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Abstract.

We establish effective uniform degree bounds for the generalized
Gauss map images of an embedded projective variety X ⊂ P

N in terms
of numerical invariants such as dimX, degX and N . This can be seen
as a generalization of a classical Castelnuovo type bound.

§1. Introduction

The aim of this paper is to give effective uniform degree bounds for
the generalized Gauss map images of an embedded projective variety
X ⊂ P

N in terms of numerical invariants such as dimX, degX and N .
We first recall the generalized Gauss maps ([Zak93, I.§2]). We de-

note by G(m,N) the Grassmann variety of m-planes V ⊂ P
N , and

denote the corresponding points by [V ] ∈ G(m,N). In our convention,
G(m,N) is the Grassmannian of all 0 ∈ C

m+1 ⊂ C
N+1. For every

integer m with n := dimX ≤ m < N , we let

Γm = {(x, [V ]) ∈ Xreg ×G(m,N); TX,x ⊂ V } ⊂ X ×G(m,N),

where TX,x is the projectivized tangent n-plane in P
N and where the

overline means the Zariski closure in X ×G(m,N). We let

gm : Γm −→ G(m,N)

be the projection to the second factor, which we call the m-th Gauss
map of X, and define

X∗
m := gm(Γm) ⊂ G(m,N).
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When m = N−1, X∗
N−1 = X∗ ⊂ (PN )∗ is the so-called dual variety, and

when m = n, gn : Γn → G(n,N) or the rational map X ��� G(n,N) is
the (standard) Gauss map. We define the defect of the m-th Gauss map
to be

defmX := dimΓm − dimX∗
m.

It is immediate that 0 ≤ defmX ≤ n, and defmX ≤ defm+1X. For
example, n− defnX = dimX∗

n, and defmX = n for some m if and only
if X is a linear subspace. Our main result is the following

Theorem 1.1. Let X ⊂ P
N be an n-dimensional projective variety

of degree d > 1. Then the degree of the m-th Gauss map image X∗
m ⊂

G(m,N) with respect to the Plücker embedding of G(m,N) is bounded
as follows.

(1) degX∗
n ≤ d(d− 1)n−defnX ≤ d(d− 1)n.

Moreover, degX∗
n = d(d − 1)n holds if and only if X is smooth and

contained in a linear subspace P
n+1.

(2) degX∗
m ≤ degF (n,m;N)

(
n+ dimG(m,N)

n

)
degG(m,N) degX∗

n

for m with n < m < N , where
(
a
b

)
is a binomial coefficient.

Here, degG(m,N) is the Plücker degree, and F (n,m;N) ⊂ G(n,N)
× G(m,N) is a flag manifold whose degree is measured by the Plücker
embeddings of G(n,N) and G(m,N). We note that the integer C =

degF (n,m;N)
(
n+dimG(m,N)

n

)
degG(m,N) is independent of d = degX.

In fact, this integer is explicit and can be estimated by C <
(
� + (m +

1)(m − n)
)
!(� + n)!/(n!) with � = dimG(m,N) = (m + 1)(N −m) for

example. The bound (1) can be improved by taking the codimension
of X into account as well as a Castelnuovo type bound for the genus of
projective curves. The bound in (2) can also be improved by taking the
defect into account. For the sake of readability, we did not include these
sharpenings in Theorem 1.1; instead we refer the reader to Theorem 2.1
and Corollary 5.2. Section 5 is devoted to dealing with the situation of
positive defect. Actually, it is only with that same Corollary 5.2 that
Theorem 1.1 is completely established.

This type of topic is undoubtedly classical, and hence there exist a
lot of works related to this paper, especially when m = N − 1 or m = n.
We do not attempt to present the history here; instead we refer to the
monograph [Zak93], the article [Zak12] and the references contained in
these. As a matter of fact, it was the article [Zak12] and the results of
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Castelnuovo type in it, especially [Zak12, Theorems 1.18, 1.21], which
originally inspired us to investigate generalized Gauss maps. However,
regarding the issue of effectivity, we are not aware of any previous results
establishing degree bounds for generalized Gauss maps, or even just for
standard Gauss maps.

It came as a surprise to us that we were able to prove the bound
in Theorem 1.1(1), since it is exactly of the same form as the bound in
[Zak12, Theorem 1.18] for the dual variety, which reads

degX∗
N−1 ≤ d(d− 1)n−defN−1X ≤ d(d− 1)n

(proven there under the assumption that X ⊂ P
N is linearly non-

degenerate). This certainly raises the question of the existence of further
relations among the values degX∗

m with n ≤ m < N and the underlying
reasons for them, such as a certain kind of symmetry or duality.

The possible existence of such relations is furthermore suggested
by Example 3.7 (see Remark 3.8(1)), which is the case of the Veronese
curves. Treating this example is not entirely elementary, and the discus-
sion in Example 3.7 is basically due to Kaji [Kaj15]. Most importantly,
we will find that it is not the case that degX∗

m ≤ d(d− 1)n for general
m. More concretely, for the Veronese embedding X ⊂ Pd of P1 of degree
d, we will see degX∗

1 = 2(d − 1),degX∗
2 = 2(d − 1)(d − 2),degX∗

d−1 =
2(d− 1) and

degX∗
m = 2(d−m)

(
(m− 1)(d−m) + 1

)
degG(m− 2, d− 2)

for 2 ≤ m ≤ d − 1. We interpret this formula in two ways. One way is

to note for example that degX∗
3 = 2(d− 3)(2d− 5) (2(d−3))!

(d−2)!(d−3)! > 2d for

all d ≥ 5 and also degX∗
d−2 = 4(2d − 5) (2(d−3))!

(d−2)!(d−3)! > 2d for all d ≥ 5,

which are already exponential in d. A second way to understand this
formula is to consider the final formula established in Example 3.7(3),
which, after setting n = 1 for dimX and N = d for the dimension of the
ambient projective space, results in

degX∗
m =

(
n+ dimG

n

)
· degG · ((n+ 1)(d− 1)− 2(m− n)

)
,

where G = G(m − n − 1, N − n − 1). This is linear in d and should
also be compared with Theorem 1.1(2), which is polynomial in d (at
most of degree n + 1) multiplied by the degrees of Grassmann and flag
varieties and a binomial coefficient. We readily admit that the bound in
Theorem 1.1(2) is likely not sharp, but on the other hand, Example 3.7
shows that it is certainly not too far off.
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A significant subtlety in our work is that X can be singular. If X
were smooth, one could make use of various techniques to study this
subject and obtain at least some effective bounds rather easily. For
example, one could use the canonical bundle together with the adjunc-
tion formula and a ramification formula for finite morphisms, as well as
Katz’ degree formula [Kat73, Proposition 5.7.2], the Lefschetz theorem
for hyperplane sections, and the theory of bundles of principal parts or
jet bundles (see [Pie77, §2, §6], or Example 3.7 for a glimpse of these
techniques). However, these techniques are not applicable in many key
steps in this paper due to the possible presence of singularities.

Let us discuss the more technical part of our approach. Experience
shows that the most fundamental case is the case of the standard Gauss
map case without defect, i.e., gn : Γn → X∗

n (and X ��� X∗
n) is bira-

tional. The degree of the standard Gauss map image X∗
n ⊂ G(n,N)

is the intersection number of X∗
n and hyperplanes under the Plücker

embedding of G(n,N). By an application of a Hodge index theorem
type inequality, bounding this degree can be reduced to bounding the
intersection number of a general hyperplane section curve on X and an
effective Weil divisor onX which is a strict transform, via the Gauss map
gn : X ��� X∗

n, of a hyperplane section of X∗
n ⊂ G(n,N) by the Plücker

embedding. This type of effective divisor on X corresponds to the ram-
ification divisor of a general linear projection of π : X → Pn in PN . We
study carefully these standard geometric processes, i.e., hyperplane cuts
and linear projections. We will use the Kleiman-Bertini theorem and
another refinement of Bertini’s theorem to study codimension 1 points
in X (this amounts to saying that, if X is a curve, we study the behavior
of tangent directions around the singular points) and estimate the num-
ber of intersecting points by hand with the aid of a Castelnuovo type
bound [Har82, 3.7]. This line of argument is given in [Zak12, Example
1.4] in the case X is smooth, where the canonical bundle is used at some
point. This will be discussed in Section 2.

Theorem 1.1(2) is a statement of reduction from generalized Gauss
maps to the standard Gauss map. This reduction will be done by using
an incident variety technique in Section 3. Strictly speaking, this is com-
pleted only after some other reduction steps in Section 4 and Section 5
(see Corollary 5.2). In our context, subvarieties X ⊂ P

N can be degen-
erate in two manners. The first is linear degeneracy and the second is
non-birationality of Gauss maps. A subvariety X ⊂ PN is said to be lin-
early non-degenerate if X is not contained in a lower dimensional linear
subspace of PN . This kind of degeneracy is handled by way of Lemma
4.3. For the case when defmX > 0 also, we obtain a natural reduction
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to the case of zero defect by general hyperplane cuts in Proposition 5.1
thanks to the tangency theorem of Zak [Zak93, I.2.3].

We work over the field of complex numbers C. Our projective space
is the space of all complex lines passing through the origin in a complex
vector space. By a variety, we mean a reduced and irreducible scheme
of finite type over C. Our argument works without any changes for
varieties over an algebraically closed field of characteristic zero.
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§2. Bound on the birational standard Gauss map image

We shall devote this section to proving the following version of The-
orem 1.1(1) which represents its most fundamental form.

Theorem 2.1. Let X ⊂ P
N be an n-dimensional projective variety

of degree d. We denote by NX the dimension of the smallest linear
subspace 〈X〉(= P

NX ) ⊂ P
N containing X. Let a := NX − n, and let ε

be the unique integer with ε ≡ d (mod a) and 1 ≤ ε ≤ a. Let γ : X ���
G(n,N) be the Gauss map defined by x ∈ Xreg 
→ [TX,x] ∈ G(n,N), and

denote by Y = γ(Xreg) the Zariski closure, i.e., Y = X∗
n. Suppose that

the map γ : X ��� Y is birational. Then the degree of Y with respect to
the Plücker embedding of G(n,N) is bounded by

deg Y ≤ 1

dn−1

(
1

a
(d− ε)(d− a+ ε− 2) + 2d− 2

)n

≤ d(d− 1)n.

Moreover, deg Y = d(d − 1)n holds if and only if X is smooth and
contained in a linear subspace Pn+1, i.e., NX = n+ 1.
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Remark 2.2. (1) To obtain a bound of deg Y without using ε, one
can weaken the above bound to

deg Y ≤ 1

dn−1

(
1

a
(d− 1)(d− 2) + 2d− 2

)n

=
dn+1

an
+O(dn).

(2) It is not hard to understand when deg Y = 1
dn−1

(
1
a (d−ε)(d−a+

ε− 2) + 2d− 2
)n

holds. Namely, by the proof of Theorem 2.1 (see Step

(5) there), this happens only when, letting C = X ∩ P
n−1 be a curve

obtained by general hyperplane cuts, the embedded curve C ⊂ 〈X〉 ∩
P
n−1 = P

NX−n+1 of degC = d and codimC = a in P
NX−n+1 satisfies

the equality g(C) = 1
2a (d−ε)(d−a+ε−2) in the Castelnuovo type bound,

where g(C) is the arithmetic genus of C. Thus, a characterization of X

with deg Y = 1
dn−1

(
1
a (d− ε)(d− a+ ε− 2)+ 2d− 2

)n
will be reduced to

that of hyperplane cuts C with g(C) = 1
2a (d− ε)(d− a+ ε− 2), which

has been studied classically (we refer to [Har82, Ch. 3] for a modern
treatment). �

Let us start a discussion towards the proof of Theorem 2.1. We set

Γ = {(x, [TX,x]) ∈ Xreg ×G(n,N)} ⊂ X ×G(n,N),

and let p : Γ → X and q : Γ → G(n,N) be the projections:

Γ
q−−−−→ Y ⊂ G(n,N)

p

⏐⏐�
X ⊂ PN

.

By an abuse of terminologies, we call the projection q : Γ → G(n,N), as
well as the regular map γ : Xreg → G(n,N) and also the rational map
γ : X ��� G(n,N), the (standard) Gauss map. For every subvariety

V ⊂ X not contained in Xsing, we set γ(V ) := γ(V ∩Xreg).
Recall that a brief outline of the proof is given in the Introduction.

We will estimate an intersection number of a general curve on X and a
divisor on X which comes from a Schubert subvariety in G(n,N). We
count such an intersection number by hand, by using the geometry of
Grassmannians. Let us start to prepare for the proof of Theorem 2.1,
which will be given in the final part of this section.

We suppose n > 1 for the remainder. In the case n = 1, Theorem 2.1
is classically known, and it can also be proved by the argument in this
section with many trivial modifications. The birationality assumption
on γ : X ��� Y trivially excludes the case d = 1. The following are some
additional noteworthy remarks.
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Remark 2.3. (1) We recall (or describe) the rational map γ : X ���
G(n,N) on a general point of Xsing outside of an (n − 2)-dimensional
Zariski closed subset. Let

X0 ⊂ X

be a Zariski open subset such that p : Γ → X is finite over X0. Since p
is birational, we see dim(X \X0) ≤ n− 2. For every x ∈ X0, we define
the positive integer J(x) to be the number of points in Supp p−1(x) ⊂ Γ.
We have J(x) = 1 and p−1(x) = (x, [TX,x]) for x ∈ Xreg for example.
We let in general

p−1(x) = {(x, [TX,x,j ]) with [TX,x,j ] ∈ G(n,N), j = 1, . . . , J(x)}
for x ∈ X0 and refer to TX,x,j as a tangent plane at x (these [TX,x,j ] are
defined by p−1(x)). Then q(p−1(x)) = {[TX,x,j ], j = 1, . . . , J(x)} ⊂ Y .
For every integer k ≥ 1, the set {x ∈ X0; J(x) ≤ k} is Zariski open.

We now proceed to define a certain subset Z ⊂ X. In case there
is no (n − 1)-dimensional part of Xsing, set Z = ∅. Otherwise, let∑

λ Zλ be the irreducible decomposition of the (n− 1)-dimensional part
of Xsing. For every Zλ, there exists an integer k ≥ 1 such that {x ∈
Zλ ∩X0; J(x) ≤ k} is non-empty and Zariski open in Zλ. We take kλ
to be the smallest integer such that

Zλ0 := {x ∈ Zλ ∩X0; Xsing is smooth at x and J(x) = kλ}
is non-empty and Zariski open in Zλ. Then we set

Z =
⋃

λ
Zλ0 ⊂ X0.

(2) Let M ⊂ PN be a general (N − n + 1)-plane so that the inter-
sections Xreg ∩M and Z ∩M are transverse (recall Z ⊂ Xsing from (1)
above). Then

C := X ∩M

is an irreducible curve of degree d > 1, and Creg = Xreg∩M by Bertini’s
theorem ([Har95, Theorem 17.16]). Codimension 2 (or higher) points in
X are irrelevant for C due to M being general. Thus, we can suppose
C ⊂ X0 and Xsing ∩M = Z ∩M . �

In the situation in Remark 2.3(2), we can further suppose that
TX,x,j ∩ M is a line for every x ∈ C and j = 1, . . . , J(x) by the fol-
lowing Bertini-type lemma. (If x ∈ Creg, then TX,x ∩M = TC,x and it
is certainly a line.)
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Lemma 2.4 (Bertini-type). There exists a non-empty Zariski open
subset U ⊂ G(N−n+1, N) such that, for every [M ] ∈ U, C = X∩M ⊂
X0 has the properties in Remark 2.3(2) and TX,x,j ∩ M is a line for
every tangent plane TX,x,j of X at x ∈ C.

Proof. We follow the arguments in [Har77, II.8.18] for the proof of
the usual Bertini theorem. We set G := G(N−n+1, N). The conditions
in Remark 2.3(2) pose only a Zariski open condition on G. For every
ξ = (x, [T ]) ∈ Γ ⊂ X ×G(n,N), we consider

Bξ = {[M ] ∈ G; x ∈ M,dim(M ∩ T ) ≥ 2}.
It is always the case that M ∩ T is a linear subspace of dimension ≥ 1.
This Bξ is a Schubert variety of partition type (n − 1, 1, 1) and hence
of codimension n + 1 in G (see Remark 2.5(1) below). Thus, dimBξ =
dimG− (n+ 1).

We consider B ⊂ Γ × G consisting of all pairs (ξ, [M ]) such that
[M ] ∈ Bξ. The fiber of the first projection p1 : B → Γ over ξ ∈ Γ
is nothing but Bξ. The subset B is a kind of incident variety over Γ
(see Remark 2.5(2)) and we have dimB = dimΓ+ dimBξ = dimG− 1.
The second projection p2 : B(⊂ Γ×G) → G cannot be surjective simply
because of the dimensions. If we take an element [M ] ∈ G\p2(B), which
is non-empty Zariski open, then [M ] 
∈ Bξ for any ξ ∈ Γ∩p−1(X0). This
means dim(M ∩ TX,x,j) = 1 for any x ∈ M ∩X0 and any tangent plane
TX,x,j of X at x. Q.E.D.

Remark 2.5. The following are mostly purely general remarks on
Grassmannians.

(1) Let x ∈ P
N , and let T ⊂ P

N be an n-plane containing x. We then
observe that σx,T := {[M ] ∈ G(N −n+1, N); x ∈ M,dim(M ∩T ) ≥ 2}
is a Schubert variety of the partition type (n− 1, 1, 1) in the convention
of [GH94, Ch. 1, §5]. We set k′ = N − n + 2, n′ = N + 1 and denote

by GA(k
′, n′) the Grassmannian of all 0 ∈ C

k′ ⊂ C
n′

(“A” stands for
“affine”). By convention GA(k

′, n′) = G(N − n + 1, N) in a natural
way, which is given by the projectivization [Λ] ∈ GA(k

′, n′) 
→ [P(Λ)] ∈
G(N − n+ 1, N).

We take a flag: 0 ∈ V1 ⊂ V2 ⊂ . . . ⊂ Vn′−1 ⊂ Vn′ in Cn′
(i.e.,

each Vi is an i-dimensional linear subspace) so that P(V1) = x and

P(Vn+1) = T . For a k′-plane Λ ⊂ Cn′
, [P(Λ)] ∈ σx,T if and only if

dim(Λ ∩ V1) ≥ 1,dim(Λ ∩ Vn) ≥ 2 and dim(Λ ∩ Vn+1) ≥ 3. Note that
dim(Λ ∩ Vn) ≥ 2 is a trivial necessary condition for dim(Λ ∩ Vn+1) ≥ 3.
Namely, letting (a1, a2, a3) = (n − 1, 1, 1), σx,T can be identified with
{[Λ] ∈ GA(k

′, n′); dim(Λ ∩ Vn′−k′+i−ai) ≥ i for all i = 1, 2, 3}. The
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latter subset in GA(k
′, n′) is a Schubert variety of the partition type

(n−1, 1, 1), which is commonly denoted by σn−1,1,1 as in [GH94, p. 196].
(2) Let Ω ⊂ P

N×G(n,N) be the universal family of n-planes, defined
by Ω = {(x, [T ]) ∈ PN ×G(n,N); x ∈ T}. We consider another incident
variety Σ ⊂ Ω × G(N − n + 1, N) defined by Σ = {((x, [T ]), [M ]) ∈
Ω × G(N − n + 1, N); x ∈ M,dim(M ∩ T ) ≥ 2}. The fiber of the
projection Σ → Ω is a Schubert variety of the partition type (n− 1, 1, 1)
as we saw in (1).

Our variety Γ sits in Ω via the inclusions Γ ⊂ X × G(n,N) ⊂
P
N ×G(n,N). By restricting this family Σ → Ω to Γ, we have a family

ΣΓ → Γ, which we denote by p1 : B → Γ. �
We next study a special type of divisor onX coming from a Schubert

subvariety in G(n,N).

Remark 2.6. (1) Let L ⊂ P
N be an (N − n− 1)-plane. We set

DL = {[Λ] ∈ G(n,N); Λ ∩ L 
= ∅},
which is a special hyperplane section of G(n,N) with respect to the
Plücker embedding. Although DL is defined as a set, there is a natural
scheme structure as a restriction of a hyperplane. By the Kleiman-
Bertini theorem ([Kle74, Remark 7, Corollary 8], [Har77, III.10.8]), if
L is general, the hyperplane section DL is reduced and irreducible on
G(n,N), and moreover Yreg and (DL)reg intersect transversally with
expected dimension for our Y .

(2) Let L ⊂ P
N be an (N −n− 1)-plane. We denote by πL : PN ���

Pn
L the linear projection from L (we prefer to denote the target Pn by

P
n
L to avoid any potential for confusion). If L is general, the map πL

induces a finite morphism πL : X → Pn
L. We then set

RL = {x ∈ Xreg; TX,x ∩ L 
= ∅},
which is a codimension 1 subset of X, and give it the reduced structure.
This RL is the locus where the rank of the differential of πL : X → Pn

L

drops. We can put a natural scheme structure RamL on the set RL as
follows. Letting RL =

∑
RLi be the irreducible decomposition and ei

be the ramification index of πL : X → P
n
L along the generic point of

RLi, we set

RamL =
∑

(ei − 1)RLi.

(Cf. [Zak12, Example 1.4]. The notation is slightly different, and
the smoothness of X is assumed at some point there.) We set BL =
πL(RL) ⊂ Pn

L.
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(3) We will take a resolution of singularities μ : Γ̃ → Γ, and let
p̃ = p ◦ μ, q̃ = q ◦ μ be the induced morphisms:

Γ̃
q̃−−−−→ Y ⊂ G(n,N)

p̃

⏐⏐�
X ⊂ PN

.

We will also take a Zariski closed subset SX ⊂ X (resp. SY ⊂ Y ) such

that p̃ : Γ̃ \ p̃−1(SX) → X \ SX (resp. q̃ : Γ̃ \ q̃−1(SY ) → Y \ SY ) is
isomorphic, and set

S := SX ∪ p(q−1(SY )) ⊂ X.

In particular, we note that S ⊃ Xsing and q(p−1(S)) ⊃ Ysing, p̃ is
isomorphic over X \ S, and q̃ is isomorphic over Y \ q(p−1(S)), which
is Y \ q̃(p̃−1(S)). Observe that trivially p−1(S) ⊃ q−1(SY ). We will be
able to take E = S ⊂ X and F = q(p−1(S)) ⊂ Y in Lemma 2.7 below.

For every x ∈ RL ∩ Xreg, we have [TX,x] ∈ DL ∩ Y by the defini-
tions. Via this correspondence, we can identify RL|X\S , p̃∗(RL|X\S),
q̃∗(DL|Y \q(p−1(S))) and DL|Y \q(p−1(S)), under the isomorphisms X \S ∼=
Γ̃ \ p̃−1(S) ∼= Y \ q(p−1(S)) = Y \ q̃(p̃−1(S)). �

The next lemma is a kind of base point freeness statement. A slight
subtlety is the constraint L ⊂ M . Without L ⊂ M , it would be much
easier and entirely straight forward.

Lemma 2.7. Let E ⊂ X (resp. F ⊂ Y ) be a Zariski closed subset
satisfying Xsing ⊂ E 
= X (resp. Ysing ⊂ F 
= Y ). Then there exist a
(general) (N − n− 1)-plane L ⊂ P

N and a (general) (N − n+ 1)-plane
M ⊂ PN with L ⊂ M such that (i) C = X ∩ M has the properties in
Remark 2.3(2), (ii)

C ∩RL ⊂ X \ E ⊂ Xreg and γ(C) ∩DL ⊂ Y \ F ⊂ Yreg,

(iii) C and RL intersect transversally where they are smooth, and (iv)
DL is reduced and irreducible on G(n,N), and Yreg and (DL)reg inter-
sect transversally.

Proof. (1) We consider A = E ∪ p(q−1(F )). We take a general
(N − n + 1)-plane M0 as in Lemma 2.4 as an auxiliary object and set
C0 = X ∩M0. We can further suppose that M0 contains an (N −n−1)-
plane L0 which is general in view of the Kleiman-Bertini theorem in
Remark 2.6(1). If the Kleiman-Bertini theorem holds for one L0 ⊂ M0,
it holds for general L ⊂ M0. Since p : Γ → X and q : Γ → Y are
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birational, these are finite morphisms in codimension 1 over the targets.
We may further assume that p is finite around C0 and hence p−1(C0∩A)
consists of a finite number of points. The number of points in C0 ∩A is
just the degree dA in P

N of the (n − 1)-dimensional components in A.
Then q(p−1(C0∩A)) corresponds to a finite number of tangent n-planes
{TX,xi,j ; 1 ≤ i ≤ dA, 1 ≤ j ≤ J(xi)} of X. By Lemma 2.4, we know that
these TX,xi,j ∩M0, 1 ≤ i ≤ dA, 1 ≤ j ≤ J(xi), form a finite number of
lines in M0. We then take a general (N−n−1)-plane L ⊂ M0 such that
L does not intersect any of these lines TX,xi,j ∩M0 and L satisfies the
genericity condition in Remark 2.6(1). Then DL ∩ q(p−1(C0 ∩ A)) = ∅
by definition of DL. We fix this L for the rest of the argument.

(2) We shall then take an M(⊃ L) which is close to M0 in G(N −
n+1, N) so that the intersection (X ∩M)∩RL becomes transverse. We
first note that the set F := {[M ] ∈ G(N − n + 1, N); M ⊃ L} and the
set F ′ := {lines in P

n
L} ∼= G(1, n) can be identified in a natural way via

F � [M ] 
→ [M ∩Pn
L] ∈ F ′. For the Zariski open U ⊂ G(N−n+1, N) in

Lemma 2.4, the set U ∩F is Zariski open in F and non-empty because of
[M0] ∈ F . We take a general point [�] ∈ F ′ so that (i) the corresponding
[M ] ∈ F is still in U ⊂ G(N−n+1, N), (ii) � and BL = πL(RL) intersect
transversally where BL is smooth and where the morphism RL → BL

is unramified over a Zariski open subset containing � ∩ BL, and (iii)
DL ∩ q(p−1(C ∩ A)) = ∅, where C = X ∩ M . The last property (iii)
follows since DL ∩ q(p−1(C0 ∩A)) = ∅ for M0 and a small perturbation
of M0 will not change the fact that the intersection is empty. We shall
show that these L and M are what we are looking for.

(3) We shall prove that γ(C) ∩ DL ∩ F = ∅. We take a point
y ∈ γ(C) ∩ F . The condition y ∈ γ(C) means that y is represented by
a tangent plane at some point x ∈ C, i.e., y = [TX,x,j ] for some 1 ≤
j ≤ J(x). Then by y ∈ F , we have x ∈ p(q−1(y)), in fact (x, [TX,x,j ]) ∈
q−1(y) and p((x, [TX,x,j ])) = x. Hence x ∈ C ∩ p(q−1(y)) ⊂ C ∩ A.
However, by our choice of L and M , DL ∩ q(p−1(C ∩ A)) = ∅ holds. It
follows that y = [TX,x,j ] 
∈ DL.

(4) We shall prove that C∩RL∩E = ∅. We take a point x ∈ C∩RL.
We first note that TX,x,j ∩ L 
= ∅ (not only as a limit) for some tangent
plane at x. In the case x ∈ Xreg, this follows from the definition of RL.
If x ∈ Xsing, x ∈ Xsing ∩ C must be in general position in Xsing as in
Remark 2.3. Then by definition of RL, there exists a sequence of points
{xk} such that xk ∈ Xreg, TX,xk

∩L 
= ∅ and limk→∞ xk = x. By passing
to a subsequence, we may assume that p−1(xk) = (xk, [TX,xk

]) ∈ Γ
converges to a point in p−1(x) = {(x, [TX,x,j ])}1≤j≤J(x) ⊂ Γ, namely
[TX,x,j ] = limk→∞[TX,xk

] in G(n,N) for some 1 ≤ j ≤ J(x). Hence
TX,x,j ∩ L 
= ∅ too.
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On the other hand, if x ∈ E, we have x ∈ C ∩E ⊂ C ∩A. However,
then TX,x,j ∩ L = ∅ by our choice of L and M . Thus, C ∩RL ∩ E = ∅.

(5) We shall prove that C and RL intersect transversally where
they are smooth. We take a point x ∈ C ∩ RL, which is contained in
X \ E ⊂ Xreg as we have just seen. The property (ii) in (2) implies
that RL is smooth at x. Since x ∈ C = X ∩ M and x ∈ Creg, we see
TC,x = TX,x ∩M and then TC,x ∩ L = TX,x ∩ (M ∩ L) = TX,x ∩ L 
= ∅
as x ∈ RL ∩ Xreg. If C and RL are tangent at the point x, we have
TC,x ⊂ TRL,x. Thus, we see TRL,x ∩ L ⊃ TC,x ∩ L 
= ∅, which implies
that the morphism RL → BL is ramified at x ∈ RL. This cannot happen
by the condition (ii) in (2).

We add a remark for a later purpose. Let us take a point x ∈
C ∩ RL above. Once we know that C and RL intersect transversally,
the ramification index e of πL : X → Pn

L along the component of RL

containing x and that of πL|C : C → P
1 coincide. Q.E.D.

We are ready to give a proof of Theorem 2.1.

Proof of Theorem 2.1. We take a resolution of singularities μ : Γ̃ →
Γ, and let p̃ = p ◦ μ, q̃ = q ◦ μ be the induced morphisms as in Remark
2.6.

(1) Let H be the hyperplane section class on P
N , and let D be

the hyperplane section class on G(n,N) with respect to the Plücker

embedding. We let H̃ = p̃∗H and D̃ = q̃∗D, which are nef and big

classes and give base point free linear systems on Γ̃. Let ri = D̃i · H̃n−i

for i = 0, 1, . . . , n (which satisfy ri > 0 for all i). In particular, r0 =
Hn · X = degX = d, rn = Dn · Y = deg Y . By the Khovanskii-
Teissier inequality ([Laz04, Example 1.6.4]), we have the Hodge index
theorem type inequalities as in [Zak12, Theorem 1.1]; in particular, we
have rn ≤ rn1 /r

n−1
0 , i.e., deg Y ≤ rn1 /d

n−1. For our purpose, it is enough
to show that

r1 = D̃ · H̃n−1 ≤ 1

a
(d− ε)(d− a+ ε− 2) + 2d− 2 ≤ d(d− 1).

(2) Here we explain a slightly more general situation. For every

choice of general members H̃1, . . . , H̃n−1 ∈ p̃∗|H| (i.e., H̃i = p̃∗Hi for a

general Hi ∈ |H|), C̃ = H̃1 ∩ . . . ∩ H̃n−1 is a smooth (because of the

base point freeness of p̃∗|H|) irreducible curve on Γ̃ and C = H1 ∩ . . . ∩
Hn−1∩X is a reduced and irreducible curve onX. Then C ⊂ 〈X〉∩M(=
PNX−n+1) is linearly non-degenerate. The induced morphism ν := p̃|C̃ :

C̃ → C is in fact the normalization. Every general (N − n + 1)-plane
M ⊂ P

N can be written as such an intersection M = H1 ∩ . . . ∩Hn−1.
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Let L ⊂ PN be a general (N − n − 1)-plane with L ⊂ M so that
the linear projection πL : PN ��� P

n
L from L induces finite morphisms

πL : X → Pn
L and πL : C → P1, where P1 is a line in the target Pn

L. Let

fL = πL ◦ ν : C̃ → P
1

be the induced d-sheeted covering, and let QL ⊂ C̃ be the ramification

divisor of fL. Then by Hurwitz’ formula, 2g(C̃) − 2 = −2d + degQL,

where g(C̃) is the genus of C̃ (and g(C) will denote the arithmetic genus
of C). By a Castelnuovo type bound [Har82, 3.7] (the “genus” there
means the arithmetic genus, see [Har82, p. 2]), we have

g(C̃) ≤ g(C) ≤ 1

2a
(d− ε)(d− a+ ε− 2).

We note that 1
2a (d− ε)(d− a+ ε− 2) ≤ 1

2 (d− 1)(d− 2) holds, and the

equality holds only when a = 1, i.e., 〈X〉 = Pn+1. Thus,

degQL ≤ 1

a
(d− ε)(d− a+ ε− 2) + 2d− 2 ≤ d(d− 1).

The integer r1 in (1) can further be written as D̃ · H̃n−1 = (q̃∗D) ·
p̃−1(C) = D · γ(C) = deg γ(C). Since DL ∈ |D|, our object of interest
is γ(C) ∩DL.

(3) Using Lemma 2.7 for E := S ⊂ X and F := q(p−1(S)) ⊂ Y as
mentioned in Remark 2.6(3), we choose an (N − n − 1)-plane L ⊂ P

N

and an (N − n + 1)-plane M ⊂ PN with L ⊂ M as in Lemma 2.7 such
that

C ∩RL ⊂ X \ S and γ(C) ∩DL ⊂ Y \ q(p−1(S))

plus other conditions stated there, where C = X ∩M . We note that the
birational morphisms p̃ and q̃ (and also the Gauss map γ : X ��� Y )

induce isomorphisms X \ S ∼= Γ̃ \ p̃−1(S) ∼= Y \ q(p−1(S)) = Y \
q̃(p̃−1(S)). Under these isomorphisms, we can identify C \S, C̃ \ p̃−1(S)
and γ(C)\q(p−1(S)), as well as RL|X\S , p̃∗(RL|X\S), q̃∗(DL|Y \q(p−1(S)))
and DL|Y \q(p−1(S)) (as in Remark 2.6(3)). Thanks to these identifi-

cations, and noting the inclusions γ(C) ∩ DL ⊂ Y \ q(p−1(S)) and
C ∩RL ⊂ X \ S, we have

ν∗(RL|C) = (q̃∗DL)|C̃
for the normalization ν = p̃|C̃ : C̃ → C. It is true that the effective
Cartier divisor DL|Y and γ(C) intersect transversally where they are
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smooth, since RL and C do so. Thus, the Plücker degree of γ(C) ⊂
G(n,N) is

deg γ(C) = #(DL ∩ γ(C)) = #(RL ∩ C)

just by counting the number of intersection points (without multiplici-
ties).

Recall that, for x ∈ Creg, πL : X → Pn
L (resp. πL : C → P1) is

ramified at x if and only if TX,x ∩ L 
= ∅ (resp. TC,x ∩ L 
= ∅). Since
TX,x ∩ L = TC,x ∩ L for x ∈ Creg, we obtain the equivalence that
πL : X → P

n
L is ramified at x if and only if πL : C → P

1 is ramified at
x. Thus, we have

QL|ν−1(Creg) = (ν|ν−1(Creg))
∗(RamL|Creg )

on ν−1(Creg) ⊂ C̃.
(4) Adapting the construction and notations in (2) for these L and

M in (3), we see
QL � ν∗(RL|C),

i.e., QL is more effective than ν∗(RL|C). This is because of the fact that
(i) QL|ν−1(Creg) = (ν|ν−1(Creg))

∗(RamL|Creg ) on ν−1(Creg) ⊂ C̃ as we
have seen in (3), (ii) RamL|C � RL|C , and (iii) RL has no support on
Csing as a consequence of C∩RL ⊂ X \S (while QL may have a support
on ν−1(Csing)).

Thus, noting D̃ · H̃n−1 = deg(q̃∗DL)|C̃ , we have

D̃ · H̃n−1 = deg ν∗(RL|C) ≤ degQL

≤ 1

a
(d− ε)(d− a+ ε− 2) + 2d− 2 ≤ d(d− 1).

This is what we wanted to prove in (1).
(5) Suppose now that deg Y = d(d − 1)n holds. Then it has to be

that degQL = d(d− 1) in the preceding argument, and then a = 1, i.e.,
X ⊂ 〈X〉 = P

n+1 in (2). By Lemma 4.3 (an independent general result),

we have deg Y = deg X̂∗
n, where ĝn : Γ̂n → X̂∗

n ⊂ G(n, 〈X〉) is the n-th

Gauss map for X ⊂ 〈X〉 = P
n+1. We then have deg X̂∗

n = d(d − 1)n,
which can happen only when X is smooth due to [Zak12, Theorem 1.18].
It is also known due to [Zak12, Theorem 1.18] that, if X is a smooth
hypersurface in Pn+1, then degX∗

n = d(d − 1)n holds (the Gauss map
γ = gn : X → X∗

n is birational as soon as d > 1 in this setting). Q.E.D.
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§3. Reduction to the standard Gauss map

We shall prove Theorem 1.1(2) in the case when gm : Γm → X∗
m is

birational. In the case when gm is not birational, the proof of Theorem
1.1(2) gets completed with Corollary 5.2.

We temporarily take three positive integers n,m,N satisfying n <
m < N until we reach Proposition 3.4. When we consider polar-
izations and degrees of Grassmannians G(n,N), G(m,N), G(n,N) ×
G(m,N), . . ., and of any subvarieties of those spaces, it is always with
respect to the Plücker embeddings.

3.1. (1) We let F (n,m;N) ⊂ G(n,N)×G(m,N) be a flag manifold
defined by

F (n,m;N) = {([V ], [W ]) ∈ G(n,N)×G(m,N); V ⊂ W},
and let

F (n,m;N)
πm−−−−→ G(m,N)

πn

⏐⏐�
G(n,N)

be the projections. This F (n,m;N) is an incident variety fibered over
G(n,N) with fibers isomorphic to G(m−n−1, N −n−1); in particular,
dimF (n,m;N) = (n + 1)(N − n) + (m − n)(N −m). Various incident
varieties play important roles in this paper (some of them have already
appeared in Section 2). There is an explicit (but somewhat involved)
formula for degF (n,m;N) by representation theory (see Remark 3.5
below). Here we employ the simpler estimate

degF (n,m;N) ≤ (dimF (n,m;N))!.

(2) This F := F (n,m;N) connects our X∗
n with X∗

m in the following
way, where X ⊂ PN is as in Theorem 1.1. We pull back the bundle
structure F → G(n,N) by the inclusion X∗

n ⊂ G(n,N) and also the
standard Gauss map gn : Γn → G(n,N). We then obtain an induced
diagram as follows:

g∗nF −−−−→ FX∗
n

incl.−−−−→ F −−−−→ G(m,N)⏐⏐� ⏐⏐� ⏐⏐�
Γn

gn−−−−→ X∗
n

incl.−−−−→ G(n,N)

.

By definition g∗nF = {(x, [V ])× [W ] ∈ Γn×G(m,N); V ⊂ W}. We have
a natural morphism β : g∗nF → X ×G(m,N) given by (x, [V ])× [W ] 
→
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(x, [W ]). If we restrict everything to Xreg, then by the definitions of
Γm and g∗nF , β gives a natural identification of g∗nF and Γm. Since Γm

and g∗nF (as fiber bundles over Γn) are irreducible, we have β(g∗nF ) =
Γm. This construction also shows that g∗nF is the fiber product of the
projections pn : Γn → X and pm : Γm → X over X. As a result, we
have the following commutative diagram:

X
pm←−−−− Γm

gm−−−−→ G(m,N)

pn


⏐⏐birat. β


⏐⏐birat.

∥∥∥
Γn ←−−−− g∗nF −−−−→ G(m,N)

gn

⏐⏐� ⏐⏐� ∥∥∥
G(n,N)

πn←−−−− F
πm−−−−→ G(m,N)

.

�
The main reduction step towards Proposition 3.4 is the following.

Lemma 3.2. Let Y ⊂ G(n,N) be a closed subvariety. Consider

FY = {([V ], [W ]) ∈ G(n,N)×G(m,N); V ⊂ W, [V ] ∈ Y }
= F (n,m;N) ∩ (Y ×G(m,N)),

Ym = πm(FY ) ⊂ G(m,N)

with reduced structures. This FY can be seen as a G(m−n−1, N−n−1)-
bundle over Y . Suppose that the induced morphism πm : FY → Ym is
birational. Then

deg Ym ≤ degF (n,m;N)

(
dimY + dimG(m,N)

dimY

)
degG(m,N) deg Y.

Proof. LetHn (resp.Hm) be a hyperplane section under the Plücker
embedding of G(n,N) (resp. G(m,N)). We set k = dimYm. Since
πm : FY → Ym is birational, we have deg Ym = YmHk

m = FY π
∗
mHk

m.
Combining this with FY π

∗
mHk

m ≤ FY (π
∗
nHn + π∗

mHm)k = degFY , we
obtain deg Ym ≤ degFY . We set F = F (n,m;N) and G = G(m,N) for
simplicity. Since FY = F ∩(Y ×G), we have degFY ≤ degF ·deg(Y ×G)
by a Bézout type inequality. We also have deg(Y ×G) = (Y ×G)(π∗

nHn+

π∗
mHm)dimY+dimG =

(
dimY+dimG

dimY

)
deg Y · degG. Thus, our claim is

proven. Q.E.D.

Remark 3.3. Our estimate is not optimal due to the inequality
FY π

∗
mHk

m ≤ FY (π
∗
nHn + π∗

mHm)k in the argument above. �
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Proposition 3.4. Let X ⊂ PN be an n-dimensional projective va-
riety and let m be an integer with n < m < N . Then Theorem 1.1(2)
holds if the m-th Gauss map gm : Γm → X∗

m is birational.

Proof. We take Y = X∗
n ⊂ G(n,N) as the standard Gauss map

image of X in the setting of Lemma 3.2. In the second commutative
diagram in 3.1(2), if gm : Γm → X∗

m is birational, it follows that g∗nF →
gm(Γm) = X∗

m ⊂ G(m,N) is birational too. The latter implies FX∗
n
→

πm(FX∗
n
), i.e., FY → πm(FY ), is birational. Since the birationality of

gm : Γm → X∗
m implies the birationality of gm′ : Γm′ → X∗

m′ for any
m′ with n ≤ m′ ≤ m, we have dimX∗

n = dimΓn = n (the projection
Γn → X is always birational). Thus, by Lemma 3.2, we have

degX∗
m ≤ C degX∗

n with

C = degF (n,m;N)

(
n+ dimG(m,N)

n

)
degG(m,N).

Let us again write F = F (n,m;N) and G = G(m,N). The following
rough bounds give the bound C < (�+(m+1)(m−n))!(�+n)!/(n!) with
� = (m+1)(N−m) = dimG. By Remark 3.5, we have degF ≤ (dimF )!
and degG ≤ (dimG)!. We recall dimF = (n+1)(N −n)+(m−n)(N −
m) = �+ (m+1)(m−n). We then have degF ≤ (�+ (m+1)(m− n))!,

and
(
n+dimG

n

)
degG ≤ (n+�)!

n!�! �! = (�+n)!
n! . Q.E.D.

Remark 3.5. We make some comments on a degree formula of
homogeneous varieties. We refer to the nice paper [GW11] for an ex-
planation of the following type of calculation. Let F be a homogeneous
variety with an ample line bundle Hλ. Let λ be the dominant weight
corresponding to Hλ. Let ρ be one half times the sum of the positive
roots. Then the degree of F with respect to Hλ is given, due to Borel-
Hirzebruch (see [GW11, Introduction]), by

degλ F = (dimF )!
∏
α

〈λ, α∗〉
〈ρ, α∗〉 ,

where the product is taken over positive roots α with 〈λ, α∗〉 
= 0. In
general, these products are quite involved. For example, the Plücker
degree of the Grassmannian is

degG(m,N) = (dimG(m,N))!
0!

(N −m)!

1!

(N −m+ 1)!
· · · (m− 1)!

(N − 1)!

m!

N !

with 0! = 1 ([Har95, p. 247]). By a somewhat similar reasoning, we have
degF ≤ (dimF )! for the Plücker degree of flag manifolds. Thus, we can
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use (dimF )! as a rough bound, which is only achieved for the full flag
manifold. �

Remark 3.6. We take this opportunity to establish two inductive
relations of degrees which appear in Theorem 1.1(2) and Corollary 5.2:
degG(m − 1, N − 1) ≤ degG(m,N) and degF (n − 1,m − 1;N − 1) ≤
degF (n,m;N). The first relationship follows from the formula in Re-
mark 3.5, but we prefer to give an independent self-contained proof in
(1) below for the proof of (2). The condition n ≤ m < N plays no role
here, so we will replace m by the unencumbered variable n below. Note

that the first relationship immediately implies
(
n−1+dimG(m−1,N−1)

n−1

) ≤(
n+dimG(m,N)

n

)
.

(1) We shall prove degG(n,N) ≤ degG(n+1, N+1) for 0 ≤ n ≤ N .
Here we work under the convention G(n,N) = {(0 ∈)Cn ⊂ CN} for a
technical reason. We write C

N+1 = C
N ⊕ Ce0 for a non-zero vector

e0 ∈ C
N+1. Let G = G(n,N), g = dimG = n(N − n), G̃ = G(n +

1, N + 1), g̃ = dim G̃ = (n+ 1)(N − n). We take an embedding

α : G → G̃ given by V (= C
n) 
→ Ṽ = V ⊕ Ce0.

For [W ] ∈ G̃, [W ] ∈ α(G) if and only ifW ⊃ Ce0. We see codim (α(G) ⊂
G̃) = g̃ − g = N − n. If we take Plücker embeddings G → PG and

G̃ → PG̃, there is an embedding PG → PG̃ as a linear subspace which
makes the following diagram commutative:

G −−−−→ PG

α

⏐⏐� ⏐⏐�
G̃ −−−−→ PG̃

.

For a full flag 0 ∈ V1 ⊂ V2 ⊂ . . . ⊂ C
N+1 of CN+1 starting with

V1 = Ce0, we consider a special Schubert cycle σN−n(= σN−n,0,0,...) =

{W = Cn+1 ⊂ CN+1; W ⊃ V1} on G̃. This is nothing but α(G), i.e.,
α(G) = σN−n. We refer to [GH94, Ch. 1, §5] for Schubert cycles. We
recall in particular that the Schubert cycle σ1 of codimension 1 is a

hyperplane cut of G̃ under the Plücker embedding. By Pieri’s formula
([GH94, p. 203]), we have σ1 · σb = σb+1 + σb,1 for every positive integer
b (< g̃), and thus σb

1 = σb +Rb inductively with some effective (perhaps

equal to zero) codimension b cycle Rb on G̃ (Rb is a sum of Schubert
cycles with non-negative coefficients). In particular,

σN−n
1 = α(G) +RN−n.
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Noting that g̃ − g = N − n, we have

deg G̃ = σg̃
1 = σg̃−g

1 · σg
1 = (α(G) +RN−n) · σg

1

≥ α(G) · σg
1 = α∗(σ1)

g = degG.

(2) Next, we prove degF (n,m;N) ≤ degF (n+1,m+1;N+1). Here
we work under the convention F (n,m;N) = {(0 ∈)Cn ⊂ Cm ⊂ CN}.
Again, let F = F (n,m;N), f = dimF = n(N − n) + (m − n)(N −m),

F̃ = F (n+1,m+1;N+1), f̃ = dim F̃ = (n+1)(N−n)+(m−n)(N−m).

We let G = G(n,N), H = G(m,N), G̃ = G(n+ 1, N + 1), H̃ = G(m+

1, N + 1). We then have F ⊂ G×H, F̃ ⊂ G̃× H̃ and projections:

F
q−−−−→ H

p

⏐⏐�
G

;

F̃
q̃−−−−→ H̃

p̃

⏐⏐�
G̃

as in 3.1. Let αG := α : G → G̃ be the embedding in (1), and let

αH : H → H̃ be the one given by W 
→ W ⊕ Ce0. We also consider an

embedding αF : F → F̃ given by [V ⊂ W ] 
→ [V ⊕Ce0 ⊂ W ⊕Ce0]. We
note that αF is not only an embedding of F , but also, if we pull-back

the G(m− n,N − n)-bundle structure p̃ : F̃ → G̃ to G via αG : G → G̃,

it is exactly p : F → G. In fact, if [Ṽ ⊂ W̃ ] ∈ F̃ with Ṽ ∈ αG(G), then

Ce0 ⊂ Ṽ ⊂ W̃ and [V := Ṽ /Ce0 ⊂ W := W̃/Ce0] lies in F over [V ] ∈ G

(it should be V = pr(Ṽ ) under the projection pr : CN+1 = C
N ⊕Ce0 →

CN ). We have commutative diagrams:

F = α∗
GF̃

αF−−−−→ F̃

p

⏐⏐� ⏐⏐�p̃

G
αG−−−−→ G̃

;

F −−−−→ G×H −−−−→ PG × PH

αF

⏐⏐� ⏐⏐�αG×αH

⏐⏐�
F̃ −−−−→ G̃× H̃ −−−−→ PG̃ × P

H̃

.

Let σ1 (resp. τ1) be a Schubert cycle which is a hyperplane cut of G̃

(resp. H̃) under the Plücker embedding. We consider the ample divisor

σ̃1 + τ̃1 on G̃× H̃, where σ̃1 = p̃∗σ1 on G̃ and τ̃1 = q̃∗τ1 on H̃. Then

deg F̃ = F̃ · (σ̃1 + τ̃1)
f̃ = F̃ · (σ̃1 + τ̃1)

f̃−f · (σ̃1 + τ̃1)
f .

Noting f̃−f = N−n, we have F̃ ·(σ̃1+ τ̃1)
f̃−f = F̃ ·σ̃N−n

1 +F̃ ·R′, where

R′ =
∑f̃−f

k=1

(
f̃−f
k

)
σ̃f̃−f−k
1 τ̃k1 , which is a sum of intersections of semi-

ample divisors with non-negative coefficients, and F̃ · σ̃N−n
1 = αF (F ) +
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p̃∗RN−n thanks to the relation σN−n
1 = αG(G) +RN−n in (1). Thus,

deg F̃ = (αF (F ) + p̃∗RN−n + F̃ ·R′) · (σ̃1 + τ̃1)
f

≥ αF (F ) · (σ̃1 + τ̃1)
f = degF.

�
We close this section by giving a fundamental example, which is due

to Kaji. He, in [Kaj15], treats these types of examples with methods
due to him, including the case of positive characteristics. Here we quote
his argument in a slightly modified manner in view of the connection
with our Theorem 1.1.

Example 3.7 (Kaji [Kaj15]). (1) Let vd : P1 → Pd be the d-
Veronese embedding, i.e., [s, t] 
→ [sd, sd−1t, . . . , std−1, td] in homoge-
neous coordinates, and denote by C = vd(P

1) the image. We suppose
d ≥ 2. It is classically known that degC∗

1 = 2(d − 1) ([Har95, Exercise
19.12]). Here we shall establish the formulas

degC∗
m = 2(d−m)

(
(m− 1)(d−m) + 1

)
degG(m− 2, d− 2)

for every 2 ≤ m ≤ d − 1 (this also holds for m = 1 under a suitable
convention). Here the Plücker degree of the Grassmannian is

degG(m− 2, d− 2) =
(m− 2)!(m− 3)! . . . 1! 0!

(d− 2)!(d− 3)! . . . (d−m)!

(
(m− 1)(d−m)

)
!.

Thus, for example,
degC∗

2 = 2(d− 2)(d− 1),

degC∗
3 = 2(d−3)(2d−5) degG(1, d−2) = 2(d−3)(2d−5) (2(d−3))!

(d−2)!(d−3)! ,
. . .
degC∗

d−2 = 2 · 2(2d− 5) degG(d− 4, d− 2) = 4(2d− 5) (2(d−3))!
(d−2)!(d−3)! ,

degC∗
d−1 = 2 · 1(d− 1).

(2) Let us begin a general discussion to show the formula in (1).
Let X ⊂ P

N be an n-dimensional smooth projective variety. When
X is smooth in 3.1(2), the projection pn : Γn → X, as well as β :
g∗nF → Γm (n < m < N) are isomorphic. We will identify pm : Γm →
X and g∗nF → Γn, and in particular we regard pm : Γm → X as a
G(m − n − 1, N − n − 1)-bundle. We then shall build the universal
bundle on it and recall a bundle theoretic construction of Gauss maps.

Let 0 → OX → OX(1)⊕(N+1) → TPN |X → 0 be the Euler ex-
act sequence restricted to X, where OX(1) := OPN (1)|X , and let 0 →
TX → TPN |X → NX/PN → 0 be the normal bundle sequence of X
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in PN . We pull-back (i.e., restrict in this setting) the Euler exact se-
quence by the bundle injection TX → TPN |X , and have an extension
0 → OX → E → TX → 0 (i.e., we take the Yoneda pairing of these in
Hom (TX , TPN |X)× Ext1(TPN |X ,OX) → Ext1(TX ,OX)). We then have
the following commutative diagram, which is exact in rows and columns:

0 0
↓ ↓

OX = OX

↓ ↓
0 → E → OX(1)⊕(N+1) → NX/PN → 0

↓ ↓ ||
0 → TX → TPN |X → NX/PN → 0

↓ ↓
0 0

.

We take a tensor product with OX(−1) in the middle row of the diagram
and obtain an exact sequence

(∗) 0 → P1∗ → O⊕(N+1)
X → NX/PN (−1) → 0,

whereNX/PN (−1) := NX/PN⊗OX(−1), and where P1 := (E⊗OX(−1))∗

is the so-called bundle (of rank n+1) of principal parts of OX(1) of first
order on X (cf. [Pie77, §2, §6]). We note detP1 = KX ⊗OX(n+ 1) (as
is well-known, see [Zak93, p. 25]), which can be computed by detP1 =
detNX/PN (−1) and K∗

PN |X = K∗
X ⊗ detNX/PN (hence detNX/PN =

KX ⊗OX(N + 1)).

The sub-bundle P1∗ ⊂ O⊕(N+1)
X defines the standard Gauss map

gn : X → G(n,N) (cf. [Zak93, p. 25]; in fact this is often taken as a
definition of the standard Gauss map). Then degX∗

n = (detP1)n =
(KX ⊗ OX(n + 1))n if gn is birational onto its image. More generally
for n < m < N , at each x ∈ X, every m-plane W (= P

m) containing
TX,x(= Pn) corresponds to an (m + 1)-dimensional vector subspace in

O⊕(N+1)
X,x containing P1∗

x, i.e., corresponds to an (m − n)-dimensional

vector subspace S of NX/PN (−1)x in view of the exact sequence (∗).
Then the G(m − n − 1, N − n − 1)-bundle structure of pm : Γm → X
(i.e., g∗nF → Γn) can be written as

Γm = G(m−n−1,P(NX/PN (−1))) :=
∐
x∈X

G(m−n−1,P(NX/PN (−1)x))

with G(m − n − 1,P(NX/PN (−1)x)) = {Pm−n−1 in P(NX/PN (−1)x)} =

{(0 ∈)S = C
m−n inNX/PN (−1)x = C

N−n}. We let S ⊂ p∗m(NX/PN (−1))
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be the universal sub-bundle on Γm of rank m−n of this G(m−n−1, N−
m− 1)-bundle structure. By pulling back (i.e., restricting) the exact se-

quence 0 → p∗mP1∗ → O⊕(N+1)
Γm

→ p∗m(NX/PN (−1)) → 0 on Γm by

S ⊂ p∗m(NX/PN (−1)), we have an extension W of S to p∗mP1∗:

0 0
↓ ↓

0 → p∗mP1∗ → W → S → 0
|| ↓ ↓

0 → p∗mP1∗ → O⊕(N+1)
Γm

→ p∗m(NX/PN (−1)) → 0
↓ ↓
Q = Q
↓ ↓
0 0

,

whereQ = p∗m(NX/PN (−1))/S is a vector bundle of rankN−n. The sub-

bundle W ⊂ O⊕(N+1)
Γm

of rank m+ 1 is the collection of all m-planes W

in O⊕(N+1)
X,x containing TX,x as we indicated before, and W ⊂ O⊕(N+1)

Γm

gives the morphism Γm → G(m,N), which is nothing but the m-th
Gauss map gm. (This W corresponds to the flag construction in 3.1.
We do not want to use the symbol F here, because of the potential for
confusion.) Then

g∗mOG(m,N)(1) = detW∗ = det p∗mP1 ⊗ detS∗

on Γm. We denote (in general) by OΓm(1) := detS∗ the determinant of
the dual of the universal sub-bundle.

If NX/PN (−1) is of the form (O⊕(N−n)
X ) ⊗ L for a line bundle L on

X, then we have an isomorphism

i : G(m− n− 1,P(O⊕(N−n)
X )) → Γm,

which is defined by [V ⊂ O⊕(N−n)
X,x ] 
→ [V ⊗ L ⊂ (O⊕(N−n)

X ⊗ L)x]. We

note that G(m−n−1,P(O⊕(N−n)
X )) = G(m−n−1, N −n−1)×X and

O
G(m−n−1,P(O⊕(N−n)

X ))
(1) = pr∗1OG(m−n−1,N−n−1)(1), where pr1 is the

first projection. Since det(V ⊗ L)∗ = (detV )∗ ⊗ (L∗)⊗(m−n), it follows
that

i∗OΓm(1) = pr∗1OG(m−n−1,N−n−1)(1)⊗ (pr∗2L
∗)⊗(m−n).

We note that the second projection pr2 : G(m−n−1,P(O⊕(N−n)
X )) → X

is compatible with the projection pm : Γm → X, i.e., pm ◦ i = pr2. Up
to this point, our discussion was of a general nature.
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(3) We now suppose that X(= C) = vd(P
1) ⊂ Pd is the Veronese

curve of degree d. We still keep n(= 1) and N(= d). We understand well
TX and NX/PN ; in particular, detP1 = KX ⊗ OX(n + 1) = OP1((n +

1)(d − 1)) and NX/PN = OP1(d + 2)⊕(N−n) by [Kaj85, Example 3.5].

Moreover, NX/PN (−1) = (O⊕(N−n)
P1 ) ⊗ L with L = OP1(2). For 2 ≤

m ≤ N − 1, there is an isomorphism i : G× P
1 → Γm and i∗OΓm(1) =

pr∗1OG(1)⊗pr∗2OP1(−2(m−n)), where we set G = G(m−n−1, N−n−1)
for short.

By an abuse of notations, we still denote by pr1 : Γm → G and
pr2 : Γm → P

1 the induced projections. Then, as detW∗ = det pr∗2P1 ⊗
detS∗, we have

detW∗ = pr∗1OG(1)⊗ pr∗2OP1((n+ 1)(d− 1)− 2(m− n))

on Γm. Finally, since gm is birational onto its image by [Zak93, I.2.3.c],
we have

degX∗
m = (detW∗)dimX∗

m

=

(
n+ dimG

n

)
· degG · ((n+ 1)(d− 1)− 2(m− n)

)
.

If we write NX/PN = OP1(d + n + 1)⊕(N−n) and L = OP1(n + 1), then

degX∗
m =

(
n+dimG

n

) · degG · ((n + 1)(d − m + n − 1)
)
. In particular,

setting n = 1 and N = d, we obtain our initial formula. �
Remark 3.8. The following are some comments on Example 3.7.
(1) We would like to emphasize the identity degC∗

1 = degC∗
d−1 and

the following “symmetry:”

(m− 1) degC∗
m = (m′ − 1) degC∗

m′

for every pair 2 ≤ m ≤ m′ ≤ d− 1 with m+m′ = d+ 1. In fact, letting
GA(k,N) = {0 ∈ C

k ⊂ C
N} = G(k − 1, N − 1) in our convention, we

observe (m−1)(d−m) = dimGA(m−1, d−1) = dimGA(m
′−1, d−1) =

(m′−1)(d−m′) and (d−m) degGA(m−1, d−1) = (m′−1) degGA(d−
m′, d− 1) (the roles of d−m and m− 1 are switched), which establishes
the “symmetry.” There may be a reasonably nice symmetric bound for
degX∗

n+k (or degX∗
n+k+1) and degX∗

N−1−k for Xn ⊂ PN in general.
(2) We can also observe that the argument in Example 3.7 is some-

what close to our general approach to proving the reduction step Propo-
sition 3.4. The method in Example 3.7(2) is advantageous especially
when we know well TX and NX/PN under a smoothness assumption
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on the variety X. Moreover, in the example, we used the particu-
lar facts that C ⊂ P

N satisfies N = degC and that NC/Pd splits as

OP1(d+ 2)⊕(d−1).
(3) If we apply Theorem 2.1 (the result only) to the Veronese curve

C ⊂ P
d, noting a = d− 1 and ε = 1, we have degC∗

1 ≤ 2(d− 1). �

§4. Reduction to the linearly non-degenerate case

In the remaining two sections, we will treat the case where X ⊂ P
N

has positive defect, i.e., the (generalized) Gauss map is not birational.
In this case, we need to be concerned about another possible degeneracy,
which is the linear degeneracy of X ⊂ PN . The present section is rather
independent from other parts of the paper, and will reduce Theorem 1.1
to the linearly non-degenerate case which we already used in Section 2.

We start with some general remarks.

Remark 4.1. Let V be a C-vector space of dimV = N +1, and let
W ⊂ V be a linear subspace of dimW = N . We suppose that P(V ) is
our ambient space P

N and P(W ) is a hyperplane H. We take a vector
v0 ∈ V \ W . There is then a direct sum decomposition V = W ⊕ Cv0
and

∧m+1V = ∧m+1W ⊕ ((∧mW ) ∧ v0)

for every m ≥ 0 in general. Let 1 ≤ m ≤ N − 1. The decomposition
∧m+1V = ∧m+1W ⊕ ((∧mW ) ∧ v0) induces a linear projection

h(= πm
W ) : P(∧m+1V ) ��� P(∧mW )

from P(∧m+1W ) ⊂ P(∧m+1V ) ([Har95, Exercise 3.8]).
We then restrict this projection h to the Grassmannian G(m,N) ⊂

P(∧m+1V ) via the Plücker embedding. The indeterminacy setG(m,N)∩
P(∧m+1W ) is nothing but G(m,H) := {[Λ] ∈ G(m,N); Λ ⊂ H}. If
[Λ] ∈ G(m,N) \ G(m,H), then h([Λ]) ∈ P(∧mW ) is contained in the
Grassmannian G(m − 1,H) ⊂ P(∧mW ) (of (m − 1)-planes in H). In
fact, h([Λ]) is represented by an (m − 1)-dimensional linear subspace
Λ|H ⊂ H. Thus, the linear projection induces a morphism

h : G(m,N) \G(m,H) −→ G(m− 1,H) by [Λ] 
→ [Λ|H ].

This map will be the cornerstone of our subsequent reduction argu-
ments. �

Lemma 4.2. Let X ⊂ P
N be a projective variety of dimX = n.

Let [H] ∈ (PN )∗ \X∗
N−1, where (PN )∗ is the dual projective space (recall

dimX∗
N−1 ≤ N − 1 in general). Then
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(1) X∗
m ∩G(m,H) = ∅ in G(m,N) for any m with n ≤ m < N .

(2) The restricted projection morphism h : G(m,N) \ G(m,H) →
G(m− 1,H) induces a finite morphism h : X∗

m → h(X∗
m).

Proof. (1) We let X∗ = X∗
N−1. Let [H] ∈ (PN )∗, and suppose that

there exists [W ] ∈ X∗
k ∩G(k,H) for some k (n ≤ k < N). Then we shall

show [H] ∈ X∗.
We consider the incident variety I = {([V ], [L]) ∈ G(k,N)×G(N −

1, N); [V ] ∈ X∗
k , V ⊂ L}, and the naturally induced diagram:

I ⊂ G(k,N)×G(N − 1, N)
πN−1−−−−→ G(N − 1, N) = (PN )∗

πk

⏐⏐�
X∗

k ⊂ G(k,N)

.

We note that πN−1(I) = X∗. This can be checked directly and also
by the method in 3.1(2). Furthermore, ([W ], [H]) ∈ I holds. Thus,
[H] = πN−1(([W ], [H])) ∈ πN−1(I) = X∗.

(2) This is rather a general fact. We again look at the linear projec-
tion P(∧m+1V ) ��� P(∧mW ) from P(∧m+1W ) associated to H as in Re-
mark 4.1. We sawX∗

m∩P(∧m+1W ) = X∗
m∩G(m,H) = ∅ in (1). We take

an arbitrary point y ∈ X∗
m. Then h(y) is given by the unique intersection

point 〈P(∧m+1W ), y〉∩P(∧mW ) in P(∧m+1V ), where 〈P(∧m+1W ), y〉 is
the smallest linear subspace containing P(∧m+1W ) and y. We set S :=
h−1(h(y))(⊂ X∗

m). We would like to show that S consists of isolated
points. By definition of the projection, we have S ⊂ 〈P(∧m+1W ), y〉. If
dimS > 0, we have S ∩ P(∧m+1W ) 
= ∅, since P(∧m+1W ) is a hyper-
plane in 〈P(∧m+1W ), y〉. This implies X∗

m ∩ P(∧m+1W ) 
= ∅, which is a
contradiction to (1). Q.E.D.

Lemma 4.3. Let X ⊂ P
N be a projective variety of dimX = n.

Let L = PM ⊂ PN (n ≤ M ≤ N) be the smallest linear subspace
containing X. In particular, X ⊂ L is linearly non-degenerate in L. Let
the integer m satisfy n ≤ m < N , and let k = max{n,m − (N −M) =
M − (N − m)} (n ≤ k < M , e.g., k = n if m = n, k = M − 1 if
m = N − 1). Then

(1) degX∗
m = deg X̂∗

k , where ĝk : Γ̂k → X̂∗
k ⊂ G(k, L) is the k-th

Gauss map for X ⊂ L.
(2) There exists a non-empty Zariski open subset U∗

m ⊂ X∗
m such

that, for every y ∈ U∗
m, Xy := pm(g−1

m (y)) ⊂ X is a linear subspace in
PN , where pm : Γm → X is the projection.

We note that (2) is very similar to [Zak93, I.2.3.c]. We provide
a proof here because in [Zak93] the proof is given under the blanket



228 G. Heier and S. Takayama

assumption that X is linearly non-degenerate. The proof below shows
how to obtain the general case from that case. Alternatively, a close
reading of the proof in [Zak93] shows that the blanket assumption of
linear non-degeneracy is not actually used in it, so the new justification
given below is strictly speaking unnecessary.

Proof. (o) Suppose M = N . Then L = PN , k = m, and then
(1) is trivial and (2) is [Zak93, I.2.3.c]. We suppose M ≤ N − 1 for

the remainder. If m = n, then we have k = n and X∗
n = X̂∗

n. Here,

by definition of Γn and ΓH,n, X̂∗
n(⊂ G(n,H)) can be identified with

X∗
n(⊂ G(n,N)) via the natural inclusion G(n,H) ⊂ G(n,N). This is

the meaning of X∗
n = X̂∗

n. Then (1) is clear, and (2) for X∗
n follows from

that for X̂∗
n, for which [Zak93, I.2.3.c] can be applied. We may suppose

n ≤ M ≤ N − 1 and n+ 1 ≤ m < N for the remainder.
The following are some preliminary considerations. We take a hy-

perplane H ⊂ P
N containing L. We consider the (m− 1)-th Gauss map

gH,m−1 : ΓH,m−1 → X∗
H,m−1 ⊂ G(m − 1,H) for X ⊂ H. Let us denote

by C
N
H ⊂ C

N+1 the linear subspace corresponding toH ⊂ P
N . If we take

a vector v0 ∈ C
N+1 \CN

H , we have an inclusion G(m− 1,H) ⊂ G(m,N)
by [W ] 
→ [〈W, v0〉], where 〈W, v0〉 is the linear subspace spanned by
W and v0 (what we mean is the smallest linear subspace in P

N con-
taining W and the point in PN corresponding to v0). Then we can
see that X∗

m ⊂ G(m,N) is a cone over X∗
H,m−1 ⊂ G(m − 1,H) with

“the vertex” G(m,H). This is due to (a) if [V ] ∈ X∗
m \ G(m,H),

then V ∩ H ∈ X∗
H,m−1, and (b) for every given [W ] ∈ X∗

H,m−1, if

[V ] ∈ G(m,N) \G(m,H) and if V ∩H = W , then [V ] ∈ X∗
m. In other

words, after a choice of v0 ∈ C
N+1 \ CN

H , we have a linear projection

h : P(∧m+1
C

N+1) ��� P(∧m
C

N
H)

from P(∧m+1
C

N
H) ⊂ P(∧m+1

C
N+1) (see Remark 4.1). The map h in-

duces a morphism

h : G(m,N) \G(m,H) −→ G(m− 1,H) by [V ] 
→ [V |H ].

Now, we have X∗
m = h−1(X∗

H,m−1), where the Zariski closure is taken

in G(m,N). (Recall that X ⊂ H and dimX ≤ m − 1 < dimH.) Since
h is a restriction of a linear projection and X∗

m is a cone over X∗
H,m−1,

we have
degX∗

m = degX∗
H,m−1.

We also note the following. Let z = [W ] ∈ X∗
H,m−1. Then

Xy = XH,z
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holds for any y = [Vy] ∈ X∗
m \ G(m,H) such that Vy ∩ H = W ,

where XH,z := pH,m−1(g
−1
H,m−1(z)) ⊂ X with the projection pH,m−1 :

ΓH,m−1 → X. To see this, we first note that, for x ∈ X and [V ] ∈
G(m,N), (x, [V ]) ∈ Γm if and only if there exists [T ] ∈ gn(p

−1
n (x)) ⊂ X∗

n

such that T ⊂ V , where pn : Γn → X and gn : Γn → X∗
n are the pro-

jections. This can be concluded from 3.1(2). Then x ∈ Xy if and
only if there exists [T ] ∈ gn(p

−1
n (x)) ⊂ X∗

n such that T ⊂ Vy (as
X ⊂ H, we have T ⊂ H). This is equivalent to the existence of
[T ] ∈ gH,n(p

−1
H,n(x)) ⊂ X∗

H,n such that T ⊂ Vy ∩ H = W , namely

x ∈ XH,z. In particular, we have shown that our assertions (1) and (2)
are reduced to those of X∗

H,m−1. We shall proceed by induction, taking
special care to keep m,M,n and N in balance.

(i) If M = N−1, then we can only take H = L and k = max{n,m−
1} = m − 1. Noting that X̂∗

m−1 = X∗
H,m−1, we have (1) and (2) by the

reduction above. We supposeM ≤ N−2 for the remainder. Ifm = n+1,

then we have k = n and X∗
n = X̂∗

n, and we have (1) and (2) as in (o).
We may suppose n ≤ M ≤ N −2 and n+2 ≤ m < N for the remainder.

We take a linear subspace L2 = P
N−2 so that L ⊂ L2 ⊂ L1 := H

(H is the one taken above). We have a morphism

h2 : G(m− 1, L1) \G(m− 1, L2) −→ G(m− 2, L2) by [V ] 
→ [V |L2 ].

(Recall that X ⊂ L2 and dimX ≤ m − 2 < dimL2.) We can see that
X∗

L1,m−1 ⊂ G(m − 1, L1) is a cone over X∗
L2,m−2 ⊂ G(m − 2, L2) with

“the vertex” G(m − 1, L2). We then have degX∗
m = degX∗

L1,m−1 =

degX∗
L2,m−2, and (2) is also reduced to that of X∗

L2,m−2.

(ii) If M = N − 2, then L2 = L and k = max{n,m − 2} = m − 2.

Noting that X̂∗
m−2 = X∗

L2,m−2, we have (1) and (2) as before. We
suppose M ≤ N − 3 for the remainder. If m = n + 2, then we have

k = n and X∗
n = X̂∗

n, and have (1) and (2) as before.
(iii) We can continue this process at most N −M times: L ⊂ Li ⊂

. . . ⊂ L2 ⊂ L1 with Lj = P
N−j . After (i =)N − M steps, we have in

fact LN−M = PM = L and k = max{n,m− (N −M)} = m− (N −M).
The rest is similar. Q.E.D.

Remark 4.4. If a subvariety X ⊂ P
N is linearly non-degenerate,

then X ∩ H is linearly non-degenerate in H = PN−1 for a general hy-
perplane H ([CGN98, Proposition 1.1] for example). In that sense, we
do not have to be concerned about linear (non-)degeneracy in further
steps. �
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§5. Reduction to the birational generalized Gauss map case

Here we consider the case when the (generalized) Gauss map is
not birational, i.e., the case when the defect is positive. In fact, the
birationality of the m-th Gauss map gm : Γm → X∗

m is equivalent
to dimΓm = dimX∗

m (cf. Lemma 4.3(2), which is essentially [Zak93,
I.2.3.c]). Proposition 5.1 below reduces Theorem 1.1 to the cases of zero
defect: Theorem 2.1 and Proposition 3.4.

Proposition 5.1. Let X ⊂ PN be a projective variety of dimX = n
and degX = d > 1. Let the integer m satisfy n ≤ m < N and suppose
that the m-th Gauss map gm : Γm → X∗

m ⊂ G(m,N) is not birational
(then it has to hold true that n > 1 and 1 ≤ defmX ≤ n− 1). Then

degX∗
m in G(m,N) is equal to deg(X ∩H)∗m−1 in G(m− 1,H)

for a general hyperplane H ⊂ PN .
In particular, letting n′ = n − defmX, m′ = m − defmX and N ′ =

N − defmX, for a general linear subspace L = P
N ′ ⊂ P

N , the m′-
th Gauss map ĝm′ : Γ̂m′ → (X ∩ L)∗m′ ⊂ G(m′, L) for the subvariety
(X ∩ L) ⊂ L is birational, and

degX∗
m in G(m,N) = deg(X ∩ L)∗m′ in G(m′, L).

Furthermore, ĝn′ : Γ̂n′ → (X ∩ L)∗n′ ⊂ G(n′, L), which is the standard
Gauss map of (X ∩ L) ⊂ L, is birational.

Let us now state a slightly more precise version of Theorem 1.1 which
we obtain as a corollary of Theorem 2.1, Proposition 3.4 and Proposition
5.1.

Corollary 5.2. Let X ⊂ P
N be a projective variety of dimX = n

and degX = d > 1.
(1) Let NX be the dimension of the smallest linear subspace 〈X〉(=

PNX ) ⊂ PN containing X, let a := NX − n, and let ε be an integer with
ε ≡ d (mod a) and 1 ≤ ε ≤ a. Then

degX∗
n ≤ 1

dn′−1

(
1

a
(d− ε)(d− a+ ε− 2) + 2d− 2

)n′

≤ d(d− 1)n
′
,

where n′ := n− defnX.
(1’) Suppose that degX∗

n = d(d − 1)n
′
holds in (1). Then for a

general linear subspace PN ′ ⊂ P
N where N ′ = N−defnX, X ′ := X∩PN ′

satisfies dimX ′ = n′ and degX ′ = d and is smooth and contained in a
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linear subspace Pn′+1 ⊂ PN ′
. In particular, X is contained in a linear

subspace P
n+1 ⊂ P

N by Remark 4.4.
(2) Let m be an integer with n < m < N . Then

degX∗
m ≤ C ′′ degX∗

n with

C ′′ = degF (n′′,m′′;N ′′)
(
n′′ + dimG(m′′, N ′′)

n′′

)
degG(m′′, N ′′),

where n′′ = n− defmX,m′′ = m− defmX and N ′′ = N − defmX.

Eventually, the classification of the varieties in (1’) above is reduced
to that of hypersurfaces X in Pn+1 with possibly degenerate Gauss map
γ : X ��� X∗ ⊂ (Pn+1)∗. This is also a classical subject (see [Zak93] for
example).

5.3 (A reduction of Proposition 5.1). Here we make a reduction step
in Proposition 5.1 and prepare some notations for the later arguments.

(1) We shall slightly simplify the notations as follows: let

Γ = {(x, [V ]) ∈ Xreg ×G(m,N); TX,x ⊂ V } ⊂ X ×G(m,N),

p : Γ → X and q : Γ → G(m,N) be the projections, and set Y := X∗
m =

q(Γ) to obtain a commutative diagram as follows:

Γ
q−−−−→ Y = X∗

m ⊂ G(m,N)

p

⏐⏐�
X ⊂ PN

.

We set Xy = p(q−1(y)) ⊂ X for every y ∈ Y . By [Zak93, I.2.3.c],
there exists a non-empty Zariski open subset Y0 ⊂ Y such that, for
every y ∈ Y0, the fiber q−1(y) ⊂ Γ, viewed as a subset of X × {y} ⊂
P
N ×{y} ∼= P

N (or after identifying q−1(y) and Xy by the projection p)
is a linear subspace Pr in PN with r = dimΓ−dimY = defm(X). Since
X is not linear, we have r < n, and since q : Γ → Y is not birational
(i.e., dimΓ > dimY ), we have r > 0. Thus, 0 < r < n.

(2) Let H ⊂ P
N be a general hyperplane and let XH = X ∩ H ⊂

PN−1. By Bertini’s theorem, we may suppose XH,reg = Xreg ∩H. We
let qH : ΓH → G(m− 1,H) be the (m− 1)-th Gauss map of XH ⊂ H =
PN−1, which comes with the following maps:

ΓH
qH−−−−→ YH = (XH)∗m−1 ⊂ G(m− 1,H)

pH

⏐⏐�
XH ⊂ H

.
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(3) By Remark 4.1, we have a morphism

h : G(m,N) \G(m,H) −→ G(m− 1,H) by [V ] 
→ [V |H ],

which is a restriction of a linear projection in a larger projective space
via the Plücker embedding of these Grassmannians. By Lemma 4.2, for
every [H] ∈ (PN )∗ \ X∗

N−1, h is regular around Y and gives a finite
morphism h : Y → h(Y ). We then let

UX = {[H] ∈ (PN )∗; XH,reg = Xreg ∩H, [H] ∈ (PN )∗ \X∗
N−1},

which is non-empty and Zariski open. We will establish in Corollary 5.7
that, for every [H] ∈ UX , the projection h gives a birational morphism
h : Y → YH . We then have deg Y = deg YH , since h is a restriction of
a linear projection in a larger projective space. That is nothing but our
assertion degX∗

m = deg(X ∩H)∗m−1. Hence Proposition 5.1 is reduced
to Corollary 5.7. �

We shall use the setup in 5.3 for the rest of this section. Our aim is
to show that h(Y ) = YH and h : Y → YH is birational in 5.3(3).

Lemma 5.4. Let [H] ∈ UX . Then (1) dimYH > 0, and (2) h(Y ) =
YH in G(m − 1,H); in particular, h is well-defined as a morphism h :
Y → YH .

Proof. (1) Suppose dimYH = 0. Then m = n, XH is an (n − 1)-
plane and deg(X ∩H) = 1. That means X is linear, which is excluded
from the beginning.

(2) We first show that YH ⊂ h(Y ) (without using the fact that q :
Γ → Y has positive dimensional fibers). In any case, we have TXH ,x′ =
TX,x′ ∩ H for any x′ ∈ XH,reg. It is enough to show that there exists
a non-empty Zariski open YH,0 ⊂ YH such that YH,0 ⊂ h(Y ). If y′ =
[V ′] ∈ YH is general, there exists (x′, [V ′]) ∈ ΓH for some x′ ∈ XH,reg,
i.e., TXH ,x′ ⊂ V ′ ⊂ H. By Lemma 4.2, TX,x′ 
⊂ H (otherwise [TX,x′ ] ∈
X∗

n ∩G(n,H)). Thus, we can take v ∈ TX,x′ \H. We set V = 〈V ′, v〉 =
Pm. Then we see (x′, [V ]) ∈ Γ(⊂ X × G(m,N)), y := [V ] ∈ Y , and
V |H = V ′, i.e., h(y) = y′. Thus, y′ ∈ h(Y ).

We next show that h(Y ) ⊂ YH . If y = [V ] ∈ Y is general, Xy =
p(q−1(y)) ⊂ X is a linear subspace P

r with 0 < r < n. We can suppose,
if y ∈ Y is general, that Xy ∩Xreg 
= ∅ and Xy ∩Xreg ∩H 
= ∅. For any
x ∈ Xy ∩Xreg, we have (x, [V ]) ∈ Γ, i.e., TX,x ⊂ V and q((x, [V ])) = y.
For any x′ ∈ XH,reg, we have TXH ,x′ = TX,x′ ∩ H. Then for x′ ∈
Xy ∩XH,reg = Xy ∩Xreg ∩H, we have TXH ,x′ = TX,x′ ∩H ⊂ V ∩H.
Thus, (x′, [V ∩H]) ∈ ΓH and qH(x′, [V ∩H]) = [V ∩H] = h(y). Thus,
h(y) ∈ YH . Q.E.D.
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Remark 5.5. Let [H] ∈ UX . We set Γ0 = p−1(Xreg) and ΓH,0 =
p−1(XH,reg). We have a natural inclusion ΓH,0 → Γ0 which makes the
following diagram commutative:

Xreg
p←−−−− Γ0

q−−−−→ Y ⊂ G(m,N)

incl.


⏐⏐ incl.


⏐⏐ ⏐⏐�h

XH,reg
pH←−−−− ΓH,0

qH−−−−→ YH ⊂ G(m− 1,H)

.

For every x ∈ XH,reg(= Xreg ∩H), we have p−1(x) ∼= {[V ] ∈ G(m,N);

TX,x ⊂ V } and p−1
H (x) ∼= {[W ] ∈ G(m− 1,H); TXH ,x ⊂ W (⊂ H)}. We

have a morphism p−1(x) → p−1
H (x) by [V ] 
→ [V |H ], and the converse

p−1
H (x) → p−1(x) as follows by using the idea which appeared in the

proof of Lemma 5.4. By Lemma 4.2, we can take v ∈ TX,x \H. We set
V = 〈W, v〉 = P

m, which is the linear subspace spanned by W and v.
We can see that 〈W, v〉 does not depend on the choice of v ∈ TX,x \H.
Then we also see that (x, [V ]) ∈ Γ0, p((x, [V ])) = x = pH((x, [W ])), and
h ◦ q((x, [V ])) = h([V ]) = [V ∩ H] = [W ] = qH((x, [W ])). Thus, the
inclusion ΓH,0 → Γ is given by (x, [W ]) 
→ (x, [V ]). �

Lemma 5.6. Let [H] ∈ UX . Then the surjection h : Y → YH in
Lemma 5.4 has connected general fibers.

Proof. Suppose that general fibers of h : Y → YH are disconnected.
Then for a general y′ ∈ YH , h−1(y′) consists of a finite number of con-
nected components F1, . . . , Fk ⊂ Y with k > 1. We may suppose that
(i) every Fi is irreducible of dimFi = s, where s := dimY − dimYH ,
(ii) q−1(Fi) ∩ Γ0 
= ∅ for any i, where Γ0 := p−1(Xreg), and (iii)
XH,y′ := pH(qH

−1(y′)) ⊂ XH is a linear subspace (Pr+s−1) by [Zak93,
I.2.3c] and XH,y′∩XH,reg 
= ∅ (in particular, XH,y′ is irreducible). Need-
less to say, we have q−1(Fi) ∩ q−1(Fj) = ∅ in Γ if i 
= j.

We set Ai = q−1(Fi) ⊂ Γ. We first prove that (Ai∩Γ0)∩ΓH,0(= Ai∩
ΓH,0) 
= ∅ for every i. If yi ∈ Fi is general, we have Xyi ∩XH,reg 
= ∅ (as
we saw in the proof of Lemma 5.4). This yields p(q−1(yi))∩XH,reg 
= ∅,
and implies q−1(yi) ∩ p−1(XH,reg) 
= ∅. Since ΓH,0 = p−1(XH,reg) (here
we understand pH = p on ΓH,0 in view of the left hand square in the
commutative diagram in Remark 5.5), we have q−1(yi)∩ΓH,0 
= ∅. Since
q−1(yi) ∩ ΓH,0 ⊂ Ai ∩ ΓH,0, our assertion holds.

We see clearly that �iAi is a disjoint union in Γ. Thus, �iAi|ΓH,0

is a disjoint union too (note A|ΓH,0 
= ∅ for any i by the previous argu-
ment) and has at least d irreducible components. By the commutativity
of the diagram in Remark 5.5, we have q−1

H (y′) ∩ ΓH,0 = �iAi|ΓH,0 .
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However, recalling that q−1
H (y′) ∩ ΓH,0 is irreducible, we have obtained

a contradiction. Q.E.D.

The above Lemma 5.6 now immediately yields the following corol-
lary, which concludes the proof of Proposition 5.1.

Corollary 5.7. Let [H] ∈ UX . Then the morphism h : Y → YH in
Lemma 5.4 is birational.

Proof. By Lemma 4.2(2), the map h : Y → h(Y ) is finite. By
Lemma 5.4(2), h(Y ) = YH , and by Lemma 5.6, h has connected general
fibers. This proves the corollary. Q.E.D.
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