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Mixed functions of strongly polar weighted 
homogeneous face type 

Mutsuo Oka 

Abstract. 

Let f(z, z) be a mixed polynomial with strongly non-degenerate 
face functions. We consider a canonical toric modification 1r : X --+ en 
and a polar modification 'TrJR : Y --+ X. We will show that the toric 
modification resolves topologically the singularity of V and the zeta 
function of the Milnor fibration of f is described by a formula of a 
Varchenko type. 

§1. Introduction 

Recall that a mixed polynomial f(z, z) with n complex variables 
variables Z = (z1, ... , Zn) E en is called a polar weighted homogeneous 
polynomial if there exist a weight vector P = (p1 , ... , Pn) and a non-zero 
integers dp such that 

Similarly f(z, z) is called a radially weighted homogeneous polynomial if 
there exist a weight vector Q = (q1 , ... , qn) and a positive integer dr 
such that 

If f is both radially and polar weighted homogeneous, we have an asso­
ciated JR.+ X 8 1-action on en by 

Received January 26, 2012. 
Revised July 19, 2012. 
2010 Mathematics Subject Classification. 14P05, 32S55. 
Key words and phrases. Strongly polar weighted homogeneous, Milnor fi­

bration, toric modification. 



174 M. Oka 

The integers dr and dp are called the radial and the polar degree respec­
tively and we denote them as dr = rdegQf and dp = pdegpf· Usually a 
polar weighted homogeneous polynomial is also assumed to be radially 
weighted homogeneous [7]. We assume this throughout in this paper. 

We say that f(z, z) is strongly polar weighted homogeneous if Pj = Qj 

for j = 1, ... , n. Then the associated~+ X 8 1 action on en reduces to 
a C* action which is defined by 

Furthermore f is called a strongly polar positive weighted homogeneous 
polynomial if pdegpf > 0. 

The purpose of this paper is to generalize the result of Varchenko 
([10]) to non-degenerate mixed functions of strongly polar weighted ho­
mogeneous face type (Theorem 11). 

§2. Non-degeneracy and associated toric modification 

Throughout this paper, we use the same notations as in [6], [9], 
unless we state otherwise. We recall basic terminologies for the toric 
modification. 

2.1. Non-degenerate functions 

Let f(z) = Lv,Jt av,JtzvzJt be a convenient mixed analytic function. 
Here "mixed analytic" implies that Lv,Jt av,JtzvwJt is an analytic func­
tion of 2n complex variables z = (z1, ... , Zn) and w = (w1, ... , wn)· f 
is convenient if it contains some monomial z;3 z;3 with a non zero coef­
ficient for any j = 1, ... , n. The Newton polyhedron r +(f) is defined 
by the convex hull of the union Uv{v + J.L +~+-I av,Jt -=f. 0}. The Newton 
boundary r(f) is the union of the compact faces of r +(!). If f is a 
holomorphic function germ, av,Jt = 0 unless J.L = (0, ... , 0) and the New­
ton boundary r(f) coincides with the usual one. For a positive weight 
vector P = t(p1, ... ,Pn), we associate a linear function £p on r(f) by 
£p(T) = T1P1 + · · · +TnPn forTE r(f). It takes a minimum value which 
we denote by d(P, f) or d(P) iff is fixed. Let l!J..(P) be the face where 
£p takes the minimal value and put fp := Lv+JtE.6.(P) av,JtzvzJt and we 
call fp the face function off with respect to P. 

A mixed function f(z, z) is called of strongly polar positive weighted 
homogeneous face type if for each face tJ.. of dimension n- 1, f.6.(z, z) is 
a strongly polar positive weighted homogeneous polynomial. 

Recall that f is non-degenerate for P (respectively strongly non­
degenerate for P) if the polynomial mapping fp : C*n --+ C has no 
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critical point on f? 1 (0) (resp. on C*n). In the case that fp is a polar 
weighted homogeneous polynomial, two notions coincide ([9], Remark 4). 
In particular, two notions for non-degeneracy coincide for holomorphic 
functions. 

Consider a mixed monomial M = zv z~-'. The radial degree rdegp ( M) 
and the polar degree pdegp(M) with respect toP are defined by 

n n 

rdegp(M) = LPi(vi + f-li), pdegp(M) = LPi(vi- f-li)· 
i=l i=l 

Note that the face function fp is a radially weighted homogeneous poly­
nomial of degree d(P) by the definition. 

Consider the space of positive weight vectors N+. Recall that an 
equivalent relation rv on N+ is defined by 

for P,Q EN+, P rv Q ~ 6.(P) = 6.(Q). 

This defines a conical subdivision of N+ which is called the dual Newton 
diagram for f and we denote it by f* (f). 

2.2. Admissible subdivision and an admissible toric mod­
ification 

We recall the admissible toric modification for beginner's conve­
nience. We first take a regular simplicial subdivision ~* of the dual 
Newton diagram f*(f). Such a regular fan is called an admissible reg­
ular fan. See [6], Definition III (3.1.3). The primitive generators of 
one dimensional cones in ~* are called vertices. Namely a vertex has 
a unique expression as a primitive integral vector P = t(p1, ... ,pn) 
with gcd(p1, ... ,pn) = 1. P is strictly positive if Pi > 0 for any j. 
Let V be the vertices of ~* and let v+ c V be the vertices which 
are strictly positive. (We denote the strict positivity by P » 0.) To 
each n-dimensional simplicial cone T of ~*, we associate a unimodu­
lar matrix, which we denote it by T by an abuse of notation. Thus if 
P1, ... , Pn are primitive vertices of T, we also identify T with the uni­
modular matrix (P1, ... , Pn) E SL(n; Z). On the other hand, as a cone, 

T = n=:=l aiPi I ai ~ 0, i = 1, ... , n }. We say that ~* is convenient 
if the vertices of ~* are strictly positive except the obvious elementary 
ones Ej = t(o, ... , 1, ... 0) (1 is at j-th coordinates), j = 1, ... , n. We 
assume that f is convenient and thus we assume also that ~* is conve­
nient hereafter. 

We denote by K (respectively by Ks ) the set of simplices of~* (resp. 
s-simplices of ~*). Note that an s-simplex corresponds to an (s + I)­
dimensional cone. For each T = (P1, ... , Pn) E Kn-1, we associate 
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affine space e~ with the toric COOrdinates Ur = (url, ... , Urn) and a 
toriC morphism 7r r : e~ -t en with Z = 7r r ( Ur), Zj = U~{1 • • • U~-hn for 
j = 1, ... , n where en is the base space and Z = (z1, ... , Zn) is the 
fixed coordinates. Let X be the quotient space of the disjoint union 
IIcre~ by the canonical identification Ur ,..._, Ucr iff Ur = 7rr-lcr(ucr) where 
7rr-lcr is well defined on Ucr. The quotient space is a complex manifold 
of dimension n and we have a canonical projection 1r : X -+ en which is 
called the associated toric modification. Recall that 1r gives a birational 
morphism such that 1r : X\ 1r-1 (0) -+en\ {0} is an isomorphism, as 
we have assumed that ~* is convenient. Here 0 is the origin of en. It 
also gives a good resolution of the function germ f at the origin if f(z) 
is a non-degenerate holomorphic function germ. However for a mixed 
non-degenerate germ, 1r does not give a good resolution in general ([9]). 

2.3. Configuration of the exceptional divisors 
We recall the configuration of exceptional divisors of 1r : X -+ en. 

For further detail, see [6], p. 73. For each vertex P E v+ of~*, there cor­
responds an exceptional divisor E ( P). The restriction 1r : X \ 1r-1 ( 0) -+ 
en\ {0} is biholomorphic and the exceptional fiber 7r-1(0) is described 
as: 

-1 A 

1r (0) = UpEv+E(P). 

Note that V\ v+ = {Ej;j = 1, ... ,n} and E(Ei) is not compact and 
1riE(Ej) : E(Ej) -+ {zj = 0} is biholomorphic. Let V be the strict 

transform of V to X. Recall that E(P) := E(P) n V is non-empty if 
and only if dim D..(P; f) 2: 1. 

2.3.1. Stratification. We define the toric stratification and the Mil­
nor stratification of the exceptional fiber 1r-1 (0). For each simplex 
T = (P1, ... , Pk) of~*, we define 

A k A A 

E(T)* = ni=1E(Pi) \ UQEV,Qrt.rE(Q), 

V(T)* = E(T)* n v, E(T)* = E(T)* \ V(T). 

In the case ofT= (P), we simply write E(P), V(P)* and E(P)*. Then 
we consider two canonical stratifications of 1r-1 (0): 

(1) Toric stratification: 7 := {E(T)* IT n v+ =1- 0}, 

(2) Milnor stratification: M := {E(T)*, V(T)* IT n v+ =1- 0}. 

Here T n v+ =1- 0 implies E(T) c 7r-1 (0). We call T the support simplex 
of E(T), V(T). If Tis a subsimplex of a, we denote it as T -< a. The 
basic properties are 
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Proposition 1. (1) E(P) n E(Q) -10 if and only if (P, Q) is 
a simplex of I;*. 

(2) LetT= (Pl, ... ,Pk) beak-simplex and let a= (P1 , ... ,Pn) 
and a' = (P1, ... , Pk, Qk+l, ... , Qn) be (n- 1)-simplices for 
which T --< a and T --< a'. Put 

E(T); := {uu E e~ I Uu,i = 0, i:::; k, Uu,j "# 0, j ~ k + 1} 

E(T);, := {uu' E e~, I Ua',i = O,i:::; k, Ua',j "I 0, j ~ k + 1}. 

Then we have E(T); = E(T)>. In particular, 
E(T)* = E(T); ~ <C*(n-k). 

(3) IIT,PETE(T)* is a toric stratification of E(P). 

Proof. As a unimodular matrix, a- 1a' takes the following form 

where 0 is ( n - k) x k zero matrix and h is the k x k identity matrix. 
From this expression, it is clear that the restriction of the morphism 
1fa-lat : e~-:"-+ e;n gives the isomorphism Jrc: E(T)> -+ E(T); where 
Jrc is the toric morphism associated with the unimodular matrix C. The 
other assertion is obvious. See [6], Prop. III (1.3.2), Cor. III (1.3.3) for 
further detail. Q.E.D. 

2.4. Milnor fibration 

Let f be a strongly non-degenerate function which is either holomor­
phic or mixed analytic. We consider the Minor fibration by the second 
description: f: E(c,6)*-+ DJ where 

E(c, 6)* = B;n n f- 1 (DJ) 

B;n = {z E en lllzll:::; c}, D'J := {p E q 0 < IPI:::; 6}. 

The Milnor fiber is given by FTJ,c := f- 1 (r;) n B;n with 0 -# lr;l :::; 6. 
Note that as long as c is smaller than the stable radius co and 6 « E, 

the fibering structure does not depend on the choice of E.: and 8. 
Let 1r : X -+ en be the associated toric modification. The restriction 

1r : X \ 1r-1 ( 0) -+ en \ { 0} is biholomorphic. Then the Milnor fibration 
can be replaced by 1r* f = f o 1r: E(c, 6)* -+ DJ where 

E(c, 6)* = {x EX I 0 < lf(1r(x))l:::; 6} n Be; 
BE= {x lll1r(x)ll:::; c}. 
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Note that Be: can be understood as an c:-neighborhood of n- 1 (0). Let 
V be the strict transform of V to X. The above setting is common for 
holomorphic functions and mixed functions. 

§3. A theorem of Varchenko 

We first recall the result of Varchenko for a non-degenerate con­
venient holomorphic function f ( z). Consider a germ of hypersurface 
V = f- 1 (0). For I c {l, ... ,n}, let f 1 be the restriction off on the 
coordinate subspace C1 where 

Let S1 be the set of primitive weight vectors P = t(Pi)iEI of the variables 
{zi I i E I} such that Pi > 0 for all i E I and dim D.(P, F) = III- 1. 
P E S1 can be considered to be a weight vector of z putting Pj = 0, j ~ I. 
Then the result of Varchenko ([10], see also [6]) can be stated as follows. 

Theorem 2. The zeta function of the Milnor fibration off is given 
by the formula 

((t) =II (r(t), (r(t) = II (1- td(P,tl))-x(P)/d(P,Jr). 

I PESr 

The term x(P) is the Euler-Poincare characteristic of the toric Milnor 
fiber F(P)* where 

and it is a combinatorial invariant which satisfies the equality: 

§4. Revisit to the proof 

For the proof of Theorem 2, we use an admissible toric modification 
as in the proof in [6]. We will generalize this theorem for a convenient 
non-degenerate mixed function of strongly polar weighted homogeneous 
face type in the next section. For this purpose, we give a detailed de­
scription of the proof so that it can be used for a mixed function of 
strongly polar weighted homogeneous face type without any essential 
change. Let I:* be an admissible regular, convenient subdivision and let 
n : X --+ en be the associated toric modification. 
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4.1. Compatibility of the charts 

Let T = ( P1, ... , Pk) E Kk- 1 and suppose that we have two co­
ordinate charts u and u' such that T -< u, u' and T = u n u'. Put 
u = (P1, ... ,Pn) and u' = (P1, ... ,Pk,Qk+1,···,Qn)· We also assume 
that E(T)* E T This implies 1r(E(T)) = {0}. Then we have 

Proposition 3. The matrix u'-1u takes the form 

1-1 (Ik 
(}" 0"= 0 ~) 

where 0 is the (n- k) x k zero matrix and C is a (n- k) x (n- k)­
unimodular matrix. Put B = ( bi,j). The to ric coordinates are related 
by 

(4) { (uu',k+1, · · ·, Uu',n) = 7rc(uu,k+1, · · ·, Uu,n), 
- IJn bi,j . - 1 k Uu',i- Uu,i X j=k+1 uu,j' Z- ' ... ' . 

In particular, we have the commutative diagram 

E(T) n c~ 
17rc 

E(T) n c~, 

where p, p' are the projections into E( T) defined by p( Uu) = u~, p' ( Uu') = 
U~, where U~ = (uu,k+1, ... , Uu,n) and U~, = (uu',k+1, ... , Uu',n)· 

4.2. Tubular neighborhoods of the exceptional divisors 

First we fix c= function p( t) such that p = 1 for t ::; R and mono­
tone decreasing for R ::; t ::; 2R and p = 0 for t ~ 2R. The number R is 
large enough and will be chosen later. For u = (P1, ... , Pn) E Kn-1, we 
define Pu(uu) = p(llua-11). For each exceptional divisorS= E(P)* E /, 

we consider the set of ( n - 1 )-simplices K p = { u E Kn-1 I P E u}. For 
each u, u' E K,p, after ordering the vertices of u, u' as u = (P, P2 , ... , Pn) 
and u' = (P, P~, ... , P~), we define the distance function distp from 
E(P) by 

distp: X--+ JR, distp(w) = L distp,u(w) 

where Uu(w) is the COOrdinate of Win((:~ and U~ := (ua-,2, ... ,Uu,n). 
Put BK u(P) = {(0, u~) lllu~ll ::; K}. We assume that R is sufficiently 
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large so that Uu'E/CpBR,u'(P) = E(P). Note that the distance function 
is continuous on X and coo on X\ E(P). We put 

Nc(E(P)) := distP"1([0, c:]). 

Lemma 4. Suppose that a= (a1, a2, ... , an) E C~ with a~ 1r-1(0) 
and a1-=/= 0. Put a(t) = (ta1, a2, ... , an) for 0::; t::; 1, rt = distp(a(t)) 
and S(rt) := distP"1(rt)· Then a(O) E E(P) and limt-++O Te>(t)S(a(t)) 
is the real orthogonal space v.L of the vector v := (a1 ,0, ... ,0). That 
is, the tangent space T"'S(a) converges to the real hyperplane v.L when 
t goes to zero. 

This lemma states that the tubular neighborhood 8Nc(E(P)) be­
haves infinitesimally as luu,ll =constant. For the proof, see the Appen­
dix (§4.5). 

4.2.1. Tubular neighborhood of V(T). Consider the stratum V(T) 
with T = (P1, ... , Pk)· Let Kr be the set of coordinate charts O" such 
that T--< O". We order the vertices so that O" = (P1, ... , Pk, ... , Pn)· We 
can write 

{ 
The function f c,. is by definition the face function of the face ,6. ·­

nf=16.(Pi)· The second term R vanishes on E(T). Thus the polynomial 
fc,. is a defining polynomial of v ( T) in the coordinate chart c~. Take 
another 0"1 E Kr and write 0"1- 1 0" as in (4). Then we have 

k k 

II d(P,)f- ( I) II d(P,)f- ( I ) 
Ua,i Ta UO" == Uat ,i Ta' Ua' • 

i=1 i=l 

Thus we have 
n 

(5) fru'(u~,) = fru(u~) x II u;,j, =:Jmj E Z. 
j=k+1 

Thus from now on, we fix an (n- I)-simplex O" = O"(T) for each T and 
put 

Vc(T) = {uu E E(T) n c~ llfru(u~)l::; y'E}. 

We call C~ the canonical coordinates chart of E(T). Now for each T = 
(P1, ... , Pk) E K such that E(T)* C Jr-1(0), we put 

Nc(E(T)) = nj=1Nc:(E(Pj)), 
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where NE(E(T)) is a tubular neighborhood of E(T). 
4.2.2. Truncated tubular neighborhoods. Let PTE: NE(E(T))-+ E(T) 

be the projection. Recall that PTE is defined by the simple projection 
Uu r-+ u~ for any chart c~ with(]"= (P1, ... 'Pn)· Now we define trun­
cated Milnor stratification as follows. The truncated strata and trun­
cated tubular neighborhoods for the Milnor fibration are defined by 

NE(E(T))tr = p;E1(EE(T)tr), 

NE(if(T))tr = p;E1(VE(T)tr), 

where { ~E(T)tr = iE(T) \ NE(V(T)),\ UT-<T'(NE(E(T'))), 
V.,(T)tr = V.,(T) \ UT-<T'NE(E(T')). 

Thus we can write NE(S)tr = p;E1(Str), using the notations 

S=E(T)*, 
S=V(T)*. 

Note that EE(T)tr, ~(T)tr are relatively compact subsets of E(T)* which 
is homotopy equivalent to E(T)* and V(T) respectively. Put 

Note that NE(n-1(0)) is a homotopy equivalent cofinal system of the 
neighborhood of n-1 ( 0). We consider the Milnor fibration over Dj with 
(j « c: 

4.3. Recipe of the proof 

Step 1. First we will show that the restriction of n* f : NE,8 -+ Dj over 
each tubular neighborhood NE(S)tr is a fibration in the way that each 
fiber is transverse to the boundary of NE(S)tr. Thus the restriction to 
the boundaries 8NE(S)tr is also a fibration. 

Step 2. Then using the additive formula for the Euler characteristic 
and the corresponding product formula for the zeta function (see [6], 
Chapter 1), the calculation of the zeta function of the Milnor fibration 
is reduced to the calculation of the Milnor fibration restricted to each c­
tubular neighborhood NE(S)tr. This fibration is again a locally product 
of the Milnor fibration of the restriction to the normal slice of str and 
the stratum str. 
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Step 3. Finally we determine the set of strata which contribute to the 
zeta function (Lemma 5). They correspond bijectively to UJSJ. 

We say that a simplex T = (P1 , ... , Pk) is of a divisor type if (up to 
an ordering of the vertices) P1 E v+ and the other vertices { P2, ... , Pk} 
is a subset of the non-positive vertices {E1 , ... , En}· A simplex T of a 
divisor type is called to be of a maximal dimensional face if ~(P1) n 
r(f1 ) is a maximal dimensional face of r(f1 ) (i.e. dim ~(Pl) = III-1) 
where I = { i I Ei tj. T}. 

For a subset I c {1, 2, ... , n }, consider the set of vertices S~ of~* 
such that there exists an (n - III)-simplex T of a divisor type with a 
maximal dimensional face ( T E K:n-JIJ) whose vertices are {P, Ej I j tj. 
I}. The key assertion is the following. 

Lemma 5. Take a stratumS EM. 
(1) The Milnor fibration is decomposed into the fibrations restricted on 
NE(S)tr for each S E M. This fibration is topologically determined by 
the corresponding face function. 
(2) The zeta function of the normal slice is non-trivial only if S = E( T)* 
and T = (P1 , ... , Pk) is of a divisor type. 
(3) The zeta function of the tubular neighborhood NE(S)tr is non-trivial 
if and only if T is of a maximal dimensional face. 
( 4) There is a bijective correspondence from S~ to S I. 

Here the normal slice for S = V ( T) implies normal plane of V ( T) 
in the fixed coordinate chart a( T) and the standard metric in this affine 
space. The proof of Lemma 5 occupies the rest of this subsection. 

Recall that in the Milnor stratification M, there are two type of 
strata: E(T)* and V(T)* with T = (P1 , ... , Pk)· Let £(T) = ~{i I d(Pi) > 
0} and we refer to £(T) as the strict positivity dimension ofT. Take a (n-
1)-simplex a= (P1 , ... ,Pn) having T as a face. We write (u1 , ... ,un) 
for simplicity instead of ( u,.,1 , ... , u,.,n), the canonical toric coordinates 
of C~ and a= (P1, ... , Pn)· 
Case 1. S = E(T) 
As E(T) c n-1 (0), we may assume that P1 E v+ so that d(P1 ) > 0 
hereafter. Put~:= n:= 1 ~(Pi)· n~f takes the form 

{ 
where R is contained in the ideal (u1 , ... , uk) and therefore it vanishes 
on E(T) n C~ and u' = (uk+1 , ... , un) are the coordinates of E(T) n C~. 
We consider the homotopy ft = U1,kh for 0 :::; t :::; 1 where h(u) := 
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Jf).(u') + tR(u). Note that A = n* f and Jo = n* h is associated to the 
face function f {).. 

4.3.1. Smoothness. Consider the family of the restriction of Milnor 
fibering ft : N,5 (str) n ft- 1 (D8) ---+ D'J, 8 « c and their Milnor fibers 

Ft,li(T) := ft- 1(8) nNE(str) and S = E(T)*. Consider (a submatrix of) 
the jacobian matrix 

( aft aft ) (rt): J:= -a-(P), ... ,-a (u) 
Uk+l Un 

( ajf),. , aR ajf),. aR ) 
=U1,k -a-(u)+t-a-(u), ... ,-a (u)+t-a (u) . 

Uk+l Uk+l Un Un 

By the non-degeneracy, there exists k+1::::; j::::; n such that~!,: (u')-=/=- 0. 
j 

As Rand g;;, j 2: k + 1 are constantly zero on E(T), this implies that 
j 

Z!t (u')-=/=- 0 for sufficiently small c and 8 « c, i::::; k. Thus J-=/=- (0, ... , 0) 
j 

for any u E Ft,li( T) with u' E str' as str is relatively compact. So Ft,li( T) 
is also smooth. 

4.3.2. Transversality. We consider the transversality of Ft,li and the 
boundary a(NE(str)) at the intersection of B := a(NE(Str)) n NES' or 
B' = a(Nc(str)) n Yc(S') where S' = E(T')* with 

Put ~' = ni=1 ~(Pi)· Let cr(T') be the fixed chart for T1 and let v = 
(v1, ... , vn) be the toric coordinates of <C~(r') for simplicity. As we are 
considering a tubular neighborhood of polydisk type, 

B ={vlldistp;(v)l = c, k+ 1::::; i::::; m} or 

B' ={vlldistp;(v)l = c, k+ 1 :S i :S m, fff).'(v")l = vfc}. 

By (5) for some integers mi, i = m + 1, ... , n, 

n 

II 
i=m+l 
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Putting uk+l,m = TI?=k+l u~(Pj)' we can write further that 

(6) 

ft(u) = ul,kft(u), 

ft(u) = ft:,.(u') + tR(u) 

= Uk+l,m (J""' ( u") + R' ( u') + tR( u)) , 

ft:,.(u') = Uk+l,m (Jt:,.,(u") + R'(u')), 

ft(u) = U1,kuk+l,m (Jt:,.,(u") + R'(u') + tR(u)), 

R = Ul,kUk+l,mR, 

where u 11 = (um+l, · · · ,un) and R' in the ideal generated by 

Note that R( u) is in the ideal generated by { uiuj I i :S: k < j :S: m}. Thus 
the transversality follows from the fact that the jacobian submatrix 

8('iR}t, ssft, distpk+l' ... 'distpm) 

8(xal, Yal · · ·, Xam, Yam) 

has rank m - k + 2. For the proof of this assertion, we use the polar 
coordinates as follows. 

Assume that S' = V(T') is non-empty, i.e., namely dim b.' ~ 1. 

Put g := ft:,.,(v"). On a neighborhood of a chosen point u~ E 8Vc(T')tr, 
by the non-degeneracy of f on b.', g can be used as a member of a 
coordinate chart. For example, we may assume that there exists an 
open neighborhood U(u0 ), u0 = ( u~, ... , u;;,, u~) such that 

is a coordinate chart on U(u0 ) and (g, Vm+Z, ... , vn) is a coordinate chart 
of U(u0 ) n E(T'). We use the polar coordinates for Uk+l, ... , Um, g. So 
put 

U1 = Xal + iYal, 

e i . k 1 Uj = pje 1 , J = + , ... , m, 

The tranversality can be checked using the subjacobian with respect to 
(xal, Yal, Pk+l, · · ·, Pm, Pg): 

Assertion 6. Under the above notations, we have 

ran m = m - k + 3. k (
8('iRft, SSft, distpk+I, ... , distp , pg)) 

8(xal, Yal, Pk+l, · · ·, Pm, Pg) 
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For the proof, see §4.5.2 in Appendix 4.5. 

Remark 7. Assume d(Pi) > 0 for some 2:::; i:::; k. Then the Milnor 
fiber Ft,li also intersects with the boundary of the tubular neighborhood: 
distpi = c. The transversality with this boundary is treated considering 
it as the transversality of the Milnor fiber in the stratum E(T')tr, T' = 
T \{Pi} with 8N"(E(T))tr. Thus this case is treated in the pair T1 -< T. 

Thus we have observed that the Milnor fibration of 1r* f is the union 
of fibrations restricted on N"(S)tr and 8N"(S)tr with S = E(T)tr or 
S = V(T)tr with T = (P1, ... , Pm)· Using the homotopy 1r;Jt, this 
restriction is equivalent to the fibration defined by 1r;J A where ~ = 
nf= 1 ~ (Pi). This proves the first assertion ( 1). 

4.4. Zeta functions 
Next, we consider the assertion for the zeta function (2). 
4.4.1. Case 1. Stratum Vc(T). We first consider the stratum Vc(T): 

Let 'l/Js : N"(Vc(T)) -+ Vc(T) be the projection of the tubular neighbor­
hood. At each point x E V(T)tr, the Milnor fibration is homotopically 
defined by 1r* h =fA (~ = nf=1 ~(Pi)). Recall that 

k 
A II d(P.) -h(u) = ui ; x h(u'). 

i=1 

Put g = JA(u'). Take a point x E V(T). Assume 8[~~~:) (x) -1- 0 
for example. Then we may assume that locally (g, Uk+2 , ... , un) is 
a coordinate system of a neighborhood, say U(x) of x E V(T) and 
also (u1 , ... , uk, g, Uk+2 , •.. , un) is a coordinate system of the open set 
nf=1 {lui I < ry} n 'l/J8 1(U(x)). By the relative compactness of the trun­
cated strata V(T)tr, we may also assume that c ~ 1J so that 

In the normal slice of x, u 1 , ... ,uk,g are coordinates. The Milnor fiber 
restricted on N"(V(T)tr) is locally equivalent to the product of U(x) and 

the Milnor fibration of the polynomial h = g TI~=1 ut(P;) (=the defining 
polynomial in the normal slice) in Ck+1 . Namely the fibration 

is isomorphic to the product of U(x) and the restriction to the normal 
slice: 

- 1 A h,x: 'l/Js (x) n Nc,li-+ D8. 
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We consider two tubular neighborhoods: 

Ne;(E(T)tr) = { u I distpi (u) :::; c:, i = 1, ... , k}, 

Ne;(E( T)tr)' = { u lluil ::=; c:, i = 1, ... , k }. 

By the cofinal homotopy equivalent argument, we can consider the nor­
mal Milnor fibration in the latter space and we see easily that the fiber 
is given by 

k 

F, = {(u1, ... , uk, g) I g IT ut(Pi) = 8, lgl :::; /€, lui I ::=:: c:} 
i=1 

and it is homotopic to (81 )£ where 8 « c: and £ is the strict positivity 
dimension ofT. As V(T) c n-1(0), £ ~ 1. Thus the Euler characteristic 
ofF, is also zero and the monodromy is trivial. There are no contribution 
from this stratum to the zeta function. 

4.4.2. Case 2. Stratum 8 = E(T)tr. Now we consider the Milnor 
fibering on the tubular neighborhood over the strata 8 = E(T)tr. We 
have seen that the Milnor fibration of j is again isomorphic to the 
fibration defined by j A and the latter is locally product of the base 
space and the Milnor fibration of the restriction to the normal slice. 
This normal slice function is locally described by the product function 
u~( P 1 ) • • • u ~( Pk) fA ( u') . The factor fA ( u') is a constant on the normal 
slice u' = const. We know that the fiber in this normal slice is ho­
motopic to gcd(d(Pl), ... , d(Pk)) copies of (81 )£-1 where£ is the strict 
positivity dimension ofT. See for example [6], p. 48. Therefore the Euler 
characteristic of this slice Milnor fiber is non-zero if and only if£ = 1. 
This implies T is of a divisor type. Assume for example that d( P1) > 0 
and d(Pi) = 0, 2 :::; i :::; k. This implies Pi = Ev(i) for i = 2, ... , k 
and T = (P1, Ev(2), ... , Ev(k)) and .6.(P1; f 1 ) is a face of r(/1 ) where 
I= {1, ... , n} \ {v(2), ... , v(k)}. The Milnor fiber F; restricted to this 
stratum is defined by 

F; = { u I u~(Pl) JA(u') = 8, u' E E(T)tr} 

is homotopically d(P1) disjoint polydisk of dimension. k- 1 defined by 
{ u1 = 81/d(Pl), lu1 I :::; c:, j = 2, ... , k} over (0, u') with 

Thus the zeta function of the Milnor fibration of the normal slice is 
(1- td(P1 )) and thus by a standard Mayer-Vietoris argument, the zeta 
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function of the Milnor fibration over this stratum is 

(7) 

Now the proof of Lemma 5 reduces to: 

Lemma 8. Assume that T = (P1, Ev(l), ... , Ev(k)) as above. Then 

x(E(T)*) =/= 0 only if ,6. := ,6.(PI) n JRI is a face of maximal dimension 
of r(F) where I= {1, ... , n} \ {v(1), ... v(k)}. 

Proof. Put I= {1, ... , n} \ {v(1), ... , v(k)}. Then 

x(E(T)*) = x(E(T)* \ V(T)) = -x(V(T)*) 

as E(T)* """C*(n-k)_ As a= (P1 , ... ,Pn) is a unimodular matrix, 
P := P{ is a primitive vector and ,6. = ,6.(PI) n JRI and !D. is nothing 
but (F)p. 

V ( T) * = { U = ( U1, ... , Un) I u E E ( T) *, fp1 ( u') = 0} 

~ {zi E C*I I J~(zi) = 0} 

= {zi E C*I I Ji.(zi) = 0} 

where a is a (n- 1)-simplex with a= (P1, ... , Pn) and the Euler char­
acteristic of the variety {zi E C*I I Ji.(zi) = 0} is non-zero if only if 
dim ,6. = n- k with ,6. = ,6.(PI) n JRI (See for example, Theorem (5.3), 
[5]). Q.E.D. 

4.4.3. Correspondence of SI and S~. For a fixed I c {1, ... , n} with 
III = k, let us consider the set of vertices S~ which is the set of vertices 
p E v+ such that there exists a simplex T =(Po, ... ' Pk) E Kk, Po = p 
of a divisor type with a maximal face such that Pj = Ev(j) for j = 
1, ... , k, I = {v(i), i = 1, ... , k} and ,6. = ,6.(PI) n JRI. As T is a 
regular simplex, the I component pi of P is a primitive vector such 
that ,6.(PI, F) = ,6. and d(PI, F) = d(P, f). The proof of Theorem 2 
is now completed by the following. 

Proposition 9. There is a one-to one correspondence of S~ and SI 
by 

~ : S~ --+ S I, p f--7 pi. 

Proof. We check the surjectivity of ( Take a face 3 of r(F) of 
maximal dimension. Consider the set of covectors ~*(3) ={PI ,6.(P) =::> 

3}. It is obvious that Ei E ~*(3) if i ¢:. I. Then there exists a vertex 
P » 0 of~* such that { P, Ei I i ¢:. I} is a simplex of K. Then ,6.(P) n 
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JR.I = 3 and pi is primitive. Thus piE SI. Assume that P, Q E :E*(3). 
The cone of :E* (3) has n - III + 1 dimension. The cones spanned by 
{P, Ei I i <t I} and {Q, Ei I i <t I} have dimension n- III+ 1 and thus 
they must contain an open subset in their intersection. This is only 
possible if P = Q. This proves the injectivity. Q.E.D. 

4.5. Appendix 

4.5.1. Proof of Lemma 4. Put J = {j I 0'-j = 0} and I= {1, ... ,n} \ 
J. As a <t n-1(0), this implies {E1 lj E J} are vertices of a. Then 
we restrict the argument to <CI and fi. Thus we may assume for sim­
plicity that aj =f. 0 for 1 :=::; j :=::; n. Then using the equality Uu' ,1 

Uu,l TI7=2 u~~j and putting Pl = luu,ll = J x~,l + Y~,l, we get 

8distp ,u' ( Uu') I 
>l U' =a' UXa,l a 

8distp ,u' ( Uu') I 
>l U' =a' UYu,l a 

8distp ,u' ( Uu') I 
OXu,j u:,.=a' 

8distP,u' (uu') I 
0Yu,j u:,.=a' 

where au' =(a~, a~, ... , a~)= 1l"u'-lu(a) and Uu,j = Xu,j + Yu,j i. Here 
o(r1) is by definition a smaller term than p1 when p1 --+ 0. This implies 
that in <C~ with real coordinates (xu,l, Yu,l, ... , Xu,n, Yun), 

. a1 b1 
graddiStp(a(t)) = (,Bia1l, ,Bia1l, 0, ... , 0) + O(t), namely 

. ( ( )) t-++O a1 b1 
gradd1stp at -+ (,Bia1l, ,Bia1l, 0, ... , 0) 

n 

,8 = p(au) + L p(au') IT lajlb1i > 0. 
u'EKp,u'#u j=k+l 

This proves the assertion. 
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4.5.2. Proof of Assertion 6. Fix a point uo E 8Vc(T1)tr. Put U1,m = 

n:l ut(P;) and ul = Xal + iYal· Recall that 

m 

ft(u) = ft(u) IT uJ(Pi), ft(u) = ft:..'(u") + R'(u') + tR(u). 
j=l 

Recall that R' ( u') does not contain u 1 , ... , uk and contained in the ideal 
generated by (uk+l, ... , um) and R is contained in the ideal generated 
by UiUj, i ::::; k < j ::::; m. First note that 

a~~l = Ul,mJXul (u), ~:1 = Ul,mJYul (u), 

~t: = U1,mJi(u), i = k + 1, ... , m, g, 

Jx" 1 (u) = d~t) (J~~(u") + R'(u') + tR(u)) + t 8:~~), 

Jy"2 (u) =id~t) (J~,(u")+R'(u')+tR(u)) +it 8:~~)' 

Ji(u) = d?;;) (J~,(u") +R'(u') +tR(u)) + (aR~~~') +t 8~~~)), 
k+ 1::::; i::::; m, 

J (u) = 1 + taR(u). 
9 8r9 

Note that the respective orders of J~, ( u") and rj, k + 1 ::::; j ::::; m are y'E 
and c:. The second term of Ji, i =f. g is at most c:. Thus the main term 
of Ji is d(P;)~~~(u") and the order is _)g. The order of J9 is 1. Thus we 

observe that 

Xc 

Here a ,....., b implies lime:--+0 a/ II all = lime:--+0 b/llbll in the projective 
space. Xc is a complex vector. As a real matrix, this corresponds to 
2 x (m- k + 3) real matrix: 

= (i~) 
by Xc = xl + iX2. Let us write the first 2 X 2-minor of this matrix: 
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That is, 

By Lemma 4, we see also that 

( 8distp, 8distp, 8distp, 8distp, 8distp,) rv (0 1 0) 
OXal ' OYal 'OTk+l , ... , OTm ' OTg , ... , , ... , 

for any k + 1 :::::; i :::::; m. 
Therefore the rank of Jacobian matrix is infinitesimally equivalent 

to the rank of 

8('iR}t, CS]t, distpk+1 , ... , distpm, rg) 

a(Xal, Yal, Tk+l, 0 0 0 'Tm, rg) 

'iR(id(P1)jul) 
CS(i d(P1)/u1) 

0 

in the projective sense for each row vectors. Put d(Pl)/u1 = a+ i(3. 
Then the upper left 2 x 2-matrix A is nothing but 

A=(~ -:) 
and det A = a 2 + (32 i- 0. This is enough to see that the rank of the 
Jacobian ism- k + 3. This proves the transversality. 

4.5.3. Cojinal homotopy equivalent sequence. Let X be a manifold 
and let {Ej}, {Ej},j E N be a decreasing sequence of submanifolds 
such that the inclusions LJ+l : EH1 '-+ Ej, and tj+1 : Ej+1 '-+ Ej are 
homotopy equivalences. Suppose further that 

Ej+1 c EJ+l c Ej c Ej. 

Then the inclusions ~Hl : E3+1 '-t Ej and ~J+l : Ej+1 C EH1 are 
homotopy equivalences as ~Hl o ~J+l = tj+1 and ~j o ~j+l = LJ+l· Fur­
thermore suppose that they are total spaces of fibrations over the same 
base space Z with the commutativity in the following diagram: 

Then the corresponding fibrations are also homotopy equivalent. We 
refer this argument as a cojinal homotopy equivalent sequence argument. 
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§5. Mixed functions 

5.1. Main result 

Now we are ready to state our main result. First we prepare: 

Proposition 10. Assume that f(z, z) is a convenient mixed func­
tion of strongly polar positive weighted homogeneous face type. Then 
for any weight vector P, fp is also a strongly polar positive weighted 
homogeneous polynomial with weight P. 

Proof. The assertion is proved by the descending induction on 
dim D..(P). The assertion for the case dim D..(P) = n - 1 is the defi­
nition itself. Suppose that dim D..(P) = k and the assertion is true for 
faces with dim D. 2: k + 1. In the dual Newton diagram, P is con­
tained in the interior of a cell, sayS, whose vertices Q1 , ... , Qs satisfy 
dim D. ( Q j) ;::: k + 1 for j = 1, ... , s. This implies P is a linear combina­
tion L.::j aj Qj with aj ;::: 0 and dim D.( Qj) 2: k+ 1. This also implies that 
D.(P) = nj=lb.(Qj)· Write fp(z,z) = L.::kckzVkzll-k. As fqj is polar 
weighted homogeneous polynomial with weight Qj, we have the equality: 
pdegqjz.,kzll-k = mj for j = 1, ... , s where mj a positive integer which 
is independent of k. This implies fp is polar weighted homogeneous 
polynomial of weight P with polar degree L.::j=1 ajmj > 0. Q.E.D. 

We take a regular convenient simplicial subdivision ~* of r* (!) ( =regu­
lar fan) and we consider the toric modification 1r :X ---t rcn with respect 
to~* as in §2. Let S1 be as in §2. Now we can generalize the theorem 
of Varchenko for the mixed polynomial f(z, z) as follows. 

Theorem 11. Let f(z, z) a convenient non-degenerate mixed poly­
nomial of strongly polar positive weighted homogeneous face type. Let 
V = f- 1 (V) be a germ of hypersurface at the origin and let V be the 
strict stransform of V to X. Then 
(1) V is topologically smooth and real analytic smooth variety outside of 
1f-1 (0). 
(2) V(T)* is a real analytic smooth mixed variety for any T E JC. 
(3) The zeta function of the Milnor fibration of f(z, z) is given by the 
formula 

((t) =II (1 (t), (J(t) = II (1 _ tpdeg(P,Jj,))-x(P)fpdeg(P,Jf,) 

I PESr 

Proof. The proof is essentially the same as the proof of Theorem 
2, given in the previous section. We fix a toric modification n : X ---t en 
associated with a regular simplicial subdivision ~* as in the holomorphic 
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case. Take a stratumS= V(T)* or S = E(T)* with T = (P1, ... , Pk) and 
put 2 = nf= 1 ~(Pi;f). Let us take first a toric chart rJ = (P1, ... ,Pn) 
with T -< rJ with toric coordinates u = ( Uul, ... , Uun). For simplicity, we 
write Uuj = u1 hereafter. The pull-back n;J takes the following form. 
Put r1 = rdegpf and Pj = pdegpf for j = 1, ... , k. 

J J 

(8) 

(9) 

k rj+Pj rj-Pj ......_.. 

n* j = f1j=l Uj 2 Uj 2 X j(u, ii) 

J(u) = z~(u', u.') + R(u, u.) 

where u' (uk+ 1, ... ,un)· The term l,:;.(u',u') is a mixed polyno­
mial which does not contain the variables u1, ... , Uk by the strong polar 
weightedness assumption. Namely we have 

k rj+Pj rj -Pj 

n;h(u, ii) =IT u1 2 u1 2 x J~::.(u', u'). 
j=l 

We will first see that V(T)* is real analytically non-singular and V is 
topologically non-singular on this stratum. First we assume that R(u, ii) 
is a continuous function such that the restriction of R to E ( T) * is zero 

for a while. Thus we see that V(T)* = {(0, u') I J~::.(u', u') = 0}. For any 

x' E V(T)*, put X= (1, ... ' 1,x') E c;n. Then X E n;J~ 1 (0) = 1~ 1 (0) 
and by the non-degeneracy assumption of f on the face ~' :X is a non­
singular point. That is, there exists a j, k + 1 ::::; j ::::; n, such that 
~h (:X) -=f. 0. This implies that V(T)* is non-singular at x'. Now we 
UUJ 

consider u 1 , ... , uk as parameters and by implicit function theorem, we 
can solve J(u) = 0 in Uj so that u1 is analytic in {ui;i -=f. j,k + 1::::; 
i ::::; n} and continuous in u 1 , ... , Uk. This implies that V is topological 
manifold. This proves the assertions (1), (2). 

Now we consider the Milnor fibration. The second term R(u, ii) in 
(9) is a linear combination of monomials of the type u~1 7l~ 1 .•. u~nu~n 
with 

ai + bi > 0, i = 1, ... , k, 

a1, b1 2: 0, k + 1 ::::; j ::::; n. 

Here ai, bi might be negative for i ::::; k. See Example 5.1.3. However 
the inequality ai + bi > 0 is enough to see the continuity of R(u, ii) and 
limuai-+0 R(u, ii) = 0 for any 1 ::::; i ::::; k. See also the polar coordinate 
expression below for further detail. Thus the function R is a continuous 
blow-analytic function in the sense of Kuo [3]. We put ft = J~::. + tR as 
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before. We use the notations: 

To show that the Milnor fibration is well-defined for any 0 ::::; t ::::; 1 
by ft over this stratum and it is isomorphic to that of fo = j t:., we use 
the polar toric coordinates. So put UJ = PJeiej for j = 1, ... , k. By 
the strong polar weighted homogenuity, the function takes the following 
form 

(10) 

(11) 

(12) 

[(p, e, u') = ft:.(u') + R(p, e, u') where 

The reminder R is an analytic function of the variables (p, e, u') and 
contained in the ideal generated by p1 , ... , Pk. This implies that R = 0 
on V(T). The tubular neighborhood N(S) is defined by 

distpj (u)::::; E,j = 1, ... , k, S = E(T)* 
distpi (u) ::::; c,j = 1, ... , k, 1ft:. I ::::; y'E, S = V(T)*. 

The Milnor fiber Ft,o of ft in this neighborhood is defined as: 

p~l ... p~k eip1e1 ... eiPkek (ft:. ( u', u') + tR(p, e, u', u')) = 8 

where p = (p1, ... ,pk) and e = (el, ... ,ek), PJ::::; c, 1::::; j::::; k and 
8 «c. 

5.1.1. Smoothness. First, we will show the smoothness of the Milnor 
fiber of ft. Take any u~ = (uo,k+l, ... , uo,n) E S and uo E Ft,o with 
u 0 = (u10 , ... , Uko, u~). By the non-degeneracy assumption and the 
strong-polar weighted homogenuity, the jacobian matrix 

has rank two. Thus 
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and the second term of the right side is smaller than the first. Thus 
J>k(}t) has rank two over an open neighborhood U(ufJ) if r5 ~ c. As 
S!r is relatively compact, we can cover by a finite such open sets. 

5.1.2. Transversality. We consider the transversality of Ft,8 and the 
boundary oN6 (Str) at the intersection of B := oN6 (Str) n N 6 S' orB' = 

oNc(str) nVc(S') where S' = E(T')* with T1 = (Pb···,Pk,···,Pm). 
We use the canonical to ric chart c~ of T 1 and let u = ( ul' ... ' Un) be 
the coordinates for simplicity. The boundaries are described as follows. 

B ={ufdistp,(u) = c, k+ 1:.::; i:.::; m} or 

B' ={u I distp,(u) = c, k + 1:.::; i:.::; m, w~~(u")l = y'c}. 

The argument is almost similar as that of the holomorphic case. So we 
consider the case B'. Thus we assume that S' = V ( T 1) is non-empty, 
i.e., namely dim D..' ;::;.: 1. Put g = f ~~ ( u") where u" = ( Um+l, .. . , un)· 

If V(T') -=/=- 0, on a neighborhood of any point u~ E B', by the non­
degeneracy of f on D..', g can be used as a member of a real analytic com­
plex coordinate chart. For example, we may assume that there exists an 
open neighborhood U(u~) such that (u1, ... , Um, g, Wm+2, ... , wn) is a 
real analytic complex coordinate chart on U(u~). Here (g, Wm+2, ... , wn) 
is real analytic complex coordinates of U ( u~) n E( T 1). See the next sub­
section for the definition. We use further the polar coordinates 

iO · · 1 iO Uj = pje 1 , J = , ... , m, g = pge 9 , 

p = (pl, ... 'Pm), e = (01, ... 'Om), w = (wm+2, ... 'Wan)· 

The expression of (6) is now written as follows. 

{ 
!t(u) = (I1.7'=1 p?eipjej) h(p, e, pg, Og, w), 

(13) h(u) = pgeieg + R'(pg, Bg, w) + tR(p, e, pg, Og, w), 

R = ( IT.7'=1 // eipjej) R. 

Note that R' and Rare real analytic functions of variables pg, Bg, wand 
p, e, pg, e g, w respectively and the restriction of R'. Note that R', R are 
not analytic function in the variables u 1 , ... , Um. Here is the advantage 
of using polar coordinates. Theoretically this is equivalent to consider 
the situation on the polar modification along ui = 0, i = 1, ... , min the 
sense of [9]. 

For simplicity, we assume that d(P!) = r1 > 0. Put u1 = Xal + iYal 

as before. Put 
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We do the same discussion as in the case of holomorphic case. Consider 
the Jacobian of ft with respect to variables {x,r1, Yul, Pk+l, ... , Pm, p9}. 
Recall that R is a Laurent series in the variable u 1 , u1 but it only contains 
monomials uf.'' u~' with m 1 + n 1 ;:::: 1. Thus I "'iJR I and I ,8R I is bounded 

UXal VYal 

from above when lu1 1 is small enough. Thus as a complex vector, 

( oft oft oft oft proj a b . a . b Tk+l Tm 
~ , ~ , ~ , ... ,~) "' (-+-=-,z--z-=-,--, ... ,-,0). 
uXul uYul UPk+l upg U1 U1 U1 U1 Pk+l Pm 

Put 1/u1 = a + f3i. Then the 2 x 2 real matrix A of the first two 
coefficients (as in the holomorphic case corresponding) is 

A- (a(a+b) 
- f3(a-b) 

-f3(a +b)) 
a( a- b) 

and we see that detA = (a2 - b2)(a2 + {32 ) #- 0 as a- b = p 1 > 0, 
by the positive polar weightedness. We consider the Jacobian matrix of 
{~jt, CS}t, distpk+l, ... , distpm, lgl} in the variable 

Under projective equivalence for each gradient vector, we get 

~8}t,CS8}t,distpk+l,···,distpm,lgl) p~j (A * ) 
o(xul, Yul, Pk+l, ... , Pm, p9) 0 Im-k+l . 

This matrix has rank m - k + 3 as is expected. Thus the transversality 
follows. 

The proof of Theorem 11 is now given by the exact same argument 
as that of Theorem 2. By Key Lemma below, the contribution to zeta 
function is only from the strata E(T)tr where T (Pl, ... ,Pk) is a 
simplex of maximal face type. Q.E.D. 

5.1.3. Example. Consider the mixed function 

f is a non-degenerate mixed function of strongly polar weighted homoge­
neous type. Then an ordinary blowing up 1r : X -+ C2 is the associated 
toric modification. Let us see in the chart a= (P, E 2 ) with P = t(1, 1). 
Let ( u, v) be the toric chart. Then we have 

1r;j(u,v) = u3u (v 3v + 1 + u:v5
) 

and R = u 2v 5 ju. We seeR is a continuous blow-analytic function but 
not C 1 in u. 
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5.2. Key lemma 

Let h, ... , fn be complex valued real analytic functions in an open 
set U c en. We say that (h, ... , f n) are real analytic complex coordi­
nates if URh, S:h, ... , 'iJUn, S:fn) are real analytic coordinates of U. 

Lemma 12. Let f (g, g) = g? gf1 · · • g? gf£. Assume that 

(g1' ... 'gg) 

are locally real analytic complex coordinates of (Cc, 0) and rj =f. Pj 
for each j = 1, ... ,£. Let {jj = rj + Pj, qj = rj- Pj and put qo = 
gcd( q1 , ... , qg). Then the Milnor fibration of f exists at the origin and 
the Milnor fiber F is homotopic to q0 disjoint copies of (S1l-1 and the 
zeta function is given by 

((t) = { (1 - tql ), 

1, 
£=1 
£?. 2. 

Proof. Let qj = rj - Pj and consider the linear C* action (t, g) f--7 

( tg1 , . .. , t9g). Then f can be understood as a polar homogeneous poly­
nomial in 91 , ... , ge. For the Milnor fibration, we can use the polydisk 
B~ which is defined by 

B~ := {(91, · · · ,9e) ll9jl :S: s, j = 1, · · · ,£}, 

as { B~; c > 0} is a homotopy equivalent cofinal neighborhood system of 
the point 0. Note that B~ is diffeomorphic to the usual complex polydisk 

{ (z1' ... 'ze) E c£ llzj I :::; c, j = 1, ... '£}. 

Using this action and polydisk B~, the Milnor fibration can be identified 
with 

f: B~ n f- 1 (DJ)-+ Dj, 0 =f. 6 « c 

where D6 = {p E C IIPI :S: 77} and Dj = D6 \ {0}. Put 9) = rjeie1, j = 
1, ... , £. The Milnor fiber is given by F = f- 1 (8)nB~ = II~~ 1 Fj (disjoint 
union) and 

Fj ={ (91' ... '9£) I rfl ... rj£ = 6, ( e1 q1 + ... + Oeqg) I qo = 27T + 2j 1T} 
qo 

(s1)£-1 · 1 ':::' 'J = ' ... ,qo. 

The monodromy map is given by the periodic map 

h: F-+ F, (91. ... '9£) f--7 (91e21ri/qo' ... '9ce21ri/qo). 

Thus we can see easily F ':::' (S1 )P- 1 and the zeta function is trivial 
(Theorem 9.6, [4]). Q.E.D. 
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5.3. An application and examples 

5.3.1. Holomorphic principal part. Consider a holomorphic function 
g(z) which is convenient and non-degenerate. Let R(z, z) be a mixed 
analytic function such that r(R) is strictly above r(g), i.e. r(R) c 
Int(r +(f)). Consider a convenient non-degenerate mixed function 

f(z, z) = g(z) + R(z, z). 

Then the Milnor fibration is determined by the principal part and there­
fore isomorphic to that of gr(z). Thus the Milnor fibration does not 
change by adding high order mixed monomials above the Newton bound­
ary. The proof can be given by showing the existence of uniform radius 
for the Milnor fibration of ft := g + t R, using a Curve Selection Lemma 
([4, 2]). We just copy the argument in [9] for a family ft, 0 ::::; t ::::; 1. 

5.3.2. Mixed covering. Consider a convenient non-degenerate mixed 
analytic function f(z, z) of strongly polar weighted homogeneous face 
type. Consider a pair of positive integers a > b 2 0 and consider the 
covering mapping 

Put g(w, w) = f(cp(w, w)) = f(w'f'wt ... , w~w~). Consider a face func­
tion with respect toP, fp(z, z) with P = (PI, ... ,pn)· It is a strongly 
polar positive weighted homogeneous polynomial with weight vector P. 
Thus it is a linear combination of monomials zvz~" which satisfies the 
equalities: 

n n 

LPi(vi + f.li) = rdeg f LPi(vi- f.li) = pdeg f. 
i=l i=l 

Then we can observe that gp(w, w) = fp(cp(w)) is a linear combination 
of mixed monomials wav+bJ.LwaJ.L+bv. Thus we have 

rdegp wav+bJ.LwaJ.L+bv = (a + b )rdeg f, 
pdegp wav+bJ.LwaJ.L+bv = (a - b )pdeg f 

which implies that gp is a strongly polar weighted homogeneous poly­
nomial of the same weight P with radial degree rdeg f x (a + b) and 
polar degree pdeg f ( cp( w)) = d( P, f) (a - b). g p is also non-degenerate 
as cp : em --+ e*n is an unbranched covering of degree ( a-b )n. Therefore 
the dual Newton diagram of g is the same as that of f. 

Let n : X --+ en be an admissible toric modification. We use the 
same notation as in the previous section. For each P E S 1 , consider the 
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mapping <pi := 'Pic1 and its restriction to F(gf,): 

Here the toric Milnor fibers are defined by: 

F*(gp) ={wE C*I I gp(wi, wi) = 1}, 

F*(f~) = {w I fMzi) = 1}. 

Put x(P, f)= x(F*(f~)) and x(P, g)= x(F*(gp)). As <pp is a (a-b)III_ 
fold covering, we have 

Proposition 13. 

(14) 

(15) 

x(P,g) =(a- b)IIlx(P,f), 

{ rdegpg =(a+ b)rdegp f, 
pdegpgp =(a- b)pdegp fp. 

From this observation, we have 

Theorem 14. Let g(w, w) = f(c.p(w, w)) and assume that f(z, z) 
is convenient non-degenerate mixed function of strongly polar positive 
weighted homogeneous face type. Then g(w, w) = f(c.p(w, w)) is a non­
degenerate mixed function of strongly polar positive weighted face type. 
The zeta functions of the Milnor fiberings off and g are given by 

(J(t) =II (J,J(t), (J,I = II (1- tpdegpfP)X(P,f)jpdegpfP 

I PES1 

(9(t) =II (g,I(t), (g,I(t) = II (1 _ tpdegp9P)X(P,g)fpdegpgp. 

I PES1 

Furthermore ( 9(t) is determined by that of (t(t) using the above Propo­
sition 13. 

5.3.3. Case a - b = 1. We assume that a - b = 1. Then Theorem 
14 says that (t(t) = (9(t). In this case, <p : e*n ---+ e*n is a homeomor­
phism which extends homeomorphically to en ---+ en. This suggests the 
following. 

Corollary 15. Assume a- b = 1 in the situation of Theorem 14. 

(1) The Milnor fibrations of f(z, z) and g(w, w) are homotopically 
equivalent and the links are homotopic and their zeta functions 
coincide. 
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(2) If in addition, f = fp is a strongly polar weighted homoge­
neous polynomial, the Milnor fibrations J, g are ·topologically 
equivalent and the links are homeomorphic. 

Proof. First, by Theorem 33 ([9]), f and g have stable radius for 
their Milnor fibrations (in the first presentation). Take a common stable 
radius ro > 0. For ro 2': r > 0, put 

B; = B;n \ {0} = {z E en lllzll :::; r, z =f- 0}, 

Kr(f) = f- 1 (0) n s;n-1, Kr(g) = g-1 (0) n s;n-1 , 

V/(f) = j-1 (0) n B;, Vr*(g) = g-1 (0) n B;. 

Then the following fibrations are obviously equivalent to the respective 
Milnor fibrations: 

{ f fiJI : B; \ V/(f) -+ Sl, 
gflgl: B; \ Vr*(g)-+ 8 1 . 

Our homeomorphism cp preserves the values of g and f. For any r :::; r0, 
we can find a decreasing sequence of positive real numbers ri < r 0 , i = 
1, 2, ... so that cp(B;2J ::J B;2i+1 and 

cp((B;2,, V/(g))) ::J (B;2Hl' ~:i+l (!)) ::J cp((B~2i+2 vr:i+2(g))). 

By the cofinal homotopy equivalence sequence argument, 

'P: (B;2,, vr:Jg))-+ (B;2,-1, vr:,_"o(f)) 

is a homotopy equivalence. 
Assume now that f = fp is a strongly polar weighted homoge­

neous polynomial. Recall that we have e* -action defined by t o w = 

(w1tP1 , ••• ,wntPn) and toz = (z1tP1 , ••• ,ZntPn). Put d = pdegpf = 
pdegpg. The monodromy mapping of the global Milnor fibrations are 
given by 

h9 : F(g)-+ F(g), 

ht : F(f) -+ F(f), 

w 1--+ eifd ow, 

z 1--+ eifd ow 
' 

where F(g) = g-1 (1) c en and F(f) = f- 1 (1) c en. As is easily 
observed, we get the equality cp(h9 (w)) = ht(cp(w)). More precisely the 
equivalence of the global fibration follows from the diagram: 
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and r.p is 8 1-equivalent. Now we consider the links on the unit spheres 

Kt = {z E en lllzll = 1, f(z,z) = 0}, 

Kg= {wE en lllwll = 1, g(w, w) = 0}. 

The mappining r.p does not keep the norm. So we need only normalize 
it. This follows from the following observation for JR+ -actions: 

r.p(t ow)= t 2b+1 o rp(w), t E JR+. 

This equality implies that r.p maps a JR+ -orbit to a JR+ -orbit. The hy­
persurfaces J-1 (0) and g-1 (0) are invariant under this action. For any 
non-zero z, along the orbit z(t) :=to z. llz(t)ll is monotone increasing 
for 0 < t < oo. Let us define the normalization map '¢ : en\ {0} -t 

8 2n-1 by 'lj;(z) = z(T) where T is the unique positive real number SO 

that llz(T)II = 1. We define the homeomorphism 'P : Kg -t Kt by 
[p(w) = 'lj;(rp(w)). This proves the second assertion. Q.E.D. 

5.3.4. Holomorphic case. The most interesting case is when f(z) is 
a non-degenerate holomorphic function. Obviously f(z) is of strongly 
polar weighted homogeneous face type. 

Theorem 16. Let f(z) be a convenient non-degenerate holomorphic 
function and let g(w,w) = f(rp(w,w)), rp(w,w) = (wfwr, ... ,w~w~). 
Then ( w, w) is a non-degenerate mixed function of strongly polar positive 
weighted homogeneous face type. 
If a- b = 1, the Milnor fibration of g is homotopically equivalent to that 
of f(z). 

The mixed functions g(w, w) obtained from non-degenerate holo­
morphic functions through the pull-back by a mixed covering r.p give 
many interesting examples of non-degenerate mixed functions of strongly 
polar weighted homogeneous face type. 

5.4. Examples 

(1) Consider the following strongly polar homogeneous polynomial 
(Example 59, [9]) 

For t = 0, go is pull-back of f(z) = -2z1 + z2 by the mixed covering 
mapping r.p: e2 -t e2 with rp(w) = (wiw1 , w~w2). Thus go is equivalent 
to the trivial knot f = 0 and F is contractible and ((t) = (1-t) by Theo­
rem 14. On the other hand, fort> 1, we know that gt is non-degenerate 
and x(F*) = -3, x(F) = -1 and ((t) = (1-t)-1 . This shows that there 
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are mixed functions of strongly polar weighted homogeneous face type 
which are not the pull-back of holomorphic functions. 

(2) Consider the moduli space M(P,pab, (p + 2r)ab) of convenient 
non-degenerate strongly polar weighted homogeneous polynomials 

f(z,z) 

of two variables z = (z1, z2) with weight P = (a, b), gcd(a, b) = 1 and 
pdegpf = pab, rdegpf = (p + 2r)ab. Here r is a positive integer. Put 
h8 (z,z) = lz1l2bs + lz2l2as. Consider the polynomials 

p 8 

fs(z, z) = hr-s(z, z) 11 (zf- O!jZ~) 11 (zf- J3kz~)(zf- ~/kz~) 
j=l k=l 

where 0:::; s:::; rand al, ... ,ap,J31,"fl,···,j3s,"fs are mutually distinct 
non-zero complex numbers. As V Us) C IP'1 consists of p + 2s points, we 
have x(F*) = -p(p + 2s) and (J. (t) = (1- tpab)P+2s-2 (See [8]). 

For any n = 2 + m, we can consider a join type strongly polar 
weighted homogeneous polynomial of m+2 variables z, w with wE Cm: 

F ( - - ) _ J ( -) + p+r -r + + p+r -r 
8 z,w,z,w - 8 z,z wl wl .. . wn wn. 

Then by join theorem ([1]), the Milnor fiber of F8 , s = 0, ... , r have 
different topology. In fact, the Milnor fiber is homotopic to a bouquet 
of spheres and the Milnor number is (p- 1)m(p2 + (2s- 2)p + 1). Thus 
the topology of mixed polynomials is not combinatorial invariant. 
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