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Log del Pezzo surfaces of index $\leq 2$ and Smooth
Divisor Theorem

1.1. Basic definitions and notation

Let $Z$ be a normal algebraic surface, and $K_{Z}$ be a canonical Weil divisor on
it. The surface $Z$ is called $\mathbb{Q}$-Gorenstein if a certain positive multiple of
$K_{Z}$ is Cartier, and $\mathbb{Q}$-factorial if this is true for any Weil divisor $D$ . These
properties are local: one has to require all singulanities to be $\mathbb{Q}$-Gorenstein,

respectively $\mathbb{Q}$-factorial.
Let us denote by $Z^{1}(Z)$ and $Div(Z)$ the groups of Weil and Cartier

divisors on $Z$ . Assume that $Z$ is $\mathbb{Q}$-factorial. Then the groups $Z^{1}(Z)\otimes \mathbb{Q}$

and $Div(Z)\otimes \mathbb{Q}$ of $\mathbb{Q}$-Cartier divisors and $\mathbb{Q}$-Weil divisors coincide. The
intersection form defines natural pairings

$Div(Z)\otimes \mathbb{Q}\times Div(Z)\otimes \mathbb{Q}\rightarrow \mathbb{Q},$

$Div(Z)\otimes \mathbb{R}\times Div(Z)\otimes \mathbb{R}\rightarrow \mathbb{R}.$

Quotient groups modulo kemels of these pairings are denoted $N_{\mathbb{Q}}(Z)$ and
$N_{\mathbb{R}}(Z)$ respectively; if the surface $Z$ is projective, they are finite-dimensio-
nal linear spaces. The Kleiman-Mori cone is a convex cone $NE(Z)$ in
$N_{\mathbb{R}}(Z)$ , the closure of the cone generated by the classes of effective curves.

Let $D$ be a $\mathbb{Q}$-Cartier divisor on $Z$ . We will say that $D$ is ample if
some positive multiple is an ample Cartier divisor in the usual sense. By
Kleiman’s criterion [Kle66], for this to hold it is necessary and sufficient
that $D$ defines a strictly positive linear function on $NE(Z)-\{O\}.$

One says that the surface $Z$ has only $\log$ terminal singularities if
it is $\mathbb{Q}$-Gorenstein and for one (and then any) resolution of singularities
$\pi$ : $Y\rightarrow Z$ , in a natural fonnula $K_{Y}=\pi^{*}K_{Z}+\sum\alpha_{i}F_{i}$ , where $F_{i}$ are
irreducible divisors and $\alpha_{i}\in \mathbb{Q}$ , one has $\alpha_{i}>-1$ . The least common
multiple of denominators of $\alpha_{i}$ is called the index of $Z.$
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It is known that two-dimensional $\log$ terminal singularities in character-
istic zero are exactly the quotient singularities [Kaw84]. $A$ self-contained
and characteristic-free classification in terms of dual graphs of resolutions
is given in [Ale92]. ${\rm Log}$ terminal singularities are rational and $\mathbb{Q}$-factorial.
We can now formulate the following:

Definition 1.1. $A$ normal complete surface $Z$ is called a $\log$ del Pezzo sur-
face if it has only $\log$ terminal singularities and the anticanonical divisor
$-K_{Z}$ is ample. It has index $\leq k$ if all of its singularities are of index $\leq k.$

We will use the following notation. If $D$ is a $\mathbb{Q}$-Weil divisor, $D=$
$\sum c_{i}C_{i},$ $c_{i}\in \mathbb{Q}$ , then $\ulcorner D^{\urcorner}$ will denote the round-up $\sum^{\ulcorner}c_{i^{\urcorner}}D_{i}$ , and $\{D\}=$

$\sum\{c_{i}\}C_{i}$ the fractional part. $A$ divisor $D$ is nef if for any curve $C$ one has
$D\cdot C\geq 0;D$ is big and nef if in addition $D^{2}>0.$

Below we will frequently use the following generalization of Kodaira’s
vanishing theorem. The two-dimensional case is due to Miyaoka [Miy80]
and does not require the normal-crossing condition. The higher-dimensional
case is due to Kawamata [Kaw82] and Viehweg [Vie82].

Theorem 1.2 (Generalized Kodaira’s Vanishing theorem). Let $Y$ be a
smooth surface and let $D$ be a $\mathbb{Q}$-divisor on $Y$ such that

(1) $supp\{D\}$ is a divisor with normal crossings;
(2) $D$ is big and $nef$

Then $H^{i}(K_{Y}+\ulcorner D^{\neg})=0$for $i>0.$

1.2. ${\rm Log}$ terminal singularities of index 2

Let $(Z,p)$ be a two-dimensional $\log$ terminal singularity of index $\leq 2$ , and
$\pi$ : $\tilde{Z}\rightarrow Z$ be its minimal resolution. We have $K_{\tilde{Z}}=\pi^{*}K_{Z}+\sum\alpha_{i}F_{i},$

where-l $<\alpha_{i}\leq 0$ and $F_{i}^{2}\leq-2$ . Therefore, for each $i$ one has $\alpha_{i}=-1/2$

or $0$ . One can rewrite the set of equations $K_{\tilde{Z}}\cdot F_{i}=-F_{i}^{2}-2$ in a matrix
form:

$M\cdot(\alpha_{1}, \ldots, \alpha_{n})^{t}=(-F_{1}^{2}-2, \ldots, -F_{n}^{2}-2)^{t},$

where $M=(F_{i}\cdot F_{j})$ is the intersection matrix. By a basic theorem ofMum-
ford [Mum61], $M$ is negative definite and, in particular, nondegenerate. All
the entries of the inverse matrix $M^{-1}$ are strictly negative [Art62].

Let us give some easy consequences of this formula.

(1) If for some $i_{0},$ $\alpha_{i_{0}}=0$ then all $\alpha_{i}=0$ , and the singularity $(Z,p)$

is Du Val, of type $A_{n},$ $D_{n},$ $E_{6},$ $E_{7}$ or $E_{8}.$

(2) If all $\alpha_{i}=-1/2$ then we get the following list of singularities:
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In these graphs every curve $F_{i}$ corresponds to a vertex with weight
$F_{i}^{2}$ , two vertices are connected by an edge if $F_{i}\cdot F_{j}=1$ and are
not connected if $F_{i}\cdot F_{j}=0.$

1.3. Basic facts about $\log$ del Pezzo surfaces

Lemma 1.3. All $log$ del Pezzo surfaces $Z$ are rational.

Proof. Let $\pi$ : $\tilde{Z}\rightarrow Z$ be the minimal resolution of singularities, $K_{\tilde{Z}}=$

$\pi^{*}K_{Z}+\sum\alpha_{i}F_{i},$ $-1<\alpha_{i}\leq 0$ . Then $\ulcorner-\pi^{*}K_{Z}\urcorner=-K_{\tilde{Z}}$ , and so

$h^{1}(O_{\tilde{Z}})=h^{1}(K_{\tilde{Z}}+\ulcorner-\pi^{*}K_{Z}\urcorner)=0$

by Theorem 1.2.
Also, $h^{0}(nK_{\tilde{Z}})=0$ for any positive integer $n$ since $-\pi_{*}K_{\tilde{Z}}=-K_{Z}$

is an effective nonzero $\mathbb{Q}$-Weil divisor. Therefore, by Castelnuovo criterion
the surface $\tilde{Z}$ , and hence also $Z$ , are rational. $\square $

Lemma 1.4. In the above notation, $\iota f\tilde{Z}\neq \mathbb{P}^{2}$ or $\mathbb{F}_{n}$ then the Kleiman-Mori
cone ofthe surface

$\tilde{Z}$ is generated by the curves $F_{i}$ and exceptional curves
of the lst kind The number of these curves is finite. There are no other
irreducible curves with negative self-intersection number $(i.$ $e$. exceptional
curves) on $\tilde{Z}.$

Moreover, in this statement the minimal resolution $\tilde{Z}$ can be replaced
by any resolution ofsingularities $\pi$ : $Z’\rightarrow Z$ such that $\alpha_{i}\leq 0$, where
$K_{Z’}=\pi^{*}K_{Z}+\sum\alpha_{i}F_{i}$ (for example, by the right resolution of $Z$, see
Section 1.5 below).

Proof. Let us show that on the surface $\tilde{Z}$ (or $Z’$) there exists a $\mathbb{Q}$-divisor $\triangle$

with $\Delta\geq 0,$ $[\Delta]=0$ and such that the divisor $-(K_{\tilde{Z}}+\triangle)$ is ample.
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Choose $E=\sum\beta_{i}F_{i}$ so that $Z\cdot F_{i}>0$ . Since the matrix $(F_{i}\cdot F_{j})$ is
negative definite and $F_{i}\cdot F_{j}\geq 0$ for $i\neq j$ , one has $\beta_{i}<0$ . Let us show
that for a small $0<\epsilon\ll 1$ the divisor $T=-\pi^{*}K_{Z}+\epsilon E$ is ample. Since
$(-K_{Z})^{2}>0$ , we may assume that $T^{2}>0$ . Now, let us check that, if the
positive number $\epsilon$ is sufficiently small, then $C\cdot T>0$ for any irreducible
curve $C$ on $Z_{s}$

If $C^{2}\geq 0$ , this follows from the fact that the intersection form on $N_{\mathbb{R}}(\tilde{Z})$

is hyperbolic. If $C=F_{i}$ then $F_{i}\cdot T=\epsilon F_{i}\cdot E>0.$

If $C^{2}<0$ and $C\neq F_{i}$ then

$C\cdot K_{\tilde{Z}}=C\cdot(\pi^{*}K_{\tilde{Z}}+\sum\alpha_{i}F_{i})<0.$

On the other hand, $p_{a}(C)=\frac{C^{2}+C\cdot K_{\tilde{Z}}}{2}+1\geq 0$ . So, $C^{2}<0$ and

$C\cdot K_{\tilde{Z}}<0$ imply that $C^{2}=-1$ and $p_{a}(C)=0$ , i.e. $C$ is an exceptional
curve of the lst kind.

If $n$ is the index of $Z$ then $C\cdot(-\pi^{*}K_{Z})\in(1/n)\mathbb{Z}$ . On the other hand,
$0<-C\cdot\pi^{*}K_{Z}=1+\sum\alpha_{i}F_{i}$ $C\leq 1$ . Hence, there are only finitely
many possibilities for $(-\pi^{*}K_{Z})\cdot C$ and $\sum\alpha_{i}F_{i}\cdot C$ , and for $\epsilon$ small enough,
$C\cdot T>0.$

By Kleiman’s criterion, this implies that $T$ is ample. Since the degree of
the $(-1)$ -curves with respect to $T$ is bounded, there are only finitely many
of them.

One has $-\pi^{*}K_{Z}+\epsilon E=-(K_{\tilde{Z}}+\sum(-\alpha_{i}-\epsilon\beta_{i})F_{i})$ . Therefore, $\triangle\geq$

$0$ , and for $\epsilon\ll 1$ , we have $[\triangle]=0,$ since $-\alpha_{i}<1.$

Now, by Cone theorem [Kaw84, Thm.4.5], $NE(\tilde{Z})=\sum R_{j}$ , where
$R_{j}$ are “good extremal rays” The rays generated by the curves $F_{i}$ and
exceptional curves of the lst kind are obviously extremal. On the other
hand, let $R_{j}$ be a “good extremal ray”, generated by an irreducible curve $C.$

If $C\not\in\{F_{1}, \ldots, F_{k}\}$ then $C\cdot K_{\tilde{Z}}=C\cdot(\pi^{*}K_{Z}+\sum\alpha_{i}F_{i})<0$ . Hence, by
[Mor82] the curve $C$ is an exceptional curve of the lst kind, unless $Z\simeq \mathbb{P}^{2}$

or $\mathbb{F}_{n}.$ $\square $

1.4. Smooth Divisor Theorem

Theorem 1.5. Let $Z$ be a $log$ del Pezzo surface of index $\leq 2$ . Then the
linear system $|-2K_{Z}|$ is nonempty, has nofixed components and contains
a nonsingular element $D\in|-2K_{Z}|.$

Proof. Let $\pi$ : $\tilde{Z}\rightarrow Z$ be the minimal resolution of singularities. It is
sufficient to prove the statement for the linear system $|-\pi^{*}(2K_{Z})|$ on $\tilde{Z}.$

We have 2 $K_{\tilde{Z}}=\pi^{*}(2K_{Z})-\sum a_{i}F_{i}$ , and all $a_{i}=0$ or 1 $(a_{i}=-2\alpha_{i})$ .
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1. Nonemptiness.

$-\pi^{*}(2K_{Z})=K_{\tilde{Z}}+(-3K_{\tilde{Z}}-\sum a_{i}F_{i})=K_{\tilde{Z}}+\ulcorner D^{\urcorner},$

where $D=\frac{3}{2}(-2K_{\tilde{Z}}-\sum a_{i}F_{i})=-\pi^{*}(3K_{Z})$ is big and nef. Hence, by

Vanishing Theorem 1.2, $H^{i}(-\pi^{*}(2K_{Z}))=0$ for $i>0$ and $h^{0}(-\pi^{*}(2K_{Z}))=$

$\chi(-\pi^{*}(2K_{Z}))=3K_{Z}^{2}+1>0.$

2. Nonexistence offixed components. Let $E$ be the fixed part, so that
$|-\pi^{*}(2K_{Z})-E|$ is a movable linear system. Then

$h^{0}(-\pi^{*}(2K_{Z}))=h^{0}(-\pi^{*}(2K_{Z})-E)$ ,

$-\pi^{*}(2K_{Z})-E=K_{\tilde{Z}}+(-3K_{\tilde{Z}}-\sum a_{i}F_{i}-E)=K_{\tilde{Z}}+\ulcorner D^{\urcorner},$

$D=\frac{3}{2}(-2K_{\tilde{Z}}-\sum a_{i}F_{i})-E=(-\pi^{*}(2K_{Z})-E)+(-\pi^{*}K_{Z})$ .

The first of these divisors is movable and the second is big and nef, so the
sum is big and nef. By Vanishing Theorem 1.2, we have

$h^{i}(-\pi^{*}(2K_{Z})-E)=0, i>0,$

$\chi(-\pi^{*}(2K_{Z}))=\chi(-\pi^{*}(2K_{Z})-E)$ ,

(8) $2\chi(-\pi^{*}(2K_{Z}))-2\chi(-\pi^{*}(2K_{Z})-E)=E\cdot(-2\pi^{*}(2K_{Z})-K_{\tilde{Z}}-E)$ .

Let us show that this expression (8) is not equal to zero. Suppose

$-\pi^{*}K_{Z}\cdot(K_{\tilde{Z}}+E)=-\pi^{*}K_{Z}\cdot E-K_{Z}^{2}<0.$

Then the divisor $K_{\tilde{Z}}+E$ cannot be effective. Therefore,

$\chi(-E)=h^{0}(-E)-h^{1}(-E)+h^{0}(K_{\tilde{Z}}+E)\leq 0.$

Hence, $E\cdot(K_{\tilde{Z}}+E)=2\chi(-E)-2<0$ , and the expression (8) is strictly
positive. So, we can assume that $-\pi^{*}K_{Z}\cdot E\geq K_{Z}^{2}$ . Let us write

$E=\beta(-\pi^{*}K_{Z})+F, F\in(\pi^{*}K_{Z})^{\perp}$

in $N_{\mathbb{Q}}(\tilde{Z})$ . One has $\beta\leq 2$ since $-\pi^{*}K_{Z}\cdot(-\pi^{*}(2K_{Z})-E)\geq 0$ . Then

$E\cdot(-2\pi^{*}(2K_{Z})-K_{\tilde{Z}}-E)=(5-\beta)\beta K_{Z}^{2}-F\cdot(\sum\alpha_{i}F_{i}+F)$ .

The first term in this sum is $\geq 3$ since $\beta K_{Z}^{2}=-\pi^{*}K_{Z}$ $E\geq K_{Z}^{2}$ and
$K_{Z}^{2}=\chi(\pi^{*}(2K_{Z}))-1$ is a positive integer. The second term achieves the

minimum for $F=-\frac{1}{2}\sum\alpha_{i}F_{i}$ and equals $-\frac{m}{4}$ , where $m$ is the number of

non-Du Val singulanities. Therefore, all that remains to be shown is that the
surface $Z$ has fewer than 12 non-Du Val singularities.



1.4. SMOOTH DIVISOR THEOREM 17

By Lemma1.3, the surface $\tilde{Z}$ is rational. By Noether’s formula, $(K_{\tilde{Z}})^{2}+$

$rk Pic \tilde{Z}=10$ . By Lemma 1.6 below, $(K_{\tilde{Z}})^{2}\geq 0$ . Hence $Z$ has no more
than $rk Pic \tilde{Z}-1\leq 9$ singular points.

Lemma 1.6. Let $Z$ be a $logdel$ Pezzo surface ofindex $\leq 2$ and $\pi$ : $\tilde{Z}\rightarrow Z$

be its minimal resolution ofsingularities. Then $K_{\tilde{Z}}^{2}\geq 0.$

Proof. One has $K_{\tilde{Z}}=\pi^{*}K_{Z}+\sum\alpha_{i}F_{i}$ . Denote $\overline{K}=\pi^{*}K_{Z}-\sum\alpha_{i}F_{i}$ . Let
us show that- $K$ is nef. By Lemma 1.4, one has to show $that-\overline{K}\cdot F_{i}\geq 0$

and $-\overline{K}$ $C\geq 0$ if $C$ is an exceptional curve of the lst kind. We have
$-\overline{K}\cdot F_{i}=K_{\tilde{Z}}\cdot F_{i}=-F_{i}^{2}-2\geq 0$ since the resolution $\pi$ is minimal. Next,

$-\pi^{*}K_{Z}\cdot C=-K_{\tilde{Z}}\cdot C+\sum\alpha_{i}F_{i}\cdot C=1+\sum\alpha_{i}F_{i}\cdot C>0.$

Since this number is a half-integer,

$-\overline{K}\cdot C=1+2\sum\alpha_{i}F_{i}\cdot C\geq 0.$

So, $-\overline{K}$ is nef and $K_{\tilde{Z}}^{2}=\overline{K}^{2}\geq 0$ . Finally, if $\tilde{Z}=\mathbb{P}^{2}$ or $\mathbb{F}_{n}$ then $K_{\tilde{Z}}^{2}=9$ or
8 respectively. $\square $

3. Existence $ofa$ smooth element. Assume that all divisors in the linear
system $|-\pi^{*}(2K_{Z})|$ are singular. Then there exists a base point $P$ , and for
a general element $D\in|-\pi^{*}(2K_{Z})|$ the multiplicity of $D$ at $P$ is $k\geq 2.$

This point does not lie on $F_{i}since-\pi^{*}(2K_{Z})\cdot F_{i}=0$ . Let $\epsilon$ : $Y\rightarrow\tilde{Z}$ be
the blowup at $P,$ $ f=\pi\epsilon$ : $Y\rightarrow Z$ , and let $L$ be the exceptional divisor
of $\epsilon$ . We have: $h^{0}(-f^{*}(2K_{Z}))=h^{0}(-f^{*}(2K_{Z})-L)$ , the linear system
$|-f^{*}(2K_{Z})-kL|$ is movable, and

$2 K_{Y}=f^{*}(2K_{Z})-\sum a_{i}F_{i}+2L,$

$-f^{*}(2K_{Z})=K_{Y}+(-3K_{Y}-\sum a_{i}F_{i}+2L)=K_{Y}+\ulcorner D^{\urcorner},$

$D=\frac{3}{2}(-2K_{Y}-\sum a_{i}F_{i}+L)=\frac{3}{2}(-f^{*}(2K_{Z})-L)=$

$\frac{3}{2}[(-f^{*}(2K_{Z})-kL)+(k-1)L].$

The divisor $D$ is nef since for any irreducible curve $C\neq L,$ $C\cdot D\geq 0$ , and
also $D\cdot L=3/2$ . It is big since $(-f^{*}(2K_{Z})-L)^{2}=4K_{Z}^{2}-1>0$ . Now,

$-f^{*}(2K_{Z})-L=K_{Y}+(-3K_{Y}-\sum a_{i}F_{i}+L)=K_{Y}+\ulcorner D^{\urcorner},$

$D=\frac{3}{2}(-2K_{Y}-\sum a_{i}F_{i}+\frac{2}{3}L)=\frac{3}{2}((-f^{*}(2K_{Z})-kL)+(k-\frac{4}{3})L)$ .
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The latter divisor $D$ is nef since for any irreducible curve $C\neq L,$ $C\cdot D\geq 0,$

and also $D\cdot L=2;D$ is big since

$(-f^{*}(2K_{Z})-\frac{4}{3}L)^{2}=4K_{Z}^{2}-\frac{16}{9}>0.$

Now, again by Vanishing Theorem 1.2,

$h^{i}(-f^{*}(2K_{Z}))=h^{i}(-f^{*}(2K_{Z})-L)=0$ for $i>0,$

and one must have $\chi(-f^{*}(2K_{Z}))=\chi(-f^{*}(2K_{Z})-L)$ . But

$\chi(-f^{*}(2K_{Z}))-\chi(-f^{*}(2K_{Z})-L)=$

$=\frac{1}{2}L\cdot(-2f^{*}(2K_{Z})-K_{Y}-L)=1+L\cdot(-f^{*}(2K_{Z}))>0.$

The contradiction thus obtained completes the proof of the theorem. $\square $

Remark 1.7. In the same way, parts 1 and 3 can be proved for a $\log$ del
Pezzo surface of arbitrary index $n$ and the linear $system-\pi^{*}(nK_{Z})$ . Part 2
is easy to prove under the assumption that $\pi(E)$ passes only through (some

of) the Du Val singularities.

1.5. Reduction to DPN surfaces of elliptic type

Let $Z$ be a $\log$ del Pezzo surface of index $\leq 2$ . Consider the resolution of
singularities $f$ : $Y\rightarrow Z$ for which every Du Val singularity is resolved
by inserting the usual tree of $(-2)$ -curves, and the singularity $K_{n}$ by the
following chain:

(9)

2n-l vertices

The latter resolution is obtained by blowing up all intersection points of ex-
ceptional curves on the minimal resolution of $K_{n}$ points, see their diagrams
in Section 1.2. In contrast to the minimal resolution, we will call this the
right resolution of singularities. Consider a smooth element $C_{g}\in|-2K_{Z}|.$

It does not pass through singularities of the surface $Z$ . If we identify the
curve $C_{g}$ with its image under the morphism $f$ , then it is easy to see from
the formulae of Section 1.2 $that-f^{*}2K_{Z}$ is linearly equivalent to $C_{g}$ , and
$-2K_{Y}$ with the disjoint union of $C_{g}$ and curves in the above diagrams which
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have self-intersection-4. Moreover, it is easy to compute the genus of the
curve $C_{g}$ , and it equals $g=K_{Z}^{2}+1\geq 2$ . This shows that the surface $Y$

is a right DPN surface of elliptic type in the sense of the next Chapter (see
Sections 2.1 and 2.8).

Vice versa, the results of Chapters 2 and 3 will imply (see Chapter 4)
that a right DPN surface $Y$ of elliptic type admits a unique contraction of
exceptional curves $f$ : $Y\rightarrow Z$ to a $\log$ del Pezzo surface of index $\leq 2.$

In this way, the classification of log del Pezzo surfaces of index $\leq 2$ is
reduced to classification of right DPN surfaces of elliptic type.
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