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2. Cayley graphs.

A Cayley graph gives us a means by which a finitely generated
group can be viewed as a geometric object. The starting point is
a finite generating set. The dependence of the construction on the
choice of generating set will be discussed in Section 3.

Many combinatorial constructions can be interpreted geomet-
rically or topologically, and this often results in the most efficient
means of proof. This is the main theme of this course. Neverthe-
less, the earlier combinatorial tools developed by Higman, Neumann
etc, still remain a powerful resource, and a rich source of interesting
examples.

2.1. Basic terminology and notation.

Let $K$ be a graph. Formally this is thought of as a set, $V(K)$ ,
of vertices together with a set $E(K)$ of edges. It will be convenient
to allow multiple edges (edges connecting the same pair of vertices)
and loops (cdges starting and finishing at the same vertex). We recall
some standard terminology from graph theory:

Definition: $A$ (combinatorial) path consists of a sequence of edges
with consecutive edges adjacent.

An arc is an embedded path.

A cycle is a closed path.

A circuit is an embedded cycle.

A graph is connected if every pair of vertices are connected by a path
(and hence also by an arc).

The valence of a vertex is the number of incident edges (counting
muliplicities of multiple edges, and counting each loop twice).

A graph is locally finite if each vertex has finite valence.

It is $n$-regular if every vertex has valence $n.$

We will often write a combinatorial path as a sequence of vertices
rather than edges, though if there are loops or multiple edges one also
needs to specify the edges connecting them.
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2.2. Graphs viewed as metric and topological spaces.

Let $K$ be a graph. We can realise $K$ as a 1-complex. Each
edge of $K$ corresponds to a copy of the unit interval with vertices at
its endpoints. ( $A$ loop gets bent around into a circle.) This gives a
description of the 1-complex as a set, denoted $|K|$ . We can define a
distance on $|K|$ as follows. We first fix a parameterisation for each
edge. This defines a length for each interval in an edge, so that the
whole interval has length 1. We can generalise the notion of a path
allowing it to start and finish in the interiors of edges as well as at
a vertex. $A$ path, $\pi$ , thus has a well defined length, $l(\pi)\in[0, \infty)$ .
Given $x,$ $y\in K$ we defined $d(x, y)\in[O, \infty]$ to be the minimum length
of a path connecting $x$ to $y$ . We set this equal to $\infty$ if there is no such
path. Otherwise, the minimum is attained, since the set of lengths of
such arcs is discrete. If $K$ is connected, then $(|K|, d)$ is a metric space.
It thus induces a topology on $|K|$ . This topoloy makes sense even
if $K$ is not connected. The space $|K|$ might be called the realisation
of $K$ . We note (exercise):

$|K|$ is compact $\Leftrightarrow K$ is finite.
$|K|$ is locally compact $\Leftrightarrow K$ is locally finite.
$|K|$ is (topologically) connected $\Leftrightarrow K$ is connected.

We frequently omit the $|.|$ , and simply write $|K|$ as $K$ . Thus, a
graph $K$ can be viewed in three ways: as a combinatorial object, as
a geometric object (metric space) or as a topological object.

Remark : For most purposes here, we will only be interested in
locally finite graphs. In this case, the topology described here is the
only “sensible” one. In the non locally finite case, however, there
are other natural topologies such as the “$CW$-topology” which is
different. We will not need to worry about these issues in this course.

Suppose that a group $\Gamma$ acts on the graph $K$ . It then acts by
isometries on its realisation. We say that the action on $K$ is tee if
it is free on both $V(K)$ and $E(K)$ . This means that no clcmcnt of $\Gamma$

fixes a vertex or inverts an edge (i.e. swaps the vertices of an edge).



2.3. Graphs associated to groups 15

In this case, we can form the quotient graph $K/\Gamma.$

Simple example : We can view the real line, $R$ , as the (realisa-
tion of) a graph with vertices at the integers. The group $Z$ acts by
translation. $R/Z$ consists of a single loop. $R/nZ$ is a circuit with $n$

vertices. Both are topological circles.

Definition : $A$ tree is a connected graph with no circuits.

Thus (exercise) a graph is a tree if and only if every pair of vertices
are connected by a unique arc. Also (exercise) any two $n$-regular trees
are isomorphic. The 2-regular tree is the real line described above.

2.3. Graphs associated to groups.

Let $\Gamma$ be a group, and $ S\subseteq\Gamma$ a subset not containing the iden-
tity. Let $\overline{S}$ be a set of “formal inverses” of elements of $S$ (as in the
construction of a free group) and let $A=su\overline{s}$ . If $ S\cap S^{-1}=\emptyset$ , then
we can identify $A$ as a subset of $\Gamma$ , by identifying the formal inverse
$\overline{a}$ of an element $a\in S$ , with its actual inverse, $a^{-1}$ , in $\Gamma$ . Indeed, we
can usually arrange that $ S\cap S^{-1}=\emptyset$ : if both $a$ and $a^{-1}$ lie in $S$ , then
just throw one of them away. This is only a problem if $a=a^{-1}$ . In
this case, we need to view the formal inverse of $a$ as distinct from $a.$

This is a somewhat technical point, and we will generally write $a^{-1}$

for the inverse whether used formally or as a group element. Only if
$a^{2}=1$ do we need to make this distinction.

We construct a graph $\Delta=\Delta(\Gamma;S)$ as follows. Let $V(\Delta)=\Gamma.$

We connect vertices $g,$
$ h\in\Gamma$ by and edge in $\Delta$ if $g^{-1}h\in A$ . In other

words, for each $ g\in\Gamma$ and $a\in A$ we have an edge connecting $g$ to
$ga$ . We imagine the directed edge from $g$ to $ga$ as being labelled by
the element $a$ . The same edge with the opposite orientation is thus
labelled by $a^{-1}$ . (If it happens that $a^{2}=1$ , then we connect $g$ to $ga$

by a pair of edges, labelled by $a$ and its formal inverse.) Note that
$\Delta$ is $|A|$-regular. It is locally finite if and only if $|S|$ is finite. (Note
$|A|=2|S|.)$

Now $\Gamma$ acts on $\Gamma=V(\triangle)$ by lcft multiplicaton, and this cxtcnds
to an action on $\Delta$ : if $g,$ $h,$ $ k\in\Gamma$ , with $g^{-1}h\in A$ then $(kg)^{-1}(kh)=$
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$g^{-1}h\in A$ . This action is free and preserves the labelling. The
quotient graph consists of a single vertex and $|S|$ loops. Topologically
this is a wedge of $|S|$ circles – a space we will meet again in relation
to free groups in Section 4.

Let $W(A)$ be the set of words in $A$ . There is a natural bijection
between $W(A)$ and the set of paths in $\Delta$ starting from the identity.
More precisely, if $w=a_{1}a_{2}\ldots a_{n}\in W(A)$ , then there is a mique
path $\pi(w)$ starting at $1\in V(\Delta)$ so that the ith directed edge of $\pi(w)$

is labelled by $a_{i}$ . We see, inductively, that the final vertex of $\pi(\{l))$

is the group element obtained by multiplying together the $a_{i}$ in $\Gamma.$

Thus, by interpreting a word in the generators a group element, we
retain only the final destination point in $\Delta$ , and forget about how we
arrived there. We write $ p:W(A)\rightarrow\Gamma$ for the map obtained in this
way. Thus $\pi(w)$ is a path from 1 to $p(w)$ . We can similarly start
from any group element $ g\in\Gamma$ , and get a path from $g$ to $gp(w)$ . It is
precisely the image, $g\pi(w)$ , of $\pi(w)$ by $g$ in the above group action.

Lemma 2.1 : $\Gamma=\langle S\rangle\Leftrightarrow\Delta(\Gamma;S)$ is connected.

This follows from the above construction and the observation
that $\langle S\rangle$ is precisely the set of elements expressible as a word in the
alphabet A. (Note that, in general, $\langle S\rangle$ is the set of vertices of the
connected component of $\Delta$ containing 1.)

Definition : If $ S\subseteq\Gamma$ is a generating sct of $\Gamma$ , then $\Delta(\Gamma;S)$ is the
Cayley gmph of $\Gamma$ with respect to $S.$

Note that, in summary, we have seen that any finitely generated
group acts freely on a connected locally finite graph. Converses to
this statement will be discussed in Section 3.

Examples.

(0) The Cayley graph of the trivial group with respect to the empty
generating set is just a point.

(la) $Z=\langle a\rangle$ . In this case $\Delta$ is the real line (Figure $2a$). $Z$ acts on
it by translation with quotient graph a circle: a single vertex and a
single loop.
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Figure $2a.$

(b) If we add a generator $Z=\langle a,$ $ a^{2}\rangle$ wc get an infinite “ladder”
(Figure $2b$).

Figure $2b.$

(c) $Z=\langle a^{2},$ $ a^{3}\rangle$ , see Figure $2c.$

$a^{3}$

Figure $2c.$

In these examples, the graphs are all combinatorially different, but

they all “look like” the real line from “far away” : in a sense that will
be made precise later (see Section 3).
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Figure $2d.$

(2) $Z_{n}=\langle a|a^{n}=1\rangle$ . This is a circuit of length $n$ (see Figure $2d,$

where $n=5$).

(3) $Z\oplus Z=\langle a,$ $b|$ $ ab=ba\rangle$ . Here $\Delta$ is the 1-skeleton of the square
tessellation of the plane, $R^{2}$ (Figure $2e$). It “looks like” $R^{2}$ from “far
away”

Figure $2e.$

(4) The dihedral group $\langle a,$ $ b|b^{2}=baba=a^{n}=1\rangle$

and the infinite dihedral group $\langle a,$ $ b|b^{2}=baba=1\rangle$ (exercise).

(5) $\langle a,$ $b,$ $ c|a^{2}=b^{2}=c^{2}=(ab)^{3}=(ca)^{5}=(bc)^{2}=1\rangle$ – the “icosa-
hedral group” (exercise).
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Note that in a Cayley graph, a word representing the iden-
tity gives a path starting and finishing at 1, in other words a cycle
through 1. In particular, the relators give rise to cycles. For exam-
ple, $aba^{-1}b^{-1}$ gives us the boundary of a square tile in example (3)
above. Since a free group has no relations, the following should be
no surprise:

Theorem 2.2 : Suppose $F$ is freely generated by $S\subseteq F$ , then
$\Delta(F;S)$ is a tree.

Indeed the converse holds provided we assume, in that case, that
$S\cap S^{-1}=\emptyset.$

Before we begin, we make the observation that if a word $w$ cor-
responds to a path $\pi=\pi(w)$ , then any subword of the form $aa^{-1}$

would mean that we cross an edge labelled $a$ , and then immediately
cross back again, in other words, we backtrack along this edge. Can-
celling this word corresponds to eliminating this backtracking. $A$

word is therefore reduced if and only if the corresponding path has
no baCktracking.

Proof of Theorem 2.2 : We can assume that $F$ has the form
$F(S)$ as in the construction of free groups. We want to show that $\Delta$

has no circuits. We could always translate such a circuit under the
action of $F$ so that it passed through 1, and so can be thought of a
path starting and ending at 1. Now such a circuit, $\sigma$ , corresponds
to a word in $S\cup S^{-1}$ representing the identity element in $F$ . Thus,

there is a finite sequence of reductions and inverse reductions that
eventually transforms this word to the empty word. Reinterpreting
this in terms of paths in the Cayley graph, we get a sequence of cycles,
$\sigma=\sigma_{0},$

$\ldots,$
$\sigma_{n}$ , where $\sigma_{n}$ is just the constant path based at 1, and

each $\sigma_{i}$ is obtained from $\sigma_{i-1}$ by either eliminating or introducing a
backtracking along an edge.

Now, given any cycle, $\tau$ , in $\triangle$ , let $O(\tau)\subseteq E(\Delta)$ be the set of

edges through which $\tau$ passes an odd number of times. It is clear that
$O(\tau)$ remains unchanged after eliminating a backtradcing from $\tau$ . In
particular, $O(\sigma_{i})$ remains constant throughout. But $O(\sigma)=E(\sigma)$

since $\sigma$ is a circuit, and $ O(\sigma_{n})=\emptyset$ . Thus, $ E(\sigma)=\emptyset$ , and so $\sigma$ could
only have been the constant path at 1. $\Diamond$
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Remark : We are really observing that the $Z_{2}$-homology class of
a cycle in $H_{1}(\Delta;Z_{2})$ remains unchanged under cancellation of back-
tracking, and that the $Z_{2}$-homology class of a non-trivial circuit is
non-trivial.

Figure $2f.$

This is the main direction of interest to us. The converse is based
on the observation that in a tree, any path with no backtra&ing is
an arc. Moreover there is only one arc connecting 1 to any given
element $g\in F$ . This tells us that each element, $g$ , of $F$ has a unique
representative as a reduced word. If we have a map, $\phi,$ from $S$ into
any group $\Gamma$ , we can use such a reduced word to define an element,
$\hat{\phi}(g)$ , in $\Gamma$ by multiplying together the -images of the letters in our
reduced word. We need to check that $\hat{\phi}$ is a homomorphism from $F$

into $\Gamma$ , and that there was no choice in its definition. This then shows
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that $S$ is, by definition, a free generating set. The details of this are
left as an exercise.

Note that putting together Theorem 2.2 with the above obser-
vation on arcs in trees, we obtain the uniqueness part of Proposition
1.3: every element in a free group has a unique representative as a
reduced word in the generators.

A picture of the Cayley graph of the free group with two gener-
ators, $a$ and $b$ , is given in Figure $2f$. To represent it on the page, we
have distorted distances. In reality, all edges have length 1.
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