Log del Pezzo surfaces of index ≤ 2 and Smooth Divisor Theorem

1.1. Basic definitions and notation

Let Z be a normal algebraic surface, and K_{Z} be a canonical Weil divisor on it. The surface Z is called \mathbb{Q}-Gorenstein if a certain positive multiple of K_{Z} is Cartier, and \mathbb{Q}-factorial if this is true for any Weil divisor D. These properties are local: one has to require all singularities to be \mathbb{Q}-Gorenstein, respectively \mathbb{Q}-factorial.

Let us denote by $Z^{1}(Z)$ and $\operatorname{Div}(Z)$ the groups of Weil and Cartier divisors on Z. Assume that Z is \mathbb{Q}-factorial. Then the groups $Z^{1}(Z) \otimes \mathbb{Q}$ and $\operatorname{Div}(Z) \otimes \mathbb{Q}$ of \mathbb{Q}-Cartier divisors and \mathbb{Q}-Weil divisors coincide. The intersection form defines natural pairings

$$
\begin{aligned}
& \operatorname{Div}(Z) \otimes \mathbb{Q} \times \operatorname{Div}(Z) \otimes \mathbb{Q} \rightarrow \mathbb{Q} \\
& \operatorname{Div}(Z) \otimes \mathbb{R} \times \operatorname{Div}(Z) \otimes \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

Quotient groups modulo kernels of these pairings are denoted $N_{\mathbb{Q}}(Z)$ and $N_{\mathbb{R}}(Z)$ respectively; if the surface Z is projective, they are finite-dimensional linear spaces. The Kleiman-Mori cone is a convex cone $\overline{\mathrm{NE}}(Z)$ in $N_{\mathbb{R}}(Z)$, the closure of the cone generated by the classes of effective curves.

Let D be a \mathbb{Q}-Cartier divisor on Z. We will say that D is ample if some positive multiple is an ample Cartier divisor in the usual sense. By Kleiman's criterion [Kle66], for this to hold it is necessary and sufficient that D defines a strictly positive linear function on $\overline{\mathrm{NE}}(Z)-\{0\}$.

One says that the surface Z has only log terminal singularities if it is \mathbb{Q}-Gorenstein and for one (and then any) resolution of singularities $\pi: Y \rightarrow Z$, in a natural formula $K_{Y}=\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}$, where F_{i} are irreducible divisors and $\alpha_{i} \in \mathbb{Q}$, one has $\alpha_{i}>-1$. The least common multiple of denominators of α_{i} is called the index of Z.

It is known that two-dimensional log terminal singularities in characteristic zero are exactly the quotient singularities [Kaw84]. A self-contained and characteristic-free classification in terms of dual graphs of resolutions is given in [Ale92]. Log terminal singularities are rational and \mathbb{Q}-factorial. We can now formulate the following:

Definition 1.1. A normal complete surface Z is called a log del Pezzo surface if it has only \log terminal singularities and the anticanonical divisor $-K_{Z}$ is ample. It has index $\leq k$ if all of its singularities are of index $\leq k$.

We will use the following notation. If D is a \mathbb{Q}-Weil divisor, $D=$ $\sum c_{i} C_{i}, c_{i} \in \mathbb{Q}$, then $\ulcorner D\urcorner$ will denote the round-up $\sum\left\ulcorner c_{i}\right\urcorner D_{i}$, and $\{D\}=$ $\sum\left\{c_{i}\right\} C_{i}$ the fractional part. A divisor D is nef if for any curve C one has $D \cdot C \geq 0 ; D$ is big and nef if in addition $D^{2}>0$.

Below we will frequently use the following generalization of Kodaira's vanishing theorem. The two-dimensional case is due to Miyaoka [Miy80] and does not require the normal-crossing condition. The higher-dimensional case is due to Kawamata [Kaw82] and Viehweg [Vie82].

Theorem 1.2 (Generalized Kodaira's Vanishing theorem). Let Y be a smooth surface and let D be a \mathbb{Q}-divisor on Y such that
(1) $\operatorname{supp}\{D\}$ is a divisor with normal crossings;
(2) D is big and nef.

Then $H^{i}\left(K_{Y}+\ulcorner D\urcorner\right)=0$ for $i>0$.

1.2. Log terminal singularities of index 2

Let (Z, p) be a two-dimensional log terminal singularity of index ≤ 2, and $\pi: \widetilde{Z} \rightarrow Z$ be its minimal resolution. We have $K_{\tilde{Z}}=\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}$, where $-1<\alpha_{i} \leq 0$ and $F_{i}^{2} \leq-2$. Therefore, for each i one has $\alpha_{i}=-1 / 2$ or 0 . One can rewrite the set of equations $K_{\tilde{Z}} \cdot F_{i}=-F_{i}^{2}-2$ in a matrix form:

$$
M \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{t}=\left(-F_{1}^{2}-2, \ldots,-F_{n}^{2}-2\right)^{t}
$$

where $M=\left(F_{i} \cdot F_{j}\right)$ is the intersection matrix. By a basic theorem of Mumford [Mum61], M is negative definite and, in particular, nondegenerate. All the entries of the inverse matrix M^{-1} are strictly negative [Art62].

Let us give some easy consequences of this formula.
(1) If for some $i_{0}, \alpha_{i_{0}}=0$ then all $\alpha_{i}=0$, and the singularity (Z, p) is Du Val, of type $A_{n}, D_{n}, E_{6}, E_{7}$ or E_{8}.
(2) If all $\alpha_{i}=-1 / 2$ then we get the following list of singularities:

In these graphs every curve F_{i} corresponds to a vertex with weight F_{i}^{2}, two vertices are connected by an edge if $F_{i} \cdot F_{j}=1$ and are not connected if $F_{i} \cdot F_{j}=0$.

1.3. Basic facts about log del Pezzo surfaces

Lemma 1.3. All log del Pezzo surfaces Z are rational.
Proof. Let $\pi: \widetilde{Z} \rightarrow Z$ be the minimal resolution of singularities, $K_{\tilde{Z}}=$ $\pi^{*} K_{Z}+\sum \alpha_{i} F_{i},-1<\alpha_{i} \leq 0$. Then $\left\ulcorner-\pi^{*} K_{Z}\right\urcorner=-K_{\tilde{Z}}$, and so

$$
h^{1}\left(O_{\tilde{Z}}\right)=h^{1}\left(K_{\tilde{Z}}+\left\ulcorner-\pi^{*} K_{Z}\right\urcorner\right)=0
$$

by Theorem 1.2.
Also, $h^{0}\left(n K_{\tilde{Z}}\right)=0$ for any positive integer n since $-\pi_{*} K_{\tilde{Z}}=-K_{Z}$ is an effective nonzero \mathbb{Q}-Weil divisor. Therefore, by Castelnuovo criterion the surface \widetilde{Z}, and hence also Z, are rational.

Lemma 1.4. In the above notation, if $\widetilde{Z} \neq \mathbb{P}^{2}$ or \mathbb{F}_{n} then the Kleiman-Mori cone of the surface \widetilde{Z} is generated by the curves F_{i} and exceptional curves of the 1 st kind. The number of these curves is finite. There are no other irreducible curves with negative self-intersection number (i. e. exceptional curves) on \widetilde{Z}.

Moreover, in this statement the minimal resolution \widetilde{Z} can be replaced by any resolution of singularities $\pi: Z^{\prime} \rightarrow Z$ such that $\alpha_{i} \leq 0$, where $K_{Z^{\prime}}=\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}$ (for example, by the right resolution of Z, see Section 1.5 below).
Proof. Let us show that on the surface \widetilde{Z} (or Z^{\prime}) there exists a \mathbb{Q}-divisor Δ with $\Delta \geq 0,[\Delta]=0$ and such that the divisor $-\left(K_{\tilde{Z}}+\Delta\right)$ is ample.

Choose $E=\sum \beta_{i} F_{i}$ so that $Z \cdot F_{i}>0$. Since the matrix $\left(F_{i} \cdot F_{j}\right)$ is negative definite and $F_{i} \cdot F_{j} \geq 0$ for $i \neq j$, one has $\beta_{i}<0$. Let us show that for a small $0<\epsilon \ll 1$ the divisor $T=-\pi^{*} K_{Z}+\epsilon E$ is ample. Since $\left(-K_{Z}\right)^{2}>0$, we may assume that $T^{2}>0$. Now, let us check that, if the positive number ϵ is sufficiently small, then $C \cdot T>0$ for any irreducible curve C on Z.

If $C^{2} \geq 0$, this follows from the fact that the intersection form on $N_{\mathbb{R}}(\widetilde{Z})$ is hyperbolic. If $C=F_{i}$ then $F_{i} \cdot T=\epsilon F_{i} \cdot E>0$.

If $C^{2}<0$ and $C \neq F_{i}$ then

$$
C \cdot K_{\tilde{Z}}=C \cdot\left(\pi^{*} K_{\tilde{Z}}+\sum \alpha_{i} F_{i}\right)<0 .
$$

On the other hand, $p_{a}(C)=\frac{C^{2}+C \cdot K_{\tilde{Z}}}{2}+1 \geq 0$. So, $C^{2}<0$ and $C \cdot K_{\tilde{z}}<0$ imply that $C^{2}=-1$ and $p_{a}(C)=0$, i.e. C is an exceptional curve of the 1 st kind.

If n is the index of Z then $C \cdot\left(-\pi^{*} K_{Z}\right) \in(1 / n) \mathbb{Z}$. On the other hand, $0<-C \cdot \pi^{*} K_{Z}=1+\sum \alpha_{i} F_{i} \cdot C \leq 1$. Hence, there are only finitely many possibilities for $\left(-\pi^{*} K_{Z}\right) \cdot C$ and $\sum \alpha_{i} F_{i} \cdot C$, and for ϵ small enough, $C \cdot T>0$.

By Kleiman's criterion, this implies that T is ample. Since the degree of the (-1)-curves with respect to T is bounded, there are only finitely many of them.

One has $-\pi^{*} K_{Z}+\epsilon E=-\left(K_{\tilde{Z}}+\sum\left(-\alpha_{i}-\epsilon \beta_{i}\right) F_{i}\right)$. Therefore, $\Delta \geq$ 0 , and for $\epsilon \ll 1$, we have $[\Delta]=0$, since $-\alpha_{i}<1$.

Now, by Cone theorem [Kaw84, Thm.4.5], $\overline{\mathrm{NE}}(\widetilde{Z})=\sum R_{j}$, where R_{j} are "good extremal rays". The rays generated by the curves F_{i} and exceptional curves of the 1 st kind are obviously extremal. On the other hand, let R_{j} be a "good extremal ray", generated by an irreducible curve C. If $C \notin\left\{F_{1}, \ldots, F_{k}\right\}$ then $C \cdot K_{\tilde{Z}}=C \cdot\left(\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}\right)<0$. Hence, by [Mor82] the curve C is an exceptional curve of the 1 st kind, unless $Z \simeq \mathbb{P}^{2}$ or \mathbb{F}_{n}.

1.4. Smooth Divisor Theorem

Theorem 1.5. Let Z be a log del Pezzo surface of index ≤ 2. Then the linear system $\left|-2 K_{Z}\right|$ is nonempty, has no fixed components and contains a nonsingular element $D \in\left|-2 K_{Z}\right|$.

Proof. Let $\pi: \widetilde{Z} \rightarrow Z$ be the minimal resolution of singularities. It is sufficient to prove the statement for the linear system $\left|-\pi^{*}\left(2 K_{Z}\right)\right|$ on \widetilde{Z}. We have $2 K_{\tilde{Z}}=\pi^{*}\left(2 K_{Z}\right)-\sum a_{i} F_{i}$, and all $a_{i}=0$ or $1\left(a_{i}=-2 \alpha_{i}\right)$.

1. Nonemptiness.

$$
-\pi^{*}\left(2 K_{Z}\right)=K_{\tilde{Z}}+\left(-3 K_{\tilde{Z}}-\sum a_{i} F_{i}\right)=K_{\tilde{Z}}+\ulcorner D\urcorner,
$$

where $D=\frac{3}{2}\left(-2 K_{\tilde{Z}}-\sum a_{i} F_{i}\right)=-\pi^{*}\left(3 K_{Z}\right)$ is big and nef. Hence, by Vanishing Theorem 1.2, $H^{i}\left(-\pi^{*}\left(2 K_{Z}\right)\right)=0$ for $i>0$ and $h^{0}\left(-\pi^{*}\left(2 K_{Z}\right)\right)=$ $\chi\left(-\pi^{*}\left(2 K_{Z}\right)\right)=3 K_{Z}^{2}+1>0$.
2. Nonexistence of fixed components. Let E be the fixed part, so that $\left|-\pi^{*}\left(2 K_{Z}\right)-E\right|$ is a movable linear system. Then

$$
\begin{aligned}
& h^{0}\left(-\pi^{*}\left(2 K_{Z}\right)\right)=h^{0}\left(-\pi^{*}\left(2 K_{Z}\right)-E\right), \\
& -\pi^{*}\left(2 K_{Z}\right)-E=K_{\tilde{Z}}+\left(-3 K_{\tilde{Z}}-\sum a_{i} F_{i}-E\right)=K_{\tilde{Z}}+\ulcorner D\urcorner, \\
& D=\frac{3}{2}\left(-2 K_{\tilde{Z}}-\sum a_{i} F_{i}\right)-E=\left(-\pi^{*}\left(2 K_{Z}\right)-E\right)+\left(-\pi^{*} K_{Z}\right) .
\end{aligned}
$$

The first of these divisors is movable and the second is big and nef, so the sum is big and nef. By Vanishing Theorem 1.2, we have

$$
\begin{gathered}
h^{i}\left(-\pi^{*}\left(2 K_{Z}\right)-E\right)=0, \quad i>0 \\
\chi\left(-\pi^{*}\left(2 K_{Z}\right)\right)=\chi\left(-\pi^{*}\left(2 K_{Z}\right)-E\right)
\end{gathered}
$$

(8) $2 \chi\left(-\pi^{*}\left(2 K_{Z}\right)\right)-2 \chi\left(-\pi^{*}\left(2 K_{Z}\right)-E\right)=E \cdot\left(-2 \pi^{*}\left(2 K_{Z}\right)-K_{\tilde{Z}}-E\right)$.

Let us show that this expression (8) is not equal to zero. Suppose

$$
-\pi^{*} K_{Z} \cdot\left(K_{\tilde{Z}}+E\right)=-\pi^{*} K_{Z} \cdot E-K_{Z}^{2}<0 .
$$

Then the divisor $K_{\tilde{Z}}+E$ cannot be effective. Therefore,

$$
\chi(-E)=h^{0}(-E)-h^{1}(-E)+h^{0}\left(K_{\tilde{Z}}+E\right) \leq 0 .
$$

Hence, $E \cdot\left(K_{\tilde{Z}}+E\right)=2 \chi(-E)-2<0$, and the expression (8) is strictly positive. So, we can assume that $-\pi^{*} K_{Z} \cdot E \geq K_{Z}^{2}$. Let us write

$$
E=\beta\left(-\pi^{*} K_{Z}\right)+F, \quad F \in\left(\pi^{*} K_{Z}\right)^{\perp}
$$

in $N_{\mathbb{Q}}(\widetilde{Z})$. One has $\beta \leq 2$ since $-\pi^{*} K_{Z} \cdot\left(-\pi^{*}\left(2 K_{Z}\right)-E\right) \geq 0$. Then

$$
E \cdot\left(-2 \pi^{*}\left(2 K_{Z}\right)-K_{\tilde{Z}}-E\right)=(5-\beta) \beta K_{Z}^{2}-F \cdot\left(\sum \alpha_{i} F_{i}+F\right) .
$$

The first term in this sum is ≥ 3 since $\beta K_{Z}^{2}=-\pi^{*} K_{Z} \cdot E \geq K_{Z}^{2}$ and $K_{Z}^{2}=\chi\left(\pi^{*}\left(2 K_{Z}\right)\right)-1$ is a positive integer. The second term achieves the minimum for $F=-\frac{1}{2} \sum \alpha_{i} F_{i}$ and equals $-\frac{m}{4}$, where m is the number of non-Du Val singularities. Therefore, all that remains to be shown is that the surface Z has fewer than 12 non- Du Val singularities.

By Lemma 1.3, the surface \widetilde{Z} is rational. By Noether's formula, $\left(K_{\tilde{Z}}\right)^{2}+$ $\operatorname{rk} \operatorname{Pic} \widetilde{Z}=10$. By Lemma 1.6 below, $\left(K_{\tilde{Z}}\right)^{2} \geq 0$. Hence Z has no more than $\operatorname{rk} \operatorname{Pic} \widetilde{Z}-1 \leq 9$ singular points.
Lemma 1.6. Let Z be a log del Pezzo surface of index ≤ 2 and $\pi: \widetilde{Z} \rightarrow Z$ be its minimal resolution of singularities. Then $K_{\tilde{Z}}^{2} \geq 0$.

Proof. One has $K_{\tilde{Z}}=\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}$. Denote $\bar{K}=\pi^{*} K_{Z}-\sum \alpha_{i} F_{i}$. Let us show that $-\bar{K}$ is nef. By Lemma 1.4, one has to show that $-\bar{K} \cdot F_{i} \geq 0$ and $-\bar{K} \cdot C \geq 0$ if C is an exceptional curve of the 1 st kind. We have $-\bar{K} \cdot F_{i}=K_{\tilde{Z}} \cdot F_{i}=-F_{i}^{2}-2 \geq 0$ since the resolution π is minimal. Next,

$$
-\pi^{*} K_{Z} \cdot C=-K_{\tilde{Z}} \cdot C+\sum \alpha_{i} F_{i} \cdot C=1+\sum \alpha_{i} F_{i} \cdot C>0
$$

Since this number is a half-integer,

$$
-\bar{K} \cdot C=1+2 \sum \alpha_{i} F_{i} \cdot C \geq 0
$$

So, $-\bar{K}$ is nef and $K_{\tilde{Z}}^{2}=\bar{K}^{2} \geq 0$. Finally, if $\widetilde{Z}=\mathbb{P}^{2}$ or \mathbb{F}_{n} then $K_{\widetilde{Z}}^{2}=9$ or 8 respectively.
3. Existence of a smooth element. Assume that all divisors in the linear system $\left|-\pi^{*}\left(2 K_{Z}\right)\right|$ are singular. Then there exists a base point P, and for a general element $D \in\left|-\pi^{*}\left(2 K_{Z}\right)\right|$ the multiplicity of D at P is $k \geqq 2$. This point does not lie on F_{i} since $-\pi^{*}\left(2 K_{Z}\right) \cdot F_{i}=0$. Let $\epsilon: Y \rightarrow \widetilde{Z}$ be the blowup at $P, f=\pi \epsilon: Y \rightarrow Z$, and let L be the exceptional divisor of ϵ. We have: $h^{0}\left(-f^{*}\left(2 K_{Z}\right)\right)=h^{0}\left(-f^{*}\left(2 K_{Z}\right)-L\right)$, the linear system $\left|-f^{*}\left(2 K_{Z}\right)-k L\right|$ is movable, and

$$
\begin{aligned}
& 2 K_{Y}=f^{*}\left(2 K_{Z}\right)-\sum a_{i} F_{i}+2 L \\
& -f^{*}\left(2 K_{Z}\right)=K_{Y}+\left(-3 K_{Y}-\sum a_{i} F_{i}+2 L\right)=K_{Y}+\ulcorner D\urcorner \\
& D=\frac{3}{2}\left(-2 K_{Y}-\sum a_{i} F_{i}+L\right)=\frac{3}{2}\left(-f^{*}\left(2 K_{Z}\right)-L\right)= \\
& \frac{3}{2}\left[\left(-f^{*}\left(2 K_{Z}\right)-k L\right)+(k-1) L\right]
\end{aligned}
$$

The divisor D is nef since for any irreducible curve $C \neq L, C \cdot D \geq 0$, and also $D \cdot L=3 / 2$. It is big since $\left(-f^{*}\left(2 K_{Z}\right)-L\right)^{2}=4 K_{Z}^{2}-1>0$. Now,

$$
\begin{gathered}
-f^{*}\left(2 K_{Z}\right)-L=K_{Y}+\left(-3 K_{Y}-\sum a_{i} F_{i}+L\right)=K_{Y}+\ulcorner D\urcorner, \\
D= \\
\frac{3}{2}\left(-2 K_{Y}-\sum a_{i} F_{i}+\frac{2}{3} L\right)=\frac{3}{2}\left(\left(-f^{*}\left(2 K_{Z}\right)-k L\right)+\left(k-\frac{4}{3}\right) L\right) .
\end{gathered}
$$

The latter divisor D is nef since for any irreducible curve $C \neq L, C \cdot D \geq 0$, and also $D \cdot L=2 ; D$ is big since

$$
\left(-f^{*}\left(2 K_{Z}\right)-\frac{4}{3} L\right)^{2}=4 K_{Z}^{2}-\frac{16}{9}>0
$$

Now, again by Vanishing Theorem 1.2,

$$
h^{i}\left(-f^{*}\left(2 K_{Z}\right)\right)=h^{i}\left(-f^{*}\left(2 K_{Z}\right)-L\right)=0 \quad \text { for } i>0
$$

and one must have $\chi\left(-f^{*}\left(2 K_{Z}\right)\right)=\chi\left(-f^{*}\left(2 K_{Z}\right)-L\right)$. But

$$
\begin{aligned}
\chi\left(-f^{*}\left(2 K_{Z}\right)\right) & -\chi\left(-f^{*}\left(2 K_{Z}\right)-L\right)= \\
=\frac{1}{2} L \cdot\left(-2 f^{*}\left(2 K_{Z}\right)-K_{Y}-L\right) & =1+L \cdot\left(-f^{*}\left(2 K_{Z}\right)\right)>0
\end{aligned}
$$

The contradiction thus obtained completes the proof of the theorem.
Remark 1.7. In the same way, parts 1 and 3 can be proved for a log del Pezzo surface of arbitrary index n and the linear system $-\pi^{*}\left(n K_{Z}\right)$. Part 2 is easy to prove under the assumption that $\pi(E)$ passes only through (some of) the Du Val singularities.

1.5. Reduction to DPN surfaces of elliptic type

Let Z be a log del Pezzo surface of index ≤ 2. Consider the resolution of singularities $f: Y \rightarrow Z$ for which every Du Val singularity is resolved by inserting the usual tree of (-2)-curves, and the singularity K_{n} by the following chain:
(9)

2 n -1 vertices
The latter resolution is obtained by blowing up all intersection points of exceptional curves on the minimal resolution of K_{n} points, see their diagrams in Section 1.2. In contrast to the minimal resolution, we will call this the right resolution of singularities. Consider a smooth element $C_{g} \in\left|-2 K_{Z}\right|$. It does not pass through singularities of the surface Z. If we identify the curve C_{g} with its image under the morphism f, then it is easy to see from the formulae of Section 1.2 that $-f^{*} 2 K_{Z}$ is linearly equivalent to C_{g}, and $-2 K_{Y}$ with the disjoint union of C_{g} and curves in the above diagrams which
have self-intersection -4 . Moreover, it is easy to compute the genus of the curve C_{g}, and it equals $g=K_{Z}^{2}+1 \geq 2$. This shows that the surface Y is a right DPN surface of elliptic type in the sense of the next Chapter (see Sections 2.1 and 2.8).

Vice versa, the results of Chapters 2 and 3 will imply (see Chapter 4) that a right DPN surface Y of elliptic type admits a unique contraction of exceptional curves $f: Y \rightarrow Z$ to a log del Pezzo surface of index ≤ 2.

In this way, the classification of \log del Pezzo surfaces of index ≤ 2 is reduced to classification of right DPN surfaces of elliptic type.

