Chapter 6

Bases

6.1 The Aomoto Complex

In this section we study the cohomology groups HP(A(A),axA). We do this by
considering a universal complex whose specialization is the complex (A"(A), axA).

Definition 6.1.1 ([A1]). Lety = {yn | H € A} be a system of indeterminates in
one-to-one correspondence with the hyperplanes of A. Let Cly] be the polynomial
ring in'y. Define a graded Cly]-algebra:

A, = A, (4) = Cly] oc A (A)
Let ay = Y peayn ©ag €A The complex (A, (A), ayA)

ay N\

ay N\ ay A\ r
(1) 0— AY(A) == AL(A) == ... == AL (A) =0

is called the Aomoto complex.

Let S be a multiplicative closed subset of C[y]. Consider the Aomoto complex
of quotients by S

ay N\

2) 0— AQ(A) % AL(A) 25
where Ay = A(A) = Clyls ®cpy) Ay<A)-

Lemma 6.1.2. IfC is a nonempty central arrangement and Y is the multiplicative
closed subset of Cly| generated by )y coym; Y = {(ZHec yH)m | m > 0}, then
the complez (AY(C), ayA) is acyclic.

R AT(A) =0,

Proof. Let 0 = Zﬁzluj(a/auj) be the Euler derivation. Denote the interior
product by angle brackets. For n € AY(C), a standard formula [OT1, 4.73] gives
(0p,ay An) = (08, ay)n — ay(0p,n), where (0p,ay) = > ycoyn ® 1. Thus if
ay An =0, the hypothesis gives n = ay A (3 yce yr )~ H0g,n). O

47
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Lemma 6.1.3. Let A = (Ag)gea be a system of weights. Suppose that S is a
multiplicative closed subset of Cly| satisfying f(A) # 0 whenever f € S. Denote
the evaluation map by ev) : Ag — AP which evaluates at yg = Ay (H € A). The
evaluation map induces a homomorphism

evy : H'(As(A),ayN) — H (A (A), axN).

(1) The evaluation map evy : A — AP is surjective.
(2) The evaluation map

evy : H"(A5(A), ayN) — H"(A'(A), axN)
18 surjective.

Proof. (1) is obvious. We obtain (2) from (1) because the map involves the top
cohomology groups. O

6.2 The Isomorphism

In this section we will prove that the Aomoto complex (Ap,ay/A) of quotients
by a suitable multiplicative closed subset D of Cly] is isomorphic to the cochain
complex of the simplicial complex NBC. The subset D is defined as follows: recall
the projective closure Ay in Section 3.1 and the set of dense edges D(Ay) in
Section 3.2. Define yx,. = — ¢ 4 ym. Then the multiplicative subset D of C[y]
is generated by

{ Y wynlZeD(AL)}.

He(Ax)y

For a flag P = (Y, > Y3 > --- > Y,) in L, define

q
2y(P)= /\ ay(¥;) € A,
p=1
where ay(X) = > pca, yu @ ag for X € L. For S = {H;,...,H;} € nbc,
recall that £(S) = (X1 > --- > X,), where X, = (j_, H;, for 1 <p < gasin
Section 5.2. Let C"(NBC, Cly]) be the cochain complex of NBC over Cly]. Note
that C~}(NBC, Cly]) is a rank-one free C[y]-module whose basis is the cochain (J*,
dual to the (—1)-simplex (). We define

©7: C17H(NBC,Cly]) — A% (1<q¢<r)
by
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where a € C71(NBC, C[y]) and 6y (S) = Ey(£(S)). For ¢ = 0, define
0" : C"'(NBC,Cly]) — AY

by ©°(cr) = a(0) € AY = Cly]. The important result below is due to Schechtman-
Varchenko [SV1] and Brylawski-Varchenko [BV]. We state it in a slightly different
way using NBC and present a new and elementary proof.

Theorem 6.2.1. The maps {©%}o<q<, give a morphism from the (augmented)
cochain complex C"~1(NBC,C[y]) to the Aomoto complex (Ay,ayA). This mor-
phism induces an isomorphism over the ring of quotients Cly|p.

Proof. Step 1. For the first half, it is sufficient to show that the diagram

Ce-1(NBC,Cly]) —>— C9(NBC,Cly])

@(1J/ l@q-%-l

q N q+1
Ay Ay
ay N\

is commutative, where § denotes the coboundary map. It is easy to see that the
diagram is commutative when ¢ = 0. Let 0* be the (—1)-cochain dual to the
(—1)-simplex (). Then

0007 = 0" (Y {H}) = Y un ® ay = ay = ay A 6°(0°).

HeA HeA

Suppose ¢ > 0. Let S = {H;,,..., H; } bea (¢—1)-simplex in NBC. Let S* denote
the (¢ — 1)-cochain dual to S:

el
(5%, 8') = 1 if S —.S
0 otherwise.
It suffices to show that
0l o 6(5%) = ay NOI(S™)

by induction on ¢. Note that
q
0(S*) =Y (-V)* {Hi,....Hi H Hy,.,.....H;,}",
k=0 I

where the second summation is over the set

Ik:{HG/H{Hil,...7Hik,H,Hi Hiq}Ean}.

(SRR
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Let £(S) = (X1 > -+ > X,). It follows from Lemmas 5.2.2 and 5.2.3 that the
maps £ and v provide a bijection between Iy and

Jo={(Z>X1>...X,) | v(Z) < Hi,, r(Z) = q+ 1}

and for 1 < k < ¢ between I;, and

Jh={N1>.. Vs >Z>Xpp1>-->X,) | Hyy <v(Z) < Hyy .,
r(Z)=q—k+1,7(Y;)=q—j+2,v(Y)) = Hi;(1<j<k)}.

Fix Y7 with V()fl) = Hip T(Yl) =q+1,and Y7 > Xj. Define
JV) ={(Z>Xo>...X,) |v(Z)< Hi,, r(Z)=q, Y1 > Z}

and

(V) ={(Yo>..Ys > Z> X1 > --- > X,) | Hy, < v(Z) < Hy,,,,

for 2 <k <gq. Then

By the induction assumption for {Hj,,..., H; } € nbc(Ay,), we have

Y (DEY N Ey(P) =00 d({Hiy. ... Hi,})

k=1 PeJy (Y1)
= ay(Yl) A eq_l({Hirp ceey Hiq}*)
= ay(Y1)ay(X2) ... ay(X,).
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Thus
q q
010 d(S) =) (-1)F Y Ey(P) = D E(P) =Y (FD)FTN Y Ey(P)
k=0 PEJj PeJo k=1 PeJj
= > ay(Day(X1) . ay(X) = Y ay(V)
v(Z)<Hi, v(Y1)=H;,
r(Z)=q+1 r(Y1)=¢+1
Z>X1 Yi>Xy

X
M=
L
T
N
=<m
=
|
]
<<®
N
!<®
S
<<Q
=

k=1 PeJi (Y1) v(Z)=H;,
r(Z)=q
Y1>7>X,
= Y ay(Day(X)..ay(X,)
L/(Z){Hil
r(Z)=q+1
Z>X1
- Z ay(Y1) [ay (Y1) ay (X2) ... ay(Xq) — ay(X1) ... ay(Xq)]
V(Yl):H,'l
T(Y]):q-l—l
Y1>X,

= Z ay(Z)ay(X1)...ay(Xq) + Z ay(Y1)ay(X1)...ay(Xq)

v(Z)<Hi, v(Y1)=H;,
r(Z)=q+1 r(Y1)=g¢+1
Z>X, Y1>X,
= Y gy (Vay(Xy)...ay(X,) = ay A O(S7).
r(Y)=q¢+1
Y>Xy

Step 2. By Theorem 5.1.2, there are decompositions

C"Y(NBC,Cly]) = @ C7T1(NBC(Ax),Cly])
XeL
r(X)=q
and
ML= P Al(Ax).
X€EL
r(X)=q

Note that the map ©7 is compatible with these decompositions. In other words,
07 induces

0% : 071 (NBC(Ax), Cly]) — AJ(Ax)

for each X € L with 7(X) = ¢. Since D(Ax) C D(A) by Lemma 3.2.6, we may
assume that A is nonempty central when we prove the last half of the theorem.
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Step 3. Suppose that A is nonempty central. Let r = r(A). Let 0 < ¢ <r. We
prove that the induced map

04 : C1~1(NBC, Cly]p) — A%

is an isomorphism by induction on r > 1. When r =1, 6% (¢ =0,1) are isomor-
phisms because each yy is invertible in Cly]p. By Step 2, we have

C"(NBC,Clylo) = @ C*'(NBC(Ax),Clylp)

XeL
r(X)=q

and
M= @ AAY).
XeL

r(X)=¢

By the induction assumption, we may assume that the theorem holds true for Ay
when 7(X) < r. Thus ©F is an isomorphism for 0 < ¢ <r — 1. Decompose A into
indecomposable subarrangements:

A=A14---W A,

as in Lemma 3.2.7. Then it is not difficult to see that

m

(Abvay/\) = ® <AD(~’41)7 ( Z YH ®G'H> A) .
i=1 HeA;

Note D(A;) € D(A) for 1 <14 <m by Lemma 3.2.7(2). Thus the complex (Ap, ayN)

is acyclic by Lemma 6.1.2. Since NBC is contractible by Theorem 5.2.10, the

(augmented) cochain complex C"~!(NBC, C[y]p) is also acyclic. Thus we have a

commutative diagram

0 —— C~YNBC,Clylp) —— ... —>— C""Y(NBC,Cly]p) —— 0

@gl egl

0 —— AY A — 0,
ay N\ ay N\

whose rows are exact and the vertical maps O} (0 < ¢ < r —1) are isomorphisms.
Therefore the rightmost vertical map ©F is also an isomorphism. This completes
the induction step. O

Corollary 6.2.2. Let A be an affine arrangement of rank r with projective closure
Aso. Assume that A\x # 0 for every X € D(Ax). Then

HP(A(A),axN) =0 forp #r, dimH" (A (A),axA) = B(A).
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Proof. We have a commutative diagram

C9-1(NBC, Cly]p) «—~— C9~}(NBC,C)

l@g lev*o@goj

A% _ Al,
evy
Here ev), is defined in Lemma 6.1.3 and j is the natural map induced by an extension
of the coefficient ring. By Theorem 6.2.1, ©f) is an C[y|p-isomorphism. Therefore
the composed map evy o ©F o j, which is the evaluation of ©F at yg = Ay (H €
A), gives a C-isomorphism: C4~(NBC,C) = A, Since each map in the diagram
commutes with the coboundary maps,

HY(A'(A),ay) ~ HI"(NBC, C),

where H stands for the reduced cohomology. Theorem 5.2.10 completes the proof.
O

We combine these results to generalize similar theorems of Aomoto [A2] and Kohno
[Kol].

Theorem 6.2.3. Let A be an affine arrangement of rank r with projective closure
Aoo. Assume that A\x & Z>q for every X € D(Ax). Then

(1) HP(M(A), Ly) = 0 = Hy(M(A), LX) for p #,

(2) dim H" (M (A), L)) = B(A) = dim H,.(M(A), LY).
Proof. The assertions follow from Theorem 4.2.6, Theorem 5.1.3, and Corollary
6.2.2. O

6.3 The fnbc Cohomology Basis

Let A = (Ag)mea be a system of weights. Recall the map ©" from Theorem 6.2.1,
the evaluation map evy from Lemma 6.1.3, and the isomorphism ¢ from Theorem
5.1.3:

C™1(NBC, Cly]) =5 AT < AT 5 B

Definition 6.3.1. Define ¢ : fnbc — B" by ((B) = v o evy 0 O"(B*). Explicitly,
if B ={H,,,...,H;.} is a fnbc frame and {(B) = (X1 > --- > X,) where
Xp = ﬂzszik for 1< p <, then ((B) = Ajp_q wa(Xp).

Theorem 6.3.2. Let A be an affine arrangement of rank r with projective closure
Aoo. Assume that A\x ¢ Z>q for every X € D(Ax). Then the set

{¢(B) € H"(M,L) | B € fnbc}

is a basis for the only nonzero local system cohomology group, H" (M, Ly).
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Proof. We combine the results of Theorems 5.3.3, 6.2.1, 5.1.3, 4.2.6 and Lemma
6.1.3 (2). O

Example 6.3.3. Recall the Selberg arrangement of Examples 3.1.1, 8.2.2, 5.2.4,
5.2.6, and 5.3.4. Assume that the weights of the dense edges satisfy the conditions
of Theorem 6.3.2. Then

C({2,4}) = (Mowa + Mws + Asws) Aaws = AoAawas — AgAswas,
C({2,5}) = (Mows + Mws + Asws) Asws = AaAswas + AdgAswas

provide a basis for H?(M, L)).

The next two statements will be used in Chapter 7.

Lemma 6.3.4. If B € fnbc(A’), then ((B)|x,=0 = ('(B).
Proof. Let X € L(A). If X ¢ H,, then wy(X,A) = w\(X,A"). If X C H,, then
wr (X, A) = wa(X, A) + 1 A A\ywy, for some form 7. O

Lemma 6.3.5. Let B” € inbc(A”) and let B = {vB", H,} € fnbc(A"”). Then
the residue of ((B) along H, is equal to (""(B").

Proof. The last factor of ((B) is A,wy,. Since the product is exterior, it follows
that A\,w, may be removed as a summand from all the other factors of the product
without changing its value. Taking residue of this rewritten product removes the
factor A w, and restricts the remaining terms to H,. The residue is now just
C// ( B//). D

6.4 The fnbc Homology Basis

Morse theoretic arguments are used in [OSi] to construct a fnbc local system
homology basis for arbitrary arrangements with suitable weights. Here we present
a special case used in Chapter 7. If A is a bounded chamber in Mg, then A €
C,lzf (M, LY) is a cycle. Let [A] denote its locally finite homology class. Recall from
Definition 3.3.8 the set of bounded chambers, bch(A).

Proposition 6.4.1. Let A be an essential complexified real arrangement with pro-
jective closure Ax,. Assume that A\x & Z>q for every X € D(Aw). Then {[A] |

A € beh(A)} forms a basis for H (M(A), L£Y).

Proof. This result was proved with more restrictions in [Kol| and [AK, 4.1.1].
Write M = M(A) and let B = Uagpen(a)Q. In order to apply the argument in
[Kol], it is sufficient to show that HY(M — B, L") = 0 for all . Let W be a small
tubular neighborhood in CP* of the hyperplane at infinity, H.,. Note that the
inclusion map W N M — M — B is a homotopy equivalence.
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Let j : WNM — W. Let x € W. There are two cases to consider. If x € WNM,
then there is no hyperplane in A, going through z, so we have (R%j,LY), = 0
for ¢ # 0 and (R, L), ~ C. If z € W — M, then W — M is locally a central
arrangement near x. In this case the local euler characteristic of M intersected
with a small open ball centered at z is zero, so we have (RYj,LY), = 0 for all ¢
by Theorem 6.2.3. Therefore we have HY(W N M, L") ~ HY(W, j,L"). For each
x € Hy, there exists a small neighborhood W, of x in W such that

HI(Wyy N N Wy, 3:LY) =0

as long as Wy, N---NW,, # 0. Since H,, ~ CP~! is compact, we may choose
Wayy ..., Wy, which cover Hy,. Let Wy = Wy, U- - UW,, . By applying the Mayer-
Vietoris theorem repeatedly, we have HY(Wpy, j.LY) = 0 for all ¢. By Poincaré
duality, we have

HY(M — B,L¥) ~ H(Wo ' M, L") ~ H(Wp, j.L") = 0.
O

Next we establish a bijection between bch(.A) and fnbc(A). This is done
recursively by deletion and restriction.

Definition 6.4.2. Letp = (X1 > --- > X;) be a flag of affine subspaces X; € L(A)
with dime X =i —1 (i =1,...,(). Let A € bch(A) and let A be its closure in
RY. We say that p is adjacent to A if dimp(X; NA)=i—1fori=1,... L

Proposition 6.4.3. There exists a unique bijection
7 :bch(A) — [nbc(A)
with the property that £(T(A)) is adjacent to A.

Proof. If bch(A) = ), then fnbc(A) = (). Suppose bch(A) # (). We argue by
induction on |A|. Assume that the maps 7’ and 7" already exist for A" and A".
There are the following four kinds of bounded chambers of A:

(1) A € beh(A) is called undivided if A € bch(A’). Thus A does not intersect
H,. Define 7(A) = 7/(A). The adjacency is clear.

(2) A € bch(A) is called newborn if there exists an unbounded chamber of
A’ which contains A. In this case A N H,, is the closure of a bounded chamber
A" € bch(A”). Let 7"(A”) = B”. Define 7(A) = {vB", H,}. Since {(B") is
adjacent to A", £(7(A)) is adjacent to A.

(3) Suppose that a bounded chamber A" € bch(A) is divided in two by H,.
Denote the two chambers of A inside A’ by AT and A~. Let 7/(A’) = B’ €
fnbe(A’). Then &(B') is adjacent to A’ by the induction hypothesis. Clearly,
£(B') is adjacent to exactly one of these two chambers, say to A*. The chamber
AT € bch(A) is called the heir of A" and we define 7(A1) = B’. The adjacency is
clear.
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(4) The chamber A~ € bch(A) is called the cutoff of A’. Here A~ N H, is
the closure of a bounded chamber A” € bch(A”). Let 7/(A”) = B”. Define
(A7) ={vB", H,}. Since {(B") is adjacent to A", {(7(A™)) is adjacent to A~.

By construction, 7 is bijective and unique. O

Propositions 6.4.1 and 6.4.3 imply:

Theorem 6.4.4. Let A be an essential complezified real arrangement. Assume
that A\x & Zxo for every X € D(Ax). Then the set

{r~Y(B) € HY (M, L") | B € fnbc(A)}

is a basis for the only nonzero local coefficient homology group, Héf (M, LY).

Orient each A € bch(A) using the adjacent flag £(7(A)) = (X; > --- > Xy) by
choice of an orthonormal frame {ey, ..., e/} so that e; is a unit vector originating
from the point X; in the direction of X;4; N A for 1 < i < ¢ —1 and e is a
unit vector originating from the point X; in the direction of V N A. Call this the
(Onbc-orientation of A.

Example 6.4.5. Recall the Selberg arrangement of Figure 3.1. Let the closure
of Ay have wvertices (1,4),(1,3,5),(2,4,5) and the closure of As have vertices
(2,3),(1,3,5),(2,4,5). Then 7(Ay) = (2,4) and 7(As) = (2,5). Note that A,

is oriented clockwise, while Ao is oriented counterclockwise.

Definition 6.4.6. Given the linear order <, introduce a linear order in fnbc(A)
using the lexicographic order on the hyperplanes read from right to left. Write the
ordered set fnbc(A) = {Bj}?zl. We use Theorem 6.5.2 and write v; = ((B;) to
get the associated linearly ordered basis of global holomorphic forms for H(M, L),
U(A) = {wj}le. We use Theorem 6.4.4 and write A; = 77Y(B;) to get the
associated linearly ordered basis of oriented bounded chambers for Héf (M, LY),

bch(A) = {Aj}le. Call these the fnbc-bases in cohomology and locally finite
homology.

Example 6.4.7. For the Selberg arrangement
fnbe = {{2,4},{2,5}},

4 {A2Aqway — AgAswas, AoAswas + AgAswas
bch = {Al, AQ}

6.5 Resonance

It follows from Sard’s Theorem that there exists a maximal dense open subset of
the space of weights where the local system cohomology groups are independent of
the weights.
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Definition 6.5.1. Let U(A) C C" be the mazimal dense open set where the co-
homology groups H*(M(A),Ly) are independent of A € U(A). We call weights
A € U(A) nonresonant. Let

V(A ={ e C" | \x €Z~0, X € D(Ax)},
W(A) = {)\ eC” ‘ Ax ¢ Zzo, Xe D(.Aoo)}

It follows from Theorem 6.2.3 that W(.A) C U(A). Thus nonresonant weights
give local systems with vanishing cohomology in all but the top dimension.

Example 6.5.2. In this ezample we show that V(A) ¢ U(A). Let A consist of
three lines through the origin in the plane. The origin is a dense edge. If the
weights are in U(A), then the local system cohomology vanishes in all dimensions
because S(A) = 0. If we assign 1/3 to two of the lines and —2/3 to the third, then
Moo =0 =Xg. We show that these weights are not in U(A) so they are resonant.

Since these weights are in V(A), it follows from Theorem 4.2.6 and Theorem
5.1.3 that we may use the complex (A"(A),axA) to calculate HP(M(A), Ly). We
choose the following nbe bases: {1} in A°, {a1,as,a3} in A and {ajaz,a1a3} in
A2, Since ay = 1/3a1 + 1/3as — 2/3as, the map ayA : A® — Al is injective. Thus
HO(M(A),Ly) = 0. In order to describe the map ayA : Al — A? we use the
relation asaz = —ajas + ajas:

1 2
ayxNair=ayN\Naz =ayN\ag = —galaz + §a1a3.
Thus dim H*(M(A), £y) = 1 = dim H?>(M(A), L)) in this example. Hence these
weights are resonant.

Example 6.5.3. It follows from Proposition 2.1.3 that given weights \;, an equiv-
alent local system is obtained by the integer modification \;+k; with k; € Z. In this
example we show that there are resonant weights with no integer modification in
V(A). We defined the projective 2-arrangement Ceva(3) in Example 3.5.6. Assign
weight \; = 1/3 to the eight affine lines so Ao = —8/3.

Eight triple points have weight 1 and four triple points have weight —2. Thus
A ¢ V(A). We show next that no integer modification of A is in V(A). The
sum of the weights of the triple points is zero. If the modified weights are in
V(A), then each triple point must have weight 0. There is a unique solution to
the corresponding system of twelve equations in the nine unknowns: k; = —1/3,
ke = 8/3. In particular, there is no integer solution.

Resonant weights occur in some interesting problems. Cohen and Suciu [CS1]
showed that calculation of the cohomology groups with constant coefficients of
the Milnor fiber of a central arrangement leads to local coefficient cohomology
groups of the complement of the decone. Many of the resulting weight systems are
resonant. Examples 6.5.2 and 6.5.3 show that there are two possibilities. If some
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integer modification of A is in V(A), then we may use the complex (A'(A), axA) to
calculate HP(M(A), £y). This is an effective algorithm. If no integer modification
of A is in V(A), then there is no effective method of calculation at present. The
best results are the following inequalities:

dim HP(A'(A), axA) < dim HP(M(A), £y) < dimAP(A).

The upper bound was obtained by Cohen [Co2], the lower bound by Libgober and
Yuzvinsky [LY]. In the special case of 2-arrangements, the local system cohomology
groups are computable for all weights using Fox calculus by methods of Cohen
and Suciu [CS1]. These calculations reveal that there are examples where the
inequalities are strict on both sides. There are several important situations where
the weights are all rational, the Milnor fiber is an example. In this case, sharper
upper bounds were obtained in [CO.





