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Spherical multiple flags

Piotr Achinger and Nicolas Perrin

Abstract.

For a reductive group G, the products of projective varieties ho-
mogeneous under G that are spherical for the diagonal action of G
have been classified by Stembridge. We consider the B-orbit closures
in these spherical varieties and prove that under some mild restrictions
they are normal, Cohen-Macaulay and have a rational resolution.

§1. Introduction

A classical problem in geometric representation theory is to prove
regularity properties of B-orbit closures inside a G-variety X. Here and
henceforth G is a connected reductive group over an algebraically closed
field k and B is a Borel subgroup of G. The most famous example of such
a theorem is the result of Mehta and Ramanathan [12] that Schubert
varieties (that is, B-orbit closures inside X = G/P a projective rational
homogeneous space) are normal, Cohen-Macaulay and have a rational
resolution. For general spherical varieties (i.e., normal G-varieties with
finitely many B-orbits), this is more complicated and the B-orbit clo-
sures are not normal in general (for a survey of partial results in this
direction, cf. [14, Section 4.4]). In this paper, we restrict our attention
to products of homogeneous spaces. Our result is the following

Theorem 1. Assume that G is simply laced (i.e., with simple fac-
tors of types A, D, E only). Let P1, P2 be two cominuscule (see Defini-
tion 2.6) parabolic subgroups of G and let X = G/P1 ×G/P2. Then the
B-orbit closures inside X, for the diagonal action are normal, Cohen-
Macaulay and have a rational resolution.
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To prove these regularity properties, we need to study in more detail
the B-orbit structure of X and the weak order (cf. Definition 3.1) among
the B-orbits. We prove the following two facts, whose proof constitutes
most of the paper, and which we hope might be of independent interest:

(a) the minimal B-orbits with respect to the weak order are B×B-stable
(see Theorem 3.13), hence their closures are products of Schubert
varieties,

(b) the action maps P ×B O → PO, where O is a B-orbit in X, P ⊇ B
a minimal parabolic subgroup with PO �= O, are birational (see
Corollary 4.20).

With these results in hand, the structure of the proof of Theorem
1 is as follows. For a B-orbit closure Ō ⊆ X, we find a minimal (with
respect to the weak order) B-orbit O′ � O. Since by (a) the orbit closure
Ō′ is a product of two Schubert varieties, it admits a rational resolution
Z → Ō′ (for example, the product of two Bott-Samelson resolutions [10]
of the two factors – recall that a rational resolution of a variety X is
a proper birational morphism p : Y → X with Y non singular, with
p∗OY = OX and Rip∗OY = Rip∗ωY = 0 for i > 0). Since O′ � O
there exists a sequence Pγ1 , · · · , Pγi of minimal parabolic subgroups of
G containing B raising O′ to O (see Definition 3.1). Then using (b) we
prove that the action map

Pγr ×B . . .×B Pγ1 × Z → Ō
is a rational resolution of Ō. The main part consists in proving normality
of Ō. We proceed by descending induction in the weak order: maximal
B-orbits closures are G-stable and normal as locally trivial fibrations
over homogeneous varieties with Schubert varieties as fibers. In the
induction step, we use (a) and (b) again and follow ideas of Brion [4].
Finally, Cohen-Macaulayness follows from general arguments from Brion
[4, Section 3, Remark 2] and the fact that this holds for the G-orbit
closures.

In addition, we show that the ”simply-lacedness” assumption in
Theorem 1 is necessary. In Section 5 we consider the spherical vari-
ety X = (Sp6/P )2 where P is the stabilizer in Sp6 of a 3-dimensional
isotropic subspace of k6. We find a B-orbit in X whose closure is not
normal (moreover the property (b) above fails). We do not know whether
Theorem 1 holds without the assumption that P1 and P2 be cominuscule.
Note that examples of such pairs with X spherical are quite restricted –
see [11] and [19] for a complete list. The main reason for the assumption
that P1, P2 are cominuscule is that in such case the G-orbits are induced
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from symmetric varieties (see Definition 3.4 and Corollary 2.9) in which
case minimal orbits for the weak order are closed.

The case of Theorem 1 when X is a product of two Graßmann
varieties was proved in [2] thanks to a detour into quiver representations.
It was one of the motivations of this work to present a direct proof of this
result. It was also inspired by a complete combinatorial description of
the weak order in a product of two Graßmann varieties due to Smirnov
[16], where the two phenomena (a) and (b) mentioned above have been
observed.

The structure of the paper is as follows. In Section 2, we recall
the notion of opposite pairs of parabolic subgroups and show how one
can reduce the study of G-orbits inside G/P1 ×G/P2 to the case when
(P1, P2) is an opposite pair. In that case G/P1 × G/P2 is a symmetric
variety which turns out to be very important. In Section 3, we recall
the definition and basic properties of the weak order among the B-
orbits in a spherical variety X and prove (a) (Theorem 3.13). In Section
4, we introduce a distance function between torus-fixed points in X,
generalizing a previous notion introduced in [7] and used in [6, 8, 9,
5] to study quantum cohomology of cominuscule rational homogeneous
spaces. We use it to prove (b) (Corollary 4.20). The proof of Theorem
1 occupies Section 5, and our counterexample with G non-simply laced
can be found in Section 6.
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§2. Structure of G-orbits

Let G be a connected reductive algebraic group, T a maximal torus
of G and B a Borel subgroup of G containing T . Let W = NG(T )/T
be the Weyl group associated to T . Let P1 and P2 be two parabolic
subgroups of G containing B and define

X = G/P1 ×G/P2.

The variety X has finitely many G-orbits. Any orbit is of the form:
G · (P1, wP2) for some w ∈ W and is isomorphic to G/H with

H = P1 ∩ Pw
2

where Pw
2 = wP2w

−1. The inclusion morphism ι : G/H → G/P1×G/P2

is induced by the morphism G → G×G defined by g �→ (g, gnw) where
nw is any representative of w in NG(T ).
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In this section we prove a structure result on G-orbits which reduces
the study to the case of an opposite pair (P1, P2) (see Definition 2.1).
For this we fix a G-orbit G · (P1, wP2) 	 G/H of X with w ∈ W and
H = P1 ∩ Pw

2 .

Recall that if χ : Gm → T is a cocharacter of T , we may define a
parabolic subgroup Pχ of G as follows:

Pχ = {g ∈ G / lim
t→0

χ(t)gχ(t)−1 exists}.

In the above definition, the limit exists if the map Gm → G, t �→
χ(t)gχ(t)−1 extends to A

1 ⊇ Gm. Note that Pχ contains T . Any
parabolic subgroup containing T can be defined this way. The possi-
ble cocharacters for a given parabolic P are of the form χP + χ with χ
dominant for a unique cocharacter χP . We have P = PχP . For example,
the cocharacter χPw

2
of Pw

2 is w(χP2).

Definition 2.1. A pair (P1, P2) is called opposite if w0(χP1) =
−χP2 , where w0 is the longest element of the Weyl group.

Note that this is a variant of the classical definition of opposite
parabolic subgroups: a pair (P1, P2) is an opposite pair if and only if P2

is opposite to Pw0
1 .

Definition 2.2. Define the parabolic subgroup R of G by its cochar-
acter

χR = χP1 + w(χP2).

Denote by LR the Levi subgroup of R containing T and by UR the
unipotent radical of R. We have a semidirect product R = LR � UR.

Lemma 2.3. Let wLR
0 be the longest element of the Weyl group of

LR.
(ı) The parabolic subgroup R contains the intersection P1 ∩ Pw

2 .

(ıı) The pair (Q1, Q2) with Q1 = LR ∩ P1 and Q2 = (Pw
2 ∩ LR)

w
LR
0

is an opposite pair in LR.

Proof. (ı) This is obvious by definition.
(ıı) We have the equality χP1 |LR+w(χP2)|LR = 0 proving the result.

�

Definition 2.4. We set K = LR ∩H.

Lemma 2.5. The subgroup K is the Levi subgroup of Q1 and Q
w

LR
0

2 .
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Proof. Let α be a root of LR. Then 〈χP1 + w(χP2), α〉 = 0. Note

that we have χQ1 = χP1 |LR and χQ2 = wLR
0 (w(χP2)|LR). This implies

χQ1 = −wLR
0 (χQ2) and that α is a root of K if and only if 〈χQ1 , α〉 =

0 = 〈wLR
0 (χQ2), α〉. �

Since H ⊂ R, we have a G-equivariant morphism p : G/H → G/R,
which is a locally trivial fibration with fiber isomorphic to R/H. In
other words we have an isomorphism G/H 	 G×R R/H. Consider the
quotient map pr : R → R/UR = LR where UR is the unipotent radical
of R. This defines an R-action on LR.

Recall the following definition (this is the dual definition of a mi-
nuscule weight, see [1, Chapter 6. Exercice 24]).

Definition 2.6. A parabolic subgroup is cominuscule if its associ-
ated cocharacter χP satisfies |〈χP , α〉| ≤ 1 for any root α.

Lemma 2.7. If P1 and P2 are cominuscule, then H contains UR,
and the image pr(H) of H under the projection pr : R → LR = R/UR

is K.

Proof. We write Uα for the 1-dimensional T -stable unipotent subgroup
of G whose Lie algebra is the eigenspace with weight α.

The group UR is the product of the groups Uα for 〈χR, α〉 > 0.
Note that P1 (resp. Pw

2 ) contains the groups Uα for 〈χP1 , α〉 ≥ 0 (resp.
〈w(χP2), α〉 ≥ 0). Now let α with 〈χR, α〉 > 0 and 〈χP1 , α〉 < 0. Then
〈w(χP2), α〉 = 〈χR, α〉 − 〈χP1 , α〉 ≥ 2 contradicting the fact that P2 is
cominuscule. This implies UR ⊂ P1. The same argument gives UR ⊂ Pw

2

proving the inclusion UR ⊂ H.
The map pr is defined as follows. For any r ∈ R, there is a unique

decomposition r = lu with l ∈ LR and u ∈ UR. We have pr(r) = l. Since
H ⊂ R = LRUR and UR ⊂ H, it follows that H = (LR ∩H)UR = KUR

and hence pr(H) = K. �
For P1 and P2 cominuscule, we have a R-equivariant morphism

R/H → LR/K (the action of R on LR/K is given by the group mor-
phism pr : R → LR). We get a morphism

G/H 	 G×R R/H → G×R LR/K.

Note that since K = Q1∩Qw
LR
0

2 , the diagonal embedding LR → LR×LR

induces an embedding LR/K → LR/Q1 × LR/Q
w

LR
0

2 .

Lemma 2.8. With the above notation.

(ı) The variety LR/K is the dense LR-orbit in LR/Q1 ×LR/Q
w

LR
0

2 .
(ıı) The fiber of R/H → LR/pr(H) is isomorphic to UR/UR ∩H.
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(ııı) If P1 and P2 are cominuscule, then R/H → LR/pr(H) is an
isomorphism.

Proof. (ı) Follows from the fact that (Q1, Q2) is an opposite pair.
(ıı) The statement on the fiber is clear by construction.
(ııı) This follows from Lemma 2.7: we have an inclusion UR ⊂ H

proving the triviality of the fiber UR/UR ∩H of the map. �

Corollary 2.9. For P1 and P2 cominuscule, G/H is isomorphic to
G×R LR/K.

Remark 2.10. If P1 and P2 are cominuscule, the G-orbit G/H is
obtained by parabolic induction from LR/K (see Definition 3.4) that is

to say from a quotient LR/Q1 ∩Q
w

LR
0

2 with (Q1, Q2) an opposite pair in
LR.

§3. Minimal orbits for the weak order

Recall that a G-spherical variety, or simply a spherical variety X is
a normal G-variety with a dense B-orbit. This in particular implies that
the set B(X) of B-orbits is finite.

In this section we first recall general results on B-orbits in a spherical
variety X. We then apply these results to the case where X = G/P1 ×
G/P2 with P1 and P2 cominuscule parabolic subgroups.

3.1. Weak order

Let X be a spherical variety and let O be a B-orbit in X. There is a
natural partial order, called the weak order on the set B(X) of B-orbits
in X defined as follows. Recall that a minimal parabolic subgroup is a
parabolic subgroup with semisimple rank one. The following definition
was introduced in [15].

Definition 3.1. Let O be a B-orbit in X.
(ı) If P is a minimal parabolic subgroup containing B such that O

is not P -stable, we say that P raises O.
(ıı) The weak order is the order generated by the following cover

relations O < O′ where O is any B-orbit in X and where O′ is the
dense B-orbit in PO for P a minimal parabolic raising O.

By results of [15] or [3] three cases can occur. Recall that there exists
a morphism P ×B O → PO induced by the action. Recall also that the
rank rk(Z) of a B-variety Z is the minimal codimension of U -orbits with
U the unipotent radical of B.
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Lemma 3.2. Let O be a B-orbit in X and let P be a minimal
parabolic subgroup raising O. Let O′ be the dense B-orbit in PO. Then
dimO′ = dimO + 1 and one of the following three cases occurs:

(U) The P -orbit PO contains two B-orbits O and O′ and P×BO →
PO is birational. We have rk(O′) = rk(O).

(N) The P -orbit PO contains two B-orbits O and O′ and P×BO →
PO is of degree 2. We have rk(O′) = rk(O) + 1.

(T) The P -orbit PO contains three B-orbits O, O′ and O′′ and
P ×B O → PO is birational. We have dimO = dimO′′ and rk(O′) =
rk(O) + 1 = rk(O′′) + 1.

The following graph was introduced in [15] and [3].

Definition 3.3. We define a graph Γ(X) whose vertices are the
elements in B(X) and whose edges are the pairs (O,O′) with O raised
to O′ by a minimal parabolic subgroup P . We say that an edge is of
type U, N or T if we are in the corresponding U, N or T situation of the
previous lemma.

Let R be a parabolic subgroup of G and let LR be its Levi quotient.
Let Y be a LR-variety. We write BLR for the image of B ∩ R in LR.
Note that this is a Borel subgroup of LR. The following definition was
introduced in [3].

Definition 3.4. We say that a G-variety X is obtained from Y
by parabolic induction if X is of the form X = G ×R Y where Y is a
LR-variety (the R-action on Y is defined by r · y = r̄ · y for y ∈ Y and
r̄ ∈ LR = R/UR the class of r ∈ R).

The following result is a direct application of [3, Lemma 6].

Lemma 3.5. Let X = G ×R Y be obtained by parabolic induction
from Y .

(ı) The variety X is G-spherical if and only if Y is LR-spherical.
Assume that X is spherical.
(ıı) The set B(X) is in bijection with the product BLR(Y )×B(G/R).

The bijection BLR(Y ) × B(G/R) → B(X) is given by (O, BgR/R) �→
BgR×R O. Furthermore, the edges are of two types:

• of type ((O, BgR/R), (O, Bg′R/R)) with (BgR/R,Bg′R/R) an
edge of B(G/R). These edges are of type U;

• or of the form ((O, BgR/R), (O′, BgR/R)) with (O,O′) an
edge of BLR(Y ). The edges ((O, BgR/R), (O′, BgR/R)) and
(O,O′) have the same type.

Let P1 and P2 be cominuscule parabolic subgroups and let X =
G/P1 × G/P2. The following result was proved in [11] (see also [19]
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for a complete classification of products of projective homogeneous G-
varieties which are G-spherical).

Proposition 3.6. The variety X is G-spherical.

Consider a G-orbit G · (P1, wP2) 	 G/H of X with w ∈ W and
H = P1∩Pw

2 and recall the notation from Section 2. Corollary 2.9 gives
the isomorphism

G/H 	 G×R LR/K.

In particular, by Lemma 3.5, to describe the weak order on G/H we
only need to study the weak order on LR/K. Thanks to Lemma 2.3,
it is therefore enough to consider the case where (P1, P2) is an opposite
pair and w is the longest element.

3.2. Minimal orbits: The case of opposite pairs

In this subsection, we consider the spherical variety X = G/P1 ×
G/P2 with P1 and P2 two cominuscule parabolic subgroups of G such
that (P1, P2) is an opposite pair. We pick the dense G-orbit in X i.e.
the orbit G · (P1, wP2) 	 G/H with H = P1 ∩ Pw

2 and w = w0 the
longest element of W .

We start with the following result (see [13, Proposition 4.5] for a
proof).

Proposition 3.7. The group H is a symmetric subgroup of G.

We continue with results on minimal length representatives: for P a
parabolic subgroup of G containing B, we write WP for its Weyl group
and WP for the subset of W of minimal length representatives of the
quotient W/WP .

Lemma 3.8. Let wP1 and wP2 be the longest elements in WP1 and
WP2 , then wP2 = w−1

P1
.

Proof. The lengths of wP1 and wP2 are equal to the dimensions of
G/P1 and G/P2. Since (P1, P2) is an opposite pair, these dimensions
are equal and wP1(χP1) = −χP2 . Thus l(w−1

P1
) = l(wP2) and we com-

pute w−1
P1

(χP2) = −χP1 = wP2(χP2). Therefore w−1
P1

is in the same class
as wP2 in W/WP2 proving the result. �

Lemma 3.9. Let u ∈ WP1 , there exists a unique u∨ ∈ WP2 such
that (uP1, u

∨P2) is in the dense G-orbit in G/P1 ×G/Pw
2 . We have the

formulas
u−1u∨ = wP2 and l(u) + l(u∨) = l(wP2).

where wP2 is the longest element in WP2 .
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Proof. Recall that (P1, w0P2) is the the dense G-orbit. In particular
(uP1, uw0P2) is in the dense G-orbit. Let v ∈ W such that (uP1, vP2)
is also in the dense G-orbit i.e. we have u(χP1) = −v(χP2). Because
(P1, P2) is an opposite pair we have wP1(χP1) = −χP2 thus we get
w−1

P1
(χP2) = u−1v(χP2) and the equality w−1

P1
= u−1v in W/WP2 . Let

v′ ∈ WP2 such that the equality w−1
P1

= u−1vv′ holds in W . By the

previous lemma we get wP2 = u−1vv′. Write wP1 = u′u with l(wP1) =
l(u) + l(u′) (this is possible since u ∈ WP1). Note that the have u′ =
v′−1

v−1 and therefore l(wP2) = l(u−1)+ l(u′) and the expression wP2 =

u−1u′−1
is length additive. Since wP2 ∈ WP2 this implies u′−1 ∈ WP2 .

The element u∨ = u′−1
satisfies the conclusions of the lemma. �

Lemma 3.10. The B-orbit B · (uP1, u
∨P2) is a B ×B-orbit.

Proof. Recall that we have the following equalities

B·uP1 =
∏

α>0, Uu−1(α) �⊂P1

Uα·uP1 and B·u∨P2 =
∏

α>0, U
u∨−1(α)

�⊂P2

Uα·u∨P2.

We are thus left to prove that there is no positive root α with Uu−1(α) �⊂
P1 and Uu∨−1(α) �⊂ P2. Let α be such a root. We have the inequal-

ities 〈χP1 , u
−1(α)〉 < 0 and 〈χP2 , u

∨−1
(α)〉 < 0. By Lemma 3.9, the

second inequality is equivalent to 〈wP2(χP2), u
−1(α)〉 < 0. But since

wP ′
2
(χP2) = −χP1 this leads to a contradiction with the first inequality.

�

Lemma 3.11. The minimal orbits for the weak order in G/H are
closed.

Proof. This follows from the fact that the statement holds true for sym-
metric homogeneous spaces (see [18]) and the fact that H is a symmetric
subgroup (Proposition 3.7). �

Proposition 3.12. The minimal B-orbits in G/H are B×B-orbits.

Proof. Let O be a minimal B-orbit for the weak order. By Lemma 3.11,
the orbit O is closed in G/H. Let p : G → G/H and q : G → G/B be
the two projections. Then qp−1(O) is a closed H-orbit in G/B. Since
H contains the maximal torus T , the closed orbit qp−1(O) contains a T -
fixed point. This implies that O contains a T -fixed point. This T -fixed
point is of the form z = (uP1, vP2) for u, v ∈ W . By Lemma 3.9, we get
v = u∨ and by Lemma 3.10 we get that O is a B ×B-orbit. �
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3.3. Minimal orbits: General case

In this subsection, we consider the spherical variety X = G/P1 ×
G/P2 with P1 and P2 two cominuscule parabolic subgroups. We pick a
G-orbit G · (P1, wP2) 	 G/H of X with H = P1 ∩ Pw

2 and w ∈ W .

Theorem 3.13. The minimal B-orbits in G/H are B ×B-orbits.

Proof. According to Lemma 3.5, a minimal B-orbit is of the form
BgR ×R O where BgR/R is a minimal B-orbit in B(G/R) and O is
a minimal BLR -orbit in LR/K. Therefore BgR/R is a point and O is a
BLR ×BLR-orbit. The result follows. �

§4. Distance and rank

In this section we consider X = G/P1 ×G/P2 with G simply laced
and P1, P2 cominuscule. We prove that there is no edge of type N in
the graph B(X).

By definition of the weak order, we only need to consider B(G/H)
for G/H a G-orbit with H = P1∩Pw

2 in X. Note that thanks to Lemma
3.5 and Corollary 2.9, we only need to prove this result for opposite
pairs. We shall specify when we assume that the pair (P1, P2) is an
opposite pair.

4.1. Distance

In this subsection we introduce a distance d(x, y) between T -fixed
points xP1 ∈ G/P1 and yP2 ∈ G/P2 and prove that it is closely related to
the rank of the B-orbit of (xP1, yP2). Let�Pi be the fundamental weight
corresponding to the cocharacter χPi . Denote by V�Pi

the irreducible
representation of highest weight �Pi and by Π�Pi

the set of weights

of V�Pi
for i ∈ {1, 2} (note that this representation might not be a

representation of the groupG itself but only of a finite cover ofG). Recall
that W ·�Pi the W -orbit of �Pi is equal to Π�Pi

in our situation since
G is simply laced and both weights are cominuscule therefore minuscule.
Recall also that the map WPi → Π�i , u �→ u(�Pi) is bijective and that
the Schubert cells in G/Pi are of the form Ωu = BuPi/Pi for a unique
u ∈ WPi . Fix ( , ) a W -invariant scalar product on weights and write
| · | for the associated norm. Note that, since G is assumed to be simply
laced, all the roots have the same length. We choose ( , ) so that roots
have length 2.

The following definition generalises a definition introduced in [7].

Definition 4.1. For λi ∈ Π�Pi
define d(λ1, λ2) = (�P1 ,�P2) −

(λ1, λ2).
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Remark 4.2. (ı) The distance d(λ1, λ2) is W -invariant.
(ıı) If �P1 = �P2 , then we have d(λ1, λ2) =

1
2 |λ1 − λ2|2.

Lemma 4.3. We have d(λ1, λ2) ∈ [0, (�P1 ,�P2 − wP2(�P2))].

Proof. Since the distance is W -invariant, we have d(λ1, λ2) = d(�P1 , μ)
for some μ ∈ Π�P2

. We have d(�P1 , μ) = (�P1 ,�P2 − μ). Since �P2 is
the highest weight of V�P2

and wP2(�P2) the lowest weight, the result
follows. �

Lemma 4.4. We have d(λ1, λ2) = 0 if and only if λ1 and λ2 belong
to the same chamber.

Proof. If λ1 and λ2 belong to the same chamber, then letting W act we
may assume that this chamber is the dominant chamber. In particular
λi = �Pi and the distance vanishes. Conversely, we may assume by
letting W act that λ1 = �P1 . We proceed by induction on �P2 − λ2. If
λ2 = �P2 , we are done. Otherwise λ2 < �P2 and there exists a simple
root α such that

λ2 < sα(λ2) = λ2 + α ≤ �P2 .

Furthermore, since d(λ1, λ2) = d(�P1 , λ2) = (�P1 ,�P2 − λ2) = 0 we
must have (�P1 , α) = 0. Then we have 0 = d(sα(�P1), sα(λ2)) =
d(�P1 , sα(λ2)). By induction, �P1 and sα(λ2) are in the same chamber.
The same is therefore true for sα(�P1) = �P1 and λ2. �

Corollary 4.5. If d(λ1, λ2) > 0, then there exists a root α with
(λ1, α)(λ2, α) < 0.

Proof. If there is no root α with (λ1, α)(λ2, α) < 0, then λ1 and λ2 are
in the same chamber and d(λ1, λ2) = 0 by the previous lemma. �

Lemma 4.6. For (λ1, α)(λ2, α) < 0, we have the following formula
d(λ1, sα(λ2)) = d(λ1, λ2)− 1.

Proof. For Pi cominuscule and G simply laced, we have (λi, α) ∈
{−1, 0, 1}. The result follows from this by an easy computation. �

Corollary 4.7. Let d = d(λ1, λ2).
(ı) There exists a sequence (γi)i∈[1,d] or roots such that if (μi)i∈[0,d]

is defined by μd = λ2 and μi−1 = sγi(μi), then d(λ1, μi) = i.
(ıı) The roots (γi)i∈[1,d] are pairwise orthogonal and satisfy the in-

equality (λ1, γi)(λ2, γi) < 0 for all i ∈ [1, d].



64 P. Achinger and N. Perrin

Proof. (ı) We proceed by induction on d. By the former corollary, if
d > 0, there exists a root α with (λ1, α)(λ2, α) < 0. Set γd = α and
μd−1 = sα(λ2), then d(λ1, μd−1) = d− 1. We conclude by induction.

(ıı) Note that in the sequence (γk)k∈[1,d], we may replace γk by
its opposite. Therefore we may assume that (λ1, γk) < 0 (and thus
(μk, γk) > 0) for all i ∈ [1, d]. We first prove by induction on j − i the
vanishing (γi, γj) = 0 for all i < j. By induction assumption, we have

μi = sγi+1 · · · sγj (μj) = μj −
j∑

k=i+1

(γk, μk)γk = μj −
j∑

k=i+1

γk.

We get, again using induction

1 ≥ (γi, μj) = (γi, μi) +

j∑
k=i+1

(γk, μk)(γi, γk) = 1 + (γi, γj).

In particular we get (γi, γj) ≤ 0. If (γi, γj) = −1, then γi + γj would be
a root and we would have (λ1, γi + γj) ≥ −1. But (λ1, γi + γj) = −2 a
contradiction. The second condition easily follows. �

We can prove a converse of the above statement.

Lemma 4.8. If (γi)i∈[1,d] is a sequence of pairwise orthogonal roots
such that for all i ∈ [1, d], we have (λ1, γi)(λ2, γi) < 0, then d(λ1, λ2) ≥
d.

Proof. Define the sequence (μi)i∈[0,d] of weights as above: μd = λ2 and
μi−1 = sγi(μi). We have d(λ1, μi+1) = d(λ1, μi) − 1 for all i, the result
follows. �

Corollary 4.9. The distance d(λ1, λ2) is the maximal length of se-
quences (γi)i∈[1,d] of pairwise orthogonal roots satisfying (λ1, γi)(λ2, γi) <
0 for all i ∈ [1, d].

4.2. Connection with the rank

We define a map Φ : B(X) → WP1 ×WP2 as follows. Let O be a
B-orbit in G/P1 × G/P2. Then the images of O in G/P1 and in G/P2

are Schubert cells Ωu and Ωv with (u, v) ∈ WP1 ×WP2 . We put

Φ(O) = (u, v).

Remark 4.10. We defined the distance on the pairs of weights in
Π1 × Π2. We extend this definition to WP1 ×WP2 by setting d(u, v) =
d(u(�P1), v(�P2)).
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Lemma 4.11. Let O,O′ ∈ B(X) with O ≤ O′ for the weak order.
Let (u, v) = Φ(O) and (u′, v′) = Φ(O′). We have d(u, v) − d(u′, v′) ≤
rk(O′)− rk(O).

Proof. Choose a sequence (Pγi)i∈[1,r] of minimal parabolic subgroups
raising O to O′. Here γi for i ∈ [1, r] denotes the simple root whose
opposite is a root of Pγi . Let us write Oi for the dense B-orbit in
Pγi · · ·Pγ1O and write Φ(Oi) = (ui, vi). We have the three possibilities:

• if (γi+1, ui(�P1)) = 1, then we have ui+1 = sγi+1ui and the
equality ui+1(�P1) = sγi+1ui(�P1) = ui(�P1)− γi+1,

• if (γi+1, ui(�P1)) = 0, then we have ui+1 = ui and ui+1(�P1) =
ui(�P1) = sγi+1ui(�P1),

• if (γi+1, ui(�P1)) = −1, then we have ui+1 = ui and the equal-
ity ui+1(�P1) = ui(�P1).

The same possibilities occur for vi. There are only two cases for which
we have d(ui+1, vi+1) �= d(ui, vi), namely for (γi+1, ui(�P1)) = 1 and
(γi+1, vi(�P2)) = −1 and for (γi+1, ui(�P1)) = −1 and (γi+1, vi(�P2)) =
1. In both cases we have d(ui+1, vi+1) = d(ui, vi)− 1 by Lemma 4.6.

We claim that the following inequality holds

rk(Oi+1)− rk(Oi) ≥ d(ui, vi)− d(ui+1, vi+1).

Since rk(Oi+1) ≥ rk(Oi) this is clear in all cases where d(ui+1, vi+1) =
d(ui, vi). The last two cases are symmetric, we only treat the first one.
Remark that the orbit Oi+1 = Pγi+1Oi contains the orbit Oi and another
orbit. Indeed, if y is the T -fixed element in Ωvi , then there exists an
element of the form (x, y) in Oi. The element sγi+1(x, y) is in Oi+1 and
sγi+1(y) is a T -fixed point different from y. Since the image by the second
projection to G/P2 of Oi and Oi+1 is Ωvi which does not contain sγi+1(y)
there is a third orbit O′

i contained in Oi+1 and containing sγi+1(y). In
particular rk(Oi+1) = rk(Oi) + 1. The claim is proved.

Summing up we get the desired inequality. �

Proposition 4.12. Assume that (P1, P2) is an opposite pair and
that w is the longest element of the Weyl group W of G. Then we have
d(�P1 , w(�P2)) ≥ rk(X).

Proof. Consider the dense G-orbit G/H with H = P1 ∩ Pw0
2 in X.

This is the orbit of ([wP1(�P1)], [�P2 ]). We have a surjective morphism
p1 : G/H → G/P1 and we consider the fiber of [wP1(�P1)] which is iso-
morphic to P

wP1
1 · [�P2 ] 	 P

wP1
1 /P

wP1
1 ∩P2 	 P−

2 /P−
2 ∩P2 	 L2U

−
P2
/L2

where U−
P2

is the unipotent radical of P−
2 and L2 is the Levi subgroup

containing T . We have a trivialisation of the morphism p1 : G/H →
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G/P1 over the open subset UP1 · [wP1(�P1)] 	 UP1 and therefore an
open B-stable subset of X isomorphic to

UP1 × L2U
−
P2
/L2.

The rank of X as a G-variety is therefore the rank of L2U
−
P2
/L2 	 UP2

as L2-variety. Note that L2 acts on U−
P2

by conjugation. To compute the

rank we want to compute the dimension of the quotient U−
P2
/U where

U is a maximal unipotent subgroup of L2 (and therefore acts on U−
P2

by
conjugation).

Recall that, since P2 is cominuscule, the root subgroups Uα con-
tained in P−

2 commute pairwise and the multiplication
∏

Uα → U−
P2

is
a T -equivariant isomorphism of algebraic groups (where the action of T
is given by conjugation and the product on the left hand-side is taken
in any order and runs over the roots α with 〈χP2 , α〉 < 0). We may
therefore consider U−

P2
as an additive group. This structure extends

to a vector space structure with a T -linear action. As T -vector space
UP−

2
admits a T -equivariant decomposition as direct sum of the Uα for

(α,�P2) = −1. The action of Uβ ⊂ U on U−
P2

induces a morphism
Uβ ×Uα → Uα ×Uα+β defined by (b, a) �→ (a, cα,βab) for some constant
cα,β (non vanishing if α+ β is a root, see [17, Proposition 8.2.3]).

We define a sequence (Ri, θi)i∈[1,s] of pairs consisting of a root sys-
tem Ri and a root θi ∈ Ri by induction. Let R1 = R be the root system
of G and let θ1 be the highest root of R1. Assuming that (Ri, θi) is
defined, consider the root system R′

i of roots in Ri orthogonal to θi.
The root system R′

i might be reducible and is the product of its irre-
ducible components. We define Ri+1 as the irreducible component of R′

i

containing the roots α satisfying (α,�P2) �= 0. The root θi+1 is then
the highest root in Ri+1. Note that this definition is related to the clas-
sical construction of Kostant cascades (see [20, Section 40.5]) although
we only consider a subset of the cascade of the full root system (the
elements of the cascade not contained in �⊥

P2
).

We define the following sets of negative roots

Ci = {γ ∈ R− | there exists γ′ ∈ R− with γ + γ′ = −θi}
Ai = {α ∈ Ci | (α,�P2) = −1}
Bi = {β ∈ Ci | (β,�P2) = 0}.

Lemma 4.13. We have Ci ⊂ R−
i .

Proof. Let γ ∈ Ci, then γ ≥ −θi. We prove that this condition implies
γ ∈ Ri. By induction we only need to prove the statement for γ ∈ Ri−1.
For γ ∈ Ri−1 \ Ri, there exists a simple root of Ri−1 non orthogonal
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to θi−1 appearing with a negative coefficient in the expression of γ as
linear combination of simple roots of Ri−1. This implies γ �≥ −θi. �

Lemma 4.14. We have Ci = {γ ∈ R−
i | (γ,−θi) = 1} ⊂ R−

i \
(R−

i+1 ∪ {−θi}).
Proof. Let γ, γ′ ∈ R− with γ+γ′ = −θi. Then 2 = (γ′, γ′) = 4+2(θi, γ)
proving (−θi, γ) = 1. Conversely, let γ ∈ R−

i with (γ,−θi) = 1. Then
γ′ = sγ(−θi) = −θi−γ ∈ R−

i and γ, γ′ ∈ Ci. For γ ∈ Ci we have γ > −θi
and (γ,−θi) = 1 thus γ �∈ Ri+1. �

Lemma 4.15. We have Ai = {α ∈ R−
i \(R−

i+1∪{−θi}) | (α,�P2) =
−1}.
Proof. The inclusion of Ai in the right hand side follows from Lemma
4.14. Conversely let α ∈ R−

i \ (R−
i+1 ∪ {−θi}) with (α,�P2) = −1. If

(−θi, α) = 0 then α ∈ Ri+1. This is not the case therefore (−θi, α) �= 0.
Since θi is the highest root of Ri and α �= −θi, we have (α,−θi) = 1.
By Lemma 4.14 we have α ∈ Ci. �

Lemma 4.16. Let α ∈ Ai and α′ ∈ Aj and set β = −θi − α and
β′ = −θj − α′.

1. Then β ∈ Bi and β′ ∈ Bj.
2. If i �= j, then α �= α′ and β �= β′.
3. If i = j, then β + β′ is not a root.

Proof. 1. The inclusion β ∈ Bi follows from the definition since we
have the equality (θi,�P2) = −1 = (α,�P2). The same argument gives
β′ ∈ Bj .

2. Since α, β ∈ Ci and α′, β′ ∈ Cj , the assertion follows from the
following claim: Ci ∩ Cj = ∅. To prove the claim we may assume i < j.
We have Rj ⊂ Ri+1 ⊂ Ri and the claim follows by Lemma 4.14.

3. Assume that β + β′ is a root. By Lemma 4.14, we have (β +
β′,−θi) = 2. This implies β+β′ = −θi. Thus β = α′ and β′ = α. Since
P2 is cominuscule and α, α′ are roots of U−

P2
, the sum α + α′ is not a

root. A contradiction. �
We set U(θi) =

∏
α∈Ai∪{θi} Uα ⊂ U−

P2
for i ∈ [1, s]. These are

subspaces of U−
P2
. Note that for α, β roots of U−

P2
we have UαUβ = UβUα

so that we do not have to take care of the order of the product. We also
define Ui =

∏
β∈Bi

U−β ⊂ U for i ∈ [1, s]. Note that by Lemma 4.16,
the above U−β commute so that we can take any order for this product.

Lemma 4.17. Let Ui ⊂ U act on U−
P2

by conjugation. Then Ui ·
U−θi = U(θi).
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Proof. For β ∈ Bi, the action maps U−β × U−θi onto U−θi × U−θi−β.
Since the map Bi → Ai defined by β �→ −θi − β is bijective, an easy
induction gives the equality Ui · U−θi = U(θi). �

Corollary 4.18. We have U · (∏s
i=1 U−θi) = U−

P2
.

Proof. Since U−
P2

=
∏s

i=1 U(θi) and
∏s

i=1 Ui ⊂ U , we may apply induc-
tively the previous Lemma. �

In particular, we see that rk(X) = dimU−
P2
/U ≤ s. But (θi)i∈[1,s] is

a sequence of pairwise orthogonal roots satisfying the following formulas
(θi,�P2) = 1 and (θi, wP1(�P1)) = (θi,−�P2) = −1 thus by Corollary
4.9 we have d(�P1 , wP2(�P2)) = d(wP1(�P1),�P2) ≥ s and the propo-
sition is proved. �

Theorem 4.19. Assume that P1 and P2 are opposite and w is the
longest element in W . Let O ∈ B(X) and set Φ(O) = (u, v). Then
rk(O) + d(u, v) = rk(X).

Proof. Let (Pγi)i∈[1,k] be a sequence of minimal parabolic subgroups
raising a minimal orbit O′ to O and let (Pγi)i∈[k+1,r] be a sequence of
minimal parabolic subgroups raising O to the dense B-orbit in G. Write
O0 = O′ and Oi for the dense B-orbit in Pγi · · ·Pγ1O′. We have Ok = O.
Set Φ(Oi) = (ui, vi). According to the proof of Lemma 4.11, the equality
d(ui+1, vi+1) = d(ui, vi)− 1 implies the equality rk(Oi+1) = rk(Oi) + 1.
In particular, we get d(u0, v0) = d(u0, v0)−d(ur, vr) ≤ rk(X)−rk(O′) ≤
rk(X) ≤ d(1, wP2). But since O′ is minimal for the weak order we have
by Theorem 3.13 the equality v0 = u∨

0 and by Lemma 3.9 we have
u−1
0 u∨

0 = wP2 . Therefore d(u0, v0) = d(1, u−1
0 v0) = d(1, wP2) and we

have equality in all the inequalities. The result follows. �

Corollary 4.20. There is no edge of type N in the graph Γ(X).

Proof. By Lemma 3.5 and Corollary 2.9, we may assume that P1 and
P2 are opposite and w is the longest element.

Choose any minimal orbit O in X and any sequence (Pγi)i∈[1,r] of
minimal parabolic subgroups raising O to X. Write Oi for the dense B-
orbit in Pγi · · ·Pγ1O and set Φ(Oi) = (ui, vi). According to the proof of
Lemma 4.11 and to Lemma 4.6, the equality d(ui+1, vi+1) = d(ui, vi)−
1 implies the equality rk(Oi+1) = rk(Oi) + 1 and occurs only when
(ui(�P1), γi+1)(vi(�P2), γi+1) < 0. All the edges corresponding to such
a raising by Pγi+1 are of type T by the above proof. But since d(u0, v0) =
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rk(X) − rk(O) there is no other edge of Γ(X) raising the rank. Since
edges of type N raise the rank there is no such edge. �

§5. Proof of Theorem 1

We want to use the technique developed by Brion in [3] and [4] to
prove normality of the B-orbit closures. In particular Brion proves the
following.

Proposition 5.1. Let X be G-spherical variety such that the graph
Γ(X) has no edge of type N . Let Y be a B-stable subvariety such that for
all minimal parabolic subgroups P raising Y the variety PY is normal,
then the non normal locus in Y is G-invariant.

Proof. We only sketch the proof and refer to [4, Proof of Theorem
1] for a complete proof. We shall need the following two results.

For O a B-orbit and P raising O, let Y a B-stable subvariety con-
taining O as an open subset. Consider the map π : P ×B Y → PY .
For any sheaf F on P ×B Y , we have Riπ∗F = 0 for i > 1 and
R1π∗OP×BY = 0 (see for example [3, Page 294]).

For G a B-linearized sheaf on Y , write P ×B G for the corresponding
P -linearised sheaf induced on P ×B Y . If G is linearized under the
stabiliser of Y in G and if π∗(P ×B G) = 0 for any P raising Y , then
Supp(G) is G-invariant (see for example [3, Lemma 8]).

Assume that PY is normal for all P raising Y , let ν : Z → Y be
the normalization and let F be the cokernel of the map OY → ν∗OZ .
The sheaf F is linearised under the stabiliser of Y in G. The previous
assertions imply that we have an exact sequence

0 → π∗OP×BY → π∗(P ×B ν)∗OP×BZ → π∗(P ×B F) → 0

if P raises Y . But PY is normal and both morphisms π, π ◦ (P ×B ν)
are proper and birational. By Zariski Main Theorem the first map is
an isomorphism and π∗(P ×B F) = 0. We conclude that Supp(F) is
G-invariant. Q.E.D.

Consider X = G/P1 × G/P2 with P1 and P2 cominuscule. The
variety X is G-spherical and has a unique closed G-orbit Z obtained as
the image of the map G/P1 ∩ P2 induced by the diagonal embedding
G → G ×G. To prove Theorem 1, we therefore only have to prove the
normality of B-orbit closures containing Z.

Let Y ′ be a B-orbit closure containing Z. There exists a minimal or-
bit closure Y and a sequence of minimal parabolic subgroups (Pγi)i∈[1,r]

such that with Y0 = Y and Yi = Pγi · · ·Pγ1Y for i ≥ 1, the parabolic
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Pγi+1 raises Yi to Yi+1 for all i and Yr = Y ′. Consider the morphism

π : Pγr ×B · · · ×B Pγ1 ×B Y → Y ′ which is birational by Lemma 3.2 and
Corollary 4.20.

Proposition 5.2. The inverse image π−1(Z) of Z is Pγr ×B · · ·×B

Pγ1 ×B (Z ∩ Y ) and the fibers of the map π−1(Z) → Z are connected
and generically reduced.

Proof. Since Z is G-stable, the inverse image of Z by the action G ×
X → X is G × Z. This implies that the inverse image π−1(Z) has
to be contained in Pγr ×B · · · ×B Pγ1 ×B (Z ∩ Y ) and thus equal to
Pγr ×B · · · ×B Pγ1 ×B (Z ∩ Y ). But Y is a minimal B-orbit closure and
as such (Theorem 3.13) is a product XP1

u × XP2
v of Schubert varieties

with u ∈ WP1 and v ∈ WP2 (we write here XP
u for the orbit closure

of BuP/P in G/P ). Recall that the closed G-orbit is Z = G/P1 ∩ P2

embedded diagonally in G/P1 × G/P2. Let pi : G/P1 ∩ P2 → G/Pi be
the projection for i ∈ {1, 2}. The intersection of Y = XP1

u ×XP2
v with

Z is the intersection of Schubert varieties

p−1
1 (XP1

u ) ∩ p−1
2 (XP2

v )

in Z. In particular it is reduced. This implies that the generic fiber of
the map π−1(Z) → Z is reduced.

To prove the connectedness of the fibers, we proceed by induction
on r. We have a commutative diagram

Pr ×B · · · ×B P1 ×B (Z ∩ Y ) ��

��

Z

Pr ×B (Z ∩ Pr−1 · · ·P1Y )

φ

�����������������

and it is enough to prove the connectedness of the fibers of φ. Let
Z ′ = Z ∩ Pr−1 · · ·P1Y and let O be a B-orbit in Z. The fiber over a
point z ∈ O is given by {[p, z′] ∈ Pr ×B Z ′ | pz′ = z}. In particular z′ =
p−1z ∈ Z ′ ∩ PrO. Since O is a B-orbit in the projective homogeneous
space Z, we have PrO = O∪O′ with an edge of type U between O and
O′. If PrO ⊂ Z ′, then the fiber is {[p, p−1z] | p ∈ Pr} and is isomorphic
to P

1. Otherwise, we must have dimO < dimO′ and PrO ∩ Z ′ = O.
In that case φ−1(PrO) = Pr ×B O. The restriction of φ is the map
Pr ×B O → PrO which is an isomorphism (it is birational since the edge
is of type U and Pr-equivariant). �
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Corollary 5.3. Let Y ′ be a B-orbit closure in X containing Z such
that for any parabolic subgroup P raising Y ′, the variety PY ′ is normal,
then Y ′ is normal.

Proof. By Proposition 5.1, the non normal locus of Y ′ is G-invariant and

therefore is either empty or contains Z. Let ν : Ỹ ′ → Y ′ be the normal-
isation. Let Y be the closure of a minimal B-orbit and let (Pγi)i∈[1,r]

be a sequence of minimal parabolic subgroups as above. The variety Y
is a product of Schubert varieties and therefore normal. It follows that
the morphism π : Pγr ×B · · · ×B Pγ1 ×B Y → Y ′ factors through ν.
Since the fibers of π over Z are connected, so are the fibers of ν over
Z. Furthermore, since the general fiber of π over Z is reduced, so is the
general fiber of ν. This implies that ν is an isomorphism on an open
subset of Z and hence Z contains normal points of Y ′. The non normal
locus of Y ′ is therefore empty. �

Proof of Theorem 1. We prove the normality of B-orbit closures by
descending induction with respect to the weak order.

A maximal B-orbit O is a G-orbit therefore of the form G/H with
H = P1 ∩ Pw

2 . We thus have O 	 G ×P1 P1P
w
2 /Pw

2 . The closure is
then a locally trivial fibration over G/P1 with fiber the Schubert variety
P1Pw

2 /Pw
2 . It is normal since Schubert varieties are normal by [12].

Let Y be a B-orbit closure. Recall that the non normal locus is
either empty or contains the closed orbit Z. If Y does not contain Z,
then it must be normal. If Y contains Z, then by induction assumption,
the hypothesis of Corollary 5.3 are satisfied and Y is normal.

The Cohen-Macaulay property follows from a general argument in
[4, Section 3, Remark 2]. It will also follow from the existence of a
rational resolution. For this, let Y ′ be a B-orbit closure and Y and
(Pγi)i∈[1,r] be the closure of a minimal B-orbit and a sequence of minimal
parabolics raising Y to Y ′. The variety Y is a product of Schubert

varieties by Theorem 3.13. Let Ỹ be the product of the Bott-Samelson
resolutions of these varieties. Then by the same arguments as in [4,

Section 3, end of Remark 2] the morphism Pγr ×B · · ·×B Pγ1 ×B Ỹ → Y ′

is a rational resolution. �

§6. Example of non normal closures

In this section we give an counterexample to Theorem 1 and Corol-
lary 4.20 for G non simply laced.

Let (ei)i∈[1,6] be the canonical basis in k6. Define the symplectic

form ω on k6 by ω(ei, ej) = δ7,i+j for all i < j. Let G be the symplectic
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group Sp6 of linear automorphisms preserving ω. Let P = P1 = P2 be
the stabiliser of the 3-dimensional isotropic subspace 〈e1, e2, e3〉. Then
X = G/P×G/P is the set of pairs of maximal (of dimension 3) subspaces
in k6 isotropic for ω. Consider the full flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ 〈e1, e2, e3, e4〉 ⊂ 〈e1, e2, e3, e4, e5〉 ⊂ k6

and the Borel subgroup B of G stabilising this complete flag. We denote
by T the maximal torus defined by the basis (ei)i∈[1,6]. We denote by
α1, α2 and α3 the simple roots of G with notation as in [1].

Proposition 6.1. The closure of the B-orbit O of the element x =
(〈e3, e1 + e5, e2 + e6〉, 〈e4, e5, e6〉) is not normal.

Proof. To prove this result, we describe B-orbits O0, O1 and O2

in O such that the graph B(X) contains the following subgraph (we
denote by Pα1 and Pα2 the minimal parabolic subgroups containing B
associated to the simple roots α1 and α2).

raising of type U with Pα1

raising of type U with Pα2

raising of type N with Pα22

2

1

O

O1 O2

O0

2

2

1

Graph 1. Subgraph of Γ(X)

If such a subgraph exists, we claim that the closure of O is not
normal. This was proved in [14, Corollary 4.4.5], we reproduce the simple
proof for the convenience of the reader: the morphism Pα2 ×B O1 → O
is birational while its restriction Pα2 ×B O0 → O2 has non connected
fibres. Zariski’s Main Theorem gives the conclusion.

We are therefore left to prove that the above graph is indeed a
subgraph of Γ(X). We define the orbits O0, O1 and O2 as follows:

O0 is the B-orbit of x0 = (〈e1, e2 + e4, e3 + e5〉, 〈e4, e5, e6〉)
O1 is the B-orbit of x1 = (〈e2, e1 + e4, e3 + e6〉, 〈e4, e5, e6〉)
O2 is the B-orbit of x2 = (〈e1, e3 + e4, e2 + e5〉, 〈e4, e5, e6〉).
We first prove the following equalities: Pα1x0 = Pα1x1, Pα2x0 =

Pα2x2 and Pα2x1 = Pα2x. For this is is enough to produce elements
p1 ∈ Pα1 , p2 ∈ Pα2 and p ∈ Pα2 such that p1x0 = x1, p2x0 = x2 and
px1 = x. It is enough to take p1, p2, p as follows:
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p1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

p2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1/
√
2 1/

√
2 0 0 0

0 1/
√
2 −1/

√
2 0 0 0

0 0 0 −1/
√
2 1/

√
2 0

0 0 0 1/
√
2 1/

√
2 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Computing the stabiliser of xi for i ∈ {0, 1, 2, ∅} in B, it is easy to
compute the dimensions dimO0 = 8, dimO1 = 9, dimO2 = 9 and
dimO = 10. Note also that the orbits O1 and O2 are distinct: write
xi = (Vi,Wi) for i ∈ {1, 2}, we have that V1 is in the B-orbit of 〈e3, e5, e6〉
while V2 is in the B-orbit of 〈e1, e4, e5〉. This proves that the above graph
has the correct shape and we are left to proving that the types of the
edges are as in Graph 1 above.

To decide if the edge is of type U, T or N we use the following
criteria (see [15, Page 405] or [3, Page 268]): let P be a minimal parabolic
subgroup raising a B-orbit O to a B-orbit O′. Let x ∈ O′ and Px its
stabiliser in P . Denote by S the image of Px in Aut(P/B) = Aut(P1) =
PGL2. Then we have:

• the edge is of type U if S contains a positive dimensional unipo-
tent subgroup,

• the edge is of type T if S is a maximal torus in Aut(P/B),
• the edge is of type N if S is the normaliser of a maximal torus
in Aut(P/B).

An easy computation of stabilisers proves that the edges are of the above
type finishing the proof. Q.E.D.

References
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[10] Demazure, M., Désingularisation des variétés de Schubert généralisées.
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