Chapter 7

Appendices ‘

§Al1. A counter example

Consider the following Cauchy problem

(A1.1)
St = 0,

{ ry + (1 +rs)r, =0,
t=0: r=c¢erg(z), s =cso(x), (A1.2)

where 7o(x) and so(x) are C! functions with bounded. C! norm, € > 0 is a small

parameter.
Obviously, in a neighbourhood of (r,z) = (0,0), (Al.1) is a strictly hyperbolic

system with two distinct real eigenvalues
A1(r, ) Sl+rs> Azx(r, 8) 2 0. (A1.3)

On the other hand, by Definition 3.1 it is easy to check that system (A1.1) is weakly

linearly degenerate. Therefore, by Theorem 3.1 we have

Theorem A1l.1. Under the hypotheses mentioned above, if ro(z) and so(z) satisfy
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that there is a constant p > 0 such that
sup {(1+2)' ™ (|ro(@)] + Iso(@)] + (@) + Isp(@)D} < oo, (A1.4)

then there exists €9 > 0 so small that for any given £ € (0, o], the Cauchy problem

(A1.1)-(A1.2) admits a unique global C* solution u = u(¢t,z) on ¢t >0. O

Now we turn to consider the following initial data:
_ A 2y —1 —
t=0: r=¢ro(x)=¢e(l+2z)"", s=c¢So(z), (A1.5)

where 5y(z) is a C! function satisfying

(i) So(z)>0, VzeR,

(i) S)(z)<0, V&3>0

(iii) Sp(xz) >0, V<0

(iv) |[3o(@)|lcrry £ Mo (where M is a positive constant);
o, as o 2>1,
0, as x < —1.

(v)  So(r) =

Noting (A1l.4), we see that the initial data (A1.5) corresponds to the case that

i = 0in (A1.4). However the conclusion of Theorem A1l.1 is false because we have

Theorem A1.2. There exists ¢g > 0 so small that for any given £ € (0,¢q],
" the first order derivatives of the C! solution to the Cauchy problem (Al.1) and
(A1.5) must b.ow up in a finite time and there exist two positive constants a and

b independent of ¢, such that the life span T () satisfies
exp (ae™?) < T(e) < exp (be™?). (A1.6)
O
Proof. Noting the second equation in system (Al.1), we have
s(t,x) = €30(z), V(t,z) € R* x R. (A1.7)

Substituting it into the first equation in (A1l.1), we observe that the Cauchy prob-

lem (A1.1) and (A1.5) simply reduces to the following Cauchy problem for a scalar
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equation

e + (1 + €5g(x)r) ry =0, (A1.8)
t=0: 7r=¢cro(x)=ce(l+2?7", (A1.9)

where 3y (x) satisfies the properties (i)-(v). Therefore, in what follows it suffices to
consider the Cauchy problem (A1.8)-(A1.9).

On the existence domain of the C! solution to the Cauchy problem (A1.8)-
(A1.9), let z = z(¢,8) be the characteristic passing through a point (0, 3) on the
z-axis and set '

At,x) =1+ e5p(z)r(t, z). (Al1.10)

By the definition of characteristic curve, z = z(t, 3) satisfies

dz _
{ a = Ab@), (A1.11)
t=0: z =20,
on which
r = ero(B) = (1 + %)~ 1. (A1.12)

Hence, noting (A1.10) and using (A1.12), we may rewrite (A1.11) as

dz _ 1 2+ (1 2 —1.
ar =1+ eSo@)+ 557, (A1.13)
t=0: z=20.
It follows from (A1.12) that along the characteristic z = z(t, 3)
ro(t,z(t, 8)) = ~2ef (1+ 5%) 7 Jzp(t, B). (A1.14)
On the other hand, we obtain from (A1.13) that
z5(t, 8) = A(t, B) exp A(t, B), (A1.15)
where
\ e2 [t
At B) = m/o So(z(1,0))dr (Al.16)
and
28 [t
A, 8) =1 = ———53 [ So(z(7,8)) exp(~ A (7,8)) dr. (A1.17)
(1+ 8%)% Jg
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Now we estimate A(t, 3).
Let €9 be so small that
1
esM, < 3 (A1.18)

where My is given in property (iv). Hence, noting (A1.10), (A1.12) and property
(i), on the existence domain of the C! solution to the Cauchy problem (A1.8)-(A1.9)
we have

1< A(t,z) < (A1.19)

Mloo

Then noting (A1.19) and the first equation in (A1.13), we obtain from (A1.16) that
t

A3) = 15 | S A xR A 8)dr

(A1.20)

z(t,8) .
= _‘1+[3~/ 50 (%) remm =T 42
Noting (A1.19) again and using properties (iv)-(v), we get
oo 1 e’} )
Nt B)] < 52/ So(x dx§€2{/ So(x dm+/ —zdx}
1A, 8)  m@I @l [ e
< e {2Mo+ 3} < (1+2My)e?, Vt>0, VBER.

Thus, we obtain
|IA(t,8)] < Cie?, Vt>0, VBeR, (A1.22)

where ('} = 1+ 2Mj is a positive constant independent of €.

Moreover, by (A1.11) and (A1.19), we have
ﬂ+t§m(t,ﬁ)§ﬁ+%t, Vt>0, VB€R. (A1.23)

We next estimate A(t, 3).
For any 8 € R, noting (A1.22), property (i), (A1.19), the first equation in
(A1.13) and (A1.23), we obtain from (A1.17) that

AB) > 1- 2Ll exp (0152)/0-( (7, B))dr
= 1- 278 oxp (0182)/30(:13(7' ﬁ))MdT

(1+6%) (r,z(7,06))
26213 z(t,8) (A1.24)
J— £ 1
= 1= (_Lij”lw )7 €XP (0162)/ﬁ %0(2) res sy e
18]+ 3¢

> 1- (%%%7 exp (C1€?) / " So(z)dz

— 00
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Case I [B]+ 3t < 1.
By properties (iv) and (v), it follows from (A1.24) that

1
A(t,ﬂ) Z 1-— (*12?7__5'2&\[ exp (0162)/ go(ﬂ?)dl‘

-1
(A1.25)

IV

1 — 4Mye; exp (Cr1€d)
5, VteR", V3e{BeR|[Bl+3t<1}

v

provided that 5 > 0 is suitably small.

Case II: |3| + 3t > 1.
Noting properties (iv)-(v), we obtain from (A1.24) that

262(3 ' Bzt
1-— m[—)[wexp(Cla) /Eo(:n)da?-i—/l 5 dr

v

A(t, B)

~1

v

1— cszﬁ_L)_g.g {2M, + In (1 + (B8] + 3t) — In2}
1~ CydBhre? {2Mo + In (2 (18] + 2¢)) — In2} (A1.26)
1-C, ce2 {2M, + In (|8] + 3¢)}

3

1

v

I

182
(1+82)2
Cgﬁq_LBT 21I1 ('ﬂ' + : t)

% et CQWIII (‘ﬁ' + §t) y

v

IV

provided that ¢ > 0 is suitably small, here and hereafter C; (7 = 2,3,---) stand
for positive constants independent of ¢, 3 and €. It is easy to see that when ¢ > 0

is suitably small, for any fixed = € (0,&0] we have

1 1 2 1+ 82
= = “TE VB € R.

Choosing C3 to satisfy

. 1 1
2
> < —er
exp (C35 ) < 3e*cp (4C2€2),

C2€2
e In (]ﬁl + —t)

Then it follows from (A1.26) that

we have

% Ve [0,exp (Cae™?)].

A(t, B) > :21- Vie [0,exp(Coe2)], Ve {ﬂeRl |ﬂ]+gt>1}. (A1.27)
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Thus, combining (A1.25) and (A1.27) gives

A(t,B)> =, Vte [0,exp(Csc7?)], VBER. (A1.28)

N

Therefore, noting (A1.15), (A1.22) and (A1.28), we obtain from (A1.14) that
Ir2(t,8)| < Csae, Vte [0,exp(Cse?)], VB€ER. (A1.29)

(A1.29) implies that
T(e) > exp (ac™2), (A1.30)

where a = Cj is a positive constant independent of €.
Similarly, for any given 8 > 1 we have

I t
At,B) < 1- (—ﬁg—é%;exp(—Clez)/Eo(x(T,ﬁ))dT

2:23 2 (69 1 1 '
= 1- g exp(—Cie )/ T3z TeTs, () (T3 A -T9%

4¢3 2 *(66) 1
e2 .
< l—mg—)gexp (—Clcf )/ﬁ 1_+_Ide'

= 1—Lzﬁ—exp(—Claz)[1n(1+x(t,ﬁ))—1n(1+5)], Vit>0.

3(1+5%)2
(A1.31)
Particularly, in what follows we consider the case that g = 1.
Noting (A1.23), from (A1.31) we get
1
A@J)§1~§§en4—cﬁﬂnm2+n-hnL Vit>0. (A1.32)
Then it follows from (A1.32) that
A(tg,1) <0, (A1.33)
where
3
to = 2exp {; exp (Clsz)} - 2. (A1.34)

Noting (A1.15), (A1.22) and (A1.33), from (A1.14) we observe that the C! solution
to the Cauchy problem (A1.8)-(A1.9) must blow up at to at the latest. This implies
that

T(e) < to < exp (be™?), (A1.35)



Critical quasilinear hyperbolic systems 191

where b is a positive constant independent of ¢.

Combining (A1.30) and (A1.35) yields (A1.6). The proof is completed.
Q.E.D.

Remark A1l.1. Theorem A1l.2 makes it clear that the condition that u > 0 is

essential in our theory. 0O
Finally, we consider a kind of periodic initial data
t=0: r=¢(l+sinz), s=c¢. (A1.36)

In the present situation, the Cauchy problem (Al.1) and (A1.36) simply reduces

to the following Cauchy problem for a scalar equation

(A1.37)

re + (1 +er)r, =0,
t=0: r=¢(l+sinx).

By the classical method of characteristics, we can easily prove the following.

Theorem A1.3. The C! solution to the Cauchy problem (A1.37) must blow up

in a finite time and the life span T'(¢) satisfies

T(e) = £§ (A1.38)

Theorem A1.3 makes it clear that the method used in this paper might be

inapplicable to periodic initial data, even if it is small.
Remark A1.2. A detailed discussion on slow decay initial data has been carried

out in [K5]. O

§A2. Critical quasilinear hyperbolic systems

in diagonal form
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Consider the following Cauchy problem

Ou ou

T A2 = .

5t + (u)ax 0, (A2.1)

t=0: u=cep(x), (A2.2)
where u = (uy,- -, un)? is the unknown vector function, A (u) = diag (A, (w), - - -,
An(w)) is an n x n diagonal matrix with smooth elements A; () (z =1,---,n),
e > 0 is a small parameter and ¢(z) = (¢ (a:),---,qbn(x))T is a nontrivial C!

vector function with compact support:

supp ¢(z) C [ag, Bol,

in which a¢ and 3y are two constants.

Suppose that in a neighbourhood of u = 0, system (A2.1) is strictly hyperbolic:
A1(0) < -+ < An(0). (A2.3)
Moreover, suppose that system (A2.1) is critical in the sense of Definition 3.4.

Theorem A2.1. Under the assumptions mentioned above, there exists e > 0
so small that for any fixed € € (0, o] the first order derivatives of the C! solution
u = u(t,z) to the Cauchy problem (A2.1)-(A2.2) must blow up in a finite time
and the life span T (¢) of the C! solution u = u (¢, x) satisfies

(1-ke)ZE<T(e) <(1+ke)E, (A2.4)

where K is a positive constant independent of € and
O\ !
== mi — |min 0,---,e¢pi(x),---,0 >0. O
{ mig (o © e 0

Remark A2.1. It follows from (A2.4) that

lim {T(e) . max sup {—%i: (0, - - ,eqﬁi(x),---,O)}} =1. (A2.5)

e—0 =1, n R
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Proof of Theorem A2.1. On the existence domain of the C! solution, let z =
x;(t, &) be the i-th characteristic passing through an arbitrary fixed point (0, £) on

the z-axis. It satisfies
%—’ = Xi(u(t, z:(t,8))),

(A2.6)
t=0: z; =¢,
on which
wi (t,34(t,€)) = eu(§). (A2.7)
Let €9 > 0 be so small that
eoMo < no, (A2.8)

where M, denotes the C° norm of ¢(z) and 7y > 0 is a small constant such that
Aj(w) = N(v) >m, Vul, |v] <no, V3>i, (A2.9)

where 71 > 0 is a constant. Hence, on the existence domain of the C'! solution we

have
lu(t, )| < €l[¢p(&)llco < Mo- (A2.10)

Differentiating (A2.6)-(A2.7) with respect to & yields

. n
d (9zi(t,&)\ _ i () _ du, (t,xi(t,€))
dt ( o€ ) - Z Ou, (t,l‘z(t,é)) L )
Jj=1

(A2.11)
t=0: G =1
and
; (T i ALy
¢
Noting (A2.12), we can rewrite (A2.11) as
d (0zi(t,6)\ _ OXi(u) Ou; 9¢; OXNi(u)
H( a(g )) = au,u azj DE +e¢:(&) 5>
j#i (A2.13)
t=0: 2 = 1,

¢
where &; = £;(¢,€) stands for the z-coordinate of the intersection point of x-axis
with the j-th characteristic passing through any fixed point (t,z; (t,£)) on the i-th

characteristic x = x;(¢,£). We have

z.(t,6) = =5 (¢, €;(¢,€)) - (A2.14)
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Lemma A2.1. Adoptting the symbol mentioned above, if j < i (resp. j > i), we

have
?——6—’(7(9%’—9— >0 (resp. <0) (A2.15)

and
&(t,6) — oo (resp. —o0) as t — 00; (A2.16)

moreover, for any given £ with 8y > & (resp. ag < &), there is a constant £t > 0

such that for any fixed € € (0, ¢}, it follows that
£j(t7€) Z ﬂO (resp. S aO) ) Vi Z t_a (A217)
where t is only dependent on Gy — € (resp. £ — ap) but independent of e. O

Proof. We only prove the case that 5 < 7. The proof of the case that 7 > 7 is
similar.

By the uniqueness of the solution of ordinary differential equation, we have

06,6 -

ot ~
Differentiating (A2.14) with respect to £ gives

ot 0Ot 3 ot

Hence we have
6‘1-_7' (t’ 6]) aé] (ta 6)
(')£]- Ot

Thus we obtain (A2.15) immediately.
Noting (A2.10), from (A2.6) we get

= Ai(u) = Aj(u) > 0.

z;(t,€) > &+ min {A;(u)}t
Ju]<no

and

z; (,€;(8,€)) < &(t6) + max {A;(w)}t.

Noting (A2.14) and (A2.9), we have

wls. 70

§(t,8) 2 &+ {|,T311 {A(w)} — max {Aj(u)}} t > & +mt.
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This implies (A2.16).
For any given ¢ with 8y > ¢, taking t = —ﬁ‘;—:{, we get

§:(8, &) =2 E+mit = fo. (A2.18)
Thus, the combination of (A2.15) and (A2.18) leads to (A2.17). Q.E.D.
Let us go on to prove Theorem A2.1.
Without loss of generality, we may assume that ¢,(z) # 0. The proofs for
others (¢ = 1,---,n — 1) are similar.

By Lemma A2.1, for any given £ € [ag, O], there is a positive constant ¢,

independent of € such that
.6 >60 (U=1,---,n—1), ast>t,.
This indicates that
u; (¢,£(¢,8)=0 (3=1,---,n—1), ast>t,.
Hence, the first eqﬁation of (A2.13) simply reduces to
& (PEY) = O 22 00,0000, stz

When g9 > 0 is suitably small, the Cauchy problem (A2.1)-(A2.2) has a unique

C'! solution v = u(t,z) on [0,¢.] and the solution satisfies

|lu(t, z)

C1([0,t.]xR) < KOE, (A2.19)

where kg > 0 is a constant independent of € (see [K3]).
Noting (A2.19), from (A2.11) have

Oy (t,€)

e S1+me, Vie b, (A2.20)

where k, > 0 is a constant independent of .

Consider the following initial data problem

dgf (%) :€¢,n(€)g—u\'ﬁ-(0’a0*6¢n(£))a as t 2> t,

t=rt.: G =8 (L.,).

(A2.21)
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It follows from (A2.21) that

Ozy (t,6)  Oaq Oy

(0,---,0,edn(€))t, ast>t,.. (A2.22)

Since system (A2.1) is critical and the initial data ¢(z) has a compact support,

there is a point & € [0, Bo] such that

A

On (&) = @) (&) 52> (0,---,0,6¢, (£0))
= min {¢{n (6) %:' (07 e a07€¢n (6))} < 07

£ER

where we have made use of the assumption that ¢,(z) #Z 0. Then, it follows from
(A2.22) that

Oz,
_;’_{_ (t,&) — 0 (A2.23)
as 5
. A G- (4, o)
t /U=ty — ——777. A2.24
/ @n (60) € ( )
On the other hand, from (A2.12) (in which we take ¢ = n) we have
Oun _ aidﬁn({) _ (42.25)
611'3 85" (ta 5)
Thus, noting (A2.23)-(A2.25), we get
Our, N
oy (t,x, (t,€0))| — 00, ast ~t*. (A2.26)

Moreover, from (A2.20) and (A2.24), we see that there is a positive constant «,

independent of € such that

1 1
1l —kpe)d ——=———— ¢ <t" <1+ Kpe {——————-}. A2.27
( ){ o) S BN (42.27)
Similarly, we can obtain the same kind of estimates forz =1,---,n — 1.

The combination of these estimates gives (A2.4) immediately. This completes
the proof of Theorem A2.1. Q.E.D.

Remark A2.2. From (A2.4) we can draw various kinds of estimates on the life

span T (¢£); particularly, for those equations discussed in §5 of [LZK2] we can obtain
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the same estimates given in [LZK2]. In the special case that n = 1, (A2.4) can be

improved as (see [ZK])

()= [sup {~5 otan ] -

TER

§A3. Continuous Glimm functionals

Adopting an idea of J.Glimm [Gl], M.Schatzman [Sc] introduces the continuous
Glimm functionals for smooth solutions to quasilinear strictly hyperbolic systems,
and proves that it is a decreasing function of ¢{. Here we aim at generalizing this
result to the case that systems might be non-strictly hyperbolic so that this result

has more applications.

Consider the following quasilinear hyperbolic system

ou Ju

4+ A= =0 A3.1

5 T AwZ- =0, (A3.1)
where u = (u1,---,u,)” is the unknown vector function of (t,z) and A(u) =
(a:;; (w)) is an n x n matrix with C! elements a;; (u) (4,5 = 1,---,n).

By hyperbolicity, for any given u on the domain under consideration, A (u) has
n real eigenvalues A; (u),---, A, (u) and a complete system of left (resp. right)
1,--

eigenvectors. For i = omy et Ii(u) = (Lin (), -, lin (w)) (resp. 1 (u) =

(rar (u) -+, Tin (u))T) be a left (resp. right) eigenvector corresponding to \; (u):
Li(u) A(w) = X (u) b (u)  (resp. A(u)r; (u) = X (u) i (u)). (A3.2)
We have
det |l;; (u) | # 0 (equivalently, det|r;; (u)| # 0). (A3.3)

All A; (u), U (u) and 745 (u) (4,5 =1, -+, n) are supposed to be C!.

Without loss of generality, we suppose that on the domain under consideration

l; (U)T‘j (u) E(Sij (Z,] = 1,"',71,) (A34)
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and

rF(uw)yr;i(v)=1 (i=1,---,n), (A3.5)

where §;; stanls for the Kronecker’s symbol.

Finally, we suppose that on the domain under consideration

A () € o (w) € - < An (). (A3.6)

Let u = u(t, r) be a C! solution to system (A3.1) and introduce (see [Sc])

Cu(t) =3 Luu(t) (43.7)
=1
and
Qu(t)) = Y Qu;(u(t)), (A3.8)
1<J
where A
L;(u(t)) = / lwi(t,r)|dz (i =1,---,n), (A3.9)
R
Qlj(u(t)) - // ‘Uiz(t,l')l le(t7 y)ldxdy (Za] = 15 T 7n)a (A310)

>y
in which w, is defined by (2.2.2).

Lemma A3.1. Under the hypotheses mentioned at the beginning, suppose that
u = u(t, ) is a C? solution to system (A3.1) on the domain D(T) = {(t,z)|] 0 <
t < T, |#| < co}. Suppose furthermore that the C' norm of u(t,z) is bounded,
ug(t,r) — 0 &s || — oo for any fixed t € [0,T], and the integrals appearing in

(A3.11) and (A3.12) make sense. Then we have

EZE_((ZL(L))_ < /RA(t,z)da:, Vitel[0,T) (A3.11)
and
dQ(u(t)) _ (czﬁ(u(t))_l)/ A(t,z)dz, ¥ te[0,T), (A43.12)
dt R

where ¢; and ¢, are two positive constants only dependent of the C° norm of u(t, )

but independent of t and T, and

At,) =3 () = A;(w) [wifw;]. (43.13)

>
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O

Proof. Multiplying sgnw, on both sides of (5.1.22) yields

Olw;| 8()\ (w)|wg]) . N
ot ox Z Dijk U)ijksgnwz a.e. in(t,z) (i=1,---,n).

J,k=1

(A3.14)
Integrating (A3.14) from —oo to co with respect to z and summing up it with

respect to ¢, we get

d[,(u(t)) /Z Z T4 (w)|w; ||w |(t, z)da (A3.15)

1=1 j,k=1

and then, noting (5.1.19), we obtain (A3.11).
On the other hand, for any given p, ¢ € {1,---,n} with p < ¢, by (A3.14) we
have

alwpi 4 a()‘p(u)lwpl) _ \2‘
ot oz Lt

9,k=1

[pjk(u)wjwesgnw, a.e. in (t,x) (A3.16)

and

3|'U)q| (9()\ (U)l’wa) Z quk 'ijlchan a.e. in (t,x). (A3.17)

ot
7,k=1
Taking the following procedure:
/ [qu(t,x)l/ (A3.l6)d£+]wp(t,m)|/ (A3.17)dn] dz

— 00

and noting (5.1.19), we get

% {/ lwp(t, )| |we(t, y)] da:dy} +/ (Ag(uw) — Ap(u)) lwp(t, )| |wg (¢, z)| dx

>y

g/_ lwqta)ld:r/ S [T ()] ] d-+

jkl

/_ lwptaldw/ S Ly () ;| |

0 k=1
SClﬁ(u(t))/_ At, )dz,
(43.18)
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henceforth C; (i = 1,2) denote positive constants only dependent of the C° norm
of u(t,z) but independent of ¢t and 7. Summing up (A3.18) with respect to p,
q € {1,2,---n} with p < g gives

which is nothing but the desired (A3.12). Q.E.D.
JFrom Lemma A3.1 we get immediately the following.

Lemma A3.2. Under the assumptions of Lemma A3.1, if the total variation on
space of u is small enough (L(u(t)) is small enough) for any fixed ¢t € [0,T], then
there exists a positive constant M only dependent of the C° norm of u(¢,z) but

independent of t and T, such that
Flu(t)) £ L(u(t)) + MO(u(t)) (A3.20)

is a non-increasing function of ¢, namely,

dF (u(t))

o <0, Vte[o,T]. (A3.21)

F(u(t)) defined by (A3.20) is actually the continuous Glimm functionals for

smooth soluticns (see [Sc]).

Theorem A3.1. Under the hypotheses mentioned at the beginning, suppose that
u = u(t,z) is a C?! solution to system (A3.1) on the domain D(T) = {(t,z)| 0 <
t < T, || < oo}. Suppose furthermore that the C° norm of u(t,z) is bounded,
uz(t,z) — 0 as |z|] — oo for any fixed t € [0,T], and the integrals appearing in
(A3.11) and (A3.12) make sense. Suppose finally that the total variation on space
of u is small enough (L(u(t)) is small enough) for any fixed ¢ € [0,7]. Then,
there exists a positive constant M only dependent of the C° norm of u(t,z) but
independent of t and T, such that the functional F(u(t)) (see (A3.20)) is a non-

increasing function of t. O
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Using the technique adopted in the proof of Lemma 2.2 in [Sc], we get Theorem

A3.1 from Lemma A3.2 directly.

In what follows, we consider Cauchy problem for system (A3.1) with the fol-
lowing initial data

t=0: u=¢px)), (A3.22)

where ¢(z) is a C! vector function satisfying that there exists a constant pn >0
such that
9 2 sup {(1 + |zt |cp'(:£)|} < 0. (A3.23)
zeR

Lemma A3.3. Under the assumptions mentioned at the beginning, there exists
6o > 0 so small that for any fixed 6 € [0, 6], on any given existence domain D(T)
of the C! solution v = u (t,z) to the Cauchy problem (A3.1) and (A3.22) there
exist positive constants c3 and c4 independent of § and T, such that the following

uniform a prior: estimates hold:
L(u(t) < L(p) +e3(L(9)*, VY te[0,T] (A43.24)
and
lu(z, ) = @(0)]|co 2 zgglﬂlr(t,x) —@(0)] < csl(yp), Vte[0,T]. (A3.25)
(]
Remark A3.1. It is easy to see that
L(p) < Cob, (A3.26)

where C is a positive constant. Hence, (A3.23) implies the boundedness of v and

L(u(t)), provided that 6 is small. O

Proof of Lemma A3.3. For the time being it is supposed that on the whole
domain D(T) we have ‘
lu(t, ) — p(0)] <6, (A3.27)
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where 6 > 0 is a small number.
At the end of the proof we shall explain that this hypothesis is reasonable.

In what follows, C; (i = 3,4,---) will denote positive constants independent of
L(p) (or ) and T'.
Noting (A3.23), we have

p(z) — ¢(0) = /OI @' (€)dE, (A3.28)

then
lo(x) — p(0)] < C3L(ep). (A3.29)

By continuity, it is easy to see that there exists T, > 0 small enough such that
lu(t, ) = p(0)llco < 2C3L(p), Vte0,T,] (A3.30)

and

lw(t, Y|eo < Cs, YV te[0,T,. (A3.31)

By Lemma 3.2 in [LZK?2], we observe that there exists #p > 0 so small that for any
fixed 6 € [0,6,], w = w(t, ) is integrable in space for any fixed t € [0,T,] (then the
integrals appearing in (A3.11) and (A3.12) make sense on the strip [0,T,] x R),
and

lw(t,z)] < C,0, Vtel0,T,], VzeR, (A3.32)

where C, is a positive constant independent of T, and 7}, is suitably small; more-
over, on any given existence domain D(T')

w(t,z) = 0 as |z| — oo. (A3.33)

Integrating (A3.14) from —oo to oo with respect to x and using (A3.27) and

(A3.32)-(A3.33), we obtain

&(d“t(ﬁl < CsL(u(t)), Y tel[0,T,], (43.34)

then we get

L(u(t)) < L(p)exp(C:sT,), Yte[0,T,]. (A3.35)
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Hence, we can choose T, > 0 so small that
L(u(t)) <2L(p), Vit €][0,T,]. (A3.36)

Thus, when 6y > 0 is suitably small, for any fixed 6 € [0, 6], noting (A3.26) and

using Theorem A3.1, we obtain

L(u®) < L(u®))+MQ(u(t)) < L(») + MA(p)

(A3.37)
< L)+ M(L(9)?, Vtel0,T,].

Noting (A3.30) and (A3.37), we see that (A3.24) and (A3.25) hold at least for
t € [0,T,] if we take c3 > M and ¢4 > 2C5.

We now prove that two positive constants c3 and ¢4 independent of L(p) and T
can be chosen in such a way that (A3.24)-(A3.25) hold on the whole interval [0, T7,
provided that 68y > 0 is small enough. For this purpose, it suffices to show that we

can choose c3 and ¢4 such that for any fixed Ty (0 < Tp < T') such that

L(u(t)) < L(g) + 2c3(L(@))?, VYt e [0,Ty] (A3.38)
and
llu(t, ) = @(0)]lco < 2¢4L(p), VY te€[0,Ty], (A3.39)
we have
L(u(t)) < L(p) +c3(L(p))?, Y te[0,To) (A3.40)
and
lu(t,") — @(0)]lco < eal(yp), Vte[0,To], (A3.41)

provided that 6y > 0 is small enough.

In fact, if 63 > 0 is suitably small, for any fixed 6 € [0, 6], noting (A3.38) and
(A3.26) we observe that Theorcm A3.1 is valid on the domain D(Ty) = {(¢,z)| 0 <
t < Ty, |r| < oo}, and then we obtain

L(u(t)) < L{p) + M(L(9))?, Vte0,To]. (A3.42)

Since we have taken ¢z > M, from (A3.42) we get (A3.40) immediately.
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On the other hand, similar to (A3.29), when 8y > 0 is suitably small we have

lu(t, ") = p(0)llco < CoL(u(t)) < Cs (L(w) + M(L(9))?)
< 2CsL(yp), Vte]|0,To],

(A3.43)

then, taking ¢4 > 2Cs (> 2C3), we get (A3.41) immediately.

Moreover, taking 6y > O suitably small and noting (A3.26), from (A3.25) we
get (A3.27) easily. This implies the validity of hyperthesis (A3.27). The proof is
completed. Q.E.D.

In particular, we suppose that on the domain under consideration, each eigen-
value of A(u) has a constant multiplicity. Without loss of generality, we may

suppose that
AW EXN ()= = Ay (1) < Apsr (W) < -+ < An (u), (A3.44)

where 1 < p < n. When p = 1, system (A3.1) is strictly hyperbolic; while, when
p > 1, (A3.1) is a non-strictly hyperbolic system with characteristics with constant

multiplicity.

Theorem A3.2. Under the assumptions of Lemma A3.3, if (A3.44) holds, then
there exists 6, > 0 so small that for any fixed 9 € [0, 6], on any given existence
domain D(T) of the C! solution u = u(¢,z) to the Cauchy problem (A3.1) and
(A3.22), the following estimate holds:

/ lwi(t, z)|dt < csb, (A3.45)

CJ
where C'j stands for any given j-th characteristic curve in which j € {p+1,---,n}
ifi e {1,---,p}; while j #¢ifi € {p+1,---,n}, and c; is a positive constant
independent of 8, T' and C'j. O

Proof. Using the technique adopted in the proof of Lemma 2.2 in [Sc], we observe
that it suffices to prove (A3.45) for u of C? class.
Taking 6y suitably small and noting (A3.44) and (A3.25)-(A3.26), we see that

on the existence domain of the C! solution to the Cauchy problem (A3.1) and
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(A3.22), there exists a positive constant ¢y independent of § and T such that

/\IH‘l(u)—/\i(u) .>_C‘0 (,L:laap)v

(A3.46)
Aj+1(u) = A;(u) 2o (G=p+1,---,n—1).
Moreover, noting (A3.24) and (A3.26) and using (A3.12) we have
aQ(ult)) o 1 / A(t, z)da, (A43.47)
dt 2 /R
provided that 6y > O is suitably small. Then, noting that
Qu(t)) < Cr(L(u(t))?, Vtel0,T] (A3.48)
and using (A3.26) again, we obtain from (A3.47) that
T ' .
/ /A(t,;v)da:dt < 209(p) < Cgh?. (A3.49)
o JR
By (5.1.18) we have
/ |lw;|(dx — A\;j(u)dt) = //sgn w; Z Ijrwjwdtde, (A3.50)
aD .

where D is the part of the strip: [0,7] x R to the left of the j-th characteristic
curve C;. On the other hand, we obtain from (A3.46) that on C,

ldz — Xidt] = (A, (w) — As(w))dt] > coldt], j€{p+1,---,n}, if i€ {1, -, p};

j#t, if ie{p+1,---,n}
(A3.51)

Hence, noting (5.1.19), (A3.13) and (A3.24)-(A3.26), and using (A3.33), (A3.49)
and (A3.51), we obtain from (A3.50) that

T .
co/~ wi(t,2)|dz < E(go)+£(u(T))+Cg/ /A(t,a:)dxdt
&5 0 R

CroL(p) + Ci1 (L(p))?

(A3.52)

IN

provided that 6y > 0 is suitablv small.
(A3.45) follows from (A3.52) directly. Thus, the proof is completed. Q.E.D.



