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Abelian splittings of right-angled Artin groups

Daniel Groves and Michael Hull

Abstract.

We characterize when (and how) a Right-Angled Artin group splits
nontrivially over an abelian subgroup.

Given a graph Γ, the associated Right-Angled Artin group (abbrevi-
ated RAAG) A(Γ) is the group given by the presentation

A(Γ) = 〈V (Γ) | [u, v] = 1 whenever (u, v) ∈ E(Γ)〉.
If Γ has no edges, then A(Γ) is a free group while if Γ is a clique (i.e. a

complete graph), then A(Γ) is a free abelian group. Hence it is natural
to view the class of RAAGs as a class of groups which interpolates
between free and free abelian groups. Additionally, RAAGs have become
important in geometry and topology through the work of Haglund and
Wise [HW08, HW12] on (virtually) special cube complexes, which in
turn played a key role in Agol’s solution [Ago13] of the Virtual Haken
Conjecture for 3-manifolds (and even more so in Agol’s resolution of the
Virtual Fibering Conjecture, using the RFRS condition).

One particularly nice property of RAAGs is that many of the al-
gebraic properties of A(Γ) can be easily computed from the graph Γ.
For example, A(Γ) splits as a non-trivial free product if and only if Γ
is not connected and Γ splits as a non-trivial direct product if and only
if Γ is a join. In a similar vein (though this is harder), Clay [Cla14]
recently showed that for a connected Γ which is not a single edge, A(Γ)
splits over a cyclic subgroup if and only Γ has a cut-vertex. The goal
of this paper is to generalize Clay’s result to give a characterization of
which RAAGs split nontrivially over an abelian subgroup in terms of
the defining graph.

One reason to be interested in splittings of RAAGs over abelian
subgroups is to study the (outer) automorphism group of a RAAG.
There has been a lot of recent interest in automorphisms of RAAGs (for
example, see [CV09], and also Vogtmann’s lectures at MSJ-SI [oJ14]),
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partly in analogy with the study of Out(Fn). One approach to studying
Out(Fn) that proved quite fruitful is Sela’s [Sel96], where limiting actions
on R-trees and splittings of Fn were studied. The splittings in this
case were over infinite cyclic subgroups. For RAAGs, the ‘extension
graph’ built by Kim and Koberda [KK13] (see also Kim’s talk at MSJ-
SI [oJ14]) might be used to provide limiting R-trees equipped with an
action of a RAAG in an analogous way to Sela’s approach. Thus, it is of
considerable interest to understand the ways in which a RAAG can split
over an abelian subgroup. We intend to investigate limiting actions of
RAAGs on R-trees arising in this way in a future paper.

As with free and cyclic splittings, there are a few cases where an
abelian splitting can be directly seen in the graph Γ. If Γ is disconnected
then it splits as a free product and if Γ is a complete graph on n vertices
then A(Γ) ∼= Z

n, which splits nontrivially over Z
n−1. Slightly more

interestingly, if K is a separating clique, then let Γ � K = Γ0 � Γ1

where Γ0 and Γ1 are each nonempty and share no vertices. Let Γ̄0 =
Γ0 ∪K and Γ̄1 = Γ1 ∪K. The defining presentation for A(Γ) exhibits
it as A(Γ̄0) ∗A(K) A(Γ̄1). Note that A(K) is free abelian, and properly

contained in A(Γ̄i), so this is a nontrivial abelian splitting of A(Γ).
Our main theorem is that the only RAAGs which split over an abel-

ian subgroup are those which have one of the obvious splittings men-
tioned above.

Theorem A. Suppose that Γ is a finite simplicial graph. Then
the associated Right-Angled Artin group A(Γ) splits nontrivially over an
abelian group if and only if one of the following occurs:

(1) Γ is disconnected;
(2) Γ is a complete graph; or
(3) Γ contains a separating clique.

Remark 0.1. The proof of Theorem A below gives a simpler proof of
[Cla14, Theorem A]. In particular, if one reads this proof with the extra
assumption that A(Γ) splits nontrivially over Z then this proof will yield
a cut vertex in Γ. Clay indicated to us that he has a proof of Theorem
A similar to the one we give below.

In Section 2 we then describe a ‘JSJ’ decomposition which encodes
(to a certain extent) all of the ways that a RAAG can split over an
abelian subgroup.
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§1. Proof of Theorem A

Lemma 1.1. Suppose that a group G acts on a tree T and that
g, h ∈ G are commuting elements which both act elliptically on T . Then
Fix(g) ∩ Fix(h) 
= ∅.

Proof. Since g and h commute g leaves the subtree Fix(h) invariant.
However, it also fixes Fix(g), which means that if these trees are disjoint
g must fix (pointwise) the unique shortest path p between Fix(g) and
Fix(h). This implies that in fact p must be contained in Fix(g), which
means that the fixed trees are not in fact disjoint. Q.E.D.

Recall that given a vertex v in a graph Γ, link(v) is the subgraph
induced by {u ∈ V (Γ) | (v, u) ∈ E(Γ)} and star(v) is the subgraph
induced by link(v) ∪ {v}.

Lemma 1.2. If A(Γ) acts on a tree with abelian edge stabiliz-
ers and v ∈ V (Γ) is hyperbolic, then star(v) is a clique and {u ∈
link(v) | u is elliptic} separates v and Γ \ link(v).

Proof. Let u,w ∈ link(v). Since u and w commute with v,
they must preserve the axis of v setwise. Hence we can find inte-
gers n1, n2,m1,m2 with n1,m1 
= 0 so that each of g = un1vn2 and
h = wm1vm2 fix the axis of v pointwise, in particular the subgroup
〈g, h〉 stabilizes an edge of T . Thus 〈g, h〉 is abelian, which can only
happen if u and w commute. This shows that star(v) is a clique.
By the same proof, if v′ ∈ star(v) is hyperbolic, then star(v′) is a
clique and hence star(v′) = star(v). Thus, if Γ \ star(v) 
= ∅, then
Γ \ {u ∈ link(v) | u is elliptic} is disconnected. Q.E.D.

Proof. (Theorem A) Suppose that Γ is connected and not a com-
plete graph, and suppose that A(Γ) acts on a tree T with no global fixed
points and abelian edge stabilizers. We use the action of A(Γ) on T to
find a separating clique in Γ.

First, suppose that some v ∈ V (Γ) acts hyperbolically on T . Then
by Lemma 1.2, star(v) is a clique and hence not all of Γ. Then link(v)
is a clique which separates v from Γ \ star(v), so Γ contains a separating
clique.

Thus, we may suppose that each vertex of Γ acts elliptically on
T . Since the action has no global fixed point, it follows from Helly’s
theorem that for some x, y ∈ V (Γ), Fix(x) ∩ Fix(y) = ∅. Let q be the
shortest path between Fix(x) and Fix(y), and let p be a point in the
interior of an edge on q which is not in Fix(x) or Fix(y). We define a
map F : Γ → T as follows: first choose ax ∈ Fix(x) and ay ∈ Fix(y)
and define F (x) = ax and F (y) = ay. Now for vertices u such that
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p ∈ Fix(u), define F (u) = p. For any other vertex z of Γ, choose some
az ∈ Fix(z) and define F (z) = az. For an edge e of Γ between vertices u
and v, let F continuously map e onto the (possibly degenerate) geodesic
between F (u) and F (v). This defines a continuous map F : Γ → T .
Lemma 1.1 implies (for vertices u and v which are adjacent in Γ) that
Fix(u) ∩ Fix(v) 
= ∅, hence F (e) ⊆ Fix(u) ∪ Fix(v). Consequently we
have F (Γ) ⊆ ∪v∈V (Γ)Fix(v).

Since Γ is connected and F is continuous, the image F (Γ) is con-
nected. This implies that p ∈ F (Γ) ⊆ ∪v∈V (Γ)Fix(v). Hence F−1(p) is
a non-empty subgraph of Γ, and since p separates F (Γ) (since T is a
tree), F−1(p) separates Γ. The subgroup generated by the vertices of
F−1(p) all fix the edge containing p, hence this subgroup is abelian and
therefore F−1(p) is a separating clique. Q.E.D.

§2. Vertex-elliptic abelian JSJ decomposition

Suppose that Γ is a finite connected graph. In this section, we
build a JSJ decomposition for A(Γ), a decomposition which in some
sense encodes all possible abelian splittings of A(Γ). However, we first
restrict our attention to those splittings in which each vertex of Γ acts
elliptically. The reason for this restriction is that actions with hyperbolic
vertices all arise through simplicial actions of Zn on a line, and such
an action can be easily modified to make Z

n act elliptically. Indeed,
suppose A(Γ) acts on a tree T with abelian edge stabilizers such that
some v ∈ V (Γ) acts hyperbolically. By Lemma 1.2, star(v) is a clique and
hence A(star(v)) ∼= Z

n for some n ≥ 1. Let star(v) = starh(v)�stare(v),
where each vertex of starh(v) acts hyperbolically on T and each vertex
of stare(v) acts elliptically. Let Γ

′ = Γ \ starh(v). By Lemma 1.2, A(Γ)
has the splitting

A(Γ) = A(Γ′) ∗A(stare(v)) A(star(v)).

Furthermore this splitting is compatible with the splitting of A(Γ′) in-
duced by its action on T since A(stare(v)) acts elliptically on T . Hence
we get a new splitting of A(Γ) such that v is elliptic and the induced
splitting of A(Γ′) is the same as the splitting induced by its action on
T . Repeating this procedure, any abelian splitting of A(Γ) can be re-
placed by a splitting in which all vertices act elliptically. We call such a
splitting a vertex-elliptic abelian splitting.

If Γ is a complete graph, then there are no nontrivial vertex-elliptic
abelian splittings of A(Γ). Therefore, we henceforth suppose that Γ is
both connected and not a complete graph.
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One consequence of considering only vertex-elliptic actions is that
HNN-extensions cannot arise: the corresponding graph of groups is a
tree.

Proposition 2.1. Let A(Γ) act on a tree such that each vertex of
Γ acts elliptically. Then the corresponding graph of groups is a tree.

Proof. Let G be the corresponding graph of groups decomposition
of A(Γ), and let G be the underlying graph of G. Then there is a
natural surjective map A(Γ) → π1(G) which maps the elliptic elements
of A(Γ) to the identity. But A(Γ) is generated by elliptic elements, so
π1(G) = {1} which means that G is a tree. Q.E.D.

The following lemma is an immediate consequence of Lemma 1.1
and Helly’s theorem.

Lemma 2.2. Suppose A(Γ) acts on a tree T such that each vertex
of Γ acts elliptically. Then for any clique K in Γ, A(K) acts elliptically
on T .

We will use the language of Guirardel-Levitt [GL09] in order to
describe the vertex-elliptic abelian JSJ decomposition of A(Γ). Given
A(Γ), let A be the set of abelian subgroups of A(Γ) and H = {〈v〉 | v ∈
V (Γ)}. If A(Γ) acts on a tree T such that each edge stabilizer is abelian
and each vetex of Γ is elliptic, then T is called an (A,H)-tree. An
(A,H)-tree T is called universally elliptic if the edge stabilizers of T are
elliptic in every other (A,H)-tree. Also, given trees T and T ′, we say T
dominates T ′ if every vertex stabilizer of T is elliptic with respect to T ′.

Definition 2.3. A graph of groups decomposition G of A(Γ) is called
a vertex-elliptic abelian JSJ-decomposition of A(Γ) if the correspond-
ing Bass-Serre tree T is an (A,H)-tree which is universally elliptic and
which dominates every other universally elliptic (A,H)-tree.

We will now build a vertex-elliptic abelian JSJ decomposition for the
group A(Γ). If Γ has no separating cliques then this JSJ decomposition
is trivial. Otherwise, suppose that the minimal size of a separating clique
in Γ is k. Let K1, . . . ,Kn be the collection of all separating cliques of
size k.

Each Ki defines a vertex-elliptic abelian splitting of A(Γ) as follows.
The underlying graph of the splitting is a tree with a valence-one vertex
for each component Γi,j of Γ�Ki, all adjacent to single central vertex.
The vertex corresponding to Γi,j has associated vertex group A(Γi,j ∪
Ki), while the central vertex has vertex group A(Ki). All of the edge
groups correspond to A(Ki) in the natural way. In case there are only
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Fig. 1. A graph Γ with the vertex-elliptic abelian JSJ-
decomposition of A(Γ).

two components of Γ�Ki, this is a reducible two-edge splitting, which
can be transformed into a one-edge splitting in the obvious way.

By Lemma 2.2 each A(Kj) is elliptic in the splitting defined by Ki.
Therefore, the splittings with edge groups A(Ki) can be refined into a
single (vertex-elliptic abelian) splitting Λ of A(Γ). The vertex groups
of Λ naturally correspond to connected subgraphs of Γ. For each such
subgraph Γi we can repeat this procedure with any separating cliques of
minimal size that it has (they are necessarily of size larger than k). Since
we are only considering vertex-elliptic splittings, Lemma 2.2 implies that
any such splitting of A(Γi) can be extended to a vertex-elliptic abelian
splitting of A(Γ) in an obvious way.

Eventually, we find a vertex-elliptic abelian splitting G of A(Γ) so
that the subgraphs associated to the vertex groups are connected and
contain no separating cliques. See Figure 1 for an example where one
edge adjacent to each reducible valence two vertex has been contracted.

Theorem 2.4. G is a vertex-elliptic abelian JSJ-decomposition of
A(Γ).

Proof. Let T be the Bass-Serre tree corresponding to G. Note that,
up to conjugation, each edge stabilizer in T is of the form A(K), where
K is a clique inside of Γ. Suppose A(Γ) acts on another (A,H)-tree T ′.
Then by Lemma 2.2, for every clique K of Γ, A(K) acts elliptically on
T ′, hence T is universally elliptic.

Next we show that for any (A,H)-tree T ′, T dominates T ′. Up to
conjugation, each vertex stabilizer of T is of the form A(Γ′), where Γ′

is a connected subgraph of Γ which has no separating cliques. If Γ′ is a
clique, then A(Γ′) acts elliptically on T ′ by the previous paragraph. If
Γ′ is not a clique, then A(Γ′) must act elliptically on T ′ otherwise this
action would violate Theorem A. Q.E.D.
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