
Chapter 1

Introduction

We are interested in the following quasilinear hyperbolic system of balance laws

$\frac{\partial u}{\partial t}+A(u)\frac{\partial u}{\partial x}=B(u)$ , (1.1)

where $u=(u_{1}, \cdots, u_{n})^{T}$ is the unknown vector function standing for the density
of physical quantities, $A(u)=(a_{ig}(u))$ is an $n\times n$ matrix with suitably smooth
elements $a_{i\gamma}(u)(i, j=1, \cdots, n)$ , it represents the gradient matrix of the flux func-
tion, $B(u)=(B_{1}(u), \cdots, B_{n}(u))^{T}$ is a given smooth vector function denoting for
the source term. System (1.1) describes many physical phenomena. In particular,

important examples occur in gas dynamics, shallow water theory, plasma physics,

combustion theory, nonlinear elasticity, acoustics, classical or relativistic fluid dy-
namics and petroleum reservoir engineering (see [An], [CF], [CM], [LL], [Se], [Ta],

etc.). These equations play an important role in both science (such as physics,
mechanics, biology, etc.) and technology.

By hyperbolicity, for any given $u$ on the domain under consideration, $A(u)$ has
$n$ real eigenvalues $\lambda_{1}(u),$

$\cdots,$ $\lambda_{n}(u)$ and a complete system of left (resp. right)

eigenvectors. For $i=1,$ $\cdots,$ $n$ , let $l_{i}(u)=(l_{i1}(u), \cdots, l_{in}(u))$ (resp. $r_{i}(u)=$

$(r_{i1}(u), \cdots, r_{in}(u))^{T})$ be a left (resp. right) eigenvector corresponding to $\lambda_{i}(u)$ :

$l_{i}(u)A(u)=\lambda_{i}(u)l_{i}(u)$ (resp. $A(u)r_{i}(u)=\lambda_{i}(u)r_{i}(u)$ ). (1.2)
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We have
$\det|l_{ij}(u)|\neq 0$ (equivalently, $\det|r_{i\gamma}(u)|\neq 0$ ). (1.3)

All $\lambda_{\iota}(u),$ $l_{\iota g}(u)$ and $r_{\iota\gamma}(u)$ ( $i,$ $j=1,$ $\cdots$ , n) are supposed to have the same

regularity as $o_{\iota\gamma}(u)(i,j=1, \cdots n)$ .

Without loss of generality, we suppose that on the domain under consideration

$l_{i}(u)r_{j}(u)\equiv\delta_{\iota j}$ $(i,j=1, \cdots , n)$ (1.4)

and
$r_{l}^{T}(u)r_{i}(u)\equiv 1$ $(i=1, \cdots, n)$ , (1.5)

where $\delta_{xj}$ stands for the Kronecker’s symbol.

Throughout this paper, we always assume that the source term $B(u)$ satisfies

$B(O)=0$ and $\nabla B(O)=0$ . (1.6)

This means that $B(u)$ is a nonlinear source term of higher order. In this paper we

only consider “small” solutions to system (1.1).

For the following initial data

$t=0$ : $u=\phi(x)$ , (1.7)

where $\phi(x)$ is a (small’ $C^{1}$ vector function of $x$ with certain decay properties as
$|x|\rightarrow+\infty$ , we shall investigate the global existence or the blow-up phenomenon of

the $C^{1}$ solution to the Cauchy problem (1.1) and (1.7).

It is well-known that the Cauchy problem for linear hyperbolic partial differ-

ential equations with smooth coefficients always admits a unique global classical

solution on th(} whole domain, provided that the initial data is suitably smooth.

However, the situation for quasilinear hyperbolic equations is quite different. Gen-

erally speaking, in the quasilinear case the classical solutions to the Cauchy problem

exist only locally in time and singularities may occur after a finite time, even for

the initial data which is sufficiently smooth and small. A systematic theory on

the local existence and uniqueness of the classical solution to the Cauchy prob-

lem for quasilinear hyperbolic systems has been developed already (see [LY] and
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[Ma]). The global theory is presently under investigation and is of great interest.

Therefore, it is natural to propose the following three kinds of problems:

(P1) Under what conditions does the Cauchy problem for quasilinear hyperbolic

systems admit a unique global classical solution? Basing on this problem, we can

further study the regularity and the global behaviour of the solution, especially the

asymptotic behaviour of the solution as $ t\rightarrow+\infty$ .

(P2) Under what conditions does the classical solution to the Cauchy problem

blow up in a finite time? When and where does the solution blow up? Which

quantities blow up? Can we further investigate the behaviour or mechanisms of the

blow-up phenomenon?

Even if the solution blows up in a finite time, physical phenomenon still exists

with singularities. Therefore one wants to understand further

(P3) How do the singularities, in particular, shocks grow out of nothing? What

is the structure of the singularities? What about the stability of the singularities?

These problems are of great importance in both theory and application.

For a single quasilinear equation, these problems have been solved completely by

the method of characteristics and the Whitney’s theory of singularities of mappings

of the plane into the plane (see [Co] and [Na]).

A systematic theory on the global existence and the breakdown of classical so-
lutions to quasilinear reducible hyperbolic systems has been established (see [Am],

[Je], [La], [Li], etc.). However, for problem (P3), according to the author’s knowl-

edge, a few results have been known. Making use of the method of characteristics,

Lebaud [Le] considered the problem (P3) for p-system and discussed the formation

of shock for the initial data of simple wave.

For general quasilinear hyperbolic systems, the known results can be summa-
rized as follows.

Homogeneous Systems: $B(u)\equiv 0$ . Suppose that in a neighbourhood of
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$u=0,$ $A(u)\in C^{2}$ , system (1.1) is strictly hyperbolic:

$\lambda_{1}(0)<\cdots<\lambda_{n}(0)$ (1.8)

and genuinely nonlinear in the sense of P.D.Lax:

$\nabla\lambda_{i}(u)r_{i}(u)\neq 0$ $(i=1, \cdots, n)$ . (1.9)

Suppose furthermore that $\varphi(x)$ is a $C^{2}$ function with compact support:

$supp\varphi(x)\subseteq[\alpha_{0}, \beta_{0}]$ (where $\alpha_{0}$ and $\beta_{0}$ are constants). (1.10)

F.John [Jo] proved that if

$\overline{\theta}=\triangle(\beta_{0}-\alpha_{0})^{2}\sup_{x\in R}|\varphi^{\prime}(x)|>0$ (1.11)

is small enough, then the first order derivatives of the $C^{2}$ solution to the Cauchy
problem (1.1) and (1.7) must blow up in a finite time. Although he still adopted the

method of characteristics, he derived the formula on the decomposition of waves
and reduced a Riccati’s differential equation $z^{\prime}=az^{2}$ and then proved the result

mentioned above.

T.P.Liu [Lu] generalized John’s result to the case that one part of characteristics
is genuinely nonlinear, while the other part is linearly degenerate in the sense of
P.D.Lax, i.e., in aneighbourhood of $u=0$ , for the corresponding indices $i$

$\nabla\lambda_{x}(u)r_{i}(u)\equiv 0$ . (1.12)

In this situation he showed that for a quite large class of initial data, the first order

derivatives of the $C^{2}$ solution blow up in a finite time. His result can be applied to
the system of one-dimensional gas dynamics.

L.H\"ormander [Hol] reproved John’s result by a self-contained and somewhat
simplified exposition of the method. Moreover, by determining the time of blow-up

asymptotically, he gave a sharp estimate on the life span of the solution.

Employing the nonlinear geometrical optics, S.Alinhac [A1] reconsidered the
result presented in [Hol] and gave a more precise estimate on the life span.
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Recently, by introducing the concept of weak linear degeneracy, Li Ta-tsien,
Zhou Yi and Kong De-xing [LZK2] gave a complete result on the global existence
and the life span of the $C^{1}$ solution to the Cauchy problem (1.1) and (1.7), where
characteristics of system (1.1) might be neither genuinely nonlinear nor linearly
degenerate, and the initial data $\varphi(x)$ is small in the following sense: there exists a
constant $\mu>0$ such that

$\theta=\triangle\sup_{x\in R}\{(1+|x|)^{1+\mu}(|\varphi(x)|+|\varphi^{\prime}(x)|)\}$ (1.13)

is small. Li Ta-tsien, Kong De-xing and Zhou Yi [LKZ] generalized the result
presented in [LZK2] to the case that the quasilinear system might be non-strictly

hyperbolic.

Inhomogeneous systems: $B(u)\not\equiv 0$ . In this case, system (1.1) is non-
conservative. It can be used to describe some physical problems such as the dynam-
ical systems with dissipation of energy; nonlinear three-wave interaction in plasma

physics; propagation of waves in optical fibre, etc. (see [BFJ], [KRB], [WW]). When
$B(u)$ is linearly dissipative, namely, $B(O)=0$ and the matrix $L(0)\nabla B(0)(L(0))^{-1}$

is row-diagonally (or column-diagonally) dominant, the global existence of the $C^{1}$

solution to (1.1) has been established (see [HL], [LQ], [K1]), where $L(O)=(l_{ij}(0))$

and $\nabla B(O)=(\frac{\partial B}{\partial u}(0))$ . People find out that the linear dissipation can prevent

the formation of shock waves in nonlinear hyperbolic waves with small amplitude.

W.Kosi\’{n}ski [Ko] studied the gradient catastrophe of the smooth solutions to some
special inhomogeneous hyperbolic systems. Kong De-xing [K2] considered a quasi-

linear reducible hyperbolic system with a dissipative term of higher order. Assum-
ing that the system is strictly hyperbolic and genuinely nonlinear in the sense of
P.D.Lax, he proved that if the dissipative effect is not “strong”, then the first order

derivatives of the solution must blow up in a finite time. This result can be applied

to the nonlinear wave equation with dissipative term of higher order.

For general quasilinear hyperbolic systems $(n\geq 3)$ , the problem (P3) is open.

In this paper, we shall systematically study the global existence or the blow-
up phenomenon of the $C^{1}$ solution to the Cauchy problem for general quasilinear
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hyperbolic system (1.1) with small and decaying initial data. By means of inves-

tigating the generalized null condition, making use of the concept of weak linear

degenemcy and introducing the concept of matching condition, we will give a com-

plete result on the global existence and the life span of the $C^{1}$ solution to the

Cauchy problem (1.1) and (1.7); furthermore, present a description on the large

time behaviour of the global classical solution (if it exists) and two mechanisms of

the blow-up phenomenon, particularly, the asymptotic behaviour of the life span

(if the classical solution blows up in a finite time).

This paper is divided into seven chapters: Introduction, Preliminaries, Quasilin-

ear strictly hyperbolic systems, Quasilinear non-strictly hyperbolic systems, Homo-

geneous quasilinear hyperbolic systems, Applications, and Appendices. In Chapter

2 we first state two lemmas, due to L.H\"ormander [Hol], on Riccati’s differential

equations, then derive F.John’s formula on the decomposition of waves with some

supplements which will play an important role in the sequel, and finally discuss an

equivalent definition of the classical solution to system (1.1). Chapter 3 deals with

the Cauchy problem for quasilinear strictly hyperbolic systems. In this chapter we

give a systematic result on the global existence and the life span of the $C^{1}$ solution

to the Cauchy problem for quasilinear strictly hyperbolic system (1.1) with small

and decaying initial data (1.7). Moreover, we investigate the large time behaviour

of the global classical solution in the case that it exists; in the case that the $C^{1}$

solution blows up in a finite time, we give the asymptotic behaviour of the life span

of the classical solution and illustrate that envelope of characteristics of the same

family will appear and singularitiesjust occur at the starting point of the envelope,

i.e., the point with minimum t-value on the envelope. The chapter ends with some

remarks on critical systems.

Chapter 4 aims at generalizing the result presented in Chapter 3 to the case

that system (1.1) might be non-strictly hyperbolic. Basing on a detailed investiga-

tion on the generalized null condition and assuming the existence of the normalized

transformation or the normalized coordinates, we establish some important rela-

tions on the decomposition of waves. Through these relations, we obtain a series
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of results similar to those in Chapter 3.

A special discussion on homogeneous quasilinear hyperbolic systems is carried
out in Chapter 5. The whole discussion in Chapter 3 and Chapter 4 is based on the

existence of the normalized coordinates. However, in the non-strictly hyperbolic

case, in general we do not know if there exist the normalized coordinates, and even
if the normalized coordinates exist, it is still very hard to check the hypotheses given

in the normalized coordinates. Therefore, a consideration without the normalized

coordinates is needed. In this chapter, essentially restricting our system in such

a way that each characteristic is either genuinely nonlinear or linearly degenerate

in the sense of P.D.Lax, and without using the normalized coordinates, we obtain
more results including a limit formula on life span of the $C^{1}$ solution to the Cauchy

problem (1.1) and (1.7). In particular, by means of continuous Glimm functionals
for classical solutions to general homogeneous quasilinear hyperbolic systems (see

[Sc]), we establish a uniform a priori estimate on the $C^{0}$ norm of the $C^{1}$ solution

to the Cauchy problem (1.1) and (1.7), where the initial data $\varphi(x)$ is small in the

following sense: there exists a constant $\mu>0$ such that

$\overline{\theta}=\sup_{x\in R}\{(1+|x|)^{1+\mu}|\varphi^{\prime}(x)|\}>0$ (1.14)

is small. In this chapter, we only need $\overline{\theta}$ small instead of requiring $\theta$ small (see

(1.13) for the definition of $\theta$ ). Hence $\varphi(x)$ might be monotone. Thus we can further

consider the monotone initial data, and obtain a lower bound on the life span of

the $C^{1}$ solution to the Cauchy problem for system (1.1) with certain monotone

initial data (1.7). Moreover, some examples of quasilinear hyperbolic systems with
constant characteristics are constructed to illustrate two mechanisms of breakdown
of $C^{1}$ solutions to homogeneous quasilinear hyperbolic systems, and the difference

between diagonalizable and non-diagonalizable quasilinear hyperbolic systems.

Chapter 6 is devoted to the applications of our general theory to some physical

systems and a system related to geometric problems. These systems include the

quasilinear canonical system related to the Monge-Amp\‘ere equation, the system

of nonlinear three-wave interaction in plasma physics, the nonlinear wave equation

with higher order dissipation, the system of one-dimensional gas dynamics with
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higher order damping, the system of motion of an elastic string, the system of

plane elastic waves for hyperelastic materials and the nonlinear wave equation

with scalar operators of higher order. For these systems, we give a complete result

on the global existence or the blow-up phenomenon, particularly, the life span of

the $C^{1}$ solutions to their Cauchy problems.

We finally give three appendices in Chapter 7. In Appendix 1 we construct

a counter example to illustrate that the assumption on the decay rate of initial

data is essential in our theory, otherwise our results might be false. In Appendix

2 we consider critical quasilinear hyperbolic systems in diagonal form and give

lower and upper bounds of life span of classical solutions, this result improves

the corresponding results presented in \S 5 of [LZK2]. In Appendix 3 we generalize

the Schatzman’s theorem on continuous Glimm functionals. This result plays an
important role in Chapter 5.

The method employed in this paper is the extension method of local solution.

This method requires us: first, establish the local classical solution theory, then

derive some uniform a priori estimates on the solution. Using these uniform $a$

priori estimates, we can draw the final conclusions. This method can be expressed

simply as follows:

Local classical solution theory

$+$

Uniform a priori estimates on solution
$\Downarrow$

Final results (Global existence or Breakdown)

Because the local classical solution theory has been established well, for example,

see [LY], the key point of this method is how to establish some uniform a priori

estimates on the solution. In this paper, according to the eigenvalues of $A(u)$ ,

we first divide the upper half plane into different angle domains, then introduce

suitable norms of the solution on these angle domains, and then we obtain different

estimates on these norms by making use of the formulas on the decomposition of
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waves. These estimates show that i-wave is stronger in the corresponding i-th

characteristic angle domain than outside. Using these estimates, we observe that

the i-wave can be modeled simply by a Riccati’s equation $Z=a_{0}z^{2}+a_{1}(t)z+a_{2}(t)$ ,

where $a_{1}(t),$ $a_{2}(t)$ are continuous functions and $a_{0}$ is a constant, in which $a_{0}=0$

if $\lambda_{i}(u)$ is weakly linearly degenerate; otherwise, $a\neq 0$ . Our final conclusions

(including the global existence, the blow-up phenomenon, the estimate of the life

span, the large time behaviour of the global classical solution, the mechanisms

of breakdown of the $C^{1}$ solution, etc.) can be drawn by the theory on ordinary

differential equations.

Finally, we point out that, in this paper, we only consider “small” initial data

with certain decay properties as $|x|\rightarrow+\infty$ , for instance, the initial data (1.7),

where $\varphi(x)$ is small in the sense that $\theta$ or $\overline{\theta}$ is small, in which $\theta$ and $\overline{\theta}$ are defined by

(1.13) and (1.14) respectively. The method used in this paper might be inapplicable

to other kinds of initial data such as periodic functions, etc. (see Appendix 1). For

periodic initial data, reader may refer to S.Klainerman and A.Majda [KM].


