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1. INTRODUCTION

This is a lecture note on soliton cellular automata associated with crystal
bases for quantized affine Lie algebras. It is partly based on my talks at the
CAIS workshop, but the expositions are considerably different.

A cellular automaton (CA) is a discrete dynamical system in which site vari-
ables take on values in a finite set. The study of solitons in CAs has some long
history (See e. g. chapter 3 of [AC]). Among other CAs our soliton cellular
automata (SCAs) have the following particular properties:

(1) They are time reversible.
(2) All entities are solitons.
(3) Well separated solitons travel at their lengths per a unit time.
(4) There exist phase shifts caused by collisions of solitons.
(5) There are infinite number of conserved quantities.

The simplest example is Takahashi-Satsuma’s automaton [TS]. In this CA the
site variables take on two values $\{0,1\}$ , only finite number of them taking 1 at
a time 1. It is a filter type CA such that the variable $x_{i}^{t}$ at time $t$ and site $i$ is
determined by the rule

(1.1) $x_{i}^{t}=\min(1-x_{i}^{t-1},\sum_{j=-\infty}^{i-1}(x_{j}^{t-1}-x_{j}^{t}))$

It gives a nonlinear dynamical system. This system aroused a lot of curiosity
among people in the field of soliton theory because it is related to the other
nonlinear dynamical systems such as those described by discrete $KP$ or Toda
equations 2.

There are generalizations of this CA to the systems in which the variables take
on more than two values [T, TNS, TTM]. It was found that these systems can
be described by crystal bases [K] for affine Lie algebra $A_{n}^{(1)}$ [FOY, HHIKTT] 3.
Furthermore in [HKTI] a class of SCAs associated with the crystal bases [KKM]

of non-exceptional affine Lie algebras $A_{2n-1}^{(2)},$ $A_{2n}^{(2)},B_{n}^{(1)},$ $C_{n}^{(1)},$ $D_{n}^{(1)}$ and $D_{n+1}^{(2)}$ [Kac]

was introduced. Among those SCAs that associated with $D_{n}^{(1)}$ is of fundamental

importance, because all the other ones (including $A_{n}^{(1)}$ SCA) can be embedded into
this one [KTT]. Thus in a sense it is enough to explain only this case. However
we also know that beginning the story by type $A$ case is ideal for novices.

On regarding that the author planned the layout of this note: We discuss SCAs
associated with crystal bases of both type $A$ and type $D$ affine Lie algebras. Now
the reader may guess the role of each section by its name in the table of contents.

1In the main text we shall use {1, 2} instead of $\{0,1\}.$

2The reader who is interested in this aspect can consult [To].
3Crystal bases was born in the study of solvable lattice models [B, KMNI]. From the view-

point of crystallization of lattice models a family of SCAs was derived in [HIK]
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In the type $A$ case the SCAs are also called box-ball systems since they are
described by boxes and balls. Before going further we give a pair of examples. The
following examples show the factorization of scattering of three solitons (Yang-
Baxter relation) in a box-ball system.

Example 1.1.

Example 1.2.

The “. $(=1)$ ” denotes an empty box and each number $\geq 2$ denotes a box con-
taining a ball with index of that number. The updating rule of $CA$ will (in the
“original” algorithm) be given just below Example 4.11 in the main text. In the
examples there are three solitons of lengths 6, 3 and 1 before and after the colli-
sions. We also see that the “particles” belonging to these solitons were reshuffied
by the scattering processes.

In this SCA the crystal basis theory plays the following roles:
(1) The time evolution is given by the isomorphism of crystals.
(2) The reshuflling of particles caused by collisions of two solitons is also given

by the isomorphism of crystals.
(3) The phase shift produced by collisions of two solitons is given by the

energy function of crystals.
In the type $D$ case there are “anti-particles” as well as particles, and we have
their pair annihilation and pair creation processes in the SCA.

We recognize that the most important tool for the SCAs is the isomorphism of
crystals (combinatorial $R$). Thus sections 2 and 3 are devoted to describe various
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formulas for the combinatorial $R$ . Then the properties of the SCAs are presented
in sections 4 and 5.

This note contains some topics developed after the workshop. They are related
to the color separation scheme. In box-ball systems there are several kinds (colors)
of balls distinguished each other by the numerical indices (See Examples 1.1 and
1.2). In other words this dynamical system has the color degree of freedom.
However this degree of freedom can be separated from dynamics, i. e. it turns
out to be freezing after a particular variable change. By the scheme it leaves the
original Takahashi-Satsuma’s automaton (1.1), or a more general monochrome
system [TM].

This separation scheme uses (a special case of) the combinatorial $R$ between
crystals of symmetric and antisymmetric tensor representations. In type $A$ case
this combinatorial $R$ is presented in section 2.4 and the separation scheme is
explained in section 4.7. It is based on the author’s recent work [Tg2]. About
the scheme for the type $A$ case a new result will be presented in section 4.10,
concerning the box-ball system associated with antisymmetric tensor crystals
[Yd]. In type $D$ case that particular combinatorial $R$ is presented in section 3.2,

and the separation scheme is described in sections 5.6-5.7 which is also a new
result.

The Takahashi-Satsuma’s automaton (1.1) is a nonlinear dynamical system.
Indeed, the existence of phase shifts in the collision processes in this $CA$ signi-
fies the nonlinearity of the system. However, the dynamics of this $CA$ can be
linearized [Tgl]. The algorithm for the linearization is presented in section 4.8.
Combining with the color separation scheme, we may also say that the dynamics
of SCAs associated with those type $A$ and $D$ crystals can be linearized. Through-
out this note the author tries to treat the subjects from this viewpoint, rather
than from those in the original works.

Acknowledgements I am grateful to Professors A. Kuniba and M. Okado, the or-
ganizers of the workshop “Combinatorial Aspects of Integrable Systems”, RIMS,
Kyoto University in July 2004, for giving me an opportunity to deliver lectures
on this topic. I also thank the participants of my lectures at the workshop for
their valuable questions and comments.
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2. A BRIEF REVIEW OF COMBINATORIAL $R$ : TYPE $A$ CASE

2.1. Diagrammatic algorithms for (anti)symmetric tensors. Let $B^{k,l}$ be
the crystal of $k$ by $l$ rectangle shape semistandard Young tableaux [KMN2]. The
combinatorial $R$ (isomorphism of crystals) $R:B^{k,l}\otimes B^{k’,l’}\rightarrow\sim B^{k’,l’}\otimes B^{k,l}$ is given
by the rectangle switching bijection by Shimozono [Sh] or Schilling and Warnaar
[SW].

First consider two special cases where we do not have to treat generic rectan-
gles. Suppose $k=k’=1$ or $l=l’=1$ . These are for the crystals of symmetric
or antisymmetric representations. In these cases there are simple diagrammatic
algorithms for the combinatorial $R$ invented by Nakayashiki and Yamada [NY].
For example we have

Here we wrote Young tableaux by matrices. For their left hand sides, we obtain
their right hand sides by using the following diagrams

The correspondence between the tableaux above and these diagrams should be
clear. Starting at the dots in the right pile of boxes we find their partner dots in
the left pile of boxes by the following rule and connect them. Then we transfer
the unconnected dots from the left boxes to the right ones. For any dot in
the right boxes, the rule to find its partner is as follows. In the symmetric
(resp. antisymmetric) tensor case its partner is an unconnected dot in the lowest
(resp. highest) position that is higher (resp. not lower) than its position. If there
is no such dot we jump to the bottom (resp. top) and continue to search for, i. e.
the top of the diagram should be identified with the bottom.

2.2. Rectangle switching bijections. Next we consider the case of generic
rectangles. For any pair of semistandard tableaux $T,$ $U$ we denote their product
tableau by $T*U^{4}$ . Denote $\mathcal{T}(b)$ the rectangle tableau associated with the element
of crystal $b$ . Then we have $R(b\otimes b’)=c\otimes c’$ if and only if $\mathcal{T}(b)*\mathcal{T}(b’)=\mathcal{T}(c)*\mathcal{T}(d)$ .
Again we illustrate it only by examples. For a more complete treatment, see [Sh].

4The order of product in our notation is opposite to the conventional one. This is equal to
U.T in [Fl].
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Consider the following example on $R:B^{3,4}\otimes B^{2,2}\simeq B^{2,2}\otimes B^{3,4}$

(2.1) $R:\left\{\begin{array}{llll}1 & 1 & 2 & 3\\2 & 3 & 3 & 6\\4 & 5 & 5 & 7\end{array}\right\}\otimes\left\{\begin{array}{ll}1 & 2\\3 & 6\end{array}\right\}\mapsto\sim\left\{\begin{array}{ll}2 & 3\\3 & 6\end{array}\right\}\otimes\left\{\begin{array}{llll}1 & l & l & 3\\2 & 2 & 5 & 5\\3 & 4 & 6 & 7\end{array}\right\}$

Recall that for $b\in B^{k,1}$ and $b’\in B^{k’,l’}$ there are two equivalent ways to construct
its associated product tableau $\mathcal{T}(b)*\mathcal{T}(b’)$ .

(1) Successive column insertion of letters of the column word of $\mathcal{T}(b’)$ into
$\mathcal{T}(b)$ .

(2) Successive row insertion of letters of the row word of $\mathcal{T}(b)$ into $\mathcal{T}(b’)$ .
If we regard the LHS of (2.1) as $b\otimes b’$ , the column word of $\mathcal{T}(b’)$ is 2613 and the
row word of $\mathcal{T}(b)$ is 455723361123. We illustrate method (1) to construct the
product tableau (For method (2) see [SW]):

(2.2) $(6\rightarrow(2\rightarrow\left\{\begin{array}{llll}l & l & 2 & 3\\2 & 3 & 3 & 6\\4 & 5 & 5 & 7\end{array}\right\}))=\left\{\begin{array}{lllll}l & l & 2 & 3 & 3\\2 & 2 & 3 & 6 & \\4 & 5 & 5 & 7 & \\6 & & & & \end{array}\right\},$

(2.3) $(3\rightarrow(1\rightarrow\left\{\begin{array}{lllll}1 & 1 & 2 & 3 & 3\\2 & 2 & 3 & 6 & \\4 & 5 & 5 & 7 & \\6 & & & & \end{array}\right\}))=\left\{\begin{array}{llllll}1 & 1 & l & 2 & 3 & 3\\2 & 2 & 3 & 5 & 6 & \\3 & 4 & 5 & 7 & & \\6 & & & & & \end{array}\right\}$

In the RHS we have that

(2.4) $(7\rightarrow(5\rightarrow(3\rightarrow\left\{\begin{array}{ll}2 & 3\\3 & 6\end{array}\right\})))=\left\{\begin{array}{lll}2 & 3 & 3\\3 & 6 & \\5 & & \\7 & & \end{array}\right\},$

(2.5) $(6\rightarrow(5\rightarrow(1\rightarrow\left\{\begin{array}{lll}2 & 3 & 3\\3 & 6 & \\5 & & \\7 & & \end{array}\right\})))=\left\{\begin{array}{llll}l & 2 & 3 & 3\\3 & 5 & 6 & \\5 & 7 & & \\6 & & & \end{array}\right\}$

(2.6) $(4\rightarrow(2\rightarrow(1\rightarrow\left\{\begin{array}{llll}1 & 2 & 3 & 3\\3 & 5 & 6 & \\5 & 7 & & \\6 & & & \end{array}\right\})))=\left\{\begin{array}{lllll}1 & 1 & 2 & 3 & 3\\2 & 3 & 5 & 6 & \\4 & 5 & 7 & & \\6 & & & & \end{array}\right\},$

(2.7) $(3\rightarrow(2\rightarrow(1\rightarrow\left\{\begin{array}{lllll}1 & 1 & 2 & 3 & 3\\2 & 3 & 5 & 6 & \\4 & 5 & 7 & & \\6 & & & & \end{array}\right\})))=\left\{\begin{array}{llllll}l & l & 1 & 2 & 3 & 3\\2 & 2 & 3 & 5 & 6 & \\3 & 4 & 5 & 7 & & \\6 & & & & & \end{array}\right\}$

Thus we checked their product tableaux coincide each other.
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Suppose we are given a product tableau. Then there is a problem to find a
pair of rectangle tableaux of specified shapes whose product coincides with the
tableau. It requires us to do inverse of column insertions (bumpings). In order
to do an inverse bumping we need to specify a node of the tableau with which
we begin. For example consider the following mapping:

(2.8) $R:\left\{\begin{array}{lll}1 & 1 & 3\\2 & 2 & 4\\4 & 4 & 5\\5 & 5 & 6\end{array}\right\}\otimes\left\{\begin{array}{llll}2 & 2 & 2 & 6\\3 & 6 & 6 & 7\\5 & 8 & 8 & 9\end{array}\right\}\mapsto\sim\left\{\begin{array}{llll}l & 1 & 2 & 3\\2 & 2 & 4 & 4\\3 & 4 & 5 & 6\end{array}\right\}\otimes\left\{\begin{array}{lll}2 & 2 & 5\\5 & 5 & 6\\6 & 6 & 7\\8 & 8 & 9\end{array}\right\}$

Both sides give a common product tableau (the first one below). We added a
pair of diagrams associated with the Littlewood-Richardson rule [Sa]:

$\left\{\begin{array}{llllll}l & 1 & 1 & 2 & 2 & 3\\2 & 2 & 4 & 4 & 6 & \\3 & 4 & 5 & 5 & & \\5 & 5 & 6 & & & \\6 & 6 & 9 & & & \\7 & 8 & & & & \\8 & & & & & \end{array}\right\},$

For two partitions $\mu=(3^{4})$ and $v=(4^{3})$ (or any other rectangle shape Young
diagrams) the Littlewood-Richardson coefficient $c_{\mu v}^{\lambda}$ satisfies $c_{\mu\nu}^{\lambda}\leq 1$ . For this
example one has $\lambda=$ (6543321). First consider the middle diagram that has
a skew tableau of shape $\lambda/\mu$ and content $v$ in it. The subscripts are counting
letters of the same kinds from right to left. Neglecting the subscripts the row
word of this skew tableau reads as 323123322111. It is the only way to arrange
these letters (of content v) in this shape such that its row word is in reverse
lattice order (hence we have $c_{\mu\nu}^{\lambda}=1$ ). The LHS of (2.8) is given by successive
inverse bumpings from the product tableau by choosing the starting points as
$3_{1},2_{1},1_{1},$

$\ldots,$
$3_{4},2_{4},1_{4}$ . In the same way the RHS is obtained by using the right

diagram where we have a skew tableau of shape $\lambda/v$ and content $\mu$ . And the
starting points are so chosen as $4_{1},3_{1},2_{1},1_{1},$

$\ldots,$
$4_{3},3_{3},2_{3},1_{3}.$

The space of states for any soliton cellular automaton in this note is realized
as a tensor product of many crystals. Consider a tensor product of $\mathcal{N}$ crystals
$\mathcal{B};=B_{\lambda_{1}}\otimes\cdots\otimes B_{\lambda_{N}}$ where each $\lambda_{i}(1\leq i\leq \mathcal{N})$ is a rectangle. For $p=$
$b_{1}\otimes\cdots\otimes b_{\mathcal{N}}\in \mathcal{B}$ we define $R_{\dot{\eta}}(1\leq i\leq \mathcal{N}-1)$ by

$R_{\dot{\eta}}(p)=b_{1}\otimes\cdots\otimes R(b_{i}\otimes b_{i+1})\otimes\cdots\otimes b_{\mathcal{N}}.$

Then we have

Proposition 2.1 ([Sh, SW]). The $R_{\dot{\eta}}$ ’s generate the symmetric group, i. e.
$R_{i}^{2}=Id,$

$R_{\eta}\cdot R_{J^{s}}=R_{j}R_{\dot{\eta}}$ for $|i-j|\geq 2,$

$R_{i}\kappa_{+1}R=R_{i+1}\kappa\kappa_{+1}.$
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The last identity is called the Yang-Baxter relation. It ensures the commutativity
of “time evolution” operators in SCA.

Finally we briefly explain the notion of energy function in crystal basis [KKM].
It is related to -actions in crystals associated with affine Lie algebras. The
importance of this function in SCA was first pointed out by Fukuda, Okado and
Yamada [FOY]. For $b\otimes b’\in B^{k,l}\otimes B^{k’,t’}$ the energy function $H(b\otimes b’)$ is defined
as [SW]

(2.9) $ H(b\otimes b’)=-\#$ [nodes under $\max(k, k’)$ th row of $\mathcal{T}(b)*\mathcal{T}(b’)$ ],

with a suitable normalization (see below). For example it $takes-6$ for the element
in (2.8). In this note we shall denote the energy function for $B^{k,l}\otimes B^{1,1}$ by $H^{k,l}$

(and set $H_{l}=H^{1,l}$ ) which takes on values $0,$ $-1.$

For each $B^{k,l}$ there is a unique highest weight element that is characterized by
all the letters in the first row being $1’ s$ , those in the second row $2’ s$ , and so on.
We denote the highest weight element of $B^{k,l}$ by $u^{k,l}$ . In the above normalization
of the energy function we have $H(u^{k,l}\otimes u^{k’,l’})=0.$

2.3. Formulas for the symmetric tensors. In what follows we occasionally
denote $B^{1,l}$ by $B_{l}$ , and $B^{2,1}$ by $B_{\natural}$ . The notations $u_{l}=u^{1,l}$ and $u\natural=u^{2,1}$ will be
also used.

We consider the type $A$ crystals in [KKM]. In this case there is a piecewise
linear formula for the combinatorial $R$ . Fix an integer $n\geq 2$ for $sl_{n}$ . As a set the
crystal $B_{l}$ ( $l$ is any positive integer) is given by

(2.10) $B_{l}=\{(x_{1}, \cdots, x_{n})\in \mathbb{Z}_{\geq 0}^{n}\sum_{i=1}^{n}x_{i}=l\}.$

For the other properties of this crystal, see Okado’s lecture in this volume. The $B_{l}$

is identffied with the set of single row Young tableaux with length $l$ by interpreting
$x_{i}$ as the number of letter $i$ ’s in the tableaux. Below the subscripts of variables
should be interpreted in modulo $n.$

Definition 2.2. For a pair of variables $x=(x_{1}, \ldots, x_{n}),$ $y=(y_{1}, \ldots , y_{n})$ , let $R$

be the piecewise linear map

(2.11) $R:(x, y)\mapsto(x’, y’)$ ,

which is defined as $x’=$ $(x_{1}’, \ldots, x_{n}’)$ , $y’=(y_{1}’, \ldots, y_{n}’),$ $x_{i}’=y_{i}+P_{i}-P_{i-1},$ $y_{i}’=$

$x_{i}+P_{i-1}-P_{i}$ , and

(2.12) $P_{i}=1\leq k\leq n\max(\sum_{j=k}^{n}x_{i+j}+\sum_{j=1}^{k}y_{i+j})$

For $x=(x_{1}, \ldots, x_{n})$ we denote $\sum_{k=1}^{n}x_{k}$ by $\ell(x)$ .
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Proposition 2.3 ([HHIKTT]). The map $R$ in Definition 2.25 gives the combi-

natorial $R$ for the isomorphism $B_{l}\otimes B_{l’}\rightarrow\sim B_{l’}\otimes B_{l}$ with $l=\ell(x)=\ell(y’)$ and
$l’=\ell(y)=\ell(x’)$ .

Thus we have used the same symbol $R$ . The functions $P_{i}(x, y)$ take values on
the integers between $\max(\ell(x),\ell(y))$ and $\ell(x)+\ell(y)$ . As a valid expression for
the combinatorial $R$ , they can be simultaneously shifted by any common function
of $\ell(x)$ and $\ell(y)$ . Here we consider another three cases.

Case 1. If we replace (2.12) by

(2.13) $\tilde{P}_{i}=P_{i}-\ell(x)=1\leq k\leq n\max(\sum_{j=1}^{k-1}(y_{i+j}-x_{i+j})+y_{i+k})$ ,

they take values on between $\max(0, \ell(y)-\ell(x))$ and $\ell(y)$ . The expression for the

energy function $\tilde{P}_{0}$ was first appeared in [KKM]. The energy function of the same
normalization is obtained in the diagrammatic algorithm for the combinatorial
$R$ in subsection 2.1: It is identical to the number of winding lines. Conversely,

because of the symmetry under $i\rightarrow i+1$ in the type $A$ case one can retrieve the
full formulas (2.11),(2.12) for the combinatorial $R$ only from this expression for
the energy function and that diagrammatic algorithm.

Case 2. If we replace (2.12) by

(2.14) $\hat{P}_{i}=P_{i}-|\ell(x)-\ell(y)|,$

they take values on between $\min(\ell(x),\ell(y))$ and 2 $\min(\ell(x),\ell(y))$ . The energy

function $\hat{P}_{0}$ is suitable for the description of the phase shifts caused by the colli-
sions of solitons in SCA.

Case 3. If we replace (2.12) by

(2.15) $\check{P}_{i}=P_{i}-\ell(x)-\ell(y)$ ,

they take values on between - $\min(\ell(x),\ell(y))$ and $0$ . The energy function $\check{P}_{0}$

is suitable for the description of conserved quantities of SCA (section 4.6). It

coincides with the energy function $H$ in (2.9).
In this case we would rather define the functions

(2.16) $Q_{i}=-\check{P}_{i}=\min_{1\leq k\leq n}(\sum_{j=1}^{k-1}x_{i+j}+\sum_{j=k+1}^{n}y_{i+j})$ ,

to write the formula as $x_{i}’=y_{i}-Q_{i}+Q_{i-1},$ $y_{i}’=x_{i}-Q_{i-1}+Q_{i}$ . It was pointed
out by Y. Yamada that this expression can be derived from a solution of the

discrete Toda equation $x_{i}y_{i}=x_{i}’y_{i}’,$ $x_{i}+y_{i+1}=x_{i}’+y_{i+1}’$ by the substitutions
$(\times\rightarrow+)$ and $(+\rightarrow\min)$ [Yy].

Here we present the most important formula to describe the basic SCA, or
the box-ball system in which all the boxes (cells) have capacity one. Recall

5The above expression is from [KOTY1] which is equivalent to the original formula in

[HHIKTT].
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the diagrammatic algorithm for the combinatorial $R$ in subsection 2.1. Let $R$ :
$B_{l}\otimes B_{1}\rightarrow\sim B_{1}\otimes B_{l}$ be the combinatorial $R$ . In tableau notation it is given by

(2.17)

where $p$ is determined by the condition $\alpha_{p}<\beta\leq\alpha_{p+1}$ . In the upper case we
have $H_{l}=0$ and in the lower case $H_{l}=-1$ , where $H_{l}$ is the energy function
defined below (2.9).

2.4. Formulas for the color separation. Let $B_{\natural}(=B^{1,2})$ be the crystal of
height two column shape Young tableaux. It is given by

$B_{\natural}=\{\ovalbox{\tt\small REJECT}^{\alpha} 1\leq\alpha<\beta\leq n\},$

as a set. Let $R:B_{\natural}\otimes B_{1}\rightarrow\sim B_{1}\otimes B_{\natural}$ be the combinatorial $R$ . It is given by

This $R$ can be described by loading/unloading processes of balls into/from a
special carrier of balls [Tg2]. The processes are depicted as follows.

(2.18)

(2.19)

Here we assume $\alpha,$ $\beta,\gamma>1$ and let the vacancy denote letter 1.

Remark 2.4. This carrier is special because it describes the crystal for an anti-
symmetric tensor representation. Usually carriers are used to describe symmetric
tensor representations in SCA [F, TM, TTM], in which the combinatorial $R$ in
(2.17) is interpreted as loading/unloading processes by a carrier of capacity $l.$
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3. A BRIEF REVIEW OF COMBINATORIAL $R$ : TYPE $D$ CASE

3.1. Formulas for the symmetric tensors. We consider $D_{n}^{(1)}$ crystals in [KKM].
As a set the crystal $B_{l}$ ( $l$ is any positive integer) is given by

(3.1) $B_{l}=\{(x_{1}, \cdots, x_{n},\overline{x}_{n}, \cdots,\overline{x}_{1})\in \mathbb{Z}_{\geq 0}^{2n}\sum_{i=1}^{n}(x_{i}+\overline{x}_{i})=l, x_{n}\overline{x}_{n}=0\}.$

For the other properties of this crystal, see Okado’s lecture in this volume. The $B_{l}$

can be regarded as a set of single row Young tableaux of length $l$ by interpreting
$x_{i}$ (resp. $\overline{x}_{i}$ ) as the number of letter $i$ ’s (resp. $\overline{i}’ s$). An example of the crystal
graph of $B_{1}$ is given in FIGURE 1 in which the arrow with index $i$ denotes the
action of crystal operator $\tilde{f_{i}}.$

FIGURE 1. The crystal graph of $B_{1}$ for $D_{5}^{(1)}$

The time evolution operator for the SCA associated with type $D$ crystal was
defined by the combinatorial $R$ between these crystals [HKTI, HKOTY]. There
is a piecewise linear formula for the combinatorial $R$ and the energy function as
in the type $A$ case [KOTYI]. Since the former is rather involved we only quote
an expression for the latter. For $x=(x_{1}, \ldots,\overline{x}_{1})$ we denote $\sum_{i=1}^{n}(x_{i}+\overline{x}_{i})$ by
$\ell(x)$ . Then the expression is given by

$P_{0}^{D}(x, y)=\max_{1\leq j\leq n-1}(\alpha_{j}, \alpha_{j}’)$ ,

$\alpha_{j}=\max(\delta_{j,n-1}(x_{n}-\overline{y}_{n}),\overline{y}_{j}-x_{j})+\ell(y)+\sum_{k=1}^{j}(\overline{x}_{k}-\overline{y}_{k})$ ,

$\alpha_{j}’=\max(\delta_{j,n-1}(\overline{y}_{n}-x_{n}), x_{j}-\overline{y}_{j})+\ell(x)+\sum_{k=1}^{j}(y_{k}-x_{k})$ .

It takes values on between $|\ell(x)-\ell(y)|$ and $\ell(x)+\ell(y)$ . If $\ell(x)=\ell(y)$ it coincides

with the $D_{n}^{(1)}$ energy function in [KKM]. We can recognize that if all the barred
variables vanish then this $P_{0}^{D}$ reduces to the $P_{0}$ in section 2.3.

Another expression, which is suitable for the description of phase shifts, is
given by

(3.2) $\hat{P}_{0}^{D}(x, y) :=P_{0}^{D}(x, y)-|\ell(x)-\ell(y)|.$

Since its minimal value is zero, there is a scattering of two solitons with no phase
shift (section 5.4).
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Example 3.1. Consider the energy function $\hat{P}_{0}$ on $B_{1}\otimes B_{1}$ . In the type $A$ case
it takes on two values, say $\hat{P}_{0}(1,1)=2$ and $\hat{P}_{0}(1,2)=1$ which are common with
the type $D$ case. In the type $D$ case it takes on three values, i.e. we also have
$\hat{P}_{0}^{D}(1,\overline{1})=0.$

In accordance with the symbols in the type $A$ case we present one more ex-
pression which is suitable for the description of the conserved quantities

(3.3) $\check{P}_{0}^{D}(x, y) :=P_{0}^{D}(x, y)-\ell(x)-\ell(y)$ .

By the same reason we denote the energy function $\check{P}_{0}^{D}$ on $B_{l}\otimes B_{1}$ by $H_{l}^{D}$ (section

5.5).

3.2. Formulas for the color separation. We define a partial order $\prec$ as

(3.4) $1\prec 2\prec\cdots\prec n\prec\cdots\prec\overline{2}\prec\overline{1},$

$\overline{n}$

between the letters in the Young tableaux for type $D$ crystals [KN] 6. The $D_{n}^{(1)}$

crystal $B_{\natural}$ is given by

(3.5) $B_{\natural}=\{\ovalbox{\tt\small REJECT}|1\preceq\alpha\prec\beta\preceq\overline{1},(\alpha, \beta)\neq(1,\overline{1})$

or
$(\alpha,\beta)=(n,\overline{n}),(\overline{n}, n)\}\cup\{\phi\},$

as a set. It is isomorphic to $B(\Lambda_{2})\oplus B(0)$ as $D_{n}$ crystals; The elements of $B(\Lambda_{2})$

are represented by the column tableaux, and the sole element of $B(O)$ is denoted
by $\phi$ . We give an example of crystal graph for $B_{\natural}$ (FIGURE. 2).

FIGURE 2. The crystal graph of $B_{\natural}$ for $D_{3}^{(1)}$ . The arrows without

index are for $\tilde{f}_{0}$ actions.

6We do not impose the order between $n$ and $\overline{n}.$
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The crystal actions are defined according to a general scheme for the crystals
of antisymmetric tensor representations. As $D_{n}$ crystals the actions of $\tilde{f_{i}}(i\neq 0)$

are defined in [KN]. As a $D_{n}^{(1)}$ crystal the $\tilde{f}_{0}$ actions are defined in [Ko, Sc]. 7

Let us consider the $D_{n}^{(1)}$ crystal isomorphism $R:B_{\natural}\otimes B_{l}\rightarrow B_{l}\sim\otimes B_{\natural}$ . Given a
partition $\lambda$ , let $B_{\lambda}$ denote the $D_{n}$ crystal associated with $\lambda$ . As $D_{n}$ crystals the
tensor product decomposition

$B_{\natural}\otimes B_{l}\simeq B_{(l,1,1)}\oplus B_{(l+1,1)}\oplus(B_{(l)})^{\oplus 2},$

is given by the Littlewood-Richardson rule [N]. If $x\otimes y\in B_{\natural}\otimes B_{l}$ falls into $B_{(l,1,1)}$

or $B_{(l+1,1)}$ , then $R(x\otimes y)$ is uniquely determined by a column insertion scheme
[Bk, HKOT]. We do not give a thorough treatment of this topic (See Lecouvey’s
lecture in this volume) but show some examples of the column insertion

where $\alpha$ is any letter satisfying $1\prec\alpha\prec\overline{1}$ . Also we have

If $x\otimes y\in B_{\natural}\otimes B_{l}$ falls into $B_{(l)}$ the insertion scheme seems not powerful enough
to determine $R(x\otimes y)$ uniquely because there are two $B_{(l)}s$ in the decomposition
of $B_{\natural}\otimes B_{l}$ . However the following Lemma allows us to determine it uniquely.

Lemma 3.2. Let $x’\otimes y’=R(x\otimes y)\in B_{l}\otimes B_{\natural}$ . (1) If $ x=\phi$ , then $y’\neq\phi,$ (2) If
$ y’=\phi$ , then $x\neq\phi.$

Proof. We prove claim (1). We can find a sequence $i_{1},$

$\ldots,$
$i_{k}$ , none of them is $0,$

for some $k$ such that $\tilde{f_{i_{k}}}\cdots\tilde{f_{i_{1}}}(y)$ is the tableau with all entries being 3. Since
$\phi$ is not affected by these actions we have $\tilde{f_{i_{k}}}\cdots\tilde{f_{i_{1}}}(x\otimes y)=x\otimes\tilde{f_{i_{k}}}\cdots\tilde{f}_{i_{1}}(y)$ .
Then

Then we apply $\tilde{e}_{i_{1}}\cdots\tilde{e}_{i_{k}}$ on it to obtain $x’\otimes y’$ which can not make $y’$ be $\phi$ . In
the same way claim (2) is also verified. $\square $

7The $\tilde{f}_{0}$ actions in $B_{\natural}$ are also available in Appendix $C$ of [HKOTY].
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As in the type $A$ case we give a description of the combinatorial $R$ by load-
ing/unloading processes in (3.6)-(3.12). Let the carrier represent a column
tableau of height two or $\phi$ . For example we have

which is depicted by the first case of (3.11); The $\phi\in B(O)$ is represented by a
carrier with the letter $\phi$ inside it. The letter 1 is represented by a vacancy as in
the type $A$ case. In (3.9)-(3.10) we denote $x\pm 1$ by $ x\pm$ and $x\pm 1$ by $\overline{x}\pm\cdot$

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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(3.12)

3.3. Particle/anti-particle numbers. For any letter $x$ we define its particle
number $P(x)$ and anti-particle number $A(x)$ as in TABLE 1.

TABLE 1. Particle and anti-particle number.

These numbers will be used in the proof of the color separation scheme (section
5.7). Next we define these numbers for the elements of $B_{\natural}$ . For any element

we set $P(b)=P(\alpha)+P(\beta)$ and $A(b)=A(\alpha)+A(\beta)$ . We also set $P(\phi)=A(\phi)=$

$1$ . The combinatorial $R$ between $B_{\natural}$ and $B_{1}$ preserves these numbers separately.

Lemma 3.3. For any $(x’, y’)=R(x, y)$ the relations $P(x)+P(y)=P(x’)+P(y’)$
and $A(x)+A(y)=A(x’)+A(y’)$ hold.
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4. CELLULAR AUTOMATA: TYPE $A$ CASE

4.1. Time evolution operators. The highest weight element of $B_{l}$ is given by
$u_{l}=(l, 0, \ldots, 0)$ . Define the set of basic paths by

(4.1) $\mathcal{P}=\{p=p_{1}\otimes p_{2}\otimes\cdots\in B_{1}^{\otimes\infty}|p_{i}=1$ for $i\gg 1\}.$

In the terminology of the box-ball system [T, TNS], a basic path is regarded as
an infinite array of boxes of capacity one with finite number of balls scattered
among them, where 1 represents an empty box and $\square \alpha(\alpha\geq 2)$ a box containing
a ball with index $\alpha$ . Practically one can replace the symbol $\infty$ in $B_{1}^{\otimes\infty}$ by any
sufficiently large positive integer.

We introduce operators $T_{l}(l\geq 1)$ on $\mathcal{P}$ as follows. For any $p\in \mathcal{P}$ we define
$T_{l}(p)\in \mathcal{P}$ by using the maps for the $sl_{n}$ crystal isomorphism (2.17) as

(4.2) $u_{l}\otimes p\mapsto\sim T_{l}(p)\otimes u_{l}.$

Here we used (2.17) repeatedly as $ B_{l}\otimes \mathcal{P}\rightarrow\sim B_{1}\otimes B_{l}\otimes \mathcal{P}\rightarrow\sim B_{1}^{\otimes 2}\otimes B_{l}\otimes \mathcal{P}\rightarrow\sim$

. . . $\rightarrow\sim \mathcal{P}\otimes B_{l}$ to send $u_{l}$ from left to right. Because of the boundary condition in
(4.1) we always have the highest weight element $u_{l}$ in the right hand side.

The operator $T_{l}$ gives a time evolution of the automaton that can be described
by a carrier of capacity $l$ [TM, FOY]. Due to the Yang-Baxter relation they
commute, $T_{l}T_{l’}=T_{l’}T_{l}$ for any $l$ and $l’$ . For $ l=\infty$ we denote $T_{\infty}$ by $T$ . Clearly
these operators are invertible. The inverse of $T_{l}$ is given by

$p\otimes u_{l}\mapsto\sim u_{l}\otimes T_{l}^{-1}(p)$ .

But if we would like to use these inverse operators we may have to replace the
set of half-infinite paths (4.1) by that of paths extending to both ends.

4.2. Solitons. If well separated from the others a set of successive integers ar-
ranged in decreasing order8 behaves like a soliton. Under the time evolution $T$ it
travels in the speed of its length.

Example 4.1. Here we have a one-soliton state under $T.$

Here and hereafter we denote $1$ by “ “ and $\alpha(\alpha\geq 2)$ by $\alpha$ in the Examples.
Also we omit the symbol $\otimes.$

Exercise 4.2. Find a formula for the speed of a soliton under $T_{l}.$

8Our convention is opposite to that in [T, TNS].
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4.3. Scattering rules. If there are two solitons of different lengths, a collision
can occur.

Example 4.3.

It seems natural to identify the one-soliton 554322 with an element of $sl_{5}$

crystal $(0,2,1,1,2)$ . But in our convention there is no 1 in any soliton because
1 is used for an empty box. Thus we identify it with an element of $sl_{4}$ crystal
$(2, 1, 1, 2).$ Then in the above example we see the scattering of two solitons
$(2,1,1,2)\times(2,0,1,0)\mapsto(0,1,0,2)\times(4,0,2,0)$ .
Exercise 4.4. Show that the scattering in this example coincides with the result
of the map in Definition 2.2.

In general we have the following:

Theorem 4.5 ([FOY, HKTI, TNS]). The scattering rules of any two solitons
are given by the combinatorial $R.$

Of course there are scattering processes involving more than two solitons. See
Examples 1.1-1.2.

Theorem 4.6 ([FOY]). The scattering of solitons is factorized into two body
scatterings.

Remark 4.7. We do not present proofs of these theorems in line with original
works, because one can regard them as results of the color separation scheme
(subsection 4.7) and the linearization (subsection 4.8).

4.4. Phase shifts. In a collision of two solitons there is a phase shift. The
existence of phase shifts signifies the nonlinearity of the system. The amount of
a phase shift depends on constituent letters of the solitons.

Example 4.8.
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Exercise 4.9. Compare the phase shifts in Examples 4.3 and 4.8. Compute the
values of the function $\hat{P}_{0}$ in (2.14) for $(x, y)=((2,1,1,2), (2,0,1,0))$ and that
for $(x, y)=((2,1,1,2), (0,1,0,2))$ . Check that these $\hat{P}_{0}$ values are equal to the
phase shifts in the above Examples.

A clever idea of describing the scattering rules with the data of phase shifts is
to use the affinization of crystals [FOY]

Aff $(B_{l})=\{z^{d}b|d\in \mathbb{Z}, b\in B_{l}\},$

where $z$ is a parameter. We redefine the combinatorial $R$ as a map $\hat{R}$ : Aff $(B_{l})\otimes$

Aff $(B_{\iota^{J}})\rightarrow Aff(B_{l’})\otimes Aff(B_{l})$ which reads as
$\hat{R}(z^{\gamma_{1}}x\otimes z^{\gamma_{2}}y)=z^{\gamma_{1}+\delta}x’\otimes z^{\gamma_{2}-\delta}y’,$

where $\delta=\hat{P}_{0}(x, y)$ and the $x’,$ $y’$ are given by the map $R$ : $(x, y)\mapsto(x’, y’)$ in
Definition 2.2. In this formalism we can say that the claim on the property of
the phase shifts is included in the statement of Theorem 4.5

4.5. Factorization. We have defined the time evolution $T$ by the crystal isomor-
phism. Now we show its factorized expression. Consider the following example.

Example 4.10.

Using a factorization $T=K_{2}K_{3}K_{4}\dot{K}_{5}K_{6}$ given below, the updating process of
the state from $t=1$ to $t=2$ is described as follows.

Example 4.11.

In general we can write $T=K_{2}K_{3}\cdots K_{n}$ , where $K_{i}$ is an operator for moving
the letter $i$ . Precisely the $K_{i}$ ’s are so defined to work as:

(1) Move every letter $i$ only once.
(2) Exchange the leftmost $i$ with its nearest right 1.
(3) Exchange the leftmost $i$ among the rest of the $i$ ’s with its nearest right 1.
(4) Repeat this procedure until all of the $i$ ’s are moved.

Another definition of $K_{i}$ ’s will be given (as a specialized form of the type $D$

case) in subsection 5.1. This algorithm is knows as the original algorithm (in the
terminology of [F] $)$ , because it was originally used for the box-ball system. We
note that the time evolution $T_{l}$ with finite $l$ does not have this property.
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4.6. Soliton content. Fukuda, Okado and Yamada introduced a family of con-
served quantities of the SCA, which was defined by the energy function [FOY].
Given $p=p_{1}\otimes p_{2}\otimes p_{3}\otimes\cdots\in \mathcal{P}$ , define $b^{(i)}(i\geq 1)$ by

$u_{l}\otimes(p_{1}\otimes p_{2}\otimes p_{3}\otimes\cdots)\mapsto\sim\tilde{p}_{1}\otimes(b^{(1)}\otimes p_{2}\otimes p_{3}\otimes\cdots)$

$\mapsto\sim\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes(b^{(2)}\otimes p_{3}\otimes\cdots)$

$\mapsto\sim.$ . . $\mapsto\sim(\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes\tilde{p}_{3}\otimes\cdots)\otimes u_{l}.$

Here $\tilde{p}_{i}$ ’s are those in $ T_{l}(p)=\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes\tilde{p}_{2}\otimes\cdots$ . Consider the following quantities

(4.3) $E_{l}(p)=-\sum_{j=1}^{\infty}H_{l}(b^{(j-1)},p_{j})$ ,

(4.4) $N_{l}(p)=-E_{l-1}(p)+2E_{l}(p)-E_{l+1}(p)$ .

Here $b^{(0)}=u_{l}$ and $H_{l}$ is the energy function defined below (2.17). Beca,use of
the commutativity of $T_{l}$ ’s they become conserved quantities of the system, i.e.
$E_{l}(T(p))=E_{l}(p)$ and $N_{l}(T(p))=N_{l}(p)$ for any $l$ . We call $(N_{1}, N_{2}, \ldots)$ the
soliton content, because one can recognize that $N_{l}$ is the number of solitons of
length $l$ in the state $p^{9}$ . In order to see this we apply the operator $T$ sufficiently
many times on $p$ . Then the solitons will finally separate each other even in the
real space due to the difference of their speed, so we can read off the soliton
content.

An extended family of conserved quantities is defined by simply generalizing
this construction. Recall the energy function $H^{k,l}$ defined below (2.9). Denote
$u^{k,l}$ (the highest weight element of $B^{k,l}$ ) by $c^{(0)}$ and define $c^{(i)}(i\geq 1)$ by

(4.5) $u^{k,l}\otimes(p_{1}\otimes p_{2}\otimes p_{3}\otimes\cdots)\mapsto\sim\tilde{p}_{1}\otimes(c^{(1)}\otimes p_{2}\otimes p_{3}\otimes\cdots)$

$\mapsto\sim\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes(c^{(2)}\otimes p_{3}\otimes\cdots)$

$\mapsto\sim.$ . . $\mapsto\sim(\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes\tilde{p}_{3}\otimes\cdots)\otimes b(p)$ .

Here $b(p)\in B^{k,l}$ is an element such that all entries in the first row of $\mathcal{T}(b(p))$ are
$1$ ’s (not identical to $u^{k,l}$ in general). We introduce the following quantities

(4.6) $E^{k,l}(p)=-\sum_{j=1}^{\infty}H^{k,l}(c^{(j-1)},p_{j})$ ,

(4.7) $N^{k,l}(p)=-E^{k,l-1}(p)+2E^{k,l}(p)-E^{k,l+1}(p)$ .

Thus $E^{1,l}(p)=E_{l}(p)$ and $N^{1,l}(p)=N_{l}(p)$ . Due to the Yang-Baxter relation
(Proposition 2.1) these quantities are invariant under the time evolution of the
SCA.

9For the $CA$ (1.1) an equivalent set of conserved quantities was first found by Torii, Takahashi
and Satsuma [TTS].
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Example 4.12. Denote $(E^{k,1},E^{k,2}, \ldots)$ by $E^{k}$ and $(N^{k,1}, N^{k,2}, \ldots)$ by $N^{k}$ . Then
for the states at each time step of Examples 1.1-1.2 we have

$E^{1}=(3,5,7,8,9,10,10, \ldots) , N^{1}=(1,0,1,0,0,1,0, \ldots)$ ,

$E^{2}=(3,4,5,6,7,8,8, \ldots) , N^{2}=(2,0,0,0,0,1,0, \ldots)$ ,

$E^{3}=(2,3,4,5,5, \ldots) , N^{3}=(1,0,0,1,0, \ldots)$ ,

$E^{4}=(2,3,3, \ldots) , N^{4}=(1,1,0, \ldots)$ ,

$E^{5}=(1,1, \ldots) , N^{5}=(1,0, \ldots)$ .

4.7. Color separation scheme. For any $p\in \mathcal{P}$ we define $T^{k},{}^{t}(p)\in \mathcal{P}$ by using
(4.5) as $ T^{k},{}^{t}(p)=\tilde{p}_{1}\otimes\tilde{p}_{2}\otimes\tilde{p}_{2}\otimes\cdots$ . In particular we denote $T^{2,1}$ by $T_{\natural}$ . Therefore
we have

(4.8) $u\natural\otimes p\mapsto\sim T_{\natural}(p)\otimes b(p)$ ,

by the isomorphism of the crystals. Here $u\natural=u^{2,1}$ is the highest weight element
of $B_{\natural}$ , and $b(p)\in B_{\natural}$ is an element such that the upper entry of the tableau
$\mathcal{T}(b(p))$ is 1. Recall the description of combinatorial $R$ by a carrier (2.18)-(2.19).
Then one recognizes that the lower entry of $\mathcal{T}(b(p))$ is identffied with the letter
taken off by the carrier. Let us apply $T_{\natural}$ repeatedly on a state and observe what
happens there.

Example 4.13. Apply $\tau_{\natural}$ on the state at $t=1$ of Example 4.10. In terms of the
carrier description we have

By repeating the same procedure we obtain the following data.

Here $s$ is the number of times $T_{\natural}$ is applied. The number at the end of each row
is the letter which will be taken off from that row by the carrier.

The result is a state for a monochrome system, i.e. the box-ball system with
only one kind of balls. Denote the first line of the above example by $p$ and the
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last line by $\tilde{p}$ . Also denote $y$ the word made of the removed letters arranged from

bottom to top, i. e. $y=55443265$ . Then we may write symbolically as $p=\tilde{p}\oplus y.$

Example 4.14. By the same procedure on the state at $t=2$ of Example 4.10
we have that:

For the state at $t=3$ we have that:

We can recognize that the word $y$ is invariant under $T$ and the path $\tilde{p}$ evolves

according to $T.$

This property holds generally [Tg2].

Proposition 4.15.

(1) Any state $p$ of the SCA admits a decomposition $p=\tilde{p}\oplus y$ in which $\tilde{p}$ is
a state of the underlying monochrome system and $y$ is a word.

(2) On applying $T$ it evolves as

(4.9) $T(p)=T(\tilde{p})\oplus y.$

We give a sketch of the proof
$1$ . The non-trivial problem associated with claim

(1) is that whether we can always remove all the letters $\geq 3$ from any state, by

applying $T_{\natural}$ only finitely many times. It can be done by an induction. To establish

claim (2), it suffices to prove the relation $T_{l}(p)=T_{l}(\tilde{p})\oplus y$ for any $l$ . It is derived

from the commutativity $T_{l}T_{\natural}=\tau_{\natural}\tau_{l}$ , which comes from the Yang-Baxter relation

on $B_{l}\otimes B_{1}\otimes B_{\natural}.$

10In this note I shall show a generalization of this proposition in section 5.6 and give its proof

there.
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From that commutativity we also see that the conserved quantity (4.4) is in-
variant under $\tau_{\natural}$ , i.e. $N_{l}(p)=N_{l}(\tilde{p})$ . In other words the soliton contents of $p$

and $\tilde{p}$ are identical. Therefore the conserved quantities of the SCA consist of
the word $y$ and the soliton content. It also means that an equivalent data of the
conserved quantities $N^{k,1}(k>1,l\geq 1)$ in subsection 4.6 should be contained in
the word $y.$

Remark 4.16. Since $y$ is a conserved quantity, the $P,$ $Q$-tableaux made from
$y$ by the Robinson-Schensted-Knuth (RSK) correspondence are also conserved
quantities. The $P$-tableau here is not identical to that in [F] (which is also a
conserved quantity) since the latter is made from the original path $p.$

4.8. Linearization. It was conjectured in [KOTY2] and proved in [Tgl] that
the time evolution $T(=T_{\infty})$ of the monochrome system (Takahashi-Satsuma’s
$CA$) is linearized in the rigged configumtion. $A$ rigged configuration is a Young
diagram with numbers (which we call riggings) attached to its rows 11. The
Young diagram is invariant under the time evolution of SCA, and the riggings
increase linearly. The former is equivalent to the soliton content (subsection 4.6),
i. e. the set of conserved quantities defined in [TTS].

We do not repeat the proof of [Tgl]. From now on we rewrite the method of
the construction of rigged configurations into another one that seems suitable for
an actual computation. Consider the state $\tilde{p}$ we have got in Example 4.13.

. . . . . . . . . . 2222. . .22. 2222. . . . . . . . . . . . . . . . . . . . . . . . . .
Here we inserted the blanks every five letters. Call the pattem 2” a wave tail
and 2.” a wave front. For this example we can read off the positions of wave
tails and fronts as

$\{\{10,17,20\}, \{14,19_{*}24\}\}.$

In general we can write such data as $\{M_{1}, M_{2}\}$ where $M_{1}=(a_{1}, a_{3}, \ldots,a_{2l-1})$

denotes the positions for wave tails, and $M_{2}=(a_{2},a_{4}, \ldots,a_{2l})$ denotes those for
wave fronts. Clearly they satisfy $a_{1}<a_{2}<\cdots<a_{2l}$ . Taking the size $l$ into
account we set $A_{1}=(1,3, \ldots, 2l-1)$ and $A_{2}=(2,4, \ldots, 2l)$ . Let $b=$ $\{\}$ . We
repeat the following procedure until we have $M_{1}=M_{2}=\emptyset.$

$\bullet$ Let $i=0.$

$\bullet$ While $ M_{1}\cap M_{2}=\emptyset$ , replace $M_{1}$ by $M_{1}-A_{1},$ $M_{2}$ by $M_{2}-A_{2}$ , and $i$ by
$i+1.$

$\bullet$ When $ M_{1}\cap M_{2}\neq\emptyset$ is attained, append $\{M_{1}\cap M_{2}, i\}$ to $b$, and replace
$M_{1}$ by $M_{1}\backslash (M_{1}\cap M_{2})$ and $M_{2}$ by $M_{2}\backslash (M_{1}\cap M_{2})$ .

In the above procedure the multiphcity of the elements should be respected. For
instance $\{$1,2, 2, $3\}\cap\{2,2,4,5\}$ is equal to {2, 2}, not to {2}. And $\{$1,2,2, $3\}\backslash $

$\{2,3\}$ is equal to {1, 2}, not to {1}.

11More generally, a rigged configuration is a set of Young diagrams with numbers attached
to their rows [KKR, KR]. It is used in calculations of fermionic formulas. See Schilling’s lecture
in this volume.
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Then we obtain such type of data $b=\{\{S_{1}, i_{1}\}, \{S_{2},i_{2}\}, \ldots , \{S_{k},i_{k}\}\}$ for some
$k$ , where $S_{a}$ are sets of integers and $i_{a}$ are positive integers. We replace it by $b’=$

$\{\{S_{1},j_{1}\}, \{S_{2},j_{2}\}, \ldots, \{S_{k},j_{k}\}\}$ with $j_{1}=i_{1},j_{2}=i_{1}+i_{2},$ $\ldots,j_{k}=i_{1}+\cdots+i_{k}.$

This $S_{a}$ can be regarded as the set of linearized position coordinates of solitons
of length $j_{a}.$

For the above example the procedure for linearization goes as follows.

Therefore we have

$b’=\{\{\{15\}, 1\}, \{\{8\}, 3\}. \{\{4\}, 6\}\}$

that is equivalent to the rigged configuration:

There are solitons of lengths 1, 3, 6, and their “position” coordinates are 15, 8, 4.

Exercise 4.17. Show that under the time evolution $T$ these data evolves in the
following way.

We give another example which is more involved.

Example 4.18.

For the state at $t=0$ of this example

2222. . . .22 222. . .222. 222. . .222. . . .2. . . . . . . . . . . . . . . .
we read off the positions of wave tails/fronts.

$\{\{0,8,16,20,26,33\}_{*}\{4,13,19,23,29,34\}\}$

The linearization goes as follows:
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Here the command Append $[b,X]$ means that it appends an element X to the list
$b$ . As a result we have

$b’=\{\{\{13,22\}. 1\},\{\{1,3\}. 3\},\{\{-4\}, 4\},\{\{-7\}, 7\}\}$

that is equivalent to the rigged configuration:

The data (rigged configuration) evolves as
$t=0$ $\{\{13,22\}. 1\},$ $\{\{1,3\}, 3\},$ $\{\{-4\}. 4\},$ $\{\{-7\}, 7\}\},$

$t=1$ $\{\{14,23\}, 1\},$ $\{\{4,6\}, 3\},$ $\{\{0\}, 4\},$ $\{\{0\}$ , 7 $\}\},$

$t=2$ $\{\{15,24\}, 1\},$ $\{\{7,9\}, 3\}_{*}\{\{4\}, 4\},$ $\{\{7\}$ . 7 $\}\},$

$t=3$ $\{\{16,25\}. 1\}.$ $\{\{10$ , 12}, 3 $\},$ $\{\{8\}$ . 4 $\},$ $\{\{14\}, 7\}\},$

which should be compared with Example 4.18.
To close this subsection we give a comment on a slightly extended result on

the relation between SCA and the rigged configuration [KOTY2]; The riggings
associated with rows of width $k$ increase by $\min(k, l)$ under $T_{l}$ . This result can
be derived from the time evolution of the rigged configuration under $T(=T_{\infty})$ .
First note that if all the solitons are well separated in the state, this statement
is rather obvious. Suppose we are given any state $p$ for the system. By taking

a sufficiently large integer $N$ we can make all the solitons be well separated in
$T^{N}(p)$ Since the $T_{l}s$ commute each other we have

$(T^{-1})^{N}\circ T_{l}\circ T^{N}(p)=T_{l}(p)$ .

By this relation we can obtain the evolution of the riggings under $T_{l}$ with finite
$l’ s.$

4.9. Extension to symmetric tensor crystals. So far we have only treated
basic automata in which all the cells are of capacity one. Now we give an
overview of studies on generalized automata with cells of capacity $\geq 1$ and
even the inhomogeneous automata in which the capacities can vary site by site
[F, HHIKTT, TM, TTM].

Given a set of positive integers $\{l_{1}, l_{2}, \ldots\}$ , we define a set of inhomogeneous
paths by

(4.10) $\mathcal{P}=\{p=p_{1}\otimes p_{2}\otimes\cdots\in B_{l_{1}}\otimes B_{l_{2}}\otimes\cdots|p_{i}=u_{l}.$ for $i\gg 1\}.$

The time evolution of the automaton is defined in the same way as in subsection

4.1. It was first pointed out by Fukuda [F] that the time evolution $T(=^{1}T_{\infty})$ of
this inhomogeneous automaton can be described by the original algorithm i.e. the

factorized dynamics of.basic automaton (subsection 4.5), if one puts partitioning
walls into the state of the latter.
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The conserved quantities and $N$-soliton solutions of the automata of this kind
were studied from the viewpoint of ultradiscretization [TTM, HHIKTT] and
that of the Robinson-Schensted-Knuth correspondence [F]. The color separa-
tion scheme in subsection 4.7 works also in this inhomogeneous case [Tg2] and
it reduces these colored systems into the inhomogeneous monochrome systems
[TM]. It seems interesting to reconsider results of those previous works on the
conserved quantities and $N$-soliton solutions from this point of view.

4.10. Extension to antisymmetric tensor crystals. This system was studied
by D. Yamada [Yd]. For any positive integer $k$ we define a set of paths by

(4.11) $\mathcal{P}=\{p=p_{1}\otimes p_{2}\otimes\cdots\in(B^{k,1})^{\otimes\infty}|p_{i}=u^{k,1}$ for $i\gg 1\}.$

Given a positive integer $l$ , we define the operator $T_{l}$ on the path $p\in \mathcal{P}$ as
$u^{k,l}\otimes p\mapsto\sim T_{l}(p)\otimes u^{k,l}$ . Here we used the rectangle switching bijection in subsection
2.2 repeatedly as $B^{k,l}\otimes \mathcal{P}\rightarrow\sim B^{k,1}\otimes B^{k,l}\otimes \mathcal{P}\rightarrow\sim(B^{k,1})^{\otimes 2}\otimes B^{k,l}\otimes \mathcal{P}\rightarrow\sim\cdots\rightarrow\sim \mathcal{P}\otimes B^{k,l}$

to send $u^{k,l}$ from left to right. Because of the boundary condition in (4.11) we
always have the $u^{k,l}$ in the right hand side. Let $T=T_{\infty}$ give the time evolution
of this system. For $k=1$ and $k=n-1$ (for $sl_{n}$ ) this system reduces to the basic
automaton.

A characterization of one-soliton states and scattering rules of solitons in this
$CA$ were proposed in [Yd]. For example, a generic rectangle tableau of height
$k$ can not be embedded into the system to realize a one-soliton state. We can
understand these results by a generalization of the color separation scheme in
subsection 4.7. Assume $2\leq k\leq n-2$ for $sl_{n}.$

Proposition 4.19. For any state $p\in \mathcal{P}$ there is an integer $N$ such that

$(u^{k-1,1})^{\otimes N}\otimes(u^{k+1,1})^{\otimes N}\otimes p\mapsto\sim(u^{k-1,1})^{\otimes N}\otimes p^{*}\otimes b(p)\mapsto\sim\tilde{p}\otimes c(p)\otimes b(p)$ ,

where $p^{*},\tilde{p}\in \mathcal{P},$ $b(p)\in(B^{k+1,1})^{\otimes N},$ $c(p)\in(B^{k-1,1})^{\otimes N}$ are characterized by
the following conditions.

(1) The $p^{*}$ is for $sl_{k+1}.$

(2) The $\tilde{p}$ is also for $sl_{k+1}$ , but consists of only $u^{k,1}$ and ${}^{t}[1$ . . . $k-1$ $k+1].$

(3) If written as $b(p)=b_{1}\otimes\cdots\otimes b_{N},$ $c(p)=c_{1}\otimes\cdots\otimes c_{N}$ the $b_{i},$ $c_{\dot{\tau}}(1\leq i\leq N)$

have the forms

$b_{i}=\left\{\begin{array}{l}1\\|\\k\\y_{i}\end{array}\right\}, c_{\dot{\eta}}=\left\{\begin{array}{l}c_{i,l}\\|\\c_{i,k-l}\end{array}\right\},$

$y_{i}\in\{k+1, \ldots, n\}, 1\leq q_{1}<\cdots<c_{i,k-1}\leq k.$

To give a proof of this proposition by using the diagrammatic algorithm in section
2.1 is left for the interested readers.
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For the above $c(p)$ we define $z_{i}\in\{1,2, \ldots, k\}(1\leq i\leq N)$ as

$\{z_{i}\}=\{1,2, \ldots, k\}\backslash \{c_{i,1}, \ldots, c_{i,k-1}\}.$

Then for the above $b(p),c(p)$ we define a pair of words y, z as $y=y_{1}\ldots y_{N}$ and
$z=z_{1}\ldots z_{N}$ . We write symbolically as

(4.12) $p=\tilde{p}\oplus z\oplus y.$

Then by Proposition 2.1 we have that

Proposition 4.20. The relation $T(p)=T(\tilde{p})\oplus z\oplus y$ holds.

Thus the words $y$ and $z$ are conserved quantities of the system. Note that
we can regard the path $\tilde{p}$ as a state of the basic monochrome system, i. e. the
Takahashi-Satsuma’s $CA$ . Thus a characterization of generic $N$-soliton states of
this $CA$ is as follows; An $N$-soliton state of the SCA in [Yd] has an $N$-soliton
state $\tilde{p}$ of the basic monochrome system in the decomposition (4.12).

Example 4.21. Let $k=2$ and consider the following state

which we quoted from [Yd]. Here $u^{2,1}$ is denoted by ‘. Then we have

and $z=11121,$ $y=44355$ . Thus $p$ is a three-soliton state.

4.11. Comments on a typographical matter. In the next section we consider
SCAs associated with type $D$ affine Lie algebra. Usually we use $\overline{1},\overline{2},\overline{3},$

$\ldots$ as the
letters that have weights of opposite signs to those of 1, 2, 3, $\cdots$ For typograph-
ical reason we shall denote 2, 3, 4, 5 by a,b.c,d and $\overline{2},\overline{3},\overline{4},\overline{5}$ by $A_{*}B,C,D$ etc. in
Examples. We can adopt this convention even in the type $A$ case.

Example 4.22.
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There are three solitons at each time step of this example.
In this typographical convention the color separation scheme is shown in the

following way. At time $t=0$ we have:

Example 4.23.

In the next time step we have:

Example 4.24.

Example 4.25.

We see that the underlying monochrome system evolves by the usual updating

rule of SCA, and the word made of the removed letters (solitons from bottom

to top) is not affected by the time evolution.
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5. CELLULAR AUTOMATA: TYPE $D$ CASE

5.1. Time evolution operators. Based on the crystals for type $D$ affine Lie
algebra [KKM] we can construct its associated SCA as in the type $A$ case. Define

the set of basic paths as in (4.1) but now $B_{1}$ is that for $D_{n}^{(1)}$ crystal. Let $u_{l}$ be

the highest weight element of $D_{n}^{(1)}$ crystal $B_{l}$ . Then the operator $T_{l}$ is defined as
(4.2). In this note we mainly use the time evolution $T=T_{\infty}$ . Also the operator

$\tau_{\natural}$ is defined as (4.8) by using the crystal $B_{\natural}$ in (3.5).
We briefly review the algorithm for the factorized dynamics of the $autom*$

ton under the time evolution $T$ [HKT2, HKT3]. For $\gamma\in\{2, \ldots,n,\overline{n}, \ldots\overline{2}\}$ we
introduce a map $L_{\gamma}$ : $(\mathbb{Z}_{\geq 0})\times B_{1}\rightarrow B_{1}\times(\mathbb{Z}_{\geq 0})$ as follows. Let the diagram

(5.1)

depict the relation $L_{\gamma}$ : $(m,\beta)\mapsto(\beta’,m’)$ . Then under the assumption $m\in \mathbb{Z}_{\geq 0}$

and $\beta\in B_{1}\backslash \{\gamma,\overline{\gamma}, 1,\overline{1}\}$ , (we interpret $\overline{\overline{\gamma}}=\gamma$) the following list specifies the map
$L_{\gamma}$ completely:

For $\gamma\in\{2, \ldots, n,\overline{n}, \ldots\overline{2}\}$ we construct an operator $K_{\gamma}$ : $\mathcal{P}\rightarrow \mathcal{P}$ as a composition

of $L_{\gamma}s$ . Let $L_{\gamma}^{(i)}$ be the map $L_{\gamma}$ shown as the i-th arrow of the sequence

$(\mathbb{Z}_{\geq 0})\times(B_{1}\times B_{1}\times B_{1}\times\cdots)$

$\rightarrow B_{1}\times(\mathbb{Z}_{\geq 0})\times(B_{1}\times B_{1}\times\cdots)$

$\rightarrow(B_{1}\times B_{1})\times(\mathbb{Z}_{\geq 0})\times(B_{1}\times\cdots)$

$\rightarrow(B_{1}\times B_{1}\times B_{1}\times\cdots)\times(\mathbb{Z}_{\geq 0})$ .

For $p\in \mathcal{P}$ we define the map $K_{\gamma}$ as

$\prod_{i\geq 1}L_{\gamma}^{(i)}:(0,p)\mapsto(K_{\gamma}(p),0)$
.
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The right hand side has certainly this form since the action of $L_{\gamma}^{(i)}$ stabilizes to
$(0,1)\mapsto(1,0)$ for large $i$ due to the boundary condition of $\mathcal{P}$ in (4.1). The time
evolution operator $T$ for the automaton associated with $D_{n}$ is given by

(5.2) $T=K_{2}K_{3}\cdots K_{n}K_{\overline{n}}\cdots K_{\overline{3}}K_{\overline{2}}.$

If there is no anti-particle in $p$ the time evolution operator is effectively equivalent
to $T=K_{2}K_{3}\cdots K_{n}$ i. e. it reduces to $T$ in the type $A$ case (section 4.5).

5.2. Solitons. Recall the order between the letters of the type $D$ crystals (3.4).
Like in the type $A$ case a soliton is a set of successive letters arranged in decreasing
order. Under the time evolution $T$ it propagates in the speed of its length.

For typographical reason we denote $\overline{1}$ by @. We also denote 2, 3, 4, . . . by
$a,b,$ $c,$ $\ldots$ and $\overline{2},\overline{3},\overline{4},$

$\ldots$ by $A,B,C,$ $\ldots$ . We occasionally use such a notation as
$T=K_{a}K_{b}\cdots K_{B}K_{A}.$

Here is an example of a two-soliton state.

Example 5.1.

In terms of the factorized algorithm the time evolution

$T=K_{a}K_{b}K_{c}K_{d}K_{D}K_{C}K_{B}K_{A}$

from $t=0$ to $t=1$ is described as follows.

Example 5.2.

For instance, ffom $t=0\prime 8$ to $t=1/8$ we moved $A$ to the place of $a$ in which a
pair annihilation $A+a\rightarrow@$ occurred. From $t=1/8$ to $t=2/8$ there are a pair

creation $@\rightarrow b+B$ and four pair annihilations $B+b\rightarrow@.$

Exercise 5.3. Show that the following state is not a one-soliton state for $n=5,$

but is a one-soliton state for $n>5.$

. . . . . . . . . . . . ABCDdcba. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5.3. Scattering rules. The scattering rules of solitons are given by the combi-
natorial $R$ [HKOTY]. $A$ new feature (compared with the type $A$ case) is the pair
anmihilations/creations of the particles and anti-particles.

Example 5.4.

The soliton ABCdcba is identified with $D_{4}^{(1)}$ crystal element $(1, 1, 1, 1, 0,1,1,1)$ .
The scattering is written as

(1,1,1,1,0,1,1,1) $\times(0,1,1,0,0,0,0,0)$

$\mapsto(0,1,1,0,0,0,0,0)\times(0,1,2,1,0,2,1,0)$ .

In the process of collision a pair of A and a disappeared, and that of $C$ and $c$

appeared. This coincides with the combinatorial $R$ for the $D_{4}^{(1)}$ crystal.
We see the pair annihilation$/creation$ process in Example 5.4 in more detail

by the factorized algorithm.

Example 5.5.

The time evolution operator is $T=K_{a}K_{b}K_{c}K_{d}K_{D}K_{C}K_{B}K_{A}$ . When $K_{A}$ is
applied there is a pair annihilation A $+$ a $\rightarrow$ @. At time $t=3+7/8$ there is no
@. So there is no pair creation @ $\rightarrow A+$ a when $K_{a}$ is applied on it.

5.4. Phase shifts. As in the type $A$ case the phase shifts are given by the
energy function. The energy function $\hat{P}_{0}^{D}$ in (3.2) has the correct normalization
to describe the phase shifts. In the type $A$ case the amount of phase shift was at
least the length of the smaller soliton. In the type $D$ case less amount, or even
no phase shift (See the following example) is possible.
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Example 5.6.

5.5. Soliton content. The definition of the soliton content is similar to that in
the type $A$ case (section 4.6): We simply replace the $H_{l}$ in (4.3) by the energy
function $H_{l}^{D}$ which has been defined just below (3.3). In some cases we have
to be careful to read off the soliton content from the asymptotic state. See the
following example.

Example 5.7.

Exercise 5.8. Compute the soliton content of the state in this example. Is it
equal to $N_{1}=N_{2}=N_{4}=1$ and $N_{k}=0(k\neq 1,2,4)$ ?

In fact, the @@@@ is not $a$ soliton but a composite state of two solitons. In order
to see this we “bombard” it by the other solitons.

Example 5.9.
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We recogmize that the @@@0 was decomposed into AAAA and aaaa. The opposite

is possible, i. e. there is also a process in which a composite state of two solitons

of the same length is created.

Example 5.10.

5.6. Color separation scheme. This scheme works also in type $D$ case. In

this subsection we observe this fact by examples. In the next subsection we shall

verify it.
The operator $T_{\natural}$ was defined as (4.8). Recall Example 5.4. We apply $\tau_{\natural}$ on the

state at $t=3$ . Note that ABCdbaccb. is equal to 2345324431. In terms of the

carrier description (section 3.2) we have

The result is $113453i442$ that is equal to. . BCdb@cca, and the carrier takes off

the letter $3(=b)$ . In the same way we apply $T_{\natural}$ on the state repeatedly.

Example 5.11.

Denote the first line of this example by $p$ and the last line by $\tilde{p}$ . Also denote $y$ the

word made of the removed letters arranged from bottom to top, i. e.y $=BCdcbAcb.$

Then we may write symbolically as $p=\tilde{p}\oplus y$ . As in the type $A$ case the $\tilde{p}$ is a
state for the monochrome system (Takahashi-Satsuma’s $CA$).
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Now we apply $T_{\natural}$ repeatedly on the state at time $t=4.$

Example 5.12.

As in the type $A$ case we recognize the property $T(p)=T(\tilde{p})\oplus y.$

Let us apply this scheme to the state in Example 5.7 at $t=0.$

Example 5.13.

Now the soliton content is clear in the underlying monochrome system.

5.7. Proof of the separation scheme. In this subsection we establish the color
separation scheme in the previous subsection by generalizing the arguments in
[Tg2}. Let $p$ be a state and $N$ a positive integer. If $T_{\natural}^{N}$ is applied on $p$ and all

the carriers take off the letter $2(=a)($ i. e. if $(u\natural)^{N}\otimes p\mapsto\sim T_{\natural}^{N}(p)\otimes(u\natural)^{N}$ holds $)$ ,

then we call $pN$ -trivial. Denote by $F=F(p)$ the position of the rightmost
“non-empty box” (letter $\neq 1$ ) in the path $p.$

Lemma 5.14. Suppose $p$ is 1-trivial. If $\tau_{\natural}$ is applied on $p$ then the process that
occurs at $F+1$ is the following
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Proof. Since the box at $F+1$ is empty there are four possible processes that can
occur there.

(5.3)

Therefore there are two possible processes at $F+2.$

The latter case contradicts our assumption of 1-triviality. Thus the third and
forth cases of (5.3) are not acceptable at $F+1$ . Note that the condition $ 2\prec\beta$ is
assumed in the second case of (5.3), so it is not acceptable either. $\square $

By case by case check we have that

Lemma 5.15. The following pictures exhaust all the cases in which the outgoing
carrier contains 2” only.

(5.4)

Theorem 5.16. Suppose $p$ is $k$-trivial. Then there are only 1 and 2 at the
positions $\geq F-k+1$ in $p.$

Proof. It is sufficient to prove that if $p$ is $k$-trivial then (when $\tau_{\natural}$ is applied on p)
the process that occurs at $\geq F-k+2$ is (i) or (ii), and the process at $F-k+1$
is one of (i), (ii), (iii), (iv). We prove it by induction on $k$ . Suppose $p$ is 1-trivial.
Apply $\tau_{\natural}$ on $p$ . By Lemmas 5.14 and 5.15 the possible process at $F$ is one of (ii),
(iii), (iv). Thus $k=1$ case is proved.

Suppose $p$ is $k$-trivial. Apply $\tau_{\natural}$ on $p$ . If the process at $F-k+1$ is (iii) or (iv),
then $T_{\natural}(p)$ is not $k$-trivial by the assumption of induction. So if $p$ is $k+1$-trivial
then the process at $F-k+1$ is (i) or (ii), hence the process at $F-k$ is one of
(i), (ii), (iii), (iv). The proof follows by induction. $\square $

Corollary 5.17. If $p$ is $F$-trivial, then there are only 1 and 2 in $p.$

Recall the definition of the particle$/anti$-particle numbers for letters in the
type $D$ crystals (TABLE 1). Given a path $p=p_{1}\otimes p_{2}\otimes\cdots\in \mathcal{P}$ , define its
particle/anti-particle numbers as $P(p)=\sum_{i=1}^{\infty}P(p_{i})$ and $A(p)=\sum_{i=1}^{\infty}A(p_{i})$ .
By Lemma 3.3 we have that
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Lemma 5.18. The following relations hold

$P(T_{\natural}(p))+P(b(p))=P(p)+1,$

$A(T_{\natural}(p))+A(b(p))=A(p)$ .

Note that for any $b(p)$ its particle anti-particle number is $0$ or 1.

Theorem 5.19. For any $p\in \mathcal{P}$ there is an integer $N$ such that $(T_{\natural})^{N}(p)$ has
only 1 and 2.

Proof. By Lemma 5.18 the anti-particle number of the path does not increase
under the application of $T_{\natural}$ . If all the anti-particles can be removed, i. e. if
$A((T_{\natural})^{N’}(p))=0$ for some $N’$ it reduces to the type $A$ case where the claim
follows immediately by Corollary 5.17. Suppose it is not. Then we can find a
path which (by renewing the definition) we call $p$ that satisfies $A(p)\neq 0$ and
$A((T_{\natural})^{N}(p))=A(p)$ for any $N$ . Rom this assumption and by Corollary 5.17
we deduce that we can take off particles $\in\{3, \ldots, n\}$ infinitely many times, by
applying $T_{\natural}$ repeatedly. In order not to exhaust such particles in the state, the
process $\overline{2}+2\rightarrow 3+\overline{3}$ should occur infinitely many times. Then, except the
opposite process $3+\overline{3}\rightarrow\overline{2}+2,$ the $\overline{2}$’s can be provided only ffom those originally
contained in the path, or by the process $\overline{1}\rightarrow 2+\overline{2}$ . But it is impossible to
continue that, because the number $of\overline{2}$ and $\overline{1}$ in $p$ is finite. $\square $

Thus for any $p\in \mathcal{P}$ we can choose an integer $N$ such that the path $\tilde{p}=$

$(T_{\natural})^{N}(p)$ has only 1 and 2. And we have that

Proposition 5.20. The claim of Proposition 4.15 also holds in the type $D$ case.

This comes from the commutativity $T_{l}T_{\natural}=T_{\natural}T_{t}$ which is guaranteed by

Lemma 5.21. The Yang-Baxter relation holds on $B_{l}\otimes B_{1}\otimes B_{\natural}.$

We give an elementary proof of this lemma which uses the crystal structure of
$D_{n}$ rather than $D_{n}^{(1)}$ . As $D_{n}$ crystals the $B_{l}\otimes B_{1}\otimes B_{\natural}$ decomposes as [N]

$B_{l}\otimes B_{1}\otimes B_{\natural}\simeq B_{(l+2,1)}\oplus B_{(l+1,2)}\oplus B_{(l,2,1)}\oplus B_{(l,1,1,1)}\oplus(B_{(l+1,1,1)})^{\oplus 2}$

$\oplus B_{(l-1,2)}\oplus(B_{(l+1)})^{\oplus 2}\oplus(B_{(l-1,1,1)})^{\oplus 2}\oplus(B_{(l,1)})^{\oplus 4}$

$\oplus B_{(l-2,1)}\oplus(B_{(l-1)})^{\oplus 2}$

It is sufficient to prove the relation on $D_{n}$ highest weight elements of all the
components in this tensor product decomposition. More precisely it is enough to
verify the relation on every component whose multiplicity is greater than one
We give that case by case check in Appendix A.
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APPENDIX A. PROOF OF LEMMA 5.21

For each highest element $u$ of the shape $\lambda=(l+1,1,1)$ the Yang-Baxter relation

can be verified as (we have set $l=3$ here)

For the shape $\lambda=(l+1)$ it can be verified as
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For the shape $\lambda=(l-1,1,1)$ it can be verified as

Here the second mapping is based on the following column insertion 12

$(3\rightarrow\left\{\begin{array}{l}2\\\frac{3}{3}\end{array}\right\})=\left\{\begin{array}{ll}1 & i\\2 & \\3 & \end{array}\right\}$

For the shape $\lambda=(l-1)$ it can be verified as

12In the terminology of [Bk] this case falls into “Type IIb special bump”
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For the shape $\lambda=(l, 1)$ it can be verified as
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