
2 Definition

In this section, we derive the definition of viscosity solutions of (1.1) via the
vanishing viscosity method.

We also give some basic properties of viscosity solutions and equivalent
definitions using “semi-jets”.

2.1 Vanishing viscosity method

When the notion of viscosity solutions was born, in order to explain the
reason why we need it, many speakers started in their talks by giving the
following typical example called the eikonal equation:

|Du|2 = 1 in Ω. (2.1)

We seek C1 functions satisfying (2.1) under the Dirichlet condition:

u(x) = 0 for x ∈ ∂Ω. (2.2)

However, since there is no classical solution of (2.1)-(2.2) (showing the non-
existence of classical solutions is a good exercise), we intend to derive a
reasonable definition of weak solutions of (2.1).

In fact, we expect that the following function (the distance from ∂Ω)
would be the unique solution of this problem (see Fig 2.1):

u(x) = dist(x, ∂Ω) := inf
y∈∂Ω

|x− y|.

Fig 2.1
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If we consider the case when n = 1 and Ω = (−1, 1), then the expected
solution is given by

u(x) = 1− |x| for x ∈ [−1, 1]. (2.3)

Since this function is C∞ except at x = 0, we could decide to call u a weak
solution of (2.1) if it satisfies (2.1) in Ω except at finite points.

Fig 2.2
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However, even in the above simple case of (2.1), we know that there are
infinitely many such weak solutions of (2.1) (see Fig 2.2); for example, −u is
the weak solution and

u(x) =







x+ 1 for x ∈ [−1,−1
2
),

−x for x ∈ [−1
2
, 1
2
),

x− 1 for x ∈ [1
2
, 1],

. . . etc.

Now, in order to look for an appropriate notion of weak solutions, we
introduce the so-called vanishing viscosity method; for ε > 0, we consider
the following PDE as an approximate equation of (2.1) when n = 1 and
Ω = (−1, 1):

{

−εu′′ε + (u′ε)
2 = 1 in (−1, 1),

uε(±1) = 0.
(2.4)

The first term, −εu′′ε , in the left hand side of (2.4) is called the vanishing
viscosity term (when n = 1) as ε→ 0.

By an elementary calculation, we can find a unique smooth function uε
in the following manner: We first note that if a classical solution of (2.4)
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exists, then it is unique. Thus, we may suppose that u′ε(0) = 0 by symmetry.
Setting vε = u′ε, we first solve the ODE:

{

−εv′ε + v2ε = 1 in (−1, 1),
vε(0) = 0.

(2.5)

It is easy to see that the solution of (2.5) is given by

vε(x) = − tanh
(x

ε

)

.

Hence, we can find uε by

uε(x) = −ε log
(

cosh
(

x
ε

)

cosh
(

1
ε

)

)

= −ε log
(

e
x
ε + e−

x
ε

e
1

ε + e−
1

ε

)

.

It is a good exercise to show that uε converges to the function in (2.3)
uniformly in [−1, 1].

Remark. Since ûε(x) := −uε(x) is the solution of

{

εu′′ + (u′)2 = 1 in (−1, 1),
u(±1) = 0,

we have û(x) := limε→0 ûε(x) = −u(x). Thus, if we replace −εu′′ by +εu′′,
then the limit function would be different in general.

To define weak solutions, we adapt the properties which hold for the
(uniform) limit of approximate solutions of PDEs with the “minus” vanishing
viscosity term.

Let us come back to general second-order PDEs:

F (x, u,Du,D2u) = 0 in Ω. (2.6)

We shall use the following definition of classical solutions:

Definition. We call u : Ω → R a classical subsolution (resp.,
supersolution, solution) of (2.6) if u ∈ C2(Ω) and

F (x, u(x), Du(x), D2u(x)) ≤ 0 (resp., ≥ 0, = 0) in Ω.
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Remark. If F does not depend on X-variables (i.e. F (x, u,Du) = 0; first-
order PDEs), we only suppose u ∈ C1(Ω) in the above in place of u ∈ C2(Ω).

Throughout this text, we also suppose the following monotonicity condi-
tion with respect to X-variables:

Definition. We say that F is (degenerate) elliptic if

{

F (x, r, p,X) ≤ F (x, r, p, Y )
for all x ∈ Ω, r ∈ R, p ∈ Rn, X, Y ∈ Sn provided X ≥ Y.

(2.7)

We notice that if F does not depend on X-variables (i.e. F = 0 is the
first-order PDE), then F is automatically elliptic.

We also note that the left hand side F (x, r, p,X) = −trace(X) of the
Laplace equation (1.2) is elliptic.

We will derive properties which hold true for the (uniform) limit (as
ε→ +0) of solutions of

−ε△u+ F (x, u,Du,D2u) = 0 in Ω (ε > 0). (2.8)

Note that since −εtrace(X) + F (x, r, p,X) is “uniformly” elliptic (see in
section 3 for the definition) provided that F is elliptic and F (x, r, p,X) ≤
C|X| for (x, r, p) ∈ Ω × R × Rn, it is easier to solve (2.8) than (2.6) in
practice. See [13] for instance.

Proposition 2.1. Assume that F is elliptic. Let uε ∈ C2(Ω) ∩ C(Ω)
be a classical subsolution (resp., supersolution) of (2.8). If uε converges to
u ∈ C(Ω) (as ε → 0) uniformly in any compact sets K ⊂ Ω, then, for any
φ ∈ C2(Ω), we have

F (x, u(x), Dφ(x), D2φ(x)) ≤ 0 (resp., ≥ 0)

provided that u− φ attains its maximum (resp., minimum) at x ∈ Ω.

Remark. When F does not depend on X-variables, we only need to sup-
pose φ and uε to be in C1(Ω) as before.

Proof. We only give a proof of the assertion for subsolutions since the
other one can be shown in a symmetric way.
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Suppose that u−φ attains its maximum at x̂ ∈ Ω for φ ∈ C2(Ω). Setting
φδ(y) := φ(y) + δ|y − x̂|4 for small δ > 0, we see that

(u− φδ)(x̂) > (u− φδ)(y) for y ∈ Ω \ {x̂}.

(This tiny technique to replace a maximum point by a “strict” one will appear
in Proposition 2.2.)

Let xε ∈ Ω be a point such that (uε − φδ)(xε) = maxΩ(uε − φδ). Note
that xε also depends on δ > 0.

Since uε converges to u uniformly in Br(x̂) and x̂ is the unique maximum
point of u − φδ, we note that limε→0 xε = x̂. Thus, we see that xε ∈ Ω for
small ε > 0. Notice that if we argue by φ instead of φδ, the limit of xε might
differ from x̂.

Thus, at xε ∈ Ω, we have

−ε△uε(xε) + F (xε, uε(xε), Duε(xε), D
2uε(xε)) ≤ 0.

Since D(uε − φδ)(xε) = 0 and D2(uε − φδ)(xε) ≤ 0, in view of ellipticity, we
have

−ε△φδ(xε) + F (xε, uε(xε), Dφδ(xε), D
2φδ(xε)) ≤ 0.

Sending ε → 0 in the above, we have

F (x̂, u(x̂), Dφδ(x̂), D
2φδ(x̂)) ≤ 0.

Since Dφδ(x̂) = Dφ(x̂) and D2φδ(x̂) = D2φ(x̂), we conclude the proof. ✷

Definition. We call u : Ω → R a viscosity subsolution (resp.,
supersolution) of (2.6) if, for any φ ∈ C2(Ω),

F (x, u(x), Dφ(x), D2φ(x)) ≤ 0 (resp., ≥ 0)

provided that u− φ attains its maximum (resp., minimum) at x ∈ Ω.
We call u : Ω → R a viscosity solution of (2.6) if it is both a viscosity

sub- and supersolution of (2.6).

Remark. Here, we have given the definition to “general” functions but
we will often suppose that they are (semi-)continuous in Theorems etc.

In fact, in our propositions in sections 2.1, we will suppose that viscosity
sub- and supersolutions are continuous.
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However, all the proposition in section 2.1 can be proved by replacing up-
per and lower semi-continuity for viscosity subsolutions and supersolutions,
respectively.

We will introduce general viscosity solutions in section 3.3.

Notation. In order to memorize the correct inequality, we will often
say that u is a viscosity subsolution (resp., supersolution) of

F (x, u,Du,D2u) ≤ 0 (resp., ≥ 0) in Ω

if it is a viscosity subsolution (resp., supersolution) of (2.6).

Proposition 2.2. For u : Ω → R, the following (1) and (2) are equiva-
lent:















(1) u is a viscosity subsolution (resp., supersolution) of (2.6),
(2) if 0 = (u− φ)(x̂) > (u− φ)(x) (resp., < (u− φ)(x))

for φ ∈ C2(Ω), x̂ ∈ Ω and x ∈ Ω \ {x̂},
then F (x̂, φ(x̂), Dφ(x̂), D2φ(x̂)) ≤ 0 (resp., ≥ 0).

Fig 2.3
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Proof. The implication (1) ⇒ (2) is trivial.
For the opposite implication in the subsolution case, suppose that u− φ

attains a maximum at x̂ ∈ Ω. Set

φδ(x) = φ(x) + δ|x− x̂|4 + (u− φ)(x̂).
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See Fig 2.3. Since 0 = (u− φδ)(x̂) > (u− φδ)(x) for x ∈ Ω \ {x̂}, (2) gives

F (x̂, φδ(x̂), Dφδ(x̂), D
2φδ(x̂)) ≤ 0,

which implies the assertion. ✷

By the next proposition, we recognize that viscosity solutions are right
candidates of weak solutions when F is elliptic.

Proposition 2.3. Assume that F is elliptic. A function u : Ω → R
is a classical subsolution (resp., supersolution) of (2.6) if and only if it is a
viscosity subsolution (resp., supersolution) of (2.6) and u ∈ C2(Ω).

Proof. Suppose that u is a viscosity subsolution of (2.6) and u ∈ C2(Ω).
Taking φ ≡ u, we see that u − φ attains its maximum at any points x ∈ Ω.
Thus, the definition of viscosity subsolutions yields

F (x, u(x), Du(x), D2u(x)) ≤ 0 for x ∈ Ω.

On the contrary, suppose that u ∈ C2(Ω) is a classical subsolution of
(2.6).

Fix any φ ∈ C2(Ω). Assuming that u − φ takes its maximum at x ∈ Ω,
we have

D(u− φ)(x) = 0 and D2(u− φ)(x) ≤ 0.

Hence, in view of ellipticity, we have

0 ≥ F (x, u(x), Du(x), D2u(x)) ≥ F (x, u(x), Dφ(x), D2φ(x)). ✷

We introduce the sets of upper and lower semi-continuous functions: For
K ⊂ Rn,

USC(K) := {u : K → R | u is upper semi-continuous in K},

and

LSC(K) := {u : K → R | u is lower semi-continuous in K}.

Remark. Throughout this book, we use the following maximum principle
for semi-continuous functions:
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An upper semi-continuous function in a compact set attains its maximum.

We give the following lemma which will be used without mentioning it.
Since the proof is a bit technical, the reader may skip it over first.

Proposition 2.4. Assume that u ∈ USC(Ω) (resp., u ∈ LSC(Ω)) is a viscos-

ity subsolution (resp., supersolution) of (2.6) in Ω.
Then, for any open set Ω′ ⊂ Ω, u is a viscosity subsolution (resp., supersolution)

of (2.6) in Ω′.

Proof.We only show the assertion for subsolutions since the other can be shown
similarly.

For φ ∈ C2(Ω′), by Proposition 2.2, we suppose that for some x̂ ∈ Ω′,

0 = (u− φ)(x̂) > (u− φ)(y) for all y ∈ Ω′ \ {x̂}.

For simplicity, we shall suppose x̂ = 0.
Choose r > 0 such that B2r ⊂ Ω′. We then choose ξk ∈ C∞(Rn) (k = 1, 2)

such that 0 ≤ ξk ≤ 1 in Rn, ξ1 + ξ2 = 1 in Rn,

ξ1 = 1 in Br, and ξ2 = 1 in Rn \B2r.

We define ψ = ξ1φ +Mξ2, where M = supΩ u + 1. Since it is easy to verify that
ψ ∈ C2(Rn), and 0 = (u− ψ)(0) > (u− ψ)(x) for x ∈ Ω \ {0}, we leave the proof
to the reader. This concludes the proof. ✷

2.2 Equivalent definitions

We present equivalent definitions of viscosity solutions. However, since we
will need those in the proof of uniqueness for second-order PDEs,

the reader may postpone this subsection until section 3.3.

First, we introduce “semi”-jets of functions u : Ω → R at x ∈ Ω by

J2,+u(x) :=











(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∣

u(y) ≤ u(x) + 〈p, y − x〉
+
1

2
〈X(y − x), y − x〉

+o(|y − x|2) as y ∈ Ω → x
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and

J2,−u(x) :=











(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∣

u(y) ≥ u(x) + 〈p, y − x〉
+
1

2
〈X(y − x), y − x〉

+o(|y − x|2) as y ∈ Ω → x











.

Note that J2,−u(x) = −J2,+(−u)(x).

Remark. We do not impose any continuity for u in these definitions.

We recall the notion of “small order o” in the above: For k ≥ 1,

f(x) ≤ o(|x|k) (resp., ≥ o(|x|k)) as x→ 0

⇐⇒







there is ω ∈ C([0,∞), [0,∞)) such that ω(0) = 0, and

sup
x∈Br\{0}

f(x)

|x|k ≤ ω(r)

(

resp., inf
x∈Br\{0}

f(x)

|x|k ≥ −ω(|x|)
)

In the next proposition, we give some basic properties of semi-jets: (1)
is a relation between semi-jets and classical derivatives, and (2) means that
semi-jets are “defined” in dense sets of Ω.

Proposition 2.5. For u : Ω → R, we have the following:
(1) If J2,+u(x) ∩ J2,−u(x) 6= ∅, then Du(x) and D2u(x) exist and,

J2,+u(x) ∩ J2,−u(x) = {(Du(x), D2u(x))}.

(2) If u ∈ USC(Ω) (resp., u ∈ LSC(Ω)), then

Ω =
{

x ∈ Ω
∣

∣

∣
∃xk ∈ Ω such that J2,+u(xk) 6= ∅, lim

k→∞
xk = x

}

(

resp., Ω =
{

x ∈ Ω
∣

∣

∣
∃xk ∈ Ω such that J2,−u(xk) 6= ∅, lim

k→∞
xk = x

})

.

Proof. The proof of (1) is a direct consequence from the definition.
We give a proof of the assertion (2) only for J2,+.
Fix x ∈ Ω and choose r > 0 so that Br(x) ⊂ Ω. For ε > 0, we can choose

xε ∈ Br(x) such that u(xε)− ε−1|xε − x|2 = maxy∈Br(x)
(u(y)− ε−1|y − x|2).

Since |xε − x|2 ≤ ε(maxBr(x)
−u(x)), we see that xε converges to x ∈ Br(x)
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as ε→ 0. Thus, we may suppose that xε ∈ Br(x) for small ε > 0. Hence, we
have

u(y) ≤ u(xε) +
1

ε
(|y − x|2 − |xε − x|2) for all y ∈ Br(x).

It is easy to check that (2(xε − x)/ε, 2ε−1I) ∈ J2,+u(xε). ✷

We next introduce a sort of closure of semi-jets:

J
2,±
u(x) :=







(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∃xk ∈ Ω and ∃(pk, Xk) ∈ J2,±u(xk)
such that (xk, u(xk), pk, Xk)
→ (x, u(x), p,X) as k → ∞







.

Proposition 2.6. For u : Ω → R, the following (1), (2), (3) are equiva-
lent.























(1) u is a viscosity subsolution (resp., supersolution) of (2.6).
(2) For x ∈ Ω and (p,X) ∈ J2,+u(x) (resp., J2,−u(x)),

we have F (x, u(x), p,X) ≤ 0 (resp., ≥ 0).

(3) For x ∈ Ω and (p,X) ∈ J
2,+
u(x) (resp., J

2,−
u(x)),

we have F (x, u(x), p,X) ≤ 0 (resp., ≥ 0).

Proof. Again, we give a proof of the assertion only for subsolutions.

Step 1: (2) =⇒ (3). For x ∈ Ω and (p,X) ∈ J
2,+
u(x), we can find (pk, Xk) ∈

J2,+u(xk) with xk ∈ Ω such that limk→∞(xk, u(xk), pk, Xk) = (x, u(x), p,X)
and

F (xk, u(xk), pk, Xk) ≤ 0,

which implies (3) by sending k → ∞.
Step 2: (3) =⇒ (1). For φ ∈ C2(Ω), suppose also (u−φ)(x) = max(u−φ).

Thus, the Taylor expansion of φ at x gives

u(y) ≤ u(x)+〈Dφ(x), y−x〉+1

2
〈D2φ(x)(y−x), y−x〉+o(|x−y|2) as y → x.

Thus, we have (Dφ(x), D2φ(x)) ∈ J2,+u(x) ⊂ J
2,+
u(x).

Step 3: (1) =⇒ (2). For (p,X) ∈ J2,+u(x) (x ∈ Ω), we can find nonde-
creasing, continuous ω : [0,∞) → [0,∞) such that ω(0) = 0 and

u(y) ≤ u(x) + 〈p, y − x〉 + 1

2
〈X(y − x), y − x〉+ |y − x|2ω(|y − x|) (2.9)

18



as y → x. In fact, by the definition of o, we find ω0 ∈ C([0,∞), [0,∞)) such
that ω0(0) = 0, and

ω0(r) ≥ sup
y∈Br(x)\{x}

1

|x− y|2
{

u(y)− u(x)− 〈p, y − x〉 − 1

2
〈X(y − x), y − x〉

}

,

we verify that ω(r) := sup0≤t≤r ω0(t) satisfies (2.9).
Now, we define φ by

φ(y) := 〈p, y − x〉+ 1

2
〈X(y − x), y − x〉+ ψ(|x− y|),

where

ψ(t) :=

∫

√
3t

t

(
∫ 2s

s

ω(r)dr

)

ds ≥ t2ω(t).

It is easy to check that

(Dφ(x), D2φ(x)) = (p,X) and (u− φ)(x) ≥ (u− φ)(y) for y ∈ Ω.

Therefore, we conclude the proof. ✷

Remark. In view of the proof of Step 3, we verify that for x ∈ Ω,

J2,+u(x) =

{

(Dφ(x), D2φ(x)) ∈ Rn × Sn

∣

∣

∣

∣

∃φ ∈ C2(Ω) such that u− φ
attains its maximum at x

}

,

J2,−u(x) =

{

(Dφ(x), D2φ(x)) ∈ Rn × Sn

∣

∣

∣

∣

∃φ ∈ C2(Ω) such that u− φ
attains its minimum at x

}

.

Thus, we intuitively know J2,±u(x) from their graph.

Example. Consider the function u ∈ C([−1, 1]) in (2.3). From the graph
below, we may conclude that J2,−u(0) = ∅, and J2,+u(0) = ({1} × [0,∞)) ∪
({−1} × [0,∞)) ∪ ((−1, 1)×R). See Fig 2.4.1 and 2.4.2.

We omit how to obtain J2,±u(0) of this and the next examples.
We shall examine J2,± for discontinuous functions. For instance, consider

the Heaviside function:

u(x) :=

{

1 for x ≥ 0,
0 for x < 0.

19



Fig 2.4.1

y = φ(x)

y = x+ 1
y

y = u(x)

x

Fig 2.4.2

y = φ(x)

y

y = u(x)

x

y = ax+ 1 (|a| < 1)

Fig 2.5

y = φ(x)
y

y = u(x)

x

1

0

y = ax+ 1
(a > 0)
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We see that J2,−u(0) = ∅ and J2,+u(0) = ({0} × [0,∞))∪ ((0,∞)×R). See
Fig 2.5.

In order to deal with “boundary value problems” in section 5, we prepare
some notations: For a set K ⊂ Rn, which is not necessarily open, we define
semi-jets of u : K → R at x ∈ K by

J2,+
K u(x) :=











(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∣

u(y) ≤ u(x) + 〈p, y − x〉
+
1

2
〈X(y − x), y − x〉

+o(|y − x|2) as y ∈ K → x











,

J2,−
K u(x) :=











(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∣

u(y) ≥ u(x) + 〈p, y − x〉
+
1

2
〈X(y − x), y − x〉

+o(|y − x|2) as y ∈ K → x











,

and

J
2,±
K u(x) :=







(p,X) ∈ Rn × Sn

∣

∣

∣

∣

∣

∣

∃xk ∈ K and ∃(pk, Xk) ∈ J2,±
K u(xk)

such that (xk, u(xk), pk, Xk)
→ (x, u(x), p,X) as k → ∞







.

Remark. It is obvious to verify that

x ∈ Ω =⇒ J2,±
Ω u(x) = J2,±

Ω
u(x) and J

2,±
Ω u(x) = J

2,±
Ω u(x).

For x ∈ Ω, we shall simply write J2,±u(x) (resp., J
2,±
u(x)) for J2,±

Ω u(x) =

J2,±
Ω
u(x) (resp, J

2,±
Ω u(x) = J

2,±
Ω u(x)).

Example. Consider u(x) ≡ 0 in K := [0, 1]. It is easy to observe that

J2,+u(x) = J2,+
K u(x) = {0} × [0,∞) provided x ∈ (0, 1). It is also easy to

verify that
J2,+
K u(0) = ({0} × [0,∞)) ∪ ((0,∞)×R),

and
J2,−
K u(0) = ({0} × (−∞, 0]) ∪ ((−∞, 0)×R).

We finally give some properties of J2,±
Ω

and J
2,±
Ω . Since the proof is easy,

we omit it.
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Proposition 2.7. For u : Ω → R, ψ ∈ C2(Ω) and x ∈ Ω, we have

J2,±
Ω

(u+ ψ)(x) = (Dψ(x), D2ψ(x)) + J2,±
Ω
u(x)

and
J
2,±
Ω (u+ ψ)(x) = (Dψ(x), D2ψ(x)) + J

2,±
Ω u(x).
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