove in G-field cases that if we call
$\{C^{1/n}\Theta|C\in L^{\times},$ $ n\in Z\rangle$ the weaker class, then the $Auk$ $L$-invariantweaker class is unique.

31However, they can be obtained from the canonical class by a simple twist,” and are not important.
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