
5 Generalized boundary value problems

In order to obtain the uniqueness of solutions of an ODE, we have to suppose
certain initial or boundary condition. In the study of PDEs, we need to
impose appropriate conditions on ∂Ω for the uniqueness of solutions.

Following the standard PDE theory, we shall treat a few typical boundary
conditions in this section.

Since we are mainly interested in degenerate elliptic PDEs, we cannot
expect “solutions” to satisfy the given boundary condition on the whole
of ∂Ω. The simplest example is as follows: For Ω := (0, 1), consider the
“degenerate” elliptic PDE

−du
dx

+ u = 0 in (0, 1).

Note that it is impossible to find a solution u of the above such that u(0) =
u(1) = 1.

Our plan is to propose a definition of “generalized” solutions for boundary
value problems. For this purpose, we extend the notion of viscosity solutions
to possibly discontinuous PDEs on Ω while we normally consider those in Ω.

For general G : Ω×R×Rn × Sn → R, we are concerned with

G(x, u,Du,D2u) = 0 in Ω. (5.1)

As in section 4.3, we define

G∗(x, r, p,X) := lim
ε→0

inf

{

G(y, s, q, Y )

∣

∣

∣

∣

y ∈ Ω ∩ Bε(x), |s− r| < ε,
|q − p| < ε, ‖Y −X‖ < ε

}

,

G∗(x, r, p,X) := lim
ε→0

sup

{

G(y, s, q, Y )

∣

∣

∣

∣

y ∈ Ω ∩ Bε(x), |s− r| < ε,
|q − p| < ε, ‖Y −X‖ < ε

}

.

Definition. We call u : Ω → R a viscosity subsolution (resp., superso-

lution) of (5.1) if, for any φ ∈ C2(Ω),

G∗(x, u
∗(x), Dφ(x), D2φ(x)) ≤ 0

(

resp., G∗(x, u∗(x), Dφ(x), D
2φ(x)) ≥ 0

)

provided that u∗ − φ (resp., u∗ − φ) attains its maximum (resp., minimum)
at x ∈ Ω.
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We call u : Ω → R a viscosity solution of (5.1) if it is both a viscosity
sub- and supersolution of (5.1).

Our comparison principle in this setting is as follows:

“Comparison principle in this setting”

viscosity subsolution u of (5.1)
viscosity supersolution v of (5.1)

}

=⇒ u ≤ v in Ω

Note that

the boundary condition is contained in the definition.

Using the above new definition, we shall formulate the boundary value
problems in the viscosity sense. Given F : Ω × R × Rn × Sn → R and
B : ∂Ω×R×Rn×Sn → R, we investigate general boundary value problems

{

F (x, u,Du,D2u) = 0 in Ω,
B(x, u,Du,D2u) = 0 on ∂Ω.

(5.2)

Setting G by

G(x, r, p,X) :=

{

F (x, r, p,X) for x ∈ Ω,
B(x, r, p,X) for x ∈ ∂Ω,

we give the definition of boundary value problems (5.2) in the viscosity sense.

Definition. We call u : Ω → R a viscosity subsolution (resp., superso-
lution) of (5.2) if it is a viscosity subsolution (resp., supersolution) of (5.1),
where G is defined in the above.

We call u : Ω → R a viscosity solution of (5.2) if it is both a viscosity
sub- and supersolution of (5.2).

Remark. When F and B are continuous and G is given as above, G∗ and
G∗ can be expressed in the following manner:

G∗(x, r, p,X) =

{

F (x, r, p,X) for x ∈ Ω,
min{F (x, r, p,X), B(x, r, p,X)} for x ∈ ∂Ω,

G∗(x, r, p,X) =

{

F (x, r, p,X) for x ∈ Ω,
max{F (x, r, p,X), B(x, r, p,X)} for x ∈ ∂Ω.
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It is not hard to extend the existence and stability results corresponding
to Theorem 4.3 and Proposition 4.8, respectively, to viscosity solutions in
the above sense. However, it is not straightforward to show the comparison
principle in this new setting. Thus, we shall concentrate our attention to
the comparison principle, which implies the uniqueness (and continuity) of
viscosity solutions.

The main difficulty to prove the comparison principle is that we have to
“avoid” the boundary conditions for both of viscosity sub- and supersolu-
tions.

To explain this, let us consider the case when G is given by (5.2). Let u
and v be, respectively, a viscosity sub- and supersolution of (5.1). We shall
observe that the standard argument in Theorem 3.7 does not work.

For ε > 0, suppose that (x, y) → u(x)− v(y)− (2ε)−1|x− y|2 attains its
maximum at (xε, yε) ∈ Ω×Ω. Notice that there is NO reason to verify that
(xε, yε) ∈ Ω× Ω.

The worst case is that (xε, yε) ∈ ∂Ω× ∂Ω. In fact, in view of Lemma 3.6,

we find X, Y ∈ Sn such that ((xε − yε)/ε,X) ∈ J
2,+

Ω u(xε), ((xε − yε)/ε, Y ) ∈
J
2,−
Ω v(yε), the matrix inequalities in Lemma 3.6 hold for X, Y . Hence, we

have

min

{

F

(

xε, u(xε),
xε − yε
ε

,X

)

, B

(

xε, u(xε),
xε − yε
ε

,X

)}

≤ 0

and

max

{

F

(

yε, v(yε),
xε − yε
ε

, Y

)

, B

(

yε, v(yε),
xε − yε
ε

, Y

)}

≥ 0.

However, even if we suppose that (3.21) holds for F and B “in Ω”, we cannot
get any contradiction when

F

(

xε, u(xε),
xε − yε
ε

,X

)

≤ 0 ≤ B

(

yε, v(yε),
xε − yε
ε

, Y

)

or

B

(

xε, u(xε),
xε − yε

ε
,X

)

≤ 0 ≤ F

(

yε, v(yε),
xε − yε
ε

, Y

)

.

It seems impossible to avoid this difficulty as long as we use |x− y|2/(2ε) as
“test functions”.
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Our plan to go beyond this difficulty is to find new test functions φε(x, y)
(instead of |x− y|2/(2ε)) so that the function (x, y) → u(x)− v(y)−φε(x, y)
attains its maximum over Ω × Ω at an interior point (xε, yε) ∈ Ω × Ω. To
this end, since we will use several “perturbation” techniques, we suppose two
hypotheses on F : First, we shall suppose the following continuity of F with
respect to (p,X)-variables.







There is an ω0 ∈ M such that
|F (x, p,X)− F (x, q, Y )| ≤ ω0(|p− q|+ ‖X − Y ‖)

for x ∈ Ω, p, q ∈ Rn, X, Y ∈ Sn.
(5.3)

The next assumption is a bit stronger than the structure condition (3.21):































There is ω̂F ∈ M such that
if X, Y ∈ Sn and µ > 1 satisfy

−3µ

(

I 0
0 I

)

≤
(

X 0
0 −Y

)

≤ 3µ

(

I −I
−I I

)

, then

F (y, p, Y )− F (x, p,X) ≤ ω̂F (|x− y|(1 + |p|+ µ|x− y|))
for x, y ∈ Ω, p ∈ Rn, X, Y ∈ Sn.

(5.4)

5.1 Dirichlet problem

First, we consider Dirichlet boundary value problems (Dirichlet problems for
short) in the above sense.

Assuming that viscosity sub- and supersolutions are continuous on ∂Ω,
we will obtain the comparison principle for them.

We now recall the classical Dirichlet problem

{

νu+ F (x,Du,D2u) = 0 in Ω,
u− g = 0 on ∂Ω.

(5.5)

Note that the Dirichlet problem of (5.5) in the viscosity sense is as follows:

subsolution ⇐⇒
{

νu+ F (x,Du,D2u) ≤ 0 in Ω,
min{νu+ F (x,Du,D2u), u− g} ≤ 0 on ∂Ω,

and

supersolution ⇐⇒
{

νu+ F (x,Du,D2u) ≥ 0 in Ω,
max{νu+ F (x,Du,D2u), u− g} ≥ 0 on ∂Ω.
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We shall suppose the following property on the shape of Ω, which may
be called an “interior cone condition” (see Fig 5.1):

{

For each z ∈ ∂Ω, there are r̂, ŝ ∈ (0, 1) such that
x− rn(z) + rξ ∈ Ω for x ∈ Ω ∩Br̂(z), r ∈ (0, r̂) and ξ ∈ Bŝ(0).

(5.6)

Here and later, we denote by n(z) the unit outward normal vector at z ∈ ∂Ω.

Fig 5.1

x

−rn(z)

n(z)
r̂

ŝr

z

Ω

Theorem 5.1. Assume that ν > 0, (5.3), (5.4) and (5.6) hold. For
g ∈ C(∂Ω), we let u and v : Ω → R be, respectively, a viscosity sub- and
supersolution of (5.5) such that

lim inf
x∈Ω→z

u∗(x) ≥ u∗(z) and lim sup
x∈Ω→z

v∗(x) ≤ v∗(z) for z ∈ ∂Ω. (5.7)

Then, u∗ ≤ v∗ in Ω.

Remark. Notice that (5.7) implies the continuity of u∗ and v∗ on ∂Ω.

Proof. Suppose that maxΩ(u
∗ − v∗) =: θ > 0. We simply write u and v

for u∗ and v∗, respectively.
Case 1: max∂Ω(u− v) = θ. We choose z ∈ ∂Ω such that (u − v)(z) = θ.

We shall divide three cases:
Case 1-1: u(z) > g(z). For ε, δ ∈ (0, 1), where δ > 0 will be fixed later,

setting φ(x, y) := (2ε2)−1|x− y− εδn(z)|2− δ|x− z|2, we let (xε, yε) ∈ Ω×Ω
be the maximum point of Φ(x, y) := u(x)− v(y)− φ(x, y) over Ω× Ω.

66



Since z−εδn(z) ∈ Ω for small ε > 0 by (5.6), Φ(xε, yε) ≥ Φ(z, z−εδn(z))
implies that

|xε − yε − εδn(z)|2
2ε2

≤ u(xε)−v(yε)−u(z)+v(z−εδn(z))−δ|xε−z|2. (5.8)

Since |xε−yε| ≤Mε, where M :=
√
2(maxΩ u−minΩ v−u(z)+ v(z)+1)1/2,

for small ε > 0, we may suppose that (xε, yε) → (x̂, x̂) and (xε − yε)/ε → ẑ
for some x̂ ∈ Ω and ẑ ∈ Rn as ε → 0 along a subsequence (denoted by ε
again). Thus, from the continuity (5.7) of v at z ∈ ∂Ω, (5.8) implies that

θ ≤ u(x̂)− v(x̂)− δ|x̂− z|2,

which yields x̂ = z. Moreover, we have

lim
ε→0

|xε − yε − εδn(z)|2
ε2

= 0,

which implies that

lim
ε→0

|xε − yε|
ε

= δ. (5.9)

Furthermore, we note that yε = xε − εδn(z) + o(ε) ∈ Ω because of (5.6).
Applying Lemma 3.6 with Proposition 2.7 to u(x)+ ε−1δ〈n(z), x〉− δ|x−

z|2 − 2−1δ2 and v(y) + ε−1δ〈n(z), y〉, we find X, Y ∈ Sn such that
(

xε − yε
ε2

− δ

ε
n(z) + 2δ(xε − z), X + 2δI

)

∈ J
2,+

Ω u(xε), (5.10)

(

xε − yε
ε2

− δ

ε
n(z), Y

)

∈ J
2,−
Ω v(yε), (5.11)

and

− 3

ε2

(

I O
O I

)

≤
(

X O
O −Y

)

≤ 3

ε2

(

I −I
−I I

)

.

Putting pε := ε−2(xε − yε)− δε−1n(z), by (5.3), we have

F (xε, pε, X)− F (xε, pε + 2δ(xε − z), X + 2δI) ≤ ω0(2δ|xε − z|+ 2δ). (5.12)

Since yε ∈ Ω and u(xε) > g(xε) for small ε > 0 provided xε ∈ ∂Ω, in view
of (5.10) and (5.11), we have

ν(u(xε)− v(yε)) ≤ F (yε, pε, Y )− F (xε, pε + 2δ(xε − z), X + 2δI).
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Combining this with (5.12) , by (5.4), we have

ν(u(xε)−v(yε)) ≤ ω0(2δ|xε−z|+2δ)+ω̂F

(

|xε − yε|
(

1 + |pε|+
|xε − yε|

ε2

))

.

Sending ε → 0 together with (5.9) in the above, we have

νθ ≤ ω0(2δ) + ω̂F (2δ
2),

which is a contradiction for small δ > 0, which only depends on θ and ν.
Case 1-2: v(z) < g(z). To get a contradiction, we argue as above replacing

φ(x, y) by ψ(x, y) := (2ε2)−1|x − y + εδn(z)|2 − δ|x − z|2 so that xε = yε −
εδn(z) + o(ε) ∈ Ω for small ε > 0. Note that we need here the continuity of
u on ∂Ω in (5.7) while the other one in (5.7) is needed in Case 1-1. (See also
the proof of Theorem 5.3 below.)

Case 1-3: u(z) ≤ g(z) and v(z) ≥ g(z). This does not occur because 0 <
θ = (u− v)(z) ≤ 0.

Case 2: sup∂Ω(u− v) < θ. In this case, using the standard test function

|x− y|2/(2ε) (without δ|x − z|2 term), we can follow the same argument as
in the proof of Theorem 3.7. ✷

Remark. Unfortunately, without assuming the continuity of viscosity so-
lutions on ∂Ω, the comparison principle fails in general.

In fact, setting F (x, r, p,X) ≡ r and g(x) ≡ −1, consider the function

u(x) :=

{

0 for x ∈ Ω,
−1 for x ∈ ∂Ω.

Note that u∗ ≡ 0 and u∗ ≡ u in Ω, which are respectively a viscosity sub- and
supersolution of G(x, u,Du,D2u) = 0 in Ω. Therefore, this example shows
that the comparison principle fails in general without assumption (5.7).

5.2 State constraint problem

The state constraint boundary condition arises in a typical optimal control
problem. Thus, if the reader is more interested in the PDE theory, he/she
may skip Proposition 5.2 below, which explains why we will adapt the “state
constraint boundary condition” in Theorem 5.3.
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To explain our motivation, we shall consider Bellman equations of first-order.

sup
a∈A

{νu− 〈g(x, a),Du〉 − f(x, a)} = 0 in Ω.

Here, we use the notations in section 4.2.1.
We introduce the following set of controls: For x ∈ Ω,

A(x) := {α(·) ∈ A | X(t;x, α) ∈ Ω for t ≥ 0}.

We shall suppose that

A(x) 6= ∅ for all x ∈ Ω. (5.13)

Also, we suppose that







(1) sup
a∈A

(

‖f(·, a)‖L∞(Ω) + ‖g(·, a)‖W 1,∞(Ω)

)

<∞,

(2) sup
a∈A

|f(x, a)− f(y, a)| ≤ ωf (|x− y|) for x, y ∈ Ω,
(5.14)

where ωf ∈ M.
We are now interested in the following the optimal cost functional:

u(x) := inf
α∈A(x)

∫ ∞

0
e−νtf(X(t;x, α), α(t))dt.

Proposition 5.2. Assume that ν > 0, (5.13) and (5.14) hold. Then, we have

(1) u is a viscosity subsolution of

sup
a∈A

{νu− 〈g(x, a),Du〉 − f(x, a)} ≤ 0 in Ω,

(2) u is a viscosity supersolution of

sup
a∈A

{νu− 〈g(x, a),Du〉 − f(x, a)} ≥ 0 in Ω.

Remark. We often say that u satisfies the state constraint boundary condition
when it is a viscosity supersolution of

“F (x, u,Du,D2u) ≥ 0 in ∂Ω”.

Proof. In fact, at x ∈ Ω, it is easy to verify that the dynamic programming
principle (Theorem 4.4) holds for small T > 0. Thus, we may show Theorem 4.5
replacing Rn by Ω.
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Hence, it only remains to show (2) on ∂Ω. Thus, suppose that there are x̂ ∈ ∂Ω,
θ > 0 and φ ∈ C1(Ω) such that (u∗ − φ)(x̂) = 0 ≤ (u∗ − φ)(x) for x ∈ Ω, and

sup
a∈A

{νφ(x̂)− 〈g(x̂, a),Dφ(x̂)〉 − f(x̂, a)} ≤ −2θ.

Then, we will get a contradiction.
Choose xk ∈ Ω ∩B1/k(x̂) such that u∗(x̂) + k−1 ≥ u(xk) and |φ(x̂)− φ(xk)| <

1/k. In view of (5.14), there is t0 > 0 such that for any α ∈ A(xk) and large k ≥ 1,
we have

νφ(Xk(t))− 〈g(Xk(t), α(t)),Dφ(Xk(t))〉 − f(Xk(t), α(t)) ≤ −θ for t ∈ (0, t0),

where Xk(t) := X(t;xk, α). Thus, multiplying e−νt and then, integrating it over
(0, t0), we have

φ(xk) ≤ e−νt0φ(Xk(t0)) +

∫ t0

0
e−νtf(Xk(t), α(t))dt −

θ

ν
(1− e−νt0).

Since we have

u(xk) ≤
2

k
+ e−νt0u(Xk(t0)) +

∫ t0

0
e−νtf(Xk(t), α(t))dt −

θ

ν
(1− e−νt0),

taking the infimum over A(xk), we apply Theorem 4.4 to get

0 ≤ 2

k
− θ

ν
(1− e−νt0),

which is a contradiction for large k. ✷

Motivated by this proposition, we shall consider more general second-order
elliptic PDEs.

Theorem 5.3. Assume that ν > 0, (5.3), (5.4), (5.6) and (5.12) hold. Let

u : Ω → R be, respectively, a viscosity sub- and supersolution of

νu+ F (x,Du,D2u) ≤ 0 in Ω,

and

νv + F (x,Dv,D2v) ≥ 0 in Ω.

Assume also that

lim inf
x∈Ω→z

u∗(x) ≥ u∗(z) for z ∈ ∂Ω. (5.15)
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Then, u∗ ≤ v∗ in Ω.

Remark. In 1986, Soner first treated the state constraint problems for deter-
ministic optimal control (i.e. first-order PDEs) by the viscosity solution approach.

We note that we do not need continuity of v on ∂Ω while we need it for
Dirichlet problems. For further discussion on the state constraint problems, we
refer to Ishii-Koike (1996).

We also note that the proof below is easier than that for Dirichlet problems
in section 5.1 because we only need to avoid the boundary condition for viscosity
subsolutions.

Proof. Suppose that maxΩ(u
∗ − v∗) =: θ > 0. We shall write u and v for u∗

and v∗, respectively, again.
We may suppose that max∂Ω(u − v) = θ since otherwise, we can use the

standard procedure to get a contradiction.
Now, we proceed the same argument in Case 1-2 in the proof of Theorem 5.1

(although it is not precisely written).
For ε, δ > 0, setting φ(x, y) := (2ε2)−1|x− y + εδn(z)|2 + δ|x− z|2, where n is

the unit outward normal vector at z ∈ ∂Ω, we let (xε, yε) ∈ Ω × Ω the maximum
point of u(x)− v(y)−φ(x, y) over Ω×Ω. As in the proof of Theorem 3.4, we have

lim
ε→0

(xε, yε) = (z, z) and lim
ε→0

|xε − yε|
ε

= δ. (5.16)

Since xε = yε − εδn(z) + o(ε) ∈ Ω for small ε > 0, in view of Lemma 3.6 with
Proposition 2.7, we can find X,Y ∈ Sn such that

(

xε − yε
ε2

+
δ

ε
n(z) + 2δ(xε − z),X + 2δI

)

∈ J
2,+

Ω
u(xε),

(

xε − yε
ε2

+
δ

ε
n(z), Y

)

∈ J
2,−
Ω v(yε),

and

− 3

ε2

(

I O
O I

)

≤
(

X O
O −Y

)

≤ 3

ε2

(

I −I
−I I

)

.

Setting pε := ε−2(xε − yε) + δε−1n(z), we have

ν(u(xε)− v(yε)) ≤ F (yε, pε, Y )− F (xε, pε + 2δ(xε − z),X + 2δI)

≤ ω0(2δ|xε − z|+ 2δ) + ω̂F

(

|xε − yε|
(

1 + |pε|+
|xε − yε|

ε

))

.
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Hence, sending ε→ 0 with (5.16), we have

νθ ≤ ω0(2δ) + ω̂F (2δ
2),

which is a contradiction for small δ > 0. ✷

5.3 Neumann problem

In the classical theory and modern theory for weak solutions in the distribu-
tion sense, the (inhomogeneous) Neumann condition is given by

〈n(x), Du(x)〉 − g(x) = 0 on ∂Ω,

where n(x) denotes the unit outward normal vector at x ∈ ∂Ω.
In Dirichlet and state constraint problems, we have used a test function

which forces one of xε and yε to be in Ω. However, in the Neumann boundary
value problem (Neumann problem for short), we have to avoid the boundary
condition for viscosity sub- and supersolutions simultaneously. Thus, we need
a new test function different from those in sections 5.1 and 5.2.

We first define the signed distance function from Ω by

ρ(x) :=

{

inf{|x− y| | y ∈ ∂Ω} for x ∈ Ωc,
− inf{|x− y| | y ∈ ∂Ω} for x ∈ Ω.

In order to obtain the comparison principle for the Neumann problem,
we shall impose a hypothesis on Ω (see Fig 5.2):















(1) There is r̂ > 0 such that
Ω ⊂ (Br̂(z + r̂n(z)))c for z ∈ ∂Ω.

(2) There is a neighborhood N of ∂Ω such that
ρ ∈ C2(N), and Dρ(x) = n(x) for x ∈ ∂Ω.

(5.17)

Remark. This assumption (1) is called the “uniform exterior sphere con-
dition”. Since |x− z − r̂n(z)| ≥ r̂ for z ∈ ∂Ω and x ∈ Ω, we have

〈n(z), x− z〉 ≤ |x− z|2
2r̂

for z ∈ ∂Ω and x ∈ Ω. (5.18)

It is known that when ∂Ω is “smooth” enough, (2) of (5.17) holds true.
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Fig 5.2

rn(z)

∂Ω

r̂

z

Ω

We shall consider the inhomogeneous Neumann problem:
{

νu+ F (x,Du,D2u) = 0 in Ω,
〈n(x), Du〉 − g(x) = 0 on ∂Ω.

(5.19)

Remember that we adapt the definition of viscosity solutions of (5.19) for
the corresponding G in (5.2).

Theorem 5.4. Assume that ν > 0, (5.3), (5.4) and (5.17) hold. For
g ∈ C(∂Ω), we let u and v : Ω → R be a viscosity sub- and supersolution of
(5.19), respectively.

Then, u∗ ≤ v∗ in Ω.

Remark. We note that we do not need any continuity of u and v on ∂Ω.

Proof. As before, we write u and v for u∗ and v∗, respectively.
As in the proof of Theorem 3.7, we suppose that maxΩ(u − v) =: θ > 0.

Also, we may suppose that max∂Ω(u− v) = θ.
Let z ∈ ∂Ω be a point such that (u− v)(z) = θ. For small δ > 0, we see

that the mapping x ∈ Ω → u(x)− v(y)− δ|x− z|2 takes its strict maximum
at z.

For small ε, δ > 0, where δ > 0 will be fixed later, setting φ(x, y) :=
(2ε)−1|x − y|2 − g(z)〈n(z), x − y〉 + δ(ρ(x) + ρ(y) + 2) + δ|x − z|2, we let
(xε, yε) ∈ Ω × Ω be the maximum point of Φ(x, y) := u(x) − v(y)− φ(x, y)
over Ω ∩N × Ω ∩N , where N is in (5.17).

Since Φ(xε, yε) ≥ Φ(z, z), as before, we may extract a subsequence, which
is denoted by (xε, yε) again, such that (xε, yε) → (x̂, x̂). We may suppose
x̂ ∈ ∂Ω. Since Φ(x̂, x̂) ≥ lim supε→0Φ(xε, yε), we have

u(x̂)− v(x̂)− δ|x̂− z|2 ≥ θ,
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which yields x̂ = z. Moreover, we have

lim
ε→0

|xε − yε|2
ε

= 0. (5.20)

Applying Lemma 3.6 to u(x)− δ(ρ(x)+ 1)− g(z)〈n(z), x〉− δ|x− z|2 and
−v(y)− δ(ρ(y) + 1) + g(z)〈n(z), y〉, we find X, Y ∈ Sn such that

(

pε + δn(xε) + 2δ(xε − z), X + δD2ρ(xε) + 2δI
)

∈ J
2,+

Ω u(xε), (5.21)

(

pε − δn(yε), Y − δD2ρ(yε)
)

∈ J
2,−
Ω v(yε), (5.22)

where pε := ε−1(xε − yε) + g(z)n(z), and

−3

ε

(

I 0
0 I

)

≤
(

X 0
0 −Y

)

≤ 3

ε

(

I −I
−I I

)

.

When xε ∈ ∂Ω, by (5.18), we calculate in the following manner:

〈n(xε), Dxφ(xε, yε)〉 = 〈n(xε), pε + δn(xε) + 2δ(xε − z)〉
≥ −|xε − yε|2

2r̂ε
+ g(z)〈n(xε),n(z)〉 + δ − 2δ|xε − z|.

Hence, given δ > 0, we see that

〈n(xε), Dxφ(xε, yε)〉 − g(xε) ≥
δ

2
for small ε > 0.

Thus, by (5.21), this yields

νu(xε) + F (xε, pε + δn(xε) + 2δ(xε − z), X + δD2ρ(xε) + 2δI) ≤ 0. (5.23)

Of course, if xε ∈ Ω, then the above inequality holds from the definition.
On the other hand, similarly, if yε ∈ ∂Ω, then

〈n(yε),−Dyφ(xε, yε)〉 − g(yε) ≤ −δ
2

for small ε > 0.

Hence, by (5.22), we have

νv(yε) + F (yε, pε − δn(yε), Y − δD2ρ(yε)) ≥ 0. (5.24)
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Using (5.3) and (5.4), by (5.23) and (5.24), we have

ν(u(xε)− v(yε)) ≤ F (yε, pε, Y )− F (xε, pε, X) + 2ω0(δM)

≤ ω̂F

(

|xε − yε|
(

1 + |pε|+
|xε − yε|

ε

))

+ 2ω0(δM),

where M := 3 + supx∈N∩Ω(2|x − z| + |D2ρ(x)|). Sending ε → 0 with (5.20)
in the above, we have

νθ ≤ 2ω0(δM),

which is a contradiction for small δ > 0. ✷

5.4 Growth condition at |x| → ∞
In the standard PDE theory, we often consider PDEs in unbounded domains,
typically, in Rn. In this subsection, we present a technique to establish the
comparison principle for viscosity solutions of

νu + F (x,Du,D2u) = 0 in Rn. (5.25)

We remind the readers that in the proofs of comparison results we always
suppose maxΩ(u − v) > 0, where u and v are, respectively, a viscosity sub-
and supersolution. However, considering Ω := Rn, the maximum of u − v
might attain its maximum at “|x| → ∞”. Thus, we have to choose a test
function φ(x, y), which forces u(x)− v(y)− φ(x, y) to takes its maximum at
a point in a compact set.

For this purpose, we will suppose the linear growth condition (for sim-
plicity) for viscosity solutions.

We rewrite the structure condition (3.21) for Rn:






















There is an ωF ∈ M such that if X, Y ∈ Sn and µ > 1 satisfy

−3µ

(

I 0
0 I

)

≤
(

X 0
0 −Y

)

≤ 3µ

(

I −I
−I I

)

,

then F (y, µ(x− y), Y )− F (x, µ(x− y), X)
≤ ωF (|x− y|(1 + µ|x− y|)) for x, y ∈ Rn.

(5.26)

We will also need the Lipschitz continuity of (p,X) → F (x, p,X), which
is stronger than (5.3).

{

There is µ0 > 0 such that |F (x, p,X)− F (x, q, Y )|
≤ µ0(|p− q|+ ‖X − Y ‖) for x ∈ Rn, p, q ∈ Rn, X, Y ∈ Sn.

(5.27)
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Proposition 5.5. Assume that ν > 0, (5.26) and (5.27) hold. Let u and
v : Rn → R be, respectively, a viscosity sub- and supersolution of (5.25).
Assume also that there is C0 > 0 such that

u∗(x) ≤ C0(1 + |x|) and v∗(x) ≥ −C0(1 + |x|) for x ∈ Rn. (5.28)

Then, u∗ ≤ v∗ in Rn.

Proof. We shall simply write u and v for u∗ and v∗, respectively.
For δ > 0, we set θδ := supx∈Rn(u(x)− v(x)−2δ(1+ |x|2)). We note that

(5.28) implies that there is zδ ∈ Rn such that θδ = u(zδ)−v(zδ)−2δ(1+|zδ|2).
Set θ := lim supδ→0 θδ ∈ R ∪ {∞}.

When θ ≤ 0, since

(u− v)(x) ≤ 2δ(1 + |x|2) + θδ for δ > 0 and x ∈ Rn,

we have u ≤ v in Rn.
Thus, we may suppose θ ∈ (0,∞]. Setting Φδ(x, y) := u(x) − v(y) −

(2ε)−1|x − y|2 − δ(1 + |x|2) − δ(1 + |y|2) for ε, δ > 0, where δ > 0 will be
fixed later, in view of (5.28), we can choose (xε, yε) ∈ Rn × Rn such that
Φδ(xε, yε) = max(x,y)∈Rn×R

n Φδ(x, y) ≥ θδ.
As before, extracting a subsequence if necessary, we may suppose that

lim
ε→0

|xε − yε|2
ε

= 0. (5.29)

By Lemma 3.6 with Proposition 2.7, putting pε := (xε − yε)/ε, we find
X, Y ∈ Sn such that

(pε + 2δxε, X + 2δI) ∈ J
2,+
u(xε),

(pε − 2δyε, Y − 2δI) ∈ J
2,−
v(yε),

and

−3

ε

(

I O
O I

)

≤
(

X O
O −Y

)

≤ 3

ε

(

I −I
−I I

)

.

Hence, we have

ν(u(xε)− v(yε))
≤ F (yε, pε − 2δyε, Y − 2δI)− F (xε, pε + 2δxε, X + 2δI)
≤ F (yε, pε, Y )− F (xε, pε, X) + 2δµ0(2 + |xε|+ |yε|)
≤ ωF

(

|xε − yε|
(

1 +
|xε − yε|

ε

))

+ νδ(2 + |xε|2 + |yε|2) + Cδ,
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where C = C(µ0, ν) > 0 is independent of ε, δ > 0. For the last inequality,
we used “2ab ≤ τa2 + τ−1b2 for τ > 0”.

Therefore, we have

νθ ≤ ωF

(

|xε − yε|
(

1 +
|xε − yε|

ε

))

+ Cδ.

Sending ε → 0 in the above together with (5.29), we get νθ ≤ Cδ, which is
a contradiction for small δ > 0. ✷
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