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Singular fibers in barking families of degenerations 
of elliptic curves 

Takayuki Okuda 

Abstract. 

Takamura [Ta3] established a theory of splitting families of degen­
erations of complex curves of genus g 2: 1. He introduced a powerful 
method for constructing a splitting family, called a barking family, in 
which the resulting family of complex curves has a singular fiber over 
the origin (the main fiber) together with other singular fibers (subordi­
nate fibers). He made a list of barking families for genera up to 5 and 
determined the main fibers appearing in them. This paper determines 
most of the subordinate fibers of the barking families in Takamura's 
list for the case g = 1. (There remain four undetermined cases.) Also, 
we show that some splittings never occur in a splitting family. 

§1. Introduction 

Let 1r : M --+ .6. be a proper surjective holomorphic map from a 
smooth complex surface M to an open disk .6. := { s E C : lsi < 8} in C 
with radius 8 > 0. We call 1r : M --+ .6. a family of complex curves of 
genus g 2: 1 over .6. if 1r has at most finitely many singular fibers and 
the other fibers are smooth complex curves of genus g. In particular, 
1r : M --+ .6. is called a degeneration of complex curves of genus g if 
the fiber X 0 := 1r-1 (0) over the origin is singular and the other fibers 
Xs := 1r-1 (s) (s-=/= 0) are all smooth. 

In this paper, we consider the following problem: How does a singu­
lar fiber split in a deformation? Let us recall the concept of a splitting 
family of degenerations. Let M be a smooth complex 3-manifold and set 
.6. t := { t E C : It I < c: }, an open disk with sufficiently small radius c: > 0. 
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Consider a proper flat surjective holomorphic map W : M -t .6. x .6. t. 
FortE D.t, set .6.t := .6. X {t}, Mt := w-1(.6.t) and 7rt := wiM, : Mt -t 

.6.t. Suppose that no : M0 -t .6.0 coincides with a given degeneration 
1r : M -t .6.. Then we call W : M -t .6. x .6. t a deformation family of the 
degeneration 1r: M -t .6. and each 7rt: Mt -t .6.t (t E D.t \ {0}) a defor­
mation ofthe degeneration 1r : M -t .6.. In particular, W : M -t .6. x .6. t 
is called a splitting family if every deformation 7rt : Mt -t .6.t of the 
degeneration 1r : M -t .6. is a family of complex curves with at least two 
singular fibers. Set Xs,t := w- 1 (s, t) (= n;1 (s)). Clearly Xo,o is the 
original singular fiber X 0 of the degeneration 1r : M -t .6.. For a fixed 
t E D.t \ {0}, let s1 , s2 , ... , SN (N ~ 2) be the singular values of 7rt, that 
is, X 81 ,t, X 82 ,t, ... , XsN,t are the singular fibers of 7rt : Mt -t .6.t. (note: 
The singular values s1 , s2 , ... , SN depend on t, but the number of them 
and the types of the singular fibers do not.) In this case, we say that the 
singular fiber Xo splits into the singular fibers Xs1 ,t, Xs2 ,t, ... , XsN,t· 

To classify atomic degenerations - degenerations admitting no split­
ting family - Takamura [Ta3] introduced a powerful method for con­
structing splitting families. Splitting families obtained by this construc­
tion are called barking families. In a barking family, the original singular 
fiber X 0 of the degeneration 1r : M -t .6. is deformed to a simpler singu­
lar fiber of its deformation 7rt : Mt -t .6.t in such a way that a part of Xo 
looks "barked" off from Xo. See Fig. 2 in Section 2. The resulting sin­
gular fiber appears over the origin of .6.t under Takamura's construction, 
so we denote it by Xo,t· In such a situation, we write1 

bark 
Xo -----+ Xo,t, 

and call Xo,t the main fiber. 
In [Ta3], for genera up to 5, Takamura made a list of barking families 

which enabled him to show that a degeneration is absolutely atomic -
that is, any degeneration topologically equivalent to it is atomic - if 
and only if its singular fiber is either a Lefschetz fiber or a multiple 
of a smooth complex curve. For instance, he listed thirty five barking 
families for degenerations of complex curves of genus g = 1, that is, for 
degenerations of elliptic curves, and determined the type of the main 
fiber of each of them as follows, where we use Kodaira's notation2 for 

1In the same situation, Takamura [Ta3] wrote X 0 --+ Xo,t· In this paper, 

we use "--+" only for splittings and distinguish "~" from it. 
2See Table 1 in Section 2. 
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singular fibers (see also the list in Section 12): 

(1.1) Takamura's list 

[II.1] II~h [III* .5] III*~h 

[II.2] II~h [II/*.6] III* bark I; 

[I/*.1] II* ~III* [II/*.7] III*~h 

[I/*.2] II* ~IV* [III* .8] III*~h 

[I/*.3] II* ~I; [III* .9] III* ~IV* 

[I/*.4] II*~h [IV.1] IV bark h 

[I/*.5] If* bark Ii [IV.2] IV~I2 

[I/*.6] II* ~Ii [IV.3] IV~I2 

[I/*.7] II* ~Is [IV.4] IV~II 

[I/*.8] II* bark III* [IV*.1] IV* ~I{ 

[I/*.9] II* bark III* [IV*.2] IV* ~I0 

[III.1] III~h [IV*.3] IV* ~I6 

[III.2] III~h [IV*.4] IV* ~I{ 

[III.3] III~I2 [I~.1] l* bark I 
0~ 4 

[III* .1] III* ~IV* [I~.2] I* bark J 
0~ 3 

[III* .2] III* ~I{ [I,:.1] I* bark I* 
n~ n-1 

[II/*.3] III* ~I; [I,:.2] * bark 
In ~In+4· 

[III*.4] III* ~I0 

In a barking family, there appear not only the main fiber but also 
other singular fibers, which are called subordinate fibers. In what follows, 
when the original singular fiber X 0 splits into the main fiber Xo,t and 
subordinate fibers Xs1 ,t, Xs2 ,t, ... , XsN,t (si i=- 0), we write 

Xo ----7 Xo,t + Xs1 ,t + Xs 2 ,t + · · · + XsN,t 

- we always put the main fiber Xo,t on the initial term to distinguish 
it from the subordinate fibers. The main fiber of a barking family is 
explicitly described. On the other hand, it is not clear what subordinate 
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fibers will appear. The aim of this paper is to determine the subordinate 
fibers of Takamura's barking families for degenerations of elliptic curves. 

Our results are summarized in two theorems. Firstly, the following 
theorem determines the subordinate fibers of most of the barking families 
in the above list (note: four cases remain undetermined, see Remark 1.1 
below): 

Main Theorem A (Theorem 10.10). Each barking family in Taka­
mum's list (1.1) except [III* .8], [IV.3], [IV.4], [I~ .2] splits the sin­
gular fiber as follows: 

[II.1] II---+ h + h 

[II.2] II---+ h + h 

[I I* .1] II* ---+ I II* + h 

[II* .2] II* ---+IV*+ II 

[II* .3] II*---+ I~+ h + h 

[II* .4] II* ---+ h 

+h+h+h+h+h 

[II* .5] II* ---+ I2, + h 

[II*.6] II* ---+I3+h 

[II*.7] II*---+ Is+ h + h 

[II*.8] II* ---+III*+h 

[II* .9] II* ---+III*+ h 

[III.1] III---+ I2 + h 

[III.2] III---+ h + h 

[III.3] III---+ h + h 

[I I I* .1] I II* ---+ IV* + h 

[III* .2] III*---+ I~+ I2 

[III* .3] III*---+ I~+ h 

[III* .4] III* ---+I~+ h + h + h 

[III* .5] III* ---+ I6 + h + h + h 

[III* .6] III*---+ I~+ h 

[III* .7] III*---+ h + h + h 

[III* .9] III* ---+IV*+ h 

[IV.1] IV---+ h + h 

[IV.2] IV ---+ h + h + h 

[IV* .1] IV* ---+I~+ h 

[IV* .2] IV* ---+I~+ h + h 

[IV* .3] IV* ---+ h + h + h 

[IV* .4] IV* ---+I~+ h 

[I~.1] I~---+ I4 + h + h 

[I~.1] I~---+ I~_ 1 + h 

[I~.2] I~---+ In+4 + h +h. 

Remark 1.1. We have not been able to determine the subordinate 
fibers of the four exceptional barking families [III* .8], [IV.3], [IV.4], 
[I~ .2] (see also Remark 6.6): 

[III*.8] III*---+h+II+h, h+h+h, orh+h+h+h 

[IV.3] IV ---+ I2 +II, or I2 + h + h 

[ IV.4] IV ---+ II + II, II + h or II + h + h 

[I~.2] I~---+I3+II+h, orh+h+h+h. 
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In contrast, there are splittings that never occur in a splitting fam­
ily. If in a splitting family for a degeneration of elliptic curves the singu­
lar fiber Xo splits into N singular fibers xl, x2, ... 'XN, then we have 
e(Xo) = e(Xl) + e(X2) + · · · + e(XN ), where e(Xi) denotes the topolog­
ical Euler characteristic of the underlying reduced curve of Xi (Lemma 
3.1 (b)). However the converse does not hold. Even if the singular fibers 
satisfy this equation, the splitting Xo ---+ xl + x2 + ... + XN does not 
always occur. In fact: 

Main Theorem B (Theorem 5.8). None of the following splittings 
occurs: 

IV ---+ h + I2, 

II*---+ Is+ II, h +III, h +IV, 

I4 + I;, I3 + I{, 

Iu + Iv (u + V = 10), 

III*---+ h +II, I6 +III, h +IV, 

h+I;, 

IV*---+ h +II, 

Iu+Iv(u+v=9), 

h +III, I4 +IV, 

I2+I;, Iu+Iv(u+v=8), 

I~ (n ~ 0) ---+ In+4 +II, In+3 +III, In+2 +IV, 

Iu + Iv (u + v = n + 6 and (n, u, v) -1- (2, 4, 4)). 

Ia---+ h + I2 +h. 

Organization of this paper. 
This paper is organized as follows. In Section 2, we first review 

Takamura's theory of barking families, mainly for degenerations with 
stellar (star-shaped) singular fibers. In fact, most of the degenerations 
of elliptic curves may be assumed to have stellar singular fibers. 

To determine the subordinate fibers of the barking families in Taka­
mura's list (1.1), we investigate the singular fibers in three steps: (1) 
In Section 3, we first consider the Euler characteristics of the singular 
fibers and give a list of the sets of subordinate fibers that can appear in 
each of the barking families. (2) In Section 4, we recall the concept of 
monodromies around singular fibers, and in Section 5, by comparing the 
traces of monodromies, we prove Main Theorem B - we give a list of 
splittings that never occur. In Section 6, based on the result of Section 
5, we determine the subordinate fibers of five of Takamura's barking 
families. (3) Sections 7, 8, 9 are devoted to study of the singularities 
of subordinate fibers. We investigate the singularities near proportional 
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subbranches in Section 7 and those near the core in Section 8. In Section 
9, we show useful lemmas which give us the number of the subordinate 
fibers and that of their singularities. In Section 10, we determine the 
subordinate fibers of the remaining barking families, and complete the 
proof of Main Theorem A. 

In Section 11, we give monodromy decompositions corresponding to 
the splittings induced from Takamura's barking families. 

In Section 12, we provide Takamura's list of barking families for 
genus 1 with figures of the singular fibers, which will help the reader 
comprehend the barking deformations. 

§2. Takamura's theory 

Let us review Takamura's theory of barking families. For details see 
[Ta3]. 

First we recall the concept of linear degenerations. We begin with 
preparation. Let n : M --+ ~ be a degeneration of complex curves of 
genus g ;:;:> 1 and express its singular fiber as Xo = L.:i mi8i, where 8i is 
an irreducible component of Xo with multiplicity mi. In what follows, 
we assume that the underlying reduced curve X0ed := L.:i 8i of X 0 has 
at most simple normal crossings, that is, (i) any singularity of X0ed is 
a node and (ii) any irreducible component 8i is not self-intersecting (so 
ei is smooth). 

For an irreducible component ei of X 0 , we denote by Ni the normal 

bundle of 8i in M. Let {p11l, p12l, ... P1h)} be the set of the intersection 

points on 8i with other irreducible components of X 0 and m(jl (j = 

1, 2, ... , h) be the multiplicity of the irreducible component intersecting 

8i at P1j). Then there exists a holomorphic section O"i of the line bundle 
NtH -m,) on 8i such that 

h 

div(O"i) = L m(j)P1j), 

j=l 

where div(O"i) denotes the divisor defined by O"i. Here O"i has a zero of 

order m(jl at p1j). Note that O"i is uniquely determined up to multipli­

cation by a constant. We call O"i the standard section of Ni®( -m;) on 
ei. 

Take an open covering ei = Ua Ua such that Ua X rc is a local 
trivialization of the normal bundle Ni on 8i. We denote by (za, (a) 
coordinates of u a X c. Now define holomorphic functions 7r i,a : u a X rc --+ 



Singular fibers in barking families of degenerations 209 

c by 
1ri,a(Za,(a) := O"i,a(za)(;;'i, 

where O"i,a is the local expression of O"i on Ua. Then the set { 1ri,a} a of 
holomorphic functions defines a global holomorphic function 7l"i : Ni -+ 
c. 

Definition 2.1. A degeneration 1r : M -+ b. is said to be linear if 
for any irreducible component ei of its singular fiber Xo, 

(i): a tubular neighborhood N(8i) of ei in M is biholomor­
phic to a tubular neighborhood of a zero-section of the normal 
bundle Ni, and 

(ii): under the identification by the biholomorphic map of (i), 
the following conditions are satisfied: 

• The restriction 7riN(Bi) coincides with the holomorphic 
function 7l"i defined above. 

• If ei intersects ej at a point p, then there exist local 
trivializations U a x C of Ni and U 13 x C of Nj around p 
such that neighborhoods of p in N(8i) and N(8J) are 
identified by plumbing (za, (a)= ((13, z13) and 1r is locally 
expressed as 

7!"1 N(8i) (za, (a) = z;;'j (;;'i' 7riN(8j) (zf3, ((3) = z(I'i(;;'j' 

where (za, (a) E Ua XC and (z13, (13) E U13 X C. 

Remark 2.2. Any degeneration of complex curves (even if the un­
derlying reduced curve of its singular fiber does not have at most simple 
normal crossings), after successive blowing up and down, becomes a de­
generation topologically equivalent to some linear degeneration. 

If 1r : M -+ b. is linear, then we may express M locally as a hyper­
surface in some space as follows: We first identify M with the graph of 
1r in M x b. 

Graph(1r) = {(x, s) EM x b. : 1r(x)- s = 0} 

via the natural projection Graph(1r) 3 (x, s) r-+ x E M. Recall that 
for any irreducible component ei of the singular fiber Xo, the map 1r is 
expressed around ei as 

1r(zi, (i) = O"i (zi)(;:"i, 

where O"i is the standard section of Ni®(-mi) on ei. Then we obtain the 
local expression of M around ei: 

O"i(zi)(;:"i - s = 0 in Ni x b.. 
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Fig. 1. A singular fiber of type II* of a degeneration of 
elliptic curves is stellar. Each circle denotes a com­
plex projective line, the number stands for its mul­
tiplicity, and each intersection point is a node. 

Note that these hypersurfaces are glued around the intersection points by 
plumbings (zj, (j, s) = ((i, zi, s) where (zi, (i, s) E Nix b. and (zj, (j, s) E 

Nj X 6.. 
For a linear degeneration n : M -+ 6., its singular fiber X 0 con­

sists of three kinds of parts: cores, branches and trunks. An irreducible 
component 8i of X 0 is called a core if 8i intersects other irreducible 
components at at least three points or the genus of 8i is positive. A 
branch is a chain Li mi8i of complex projective lines attached with a 
core on one hand, while a trunk is a chain Li mi8i of complex projec­
tive lines connecting other irreducible components on both hands. We 
say that X 0 is a stellar singular fiber if X 0 consists of one core and 
branches emanating from the core. See Fig. 1. Otherwise X 0 is said to 
be constellar. If X 0 is normally minimal, that is, (i) any singularity of 
X 0ed is a node and (ii) any irreducible component that is a ( -1 )-curve 
(an exceptional curve of the first kind) intersects other irreducible com­
ponent at at least three points, then all the branches and trunks of X 0 

contain no ( -1 )-curves. 
A degeneration whose singular fiber is a (fringed) branch can be con­

structed explicitly and associated to a sequence of nonnegative integers 
(the multiplicity sequence): 
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Lemma 2.3. Let mo, m1, ... , m.Hl (,\ 2:: 1) be nonnegative integers3 

satisfying the following conditions: 

{ mo > m1 > · · · > m>. > m>.+l = 0 and 
ri := m;_~;mi+ 1 (i = 1, 2, ... , ,\) is an integer greater than 1. 

Then there exists a degeneration 1r : M ---+ ~ with the singular fiber 

where ~0 = c, and 81, 82, ... '8>. are complex projective lines, and 
each pair of 8i and 8i+l (i = 1, 2, ... ',\- 1) and ~0 and 81 intersect 
transversely at one point. 

Proof. We take,\ copies 8 1, 8 2, ... , 8>. of the complex projective 
line. Let 8i = UiUVi be an open covering by two complex lines Ui, Vi(= 
C) with coordinates Wi E Ui \ {0} and Zi E Vi\ {0} satisfying Zi = 1/wi. 
Then we obtain a line bundle Ni on 8i of degree -ri from ui X c and 
Vi x C by identifying (zi, (i) E (Vi\ {0}) x C with (wi, 'f/i) E (Ui \ {0}) x C 
via 

Now consider the hypersurface wi in Ni X ~ defined by 

in Ui XC X~' 
in Vi XC X~-

Under plumbings (wi+l, 'fli+l, s) = ((i, Zi, s) of Nix~ and Ni+l x ~ (i = 
1, 2, ... , ,\-1), the hypersurfaces W1 , W2, ... , W>. are glued, so that they 
together define a smooth complex surface M. Letting 1r : M ---+ ~ be 
the natural projection, the central fiber is 

n-1(0) = mo~o + m181 + m282 + · · · + m>.8>., 

where ~0 := {0} X c c ul X c. Thus the holomorphic map 7r: M---+ ~ 
is the desired degeneration. Q.E.D. 

Remark 2.4. Precisely speaking, the holomorphic function 1r : 

M ---+ ~ obtained in Lemma 2.3 does not satisfy the condition to be 
a degeneration. Indeed 1r is not proper. Note that we consider the 
restriction of a degeneration to a tubular neighborhood of a branch. 

3In this paper, by convention, we append m>-+ 1 = 0 to the sequence 
m 0 , m 1 , ... , m>. of positive integers, so that r>. := (m>-_ 1 + m>-+1)/m.>. equals 
m>--dm>-. See [Ta3] Section 5.1. 
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Next we define a special subdivisor of a stellar singular fiber. Let 
1r : M -t ~ be a linear degeneration of complex curves with the stel­
lar singular fiber Xo = mo8o + L~=l Br(j), where 8o is the core and 

Br(j) (j = 1, 2, ... , h) is a branch. Write Br(j) = m~j)ep) + m~j)e~j) + 

· · · + m(j) 8(j) and let Br(j) = m ~ (j) + m(j)e(j) + · · · + m(j) 8(j) 
>.(J) >.<il 0 0 1 1 >.Ul )..(i) 

be a fringed branch. Consider a connected subdivisor Y = no8o + 
"h br(j) of X where br(j) ·= n(j)e(j)+n(j)8(j)+· · +n(j) e(j) (J. = UJ=l o, • 1 1 2 2 v(J) v(J) 

1, 2, ... , h). Here Y satisfies 0 ~ v(j) ~ >..(j) and 0 < n~j) ~ m~j) for each 

i and J. Set br(j) ·- n ~ (j) + n(j)e(j) + n(j)e(j) + · · · + n(j) e(j) For 
· .- 0 0 1 1 2 2 vUl vU) · 

th t . b . "d -B (j) d -b (j) "tt· th . t e 1me emg, we cons1 er r an r , om1 mg e superscnp 
(j) to simplify notation. We call br a subbranch of Br if one of the 
following conditions is satisfied: 

• v = 0, 1, or 
• v ~ 2 and ni+l = rini- ni-l (i = 1, 2, ... , v- 1), 

where ri := (mi-l + mi+l)/mi (see Lemma 2.3). Set nv+l := r,n,­
n,_1. If v = 0, then we set nv+l = n1 := 0. Define the three types of 
subbranches for a positive integer l as follows: 

Type A1: A subbranch br of Br is of type A1 if lni ~ mi for each 
i and nv+l ~ 0. 

Type B1: A subbranch br of Br is of type B1 if lni ~ mi for each 
i, n, = 1 and m, = l. 

Type C1: A subbranch br of Br is of type Ct if lni ~ mi for each 
i, n, = nv+l and m,- mv+l divides l. 

Now we return to a connected subdivisor Y of the stellar singular 
fiber Xo. 

Definition 2.5. Let Y = no80 + L~=l br(j) be a connected sub­

divisor of X 0 such that n0 < m 0 and each br(j) is a subbranch of Br(j). 
Y is called a crust of X 0 if there exists a meromorphic section T of 
the line bundle N~no on 8 0 such that for some nonnegative divisor 

D = L~=l aiqi on 8o, 

h 

div(T) =-L n~j)p(j) + D, 
j=l 

where No denotes the normal bundle of 8 0 in M, {pU)} is the set of 

the attachment points on 8 0 with the branches Br(j). Moreover, for a 
·t· . t l "f h -b (j) . bb h f -B (j) f . h A pos1 1ve m eger , 1 eac r 1s a su ranc o r o mt er type l, 
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....... 
Y en .::..::. 
(iY 2 Y2··:(2·· .. {2 .. :(2.) 
...... ·············· ........................ . 

Fig. 2. In the barking family [II* .1], the singular fiber 
of type I I* is deformed to the main fiber of type 
I I I*. It seems that the simple crust Y is "barked" 
(peeled) off from the original singular fiber. 

213 

type Bz or type Cz, then we call Y a simple crust of X 0 with barking 
multiplicity l. 

We call the meromorphic section T a core section. Note that T 

is not uniquely determined by Y. Setting r 0 := L;~=l mij) jm0 and 

rb := L;~=l ni1) /no, the following holds: 

Lemma 2.6. Suppose that 8 0 is a complex projective line. Then 
a connected subdivisor Y is a crust of X 0 (equivalently, Y has a core 
section T) if and only if r0 S:: rb. Moreover T has no zero, that is, D = 0 
exactly when ro = rb. 

Takamura constructed a deformation family of 1r : M ---+ D. associ­
ated with a simple crust Y. We call a deformation family obtained by 
his method a barking family. In a barking family, the original singular 
fiber X 0 is deformed to a simpler singular fiber in such a way that a part 
of X 0 looks "barked" off from X 0 . The resulting singular fiber appears 
over the origin of Dot, so we denote it by Xo,t and call it the main fiber. 
See Fig. 2. 

In a barking family, there appear not only the main fiber but also 
other singular fibers over some points away from the origin of Dot, which 
are called subordinate fibers. It is easy to see this. Under the deforma­
tion, the topological type of the singular fiber over the origin changes, 
so the local monodromy around it also changes (see Section 4 for de­
tails). On the other hand, the global monodromies before and after the 
deformation- that is, the two monodromies each of which is induced 
by a loop in D. (resp. Dot) parallel to its boundary 8.6. (resp. 8D.t) -
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coincide. We then deduce that there appear other singular fibers with 
nontrivial monodromies. Thus every barking family turns out to be a 
splitting family. Therefore: 

Theorem 2.7 (Takamura [Ta3]). Let 1r : M ~ D. be a linear de­
generation with the stellar singular fiber X 0 . If X 0 has a simple crust 
Y, then 1r : M ~ D. admits a splitting family \fJ : M ~ D. x D. t. 

Remark 2.8. In this paper, for a degeneration which is not neces­
sarily relatively minimal, a splitting family of it is defined to satisfy that 
each deformation has at least two singular fibers (see Section 1). Thus 
singular fibers of a deformation in a splitting family possibly become 
smooth fibers after blowing down. Such singular fibers are said to be 
fake. 

Kodaira's notation. 

Before proceeding, we supply Kodaira's list of singular fibers of (rel­
atively) minimal degenerations of elliptic curves [Ko]. See Table 1. For 
a singular fiber X, we denote by e(X) the topological Euler character­
istic of the underlying reduced curve xred of X. Ax E S£(2, Z) is the 
standard monodromy matrix of X and its trace is denoted by Tr(Ax ). 

Note that minimal singular fibers of type I~, II*, II I* and IV* 
in this table are normally minimal and their underlying reduced curves 
have at most simple normal crossings. In contrast, minimal singular 
fibers of type I I, I I I and IV have a singularity that is not a node. 
However, after successive blowing up, they become normally minimal 
degenerations such that xred has at most simple normal crossings. In 
this paper, such degenerations are also referred to be of type I I, I I I 
and IV. 

§3. Constraints from Euler characteristics 

In [Ta3], Takamura listed thirty five barking families for degener­
ations of complex curves of genus g = 1, that is, for degenerations of 
elliptic curves, and determined the type of the main fiber of each of them 
as follows (see also the list in Section 12): 
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a singular fiber X 

a multiple torus 

a (multiple) projective line 
with one node 

a projective line 
with one cusp 

two projective lines 
with second order contact 

three projective lines intersecting 
transversally at one point 

~-·····~ 

e(X) 

0 

n 

2 

3 

4 

6 

6+n 

10 

9 

8 

Table 1. Koda1ra's notat10n. 
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Tr(Ax) 

2 

2 

2 

0 

-1 

-2 

-2 

0 

-1 
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[II.l] II~h [III* .5] III*~h 

[II.2] II~h [III* .6] III* ~I~ 

[II*.l] II*~ III* [III* .7] III*~h 

[I/*.2] II* ~IV* [III* .8] III* ~I6 

[I/*.3] II* ~I~ [III* .9] III* ~IV* 

[II* .4] II*~h [IV.l] IV~h 

[I/*.5] II* ~I; [IV.2] IV~h 

[I/*.6] II* ~I; [IV.3] IV~I2 

[I/*.7] II* ~Is [IV.4] IV~II 

[I/*.8] II*~ III* [IV*.l] IV* ~I; 

[I/*.9] II*~ III* [IV*.2] IV* ~I~ 

[III.l] III~h [IV*.3] IV* ~I6 

[III.2] III~h [IV*.4] IV* ~I{ 

[III.3] III~I2 [I~.l] 1* bark I 
0 ----+ 4 

[III* .1] III* ~IV* [I~.2] I* bark I 
0 ----+ 3 

[III* .2] III* ~I; [I;;_.l] I* bark I* n----+ n-l 

[III* .3] III*~ I~ [I;;_.2] * bark 
In ----+ In+4· 

[III*.4] III*~ I~ 

The aim of this paper is to determine the subordinate fibers of the above 
barking families. In this section, we give a list of the sets of subordinate 
fibers that can appear in each of the barking families, using results on 
Euler characteristics of singular fibers of degenerations. 

For a singular fiber X, we denote by e(X) the topological Euler 
characteristic of the underlying reduced curve of X. 

Lemma 3.1. Let 1r : M ---+ b. be a degeneration of complex curves 
of genus g ~ 1 with the singular fiber X 0 and let iJ! : M ---+ b. x b. t 
be a splitting family of 1r : M ---+ b., say, Xo splits into singular fibers 
X1,X2, ... ,XN (N ~ 2) of a deformation 1rt: Mt---+ b.t. 
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(a): Then the following formula holds: 

N 

e(Xo)- 2(1- g)= L {e(Xi)- 2(1- g)}. 
i=l 

(b): In particular, if g = 1, then the following holds: 

(3.1) e(Xo) = e(X1) + e(X2) + · · · + e(XN ). 

Proof. (a) The left hand side equals the Euler characteristic e(M) 
of M, while the right hand side equals e(Mt) (see [BPV, p. 97]). Since 
Mt is diffeomorphic to M, we have e(M) = e(Mt), which confirms the 
assertion. 

(b) clearly follows from (a). Q.E.D. 

Consider a barking family \[! : M -+ D. x D. t of the degenera­
tion 7r : M -+ D. of elliptic curves. Recall that for a singular fiber 
Xs,t := w-1(s, t) (t -/=- 0), we call Xs,t the main fiber if s = 0, and a 
subordinate fiber if s -/=- 0. Suppose that \[! : M -+ D. x D. t splits the 
original singular fiber X 0 into the main fiber Xo,t and subordinate fibers 
Xs 1 ,t, Xs2 ,t, ... , XsN,t (N :;::: 1). In these notations, we restate (3.1) in 
Lemma 3.1 as 

(3.2) 
N 

e(Xo) = e(Xo,t) + L e(Xs;,t)· 
i=l 

This confirms (a) of the following: 

Lemma 3.2. Let 7r : M -+ D. be a degeneration of elliptic curves 
with the singular fiber Xo. Suppose that a barking family \[! : M -+ 
D. x D. t splits the original singular fiber Xo into the main fiber Xo,t and 
subordinate fibers X 81 ,t, X 82 ,t, ... , XsN,t (N:;::: 1). Then: 

(a): The sum of the Euler characteristics of the subordinate 
fibers is e(Xo) - e(Xo,t): 

N 

L e(Xs;,t) = e(Xo) - e(Xo,t)· 
i=l 

(b): Ife(Xo)-e(Xo,t) = 1 holds, then\[! splits Xo into the main 
fiber Xo,t and one subordinate fiber h: 

Xo ---+ Xo,t + h. 
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Proof. It remains to show the second statement (b). From the 
assumption e(Xo) - e(Xo,t) = 1 together with (a), we have 

Note that every subordinate fiber of any barking family is a reduced 
curve only with A-singularities (Lemma 7.1). In particular, each subor­
dinate fiber Xs,,t is not a multiple torus (whose Euler characteristic is 
0), thus e(Xs,,t) ~ 1. Hence we haveN= 1 (that is, X 81 ,t is the unique 
subordinate fiber) and e(Xs1 ,t) = 1. This equality holds exactly when 
X 81 ,t is mh (m ~ 1). By Lemma 7.1 again, X 81 ,t is a reduced curve, so 
m = 1. Accordingly Xs 1 ,t is h. Q.E.D. 

Lemma 3.2 (b) immediately yields the following: 

Proposition 3.3 (Case: e(Xo)- e(Xo,t) = 1). In each of the fol­
lowing barking families, the subordinate fiber is h . 

[II.l] II~h [III* .1] III* ~IV* 

[II.2] II~h [III*.3] III* bark I~ 

[II*.l] II*~ III* [III*.6] III* ~I~ 

[IJ*.5] II* ~I; [III* .9] III* ~IV* 

[II*.6] II* ~I; [IV.l] IV~h 

[II*.B] II* ~III* [IV*.l] IV* ~It 

[II*.9] II* ~III* [IV*.4] IV* ~It 

[III.l] III~h [I;_.l] I* bark I* n---+ n-1· 

[III.3] III~h 

If e(Xo)- e(Xo,t) ~ 2, then we need another criterion to determine 
the subordinate fibers. However by Lemma 3.2 (a) we can narrow down 
candidates. 

Lemma 3.4 (Case: e(Xo) - e(Xo,t) = 2). In each of the following 
barking families, the set of subordinate fibers is one of {II}, { h}, and 
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{h,h}. 

[I/*.2] II* ~IV* [IV.3] IV~[z 

[I/*.3] II* ~I~ [IV.4] IV~II 

[I/*.7] II* ~Is [IV*.2] IV* ~I; 

[III.2] III~h [IV*.3] IV*~h 

[II/*.2] III* ~I; [I~.l] J* bark J 
0 ----+ 4 

[II/*.7] III* bark h [I;;_.2] * bark 
In ----t In+4· 

[IV.2] IV~Iz 

Lemma 3.5 (Case: e(Xo) - e(Xo,t) = 3). In each of the follow­
ing barking families, the set of subordinate fibers is one of {I II}, { I3 }, 

{II,h}, {hh}, and {h,h,h}. 

[II/*.4] 

[III* .5] 

[II/*.8] 

III* ~I; 

III*~h 

III*~h 

[I* 2] I* bark I o· o -----+ 3· 

Lemma 3.6 (Case: e(Xo) - e(Xo,t) = 5). The sum of the Euler 
characteristics of the subordinate fibers of the following barking family 
is 5: 

[I/*.4] II* ~k 

§4. Monodromies around singular fibers 

Next we consider the monodromies around singular fibers of splitting 
families (not necessarily barking families). 

Let 7f : M -+ b. be a (relatively) minimal degeneration of elliptic 
curves with the singular fiber Xo. We take a base point so in b.\ {0} and a 
loop (simple closed curve) l0 in b.\ {0} passing through the base point s0 

and circuiting around the origin with the counterclockwise orientation. 
Then n-1(l0 ) is a real 3-manifold and the restriction n : n-1(lo) -+ lo 
is a :E-bundle over S\ where :E is an elliptic curve. Here n-1(l0 ) is 
obtained from :E x [0, 1] by the identification of the boundaries :E x {0} 
and :Ex {1} via an orientation-preserving homeomorphism f of :E. The 
isotopy class [f] of f is called the topological monodromy around X 0 . 

Then f induces an automorphism p := f* on H1(:E,Z), which is called 
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the (homological) monodromy around X 0 . Under an identification of E 
and IR2/Z2, fixing a basis of H1(E,Z), we obtain an isomorphism 

Aut(H1 (E, Z)) -+ SL(2, Z). 

In the subsequent discussion, we consider pas an element of SL(2, Z). 
Next suppose that \If : M -+ ~ x ~t is a splitting family of the 

degeneration 1r : M -+ ~' that is, the deformation 7rt : Mt -+ ~t of 
7r: M-+ ~for a fixed t =I 0 has singular fibers xl, x2, ... 'XN (N 2: 2). 
Then we say that Xo splits into xl, x2, ... 'XN and express Xo ---+ xl + 
X 2 + · · ·+X N. Now we define the local monodromies around the singular 
fibers xk (k = 1, 2, ... 'N) as follows: Set Sk := 1rt(Xk)· We take a base 
points~ in ~t \ {s1, s2, ... , SN} (so the fiber Xs& = 1r; 1 (s~) is smooth). 
For each k = 1,2, ... ,N, we take a loop lk in ~t \ {s1,s2, ... ,sN} 
passing through the base point s~ and circuiting around Sk with the 
counterclockwise orientation. Then the loop lk induces an orientation­
preserving homeomorphism fk of E, which defines the local topological 
monodromy [!k] and the local (homological) monodromy Pk E SL(2, Z) 
around xk. 

The following is known (see [U]): 

Lemma 4.1. The monodromy p around X 0 (resp. the local mon­
odromy Pk around Xk for each k = 1, 2, ... , N) is conjugate to the stan­
dard monodromy matrix4 corresponding to the singular fiber X 0 ( resp. 
Xk)· 

Possibly after renumbering, we may assume that h o l2 o · · · o lN is 
homotopic to a loop rounding all the singular values s1, s2, ... , SN with 
the counterclockwise orientation. Let V C ~ x ~ t be the set of singular 
values of \IT. We now take a path lin (~ x ~t) \ V connecting s0 E ~0 
and s~ E ~t· Note that for any point (s, t) E l, the fiber Xs,t = w-1(s, t) 
is smooth. Since the loop l-1 0 h 0 l2 0 •.. 0 lN 0 l is homotopic to the 
loop lo, the topological monodromy [f] is conjugate to the composition 
of the local topological monodromies [!I] o [h] o · · · o [fN]· Similarly: 

Lemma 4.2. The monodromy p is conjugate to the composition of 
the local monodromies Pl, P2, ... , p N. 

We prepare notation. SL(2, Z) = (a, b I a 3 = b2 = -E) is generated 
by 

4See Table 1 in Section 2. 
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Setting5 

-lb ( 1 so:= a = 0 ~ ) 
then so and s2 are also generators of SL(2, Z): indeed we have a= s0s2 
and b = sos2so = s2sos2. Since s2 = (sos2)so(sos2)-1, s2 is conjugate 
to so. 

Next we express the standard monodromy matrices of singular fibers 
as a product of so and s2 as follows (see [U]): 

A In 

An 
Ani 
Aiv 
An· 

Ani• 
Aiv· 

AI;: 

(sot (n ~ 1) 
SoS2 
SoS2SO = S2SoS2 
SoS2S0S2 
(sos2)5 

(sos2)4 so 
(sos2)4 

(sos2)3 (sot (n ~ 0). 

The number of s0 , s2 contained in each product coincides with the Euler 
characteristic of the corresponding singular fiber. Note that s0 is the 
standard monodromy matrix Ah of the singular fiber h. It is known 
that for any degeneration of elliptic curves except with mi0 (m ~ 2), 
the singular fiber splits into singular fibers of type h (whose Euler char­
acteristic e(h) is equal to 1) after successive deformations. See [Ka], 
[M]. 

Example 4.3. The barking family [JJJ.l] splits the singular fiber 
I I I into the main fiber h and a subordinate fiber h: 

III--+h+h. 

Lemma 4.2 states that, if Xo splits into xl, x2, ... 'XN, then a mon­
odromy matrix of X 0 is conjugate to the composition of monodromy 
matrices of xl, x2, ... 'XN (that is, conjugacies of the standard mon­
odromy matrices corresponding to xl, x2, ... 'XN respectively). In this 
case, the standard monodromy matrix Ani of III is decomposed into 
conjugacies of the standard monodromy matrices corresponding to h 

5The notations s0 and s 2 are used in [FM] Section 2.4, where 's1 ' is defined 
as s 1 := aba. 
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and h: 

Anr = sos2so 

2( -1 ) = s0 s0 s2so 

= s~(s2sos2 1 ) 

= Ar, · (s2Ahs21). 

In Section 11, we will give decompositions of the standard mon­
odromy matrix corresponding to the splittings induced from Takamura's 
barking families. 

§5. Constraints from monodromies 

From Lemmas 4.1 and 4.2, it is a necessary condition for a singular 
fiber Xo to split into singular fibers xl, x2, ... 'XN (N ~ 2) that some 
monodromy matrix of X 0 is conjugate to the composition of monodromy 
matrices of X 1 , X 2 , ... , XN, which means that monodromies give some 
constraints to splittings. In this section, we prove that none of the 
following splittings occurs (Theorem 5.8): 

IV---+ I2 + I2, 

II*---+ Is+ II, h +III, h +IV, 

I4 + I0, I3 + I;, 

Iu+Iv(u+v=lO), 

III*---+ h +II, I6 +III, Is+ IV, h + I0, 
Iu + Iv (u + V = 9), 

IV* ---+ I6+ II, Is +I II, I4 +IV, I2 + I0, 
Iu+Iv(u+v=8), 

I~ (n ~ 0)---+ In+4 +II, In+3 +III, In+2 +IV, 

Iu + Iv (u + v = n + 6 and (n, u, v)-=/:- (2, 4, 4)). 

I0 ---+ I3 + h +h. 

We begin with preparation. 

Lemma 5.1. If matrices A1 , A2 E SL(2, Z) are conjugate, then 
Tr(A1) = Tr(A2), where Tr(Ai) denotes the trace of Ai. 

Proof. By assumption, we may write A1 = P A 2p-l for some P E 

SL(2, Z). Hence 

Tr(A1) = Tr((PA2)P-1) = Tr(P-1(PA2)) = Tr(A2). 

Q.E.D. 
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The following is useful: 

Lemma 5.2. Suppose that a singular fiber X splits into two singular 
fibers In (n ~ 1) andY: 

X---+ In+ Y. 

Then 
Tr(Ax) = Tr(Ay) mod n, 

where Ax and Ay are the standard monodromy matrices of X andY. 

Proof. If X splits into In and Y, then for some monodromy matrix 

C = ( ~ ~) ofY, 

is a monodromy matrix of X. Then we have 

a+nc 
c 

Tr(B) =a+ nc+ d = Tr(C) + nc. 

Thus 
Tr(B) = Tr(C) mod n. 

Where Ax and Ay denote the standard monodromy matrices corre­
sponding to X and Y respectively, B is conjugate to Ax, while C 
is conjugate to Ay. By Lemma 5.1 we have Tr(B) = Tr(Ax) and 
Tr(C) = Tr(Ay ). Accordingly 

Tr(Ax) = Tr(Ay) mod n. 

Q.E.D. 

We now consider the singular fiber IV. Since the Euler characteristic 
of IV is 4 and that of I2 is 2, 

e(IV) = e(I2) + e(h) 

holds. Note that, if a singular fiber X 0 splits into two singular fibers X1 
and X2, then e(Xo) = e(X1 ) +e(X2) (Lemma 3.1 (b)). So it is plausible 
that some deformation family splits the singular fiber IV into two I2 . 

However this is not the case. If IV splits into two h, by Lemma 5.2, we 
have 

Tr(Aiv) = Tr(AI2 ) mod 2, 

which contradicts that Tr(A1v) = -1 and Tr(A1,) = 2. Thus the split­
ting 

IV---+ h +h 
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does not occur. We have shown the first statement of the following 
lemma, and we can show the others by the same argument: 

Lemma 5.3. 
lows: 

(a): The singular fiber IV never splits as fol-

IV --+h +h 

(b): The singular fiber I I* never splits as follows: 

II*--+ Is+ II, h +III, I6 +IV, 

I4 + I~, h + I~, 
Iu +Iv (u+v = 10). 

(c): The singular fiber I I I* never splits as follows: 

III*--+ h +II, h +III, h +IV, 

h +I~, Iu +Iv (u+v = 9). 

(d): The singular fiber IV* never splits as follows: 

IV*--+ I6 +II, Is+ III, I4 +IV, 

I2+I~, Iu+Iv(u+v=8). 

(e): The singular fiber I~ (n:::: 1) never splits as follows: 

I~--+ In+4 +II, In+3 +III, In+2 +IV, 

Iu+Iv (u+v=n+6, (n,u,v)-=f-(2,4,4)). 

Next we consider splittings of I0. The standard monodromy matrix 
of I0 is A10 = -E, where E is the identity matrix. 

Lemma 5.4. Suppose that the singular fiber I0 splits into two sin­
gular fibers X and Y: 

I~--+ X+ Y. 

Then 
Tr(Ax) + Tr(Ay) = 0. 

Proof. If I0 splits into X and Y, then for monodromy matrices 
Band C of X andY, we have A10 = BC, where A10 is the standard 
monodromy matrix of I0. Since A10 = -E, we have -E = BC, that is, 
B = -c-1 . In particular, 

Tr(B) =- Tr(C). 
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Since B (resp. C) is conjugate to Ax (resp. Ay ), by Lemma 5.1 we 
have Tr(B) = Tr(Ax) and Tr( C) = Tr(Ay ). Thus 

Tr(Ax) + Tr(Ay) = 0. 

Q.E.D. 

Lemma 5.5. Suppose that the singular fiber I0 splits into three 
singular fibers In ( n ~ 1), X and Y: 

I~ -+ In +X + Y. 

Then 
Tr(Ax) + Tr(Ay) = 0 mod n. 

Proof. If I0 splits into I3 , X 1 and X 2 , then for monodromy matrices 
B and C of X andY, we have Ar0 = ArnBC. Since Ar0 = -E and 

Arn = ( ~ ~ ), writing B = ( ~ ~ ), 

Then we have 

- Tr(C) =a+ nc + d = Tr(B) + nc. 

Thus 
Tr(B) + Tr(C) = 0 mod n. 

Since B (resp. C) is conjugate to Ax (resp. Ay ), by Lemma 5.1 we 
have Tr(B) = Tr(Ax) and Tr(C) = Tr(Ay). Accordingly 

Tr(Ax) + Tr(Ay) = 0 mod n. 

Q.E.D. 

Lemma 5.6. 
lows: 

(a): The singular fiber I0 never splits as fol-

I~ -+ I4 +II, I3 +III, h +IV, 

h+h, I4+I2, I3+I3. 

(b): The singular fiber I0 never splits as follows: 
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Proof. (a) we only show that the splitting I0 ----+ I4 +I I does not 
occur, because we can give the proof for the other splittings by the same 
argument. If I0 splits into I4 and II, by Lemma 5.4, we have 

which contradicts that Tr(A14 ) = 2 and Tr(An) = 1. Thus the splitting 

does not occur. 
(b) If I0 splits into h, fz and h, by Lemma 5.5, we have 

which contradicts that Tr(A12 ) = Tr(Ah) = 2. Thus the splitting 

does not occur. Q.E.D. 

Remark 5.7. We can give an alternative proof of Lemma 5.6 (a) 
except for the splitting I0 ----+ I4 + I2 as follows; For instance, suppose 
that I0 splits into I4 and II. By Lemma 5.2, we then have 

Tr(AI0) = Tr(An) mod 4, 

which contradicts that Tr(A10 ) = -2 and Tr(An) = 1. Thus the split­
ting 

does not occur. 

We summarize Lemmas 5.3 and 5.6 as follows: 
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Theorem 5.8. None of the following splittings occurs: 

IV -----+ I2 + h, 
II*-----+ Is+ II, h +III, I 6 +IV, 

I4+I~, h+I;, 

Iu+Iv(u+v=lO), 

III*-----+ I7 +II, h +III, Is+ IV, h +I~, 

Iu + Iv (u + V = 9), 

IV*-----+ I6 +II, Is+ III, I4 +IV, I2 +I~, 

Iu+Iv(u+v=8), 

I~ (n ;::>: 0)-----+ In+4 +II, In+3 +III, In+2 +IV, 

Iu +Iv (u+v = n+6 and (n,u,v) #- (2,4,4)). 

I~ -----+ h + h + h. 

§6. Determination of subordinate fibers, 1 

In this section, based on the result of the previous section, we de­
termine the subordinate fibers of Takamura's barking families [II*. 7], 
[III*.7], [IV*.3], [I;.1], [I,:.2]. 

Proposition 6.1. The barking family [I I*. 7] splits the singular 
fiber I I* as follows: 

II* -----+Is + h + h, 

where Is is the main fiber and the two h are subordinate fibers. 

Proof. In the barking family [II* .7], II* is deformed to Is: 

II* ~Is. 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {I2 }, 

and (iii) {h,II}. Now Lemma 5.3 (b) eliminates the cases (i) and (ii). 
Thus the subordinate fibers are two h. Q.E.D. 

Proposition 6.2. The barking family [III* .7] splits the singular 
fiber I II* as follows: 

III* -----+ I7 + h + h, 

where h is the main fiber and the two h are subordinate fibers. 
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Proof. In the barking family [III* .7], III* is deformed to h: 

III* ~h. 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {h}, 
and (iii) {h, h}. Now Lemma 5.3 (c) eliminates the cases (i) and (ii). 
Thus the subordinate fibers are two h. Q.E.D. 

Proposition 6.3. The barking family [IV* .3] splits the singular 
fiber IV* as follows: 

IV* ----+h + h +h, 

where h is the main fiber and the two h are subordinate fibers. 

Proof. In the barking family [IV* .3], IV* is deformed to h: 

IV* ~h. 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {I2 }, 

and (iii) {h,h}. Now Lemma 5.3 (d) eliminates the cases (i) and (ii). 
Thus the subordinate fibers are two h. Q.E.D. 

Proposition 6.4. The barking family [I~ .1] splits the singular fiber 
I0 as follows: 

I;----+ I4 + h +h, 
where I4 is the main fiber and the two h are subordinate fibers. 

Proof. In the barking family [I~ .1], I0 is deformed to h 

I~ ----+ h 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {h}, 
and (iii) {h, h}. Now Lemma 5.6 (a) eliminates the cases (i) and (ii). 
Thus the subordinate fibers are two h. Q.E.D. 

Proposition 6.5. The barking family [I~ .2] splits the singular fiber 
I~ as follows: 

I~ ----+ In+4 + h + h, 
where In+4 is the main fiber and the two h are subordinate fibers. 

Proof. In the barking family [I~.2], I~ is deformed to In+4: 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {h}, 
and (iii) {h,II}. Now Lemma 5.3 (e) eliminates the cases (i) and (ii). 
Thus the subordinate fibers are two h. Q.E.D. 
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Remark 6.6. For the barking families [IV.3], [III* .8], [I~ .2], 
we cannot determine the subordinate fibers but we can narrow down 
candidates: 

• The splitting of IV induced from the barking family [IV.3] is 
one of the following: 

IV---+ h +II, 

IV ---+ h + h + h. 

In fact, by Lemma 3.4, the set of subordinate fibers is one of (i) 
{II}, (ii) {h}, and (iii) {h, h}, and Lemma 5.3 (a) eliminates 
the case (ii). 

• The splitting of III* induced from the barking family [III* .8] 
is one of the following: 

III*---+ 16 + II+ h, 

III*---+ 16 + h + h, 

III*---+ h + h +l1 +h. 

In fact, by Lemma 3.5, the set of subordinate fibers is one of (i) 
{III}, (ii) {J3}, (iii) {II,h}, (iv) {hh}, and (v) {h,h,h}, 
and Lemma 5.3 (c) eliminates the cases (i) and (ii). 

• The splitting of 10 induced from the barking family [I~ .2] is 
one of the following: 

I~ ---+ h + II + h, 
I~ ---+ h + h + h + !1. 

In fact, by Lemma 3.5, the set of subordinate fibers is one of (i) 
{III}, (ii) {h}, (iii) {II,h}, (iv) {hh}, and (v) {h,h,h}, 
and Lemma 5.6 eliminates the cases (i), (ii) and (iv). 

§7. Singularities near proportional subbranches 

Let 1r : M --+ ~ be a linear degeneration of complex curves with a 
stellar singular fiber X 0 = m0 8o + ~~=l Br(j). If there exists a simple 
crust Y of Xo, then we can construct a splitting family of 1r : M --+ 
~' which is called a barking family associated with Y (Theorem 2.7). 
Suppose that Y = no8o+ ~~=l br(j) is a simple crust of Xo with barking 
multiplicity l. 

Recall that each subbranch of Y is of type Az, Bz or Cz. A sub­

branch br(j) is said to be proportional if m0n~j) = n0m~j) (equivalently 
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no/mo = nij) /mij) = nW) /mW)). Note that every proportional 
subbranch of simple crusts is of type Az. Indeed, any proportional sub­
branch of type Bz is of type Az, and no proportional subbranch is of type 

-(j) 
C1• Moreover every proportional subbranch br has the same length 

as that of Br(j) (that is, ,)j) = >,(j)) and satisfies n>.Cil+I = 0. 

The following lemma is important ([Ta3] Proposition 16.2.6): 

Lemma 7 .1. Suppose that \1! : M -+ D. x D. t is a barking family 
of the degeneration 1r : M -+ D. associated with a simple crust Y. Then 
any subordinate fiber of \1! is a reduced curve only with A -singularities6 . 

Moreover these singularities lie (i) near the core or (ii) near the edge7 of 
each proportional subbranch if it exists. 

Remark 7.2. By Lemma 7.1, every subordinate fiber in barking 
families is a reduced curve only with isolated singularities. In particular, 
for degenerations of elliptic curves, none of min ( m ;::: 2), IV*, I I I*, I I*, 
mi~ (m;::: 2) appears as a subordinate fiber. 

The rest of this section investigates the singularities of subordinate 
fibers near a proportional subbranch. Let 1r : M -+ D. be a linear 
degeneration of complex curves with a stellar singular fiber Xo and \1! : 
M -+ D. x D. t be a barking family associated with a simple crust Y with 
barking multiplicity l. Suppose that Y has a proportional subbranch br 
of a branch Br of X 0 . First recall that near the branch Br, M is given 
by the following data (see [Ta3] Chapter 7): fori= 1, 2, ... , >., 

!1ii: w'(''-1-zn,_1r/(''-zn, (w7'-1ryr' +tdfi)z- s = 0, 
in Ui XC X .6, X D,t, 

1i' 0 z~i+1 -lni+1 ;-m; -ln; (zni+1 /"~i + tdfA·) l - s = 0 
'l. • -z. ~'l. z "::,z 'l. ' 

in Vi XC X .6, X D,t. 

Note that, substituting t = 0 into these equations, we obtain 

{ 'IJ·I . m;-1 m; _ _ O 
TL, t=O . Wi 1Ji S - ' 

H'l . zmi+1;-m;- S = 0 
• t=O . • 'n ' 

which are the local expressions of M near Br. See the proof of Lemma 
2.3. For a fixed (s, t) ED. X .o.t, we consider the fiber Xs,t = w-1 (s, t) 
of \1!. The following is required ([Ta3] Section 7.2): 

6 An A-singularity is a singularity analytically equivalent to y2 = x~-'+1 for 
some positive integer /1· 

7To be precise, near the 'terminal' irreducible component e>.Cil of the 
branch Br(j) corresponding to each proportional subbranch br(i). 
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Lemma 7.3. Let m, n, l be positive integers satisfying m- ln > 0 
and m', n' be nonnegative integers satisfying m' -ln' 2:: 0. Set h(z, () := 

f(zPI (P) for a non-vanishing holomorphic function f and positive inte­
gers p, p1 (p < p'). Then a complex curve Cs,t in <C2 defined by 

I I ( 1 )l Cs,t : zm -ln (m-ln zn (n + th - s = 0 

is singular if and only if 

(i): s = 0 or 

(ii): m'=n'=O and Cnl~myn sn= Cn:mtc)'"', 

where c := h(O, 0) and m and n are the relatively prime integers satis­
fying njm = njm. In the case (ii), (z, () E Cs,t is a singularity exactly 
when 

z = 0 and C = ln - m tc. 
m 

Since br is proportional, we have m>+l = n-\+l = 0, so 

1-l~ls,t : (';:'>--ln>- ( G>- + td j,\ y- S = 0. 

Lemma 7.3 ensures that for some (s, t) (s, t-/=- 0), the curve 1-l~ls,t has 
singularities. In what follows, we write m := m,\ and n := n-\, and 
denote by m and n the relatively prime integers satisfying njm = njm. 

For a fixed t -/=- 0, the equation 

( ln-m)ln n _ (ln-m d)'"' --- s - ---t c 
ln m 

for s has n solutions, say, s1 , s2 , ... , sr;,. Since (0, () satisfying (n = 

ln-mtdc is a singularity of1-l~l t for some Sk, each 1-l~l t has njn(= 
nh Sk, Sk, 

gcd( m, n)) singularities. 
The above result is summarized as follows: 

Proposition 7 .4. Let 1r : M --+ ~ be a linear degeneration of com­
plex curves with a stellar singular fiber X 0 and let \[1 : M --+ ~ x ~ t 
be a barking family associated with a simple crust Y with barking multi­
plicity l. Suppose that Y has a proportional subbranch br(j) of a branch 

( ") -(j) 
Br 3 of Xo. Write Br := mo~o + m1 81 + m282 + · · · + m"'e"' and 
br (j) := no~o + nl el + n2e2 + ... + n,\ e ,\ and let m and n be the 
relatively prime positive integers satisfying njm = n"'/m,\. Then in the 
deformation 1rt : Mt --+ ~t for a fixed t -/=- 0, there exist n subordinate 
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fibers that have singularities near the edge of Br(j). Moreover, each of 
these subordinate fibers has n/n (= gcd(m, n)) singularities near the edge 
ofBr(j). 

§8. Singularities near the core 

We next investigate the singularities of subordinate fibers near the 
core. 

Let 1r : M -t D. be a linear degeneration of complex curves with 
a stellar singular fiber Xo = mo8o + 'L7=1 Br(j) and let \[! : M -t 

D. x D. t be a barking family of the degeneration 1r : M -t D. associated 

with a simple crust Y = no8o + 'L7=1 br(j). Write Br(j) = moD.~) + 
m(j)e(j) + ... + m(j) e(j) br(j) = n D. (j) + n(j)e(j) + ... + n(j) e(j) 

1 1 )..(J) )..(J)' 0 0 1 1 v(J) v(J) 

and let p(j) be the attachment point on 8o with Br(j). For brevity, we 
-(1) -(2) -(v) 

assume that the subbranches br , br , ... , br are proportional and 
-(v+1) -(v+2) -(h) 
br , br , ... , br are not. 

Let N 0 be the normal bundle of 8o in M. Recall that the local 
expression of M near the core 8o is given by 

l 

a(z )(mo - s + L zCktkda(z )T(z )k(mo-kno = 0 in No X D. X D. t' 
k=1 

equivalently 

where a is the standard section of N'f( -mo) and T is a core section of 
N~no for Y (see [Ta3] Chapter 16). Substituting t = 0 into this equation, 
we obtain 

a(z)(mo - s = 0 in No X D. X {0}, 

which is the local expression of M around 8 0 . See the paragraph subse­
quent to Remark 2.2. Note that a has a zero of order m~j) at p(j), while 

T has a pole of order nP) at p(j). Suppose that T has a zero of order ai 

at Qi (i = 1, 2, ... , k) on 8o. 
Fixing s, t -=f. 0, consider a fiber Xs,t := w-1(s, t) of \[! : M -t 

D. X D.t. Set F := a(z)(mo-lno ((no +tdT(z)( Then (z,() E Xs,t is a 
singularity if and only if 

a a 
az F(z, () = a(F(z, () = 0, 
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equivalently 

{
(mo-lno (cno + tdT(z))l-1 { az(z)(no + td (az(z)T(z) + la(z)Tz(z~ t, 
cmo-lno-1 ((no+ tdT(z))l-1 a(z) (mo(no + (mo -lno) tdT(z)) = 0, 

where az := fza and Tz = d~ T. Set K(z) := noaz(z)T(z)+moa(z)Tz(z), 
which is called the plot function 8 . Then the above equations hold pre­
cisely when 

T(z) =/- 0, 

In particular, whether (z, () E Xs,t is a singularity does not depend on 
s. Noting that every point (z, () in Xs,t satisfies 

sis given by 

Hence: 

Lemma 8.1. Fix t =f- 0. A point (z, () E N 0 is a singularity of some 
subordinate fiber Xs,t of the deformation 1ft : Mt -+ .6.t if and only if the 
following condition is satisfied: 

{
K(z) = 0, a(z) =/- 0, 
(no= lnm

0
motdT(z). 

T(z) =f- 0, 

In this case, the following holds: 

( )
! lno 

s = l a(z)(mo. 
no -mo 

8Note that K(z) is not a function on 8 0 but a meromorphic section of a 
line bundle N~(n-m) 0 !1~0 on 8o, where !1~0 is the cotangent bundle of 8o. 
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We call a zero a of the plot function K(z) an essential zero if a( a) =f. 
0 and T(a) =f. 0. For an essential zero a of K(z), Lemma 8.1 implies 
that (a, (3) E No is a singularity of a subordinate fiber Xs,t if and only 
if 

Eliminating (3, we have 

where m0 and fio are the relatively prime integers satisfying fio/mo = 
n 0 jm0 • This equation for s has fio solutions, say, s1, s2, ... , Sr;,0 • Observe 
that the equation 

f3no = lno-motdT(a) 
mo 

for f3 has no solutions, say fJ1, fJ2, ... , f3no. Then no/ fio ( = gcd( mo, no)) 
points among (a, (31), (a, (32 ), ... , (a, f3no) lie on one of the subordinate 
fibers X 81 ,t, X 82 ,t, ... , Xsn 0 ,t· 

Lemma 8.2. Let a be an essential zero of K(z). Then: 

(a): There exist fio subordinate fibers Xs1 ,t, Xs2 ,t, ... , Xsn 0 ,t that 
have singularities with z-coordinate a. (In fact, s1, s2, ... , Sr;,0 

are given as the solutions of the following equation for s: 

( ) lno ( · ) mo 
sfio = ln~~'fflo lno~0mo tdmoa(a)fioT(a)'"'o.) 

(b): Moreover the number of such singularities on each of these 
subordinate fibers is no/ fio. 

d log( anoTmo) 
Next we write K(z) = aTw, where w(z) := dz . Here w 

is a meromorphic section of the cotangent bundle !1~0 on 8o. Recall 

the assumption that the subbranches br(j) (j = 1, 2, ... , v) are propor­

tional (so monP) - m~j)no = 0) and the others are not. Then w(z) is 
holomorphic at p(l) ,p(2), .•. ,p(v), whereas w(z) has a pole of order 1 at 
p(v+l) ,p(v+2), ... ,p(h). On the other hand, w(z) has a pole of order 1 at 
q1 , q2 , ... , qk (which are zeros of the core section T). Moreover 

{
K(z) = 0, 

a(z) =f. 0, 

T(z) =f. 0 
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Lemma 8.3 ([Ta3] Lemma 21.3.5). Let go denote the genus of the 
core Go. Then 

v 

L orda(K(z)) = (h-v)+k+(2g0 -2)- Z:::::ordpcil(w). 
K(a)=O,a(a),t'O,r(a)#O j=l 

We set X:= (h-v)+k+ (2go -2)- :E~=l or~cil (w), which is called 
the core invariant. 

Corollary 8.4. Let li denote the number of essential zeros of K(z). 
Then we have 

li ~ x, 
where the equality holds precisely when the order of any essential zero of 
K(z) equals 1. 

Proof. For any essential zero a of the plot function K(z) we have 

orda(K(z)) 2: 1, 

thus 
L orda(K(z)) 2: li. 

K(a)=O,a(a),t'O,r(a),t'O 

From Lemma 8.3, the left hand side of this inequality is equal to the 
core invariant x, which confirms the assertion. 

Q.E.D. 

Let a 1 , a 2 , ... , a,. be the essential zeros of K(z), where li is the 
number of essential zeros of K(z). By Lemma 8.2 (a), for each ai, there 
exist no subordinate fibers that have singularities with z-coordinate ai, 

and their singular values are given by 

Thus, if ai and aj satisfy 

0"( aS'o T( ai)'no = 0"( aj )"'o T( aj yno' 

then the singularities with z-coordinate ai and aJ lie on the same sub­
ordinate fiber. We denote by F;, the number of the distinct values of 
the set { O"( ai)n°T(ai)mo : i = 1, 2, ... , li }. Then for a fixed t =/:- 0, the 
deformation 7rt : Mt -+ bot has exactly noR subordinate fibers that have 
singularities near the core. This result together with Lemma 8.2 and 
Corollary 8.4 confirms the following: 
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Proposition 8.5. Let us consider the deformation 1rt : Mt --+ Dot 
of 1r : M--+ D. for a fixed t =f. 0. Then we have the following. 

(a): ( The number of ~ubordi~~te fibers in Mt ) <no . 
that have szngulantzes near eo - X 

Here the equality holds precisely when the order of any essential 
zero equals 1 and K, = "'· 

(b): ( The number of si~gularities ~ear eo ) < no . 
on each subordznate fiber zn Mt - no X 

Here the equality holds precisely when the order of any essential 
zero equals 1 and K, = 1. 

§9. Constraints from the numbers of singularities 

In this section, we show two useful lemmas which give us the number 
of the subordinate fibers and that of their singularities. See Lemmas 9.2 
and 9.4. 

Let 1r : M --+ D. be a linear degeneration of complex curves with a 
stellar singular fiber Xo = moeo + E7=l Br(j). Suppose that Xo has a 

simple crust Y = noeo + E7=l br(j) of with barking multiplicity l. For 
-(1) -(2) -(v) 

brevity, we assume that the subbranches br , br , ... , br are pro-
portional and the others are not (so v is the number of the proportional 
subbranches). Let \[!: M--+ D. x D,t be a barking family of 1r: M--+ D. 
associated with Y. We define the core invariant of Y as 

v 

X:= (h- v) + k + (2go- 2)- L or~Ul (w), 
j=l 

where go is the genus of the core eo and w := lz log(anoTm0 ). 

First we assume that Y has no proportional subbranches. Since 
v = 0, we have x = h + k + (2go- 2). Then Lemma 7.1 ensures that the 
subordinate fibers have singularities only near the core. 

Lemma 9.1. Suppose that Y has no proportional subbranch. Set 
c := gcd(mo, no) and no := no/c. If x = 1, then for a fixed t =f. 0, we 
have the following. 

(a): 7rt : Mt--+ Dot has exactly n0 subordinate fibers. 
(b): Each subordinate fiber of 1rt : Mt--+ Dot has c singularities. 
(c): The number of singularities of all the subordinate fibers of 

1rt : Mt--+ Dot is no. 

Proof. First note that the plot function K(z) has at least one essen­
tial zero. Otherwise, from Lemma 8.1, there would exist no singularities 
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around the core, which implies that 7rt : Mt ---+ !:it has no subordinate 
fibers. Accordingly 

1 :S (the number of essential zeros of K (z)). 

On the other hand, Corollary 8.4 states that 

(the number of essential zeros of K ( z)) ::::; x. 

From the assumption x = 1, we obtain 

(the number of essential zeros of K(z)) = 1. 

Namely K(z) has exactly one zero of order 1. By Proposition 8.5, we 
have 

(the number of subordinate fibers of 7rt : Mt---+ !:it) =no, 

(the number of singularities on each subordinate fiber) = c, 

confirming (a) and (b). 
(c) clearly follows from (a) and (b). Q.E.D. 

In particular: 

Lemma 9.2. Suppose that (i) eo is a complex projective line, (ii) 
X 0 has three branches, (iii) the core section T has no zero and (iv) Y 
has no proportional subbranches. Set c := gcd(mo,no) and no:= no/c. 
Then for a fixed t -=f. 0, we have the following. 

(a): 
(b): 

7rt : Mt ---+!:it has exactly no subordinate fibers. 
Each subordinate fiber of 1rt : Mt ---+ !:it has c singularities. 

(c): The number of singularities of all the subordinate fibers of 
7rt : Mt ---+!:it is no. 

Proof. By assumption, we have go = 0, h = 3, k = 0, and so X = 1. 
Hence Lemma 9.1 confirms the assertion. Q.E.D. 

Remark 9.3. By Lemma 2.6, we can restate the condition (iii) 

of Lemma 9.2 as "ro = rb," where ro := L:7=l m~j) /mo and rb := 
h (j) 

Lj=l nl /no. 

Next we assume that Y has a proportional subbranch. 

Lemma 9.4. Suppose that (i) e 0 is a complex projective line, (ii) 
X 0 has three branches, (iii) the core section T has no zero and (iv) Y 

-(1) .· 
has a proportional subbranch br = nol:io + n1 el + n2e2 + · · · + n,A e .A 

of Br(l). Then br(l) is the unique proportional subbranch of Y (that is, 
v = 1). Moreover for a fixed t -=f. 0, we have the following. 
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(a): 7rt : Mt ---+ Dot has exactly ii>. subordinate fibers. 
(b): Each subordinate fiber of 7rt : Mt ---+ Dot has c singularities. 
(c): The number of singularities of all the subordinate fibers of 

7rt : Mt ---+ Dot is n>,. 

Here c := gcd(m>., n>.) and ii>. := n>,jc. 

so 

Proof. By assumption, we have go = 0, h = 3, k = 0. Thus 

v 

x = 1 - v - L ordpcjJ ( w), 
j=l 

v 

X + L ( ordpcj) ( w) + 1) = 1. 
j=l 

Recall that w(z) is holomorphic at p(j) for j = 1, 2, ... , v, that is; 
ordpcjJ (w) 2 0. Noting that x 2 0 and v 2 1, we deduce that X = 0, 

v = 1 and ordpClJ (w) = 0. Hence br(l) is the unique proportional sub­
branch. Since x = 0, from Proposition 8.5, every subordinate fiber of 
7rt : Mt ---+ D. has no singularities near the core 8o. Therefore Proposi­
tion 7.4 confirms (a), (b) and (c). Q.E.D. 

§10. Determination of the subordinate fibers, 2 

We now determine the subordinate fibers of the remaining barking 
families. 

We first consider barking families whose simple crust has no pro­
portional subbranches. In the barking family [III.2], III is deformed 
to h: 

III~h. 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) 
{h}, and (iii) {h, h}. Note that the simple crust for this family has no 
proportional subbranches. See [I I I.2] ofthe list in Section 12. Applying 
Lemma 9.2, since c = 2 and no= 1, we deduce that there appears exactly 
one subordinate fiber and it has two singularities. This condition is 
satisfied only for the case (ii). Hence: 

Proposition 10.1. The barking family [III.2] splits the singular 
fiber II I as follows: 

III--+ h + I2, 

where h is the main fiber and h is a subordinate fiber. 
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Similarly: 

Proposition 10.2. The barking family [III* .2] splits the singular 
fiber I I I* as follows: 

III* ---+II + fz, 

where h is the main fiber and fz is a subordinate fiber. 

In the barking family [IV.2], IV is deformed to I2 : 

IV~h 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) {I2 }, 

and (iii) {h,h}. Applying Lemma 9.2, since c = 1 and no = 2, we 
deduce that there appear two subordinate fibers and each of them has 
one singularity. This condition is satisfied only for the case (iii). Hence: 

Proposition 10.3. The barking family [IV.2] splits the singular 
fiber IV as follows: 

IV---+ I2 + I1 + h, 

where fz is the main fiber and the two h are subordinate fibers. 

Similarly: 

Proposition 10.4. The barking family [IV* .2] splits the singular 
fiber IV* as follows: 

IV* ---+ I; + h + h, 

where I0 is the main fiber and the two h are subordinate fibers. 

In the barking family [III* .4], III* is deformed to I0: 

III* ~I;. 

By Lemma 3.5, the set of subordinate fibers is one of (i) {III}, (ii) {h}, 
(iii) {II,h}, (iv) {hh}, and (v) {h,h,h}. Applying Lemma 9.2, 
since c = 1 and n0 = 3, we deduce that there appear three subordinate 
fibers and each of them has one singularity. This condition is satisfied 
only for the case ( v). Hence: 

Proposition 10.5. The barking family [III* .4] splits the singular 
fiber I I I* as follows: 

I II* ---+ I; + h + h + h, 

where I0 is the main fiber and the three h are subordinate fibers. 
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Similarly: 

Proposition 10.6. The barking family [III* .5] splits the singular 
fiber I I I* as follows: 

III* ----ti6 + h+h+h, 

where h is the main fiber and the three h are subordinate fibers. 

In the barking family [II* .4], II* is deformed to h: 

II*~k 

By Lemma 3.6, the sum of the Euler characteristics of the subordinate 
fibers is 5. Applying Lemma 9.2, since c = 1 and n0 = 5, we deduce that 
there appear five subordinate fibers and each of them has one singularity. 
Hence: 

Proposition 10.7. The barking family [II* .4] splits the singular 
fiber I I* as follows: 

II* ---+ h + h + h + h + h + h, 

where h is the main fiber and the five h are subordinate fibers. 

In the following cases, the simple crust has a proportional subbranch. 
In the barking family [II*.2], II* is deformed to IV*: 

II* ~IV*. 

By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) 
{h}, and (iii) {h,h}. Note that the simple crust for this family has 
a proportional subbranch of length 2. See [II* .2] of the list in Section 
12. Applying Lemma 9.4, since c = 1 and n2 = 1, we deduce that there 
appears exactly one subordinate fiber and it has one singularity. This 
condition is satisfied only for the case (i). Hence: 

Proposition 10.8. The barking family [II* .2] splits the singular 
fiber I I* as follows: 

II* ---+IV* + II, 

where IV* is the main fiber and I I is a subordinate fiber. 

In the barking family [I I* .3], II* is deformed to L2: 

II* ~I~. 
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By Lemma 3.4, the set of subordinate fibers is one of (i) {II}, (ii) 
{I2 }, and (iii) {h,h}. Note that the simple crust for this family has 
a proportional subbranch of length 1. See [II* .3] of the list in Section 
12. Applying Lemma 9.4, since c = 1 and fi1 = 2, we deduce that there 
appear two subordinate fibers and each of them has one singularity. This 
condition is satisfied only for the case (iii). Hence: 

Proposition 10.9. The barking family [II* .3] splits the singular 
fiber I I* as follows: 

II* -+ I; + h + h, 

where T2 is the main fiber and the two h are subordinate fibers. 

We summarize Propositions 3.3, 6.1-6.5, 10.1-10.9 as follows: 

Theorem 10.10. Each barking family in Takamura's list (1.1) ex­
cept [I II* .8], [IV.3], [IV.4], [I~ .2] splits the singular fiber as follows: 

[II.1] II-+ h + h 

[II.2] II-+ h + h 
[II* .1] II*-+ III*+ h 

[II*.2] II* -+IV*+II 

[II*.3J II*-+ I; +h +h 
[II* .4] II* -+ h 

+h +h +h +I1 +h 
[II* .5] II* -+ Ii + h 
[II* .6] II* -+ Ii + h 
[II*.7] II*-+ Is+ h + h 
[II* .8] II* -+III*+ h 
[II* .9] II*-+ III*+ h 
[III.1] III-+ I2 + h 

[III.2] III-+ h + h 
[III.3] III-+ I2 + h 
[III* .1] III*-+ IV*+ h 

[III* .2] III*-+ I{+ I2 
[III* .3] III*-+ I;+ h 

[I I I* .4] I II* -+ I; + h + h + h 

[III*.5] III* -+h+h+h+h 
[III* .6] III*-+ I;+ h 
[III* .7] III*-+ h + h + h 
[III* .9] III* -+IV*+ h 

[IV.1] IV-+ h + h 

[IV.2] IV -+ h + h + h 
[IV* .1] IV* -+I{+ h 

[IV*.2] IV*-+ I;+ h + h 

[IV*.3] IV*-+ h + h + h 
[IV*.4] IV*-+ I{+ h 

[I;.1] I; -+I4+h+h 
[I;_.1] I~-+ I~_ 1 + h 

[I;_.2] I~-+ In+4 + h +h. 

§11. Supplement: Monodromy decompositions 

In this section, we give decompositions of the standard monodromy 
matrices corresponding to the splittings of the singular fibers induced 
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by Takamura's barking families. Recall that SL(2, Z) is generated by 

Decomposition of An. The standard monodromy matrix of II 
is An = s0 s2 . An is decomposed into two conjugacies of Ah as follows: 

An = sos2 = Ah · (sos2) Ah (sos2)-1 . 

In fact, the splitting II --t h + h occurs in the barking families [I I .1] 
and [II.2]. 

Decomposition of Ani· The standard monodromy matrix of 
III is Ani= sos2so. Ani is decomposed into Ah and a conjugacy of 
Ah: 

Ani= sos2so = s6 (s01s2so) = Ah · s2Ahs2 1 -

In fact, the splitting I I I --t I 2 + h occurs in the barking families 
[III.l], [III.2], [III.3]. 

Ani has other monodromy decompositions as follows (but we have 
not found barking families that admit the corresponding splittings): 

Ani = (sos2) so= An· Ah, 

(III --t II+ h) 

Ani= sos2so = Ah · (sos2)Ah (sos2)- 1 · Ah. 

(III --t h +h +h) 

Decomposition of Aiv· The standard monodromy matrix of 
IV is Aiv = sos2sos2. Aiv is decomposed into A1s and a conjugacy of 
Ah: 

Aiv = sos2sos2 = sg (s01s2so) 

= A1s · s2Ahs;- 1 . 

In fact, the splitting IV --t h +h occurs in the barking family [IV.l]. 
Aiv has another monodromy decomposition 

Aiv = sos2sos2 = s6s2so 

= Ah · (sos2) Ah (sos2)- 1 · Ah, 
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while the barking family [ IV.2] induces the splitting IV -----+ I 2 + h +h. 
We have other monodromy decompositions of Aiv as follows (but 

we have not found splitting families that admit the corresponding split­
tings): 

Aiv = (8o828o) 82 =Ani· (8o82) AI1 (8o82)-1 , 

(IV-----+ III+ h) 

Aiv = ( 8o82)2 = An · An, 

(IV -----+ II + II) 

Aiv = (8o82) 8o82 =An· AI1 • (8o82) AI1 (8o82)- 1 , 

(IV-----+ II+ h +h) 
Aiv = 8682 (8o82) 82 1 = Ar, · 82An82 1 , 

(IV -----+ h + II) 

Aiv = 8o828o82 

= Ah · (8o82) Ah (8o82)- 1 · Ah · (8o82) Ah (8o82)- 1 . 

(IV -----+ h + h + h + h) 

Decomposition of AI I*. The standard monodromy matrix of 
II* is An· = (80 82) 5 . An· is decomposed into Ani• and a conjugacy 
of Ah: 

An· = (8o82)4 8082 =Ani* · (8o82)Ah (8o82)- 1 . 

In fact, the splitting I I* -----+ I II* + h occurs in the barking families 
[II* .1], [II* .8], [II* .9]. 

An· is also decomposed into AI; and a conjugacy of Ah: 

An·= (8o82) 3 8o828o82 = (8o82) 3 85 (801 828o) 

=AI; · 82Ah 821. 

Note that the barking families [II*.5] and [II*.6] induce the splitting 
II* -----+ IJ; + I1. 

We have other monodromy decompositions of An· which respec­
tively correspond to the splittings induced by Takamura's barking fam­
ilies as follows: 

An· = (8o82) 4 (8o82) = Aiv• ·An, 

([II* .2] II* -----+IV*+ II) 

An· = ( 8o82) 3 86 ( 8018280) 82 = AI2 · 82Ah 82 1 · ( 8o82) Ah ( 8o82) - 1 , 

([II* .3] II*-----+ I;+ h +h) 
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An·= s8 (s01s2so) sos2s2so 

= Ah · s2Ahs21 · Ah · (sos2) Ah (sos2)- 1 · (sos2) Ah (sos2)- 1 · Aiu 

([II*.4] II*--+ Is +h +h +h +h +h) 

An·= sg (s02s2s6) (s0 1 s2 2 sos~so) 

A ( -1 )A ( -1 )-1 ( -1 -2)A ( -1 -2)-1 = Is · s0 s2 h s0 s2 · s0 s2 I, s0 s2 . 

([II* .7] II*--+ Is+ h +h) 

Decomposition of Ani•. The standard monodromy matrix of 
I I I* is An I* = ( sos2) 4 so. An I* is decomposed into Aiv* and AI,: 

In fact, the splitting I I I* --+ IV* + h occurs in the barking families 
[III* .1] and [III* .9]. 

Ani* is also decomposed into AI2 and a conjugacy of A1,: 

Ani• = (sos2) 3 sos2so = (sos2) 3 s6 (s01s2so) 

=AT; · s2A1, s;- 1 . 

Note that the barking families [III* .3] and [III* .6] induce the split­
ting III*--+ I2 +h. 

We have other monodromy decompositions of Ani• which respec­
tively correspond to the splittings induced by Takamura's barking fam­
ilies as follows: 

A -1 ( )3 2 -1A A III*= s2 SoS2 SoS2So = S2 IiS2 · I2 , 

([III* .2] III*--+ Ir +h) 

Ani• = (sos2) 3 sos2so = AIQ' · AI1 • (sos2) AI, (sos2)- 1 ·AI,, 

([III* .4] III*--+ I~+ h + h +h) 

Ani·= s8 (s03 s2s6) (s01s2so) (s01s2so) 

A ( -2 ) A ( -2 )-1 A -1 A -1 = h · s0 s2 1, s0 s2 · s2 h s2 · s2 I, s2 , 

([III* .5] III*--+ h + h + h +h) 

Ani• = sZ (s05 s2s8) (s02s2s6) 

= AI7 • (s04 s2) AI, (s04 s2)- 1 · (s01s2) Ah (s01s2)-1 . 

([III* .7] III*--+ h + h +h) 
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Decomposition of A1v•. The standard monodromy matrix of 
IV* is A1v• = (sos2)4. A1v• is decomposed into A1; and a conjugacy 
of A1,: 

A1v• = (sos2)3 sos2 = A1; · (sos2) Ah (sos2)-1 . 

In fact, the splitting IV* -----+ Ij_ + h occurs in the barking families 
[IV*.l] and [IV*.4]. 

We have other monodromy decompositions of A1v• which respec­
tively correspond to the splittings induced by Takamura's barking fam­
ilies as follows: 

A1v• = (sos2)3 sos2 = A10 · Ah · (sos2) Ah (sos2)-1 , 

([IV* .2] IV* -----+I;+ h +h) 

AIV· = sZ (s04s2s6) (s01s2so) 

A ( -3 ) A ( -3 )-1 A -1 = 16 • s0 s2 h s0 s2 · s2 h s2 . 

([IV* .3] IV* -----+ h + h +h) 

Decomposition of A1;; (n ~ 0). The standard monodromy ma­

trix of I~ (n ~ 0) is A1;; = (sos2)3 s0. A1;; is decomposed into A1n+4 

and two conjugacies of Ah as follows: 

A n ( 2 -2) 4 n In+4 = SoS2S0S2S0S2So = S2 SoS2So s0 s0 

= (sos2) Ah (sos2)-1 · (sgs2) Ah (sgs2)-1 · A1n+4" 

In fact, the splitting IV* -----+ Ij_ + h occurs in the barking families 
[I~.l] and [I~.2]. 

For n ~ 1, note that the barking family [I~.1] induces the splitting 
I~ -----+ I~_ 1 +ft. Then A1;; is also decomposed into A1;;_ 1 and Ah as 
follows: 

§12. Appendix: Takamura's list for genus g = 1 

In [Ta3], for genera up to 5, Takamura made a list of barking families 
- precisely speaking, a list of simple crusts (and weighted crustal sets) 
for constructing barking families - which enables him to show that 
a degeneration is absolutely atomic if and only if its singular fiber is 
either a Lefschetz fiber or a multiple of a smooth curve. Recall that in 
a barking family, for a fixed t -:f. 0, the singular fiber Xo,t over the origin 
is called the main fiber and other singular fibers Xs,t (s -:f. 0) are called 
subordinate fibers. As we saw in Section 2, the main fibers of barking 
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families are explicitly described. In this paper, when the original singular 

fiber Xo is deformed to the main fiber Xo,t, we express Xo ~ Xo,t· 
For the convenience of the reader, we provide Takamura's list of 

barking families for genus 1 with figures of the singular fibers: 

[II.l] II~h 

Xo_ ~ _ Xo,t~ 
~--.(f)(:JFJ 

y ..-;.../".,""••\ 
{ 1.)\. 1 I 

'· '· ....... J 
[II.2] II~h 

X.~~- X..t~ 
~--.(j)@ 

y .... x ... ··;· .. ...... (1 2 "1\ .... .';) ....... 

[I I* .1] II* bark II I* 
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[II* .2] II*~ IV* 

Xo 

1":'"\. 1 . 
y (1< 

~ 
[II*.3] II*~ I2 

y 0 
c~{~}ZX.4J 
[I I* .4] II* ~ Is 
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[11*.5] II*~ 13 

y (f\ Q=2 

,f";~rx·; ................. 0 2 ~.A~) ...• 
[11*.6] II*~ 13 

Xo 
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[II* .8] II*~ III* 

y ·········· Q=3 tTY 1 YTYT:t."T·s ............. ..~ ·····'······· ··-····· ·•····•• 
[I/*.9] II*~ III* 

Xo 

y 
••...• 

:' 1 ., Q=4 
... l 

.••. :.--.................. . 
1 1 X1l11 '·· .................. . 

········ 

[111.1] III~ h 

Xo ~ 9.< _ Xo,t~ 
~ _____. CV(iJ%; 

[111.2] III~ h 

Xo ~ 9.< _ Xo,~ 
~ ---t QJ(:)J) 
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[III.3] III~ I2 

x,_ 9<- x..,lifM.. 
~----.dJ(ij!J 

Y,.._("" .. X ...... 
\} 2 ~) .... 

[III*.l] III*~ IV* 

y ~iVi·x .. r·"·V,i .. "~' ........ i\ 
0.A! ! .. ' .... ~.,.,AJ....-. .. !.X}.; 
[III*.2] III*~ Ii 

y 

c~x~~~J~X*-) 
[III* .3] III*~ !:2 
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[III*.4] III*~ I0 

[III*.5] III*~ h 

y (""'\ \ 1 . 

~ 
[III* .6] III*~ I2 

r:··v-'"X ....... 'v:··Vi·'\ Q-2 

\.!.A.~.. .. .. ~ ..... J...!.A.~ . .J 

y 

[III* .7] III* bark h 

Xo 
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[III* .8] III*~ I6 

Xo 

.... "\ ("''"\ 
Y1 >:<.... Yz 01 · 

(iYiYi-...1' 1 ; =, 1 iViYi'; .... ;A;;A;~\. ; ... ~.':.!'+ .... 
'-../ ........ 

... :--.. ...:l\ y3 (2 i y4 t2: 

cs0D~ 
[III*.9] III*~ IV* 

[IV.l]IV~h 

Xo _ .m_ _ Xo,t~ 
~----. (f)(:JlJ 

Y,. .. .J.'"""\ 
\.!.A .... ~.) 

[IV.2] IV ~ I2 

Xo_ .m_ _ Xo~ 
~----. (jj(__0J) 

y 1"1) 

ciiJ 
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[JV.3] IV ~ I2 

Xo _ _m _ Xo~ 
~-+QJ(::JD 

•..... 
y {I) .. . . 

•••••• # ••• ~ ••••• 

{ 1l 1 ) 
········•··.. ..~ ••···•·• 

[JV.4] IV~ II 

Xo _ _m _ Xo~ 
~-+QJ(:)\D 

.•...• 
y tn 

.. I •....• , .. ~ ......... . 
ret 1 xn ............. . •. •······• ........ 

[JV*.l] IV*~ I]' 

[JV*.2] IV*~ I0 
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[JV*.3] IV*~ fe 

[IV* .4] IV* ~ I'{ 

[J~.lJ Ir; ~ I4 

Xo~1 Xo,~t1 
2 ----+ 1 

1 1 1 1 

Y ...... • .... .. 
t1"' '1"' '· ;······:.... .: 
···; 1 ( 

\ •.......•••• ·· 
[/~.2] Ia ~h 

Xo~1 Xo,t~1 
2 ----+ 1 

1 1 1 1 

y (i) .... .(i") 
···c 1 i ... 

l!'=·········· 
"· ••..•• 1 
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[I,:.l] I~~ I~_ 1 

Xo~ ~Xo~ ~ 
~ ....... ~ ___. &~""'"~ 

y .····· . 1 . . ~ .... 
•... 1 ··~ 
...... .· : 1 ...... . . . ..... · 

[I,:.2] I~~ In+4 

Xo~ ~~~ q 2 2 ....... 2 2 ___.· ~ ....... ~ 
1 . 1 1 . 1 

y .····· .····· : 1 : .... . ... ; 1 : 
···~ •....... . ....... · ·~··· 

: 1 J. 1 : ....... ~. 1 ! 1 : ··......... .... •···• ·· ...... ·· 
Remark 12.1. (a): Takamura [Ta3] introduced not only a 

barking family associated with one simple crust (which were­
viewed in Section 2) but also a barking family associated with 
several crusts. The latter is called a compound barking fam­
ily. Notethatthebarkingfamilies [II*.6], [II*.7], [III*.7], 
[III* .8] are compound barking families. 

(b): The singular fiber I~ ( n :2: 1) is constellar (constellation­
shaped), that is, it is obtained by bonding stellar singular 
fibers. So [I,:.l] and [I,:.2] are barking families for constellar 
case rather than for stellar case. See [Ta3] for details. 

(c): This list contains no barking families for a degeneration 
with the singular fiber min. In fact, for min (m :2: 2), we use 
another method to construct a splitting family, which splits 
min into min-1 and h. See [Tal] for details. 
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