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Abstract. 

Let k be an algebraically closed field of characteristic 0. We give 
a brief survey on multiplicity-2 structures on varieties. Let Z be a 
reduced irreducible nonsingular ( n - 1 )-dimensional variety such that 
2Z = X n F, where X is a normal n-fold with canonical singularities, 
F is an (N- 1)-fold in lP'N, such that Z n Sing(X) =1- 0. Assume 
that Sing(X) is equidimensional and codimx(Sing(X)) = 3. We study 
the singularities of X through which Z passes. We also consider Farro 
cones. We discuss the construction of some vector bundles and the 
resolution property of a variety. 

§1. Introduction 

Multiplicity-2 structures on nonsingular varieties appear in several 
instances; for example, when studying nonsingular curves on a Kum
mer surface in JP>3 , passing through some of its nodes [3]. In [1, p. 43], 
W. Barth gave a construction of the Horrocks~Mumford bundle assum
ing the existence of a nonsingular irreducible curve with certain prop
erties. The Horrocks-Mumford bundle is a stable indecomposable rank 
2 vector bundle over lP'4 . A generic irreducible nonsingular curve of de
gree 8 and genus 5 on a Kummer surface satisfies all but one of Barth's 
conditions [5, Proposition 3.5] to be the variety of jumping lines of the 
Horrocks-Mumford bundle in lP'4 . 
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To define a multiplicity-2 structure Y on a codimension 2 nonsin
gular variety Y is, under some conditions, equivalent to defining a sub
bundle L C NYIJP'n. 

Hulek, Okonek and Van de Ven [8] studied multiplicity-2 structures 
on Castelnuovo and Bordiga surfaces in JP>4 as well as on codimension-
2 Castelnuovo manifolds. They also studied locally free resolutions on 
them as well as the stability of the normal bundle on Castelnuovo and 
Bordiga surfaces. Let Y denote a Castelnuovo surface in IP'4 and Y a 
multiplicity-2 structure on Y. Under suitable conditions one can con
struct a rank 2 vector bundle, E, in IP'4 with the non-reduced structure 
Y as the zero-set of a section of E, [9]. 

Vogelaar [17] proved that any local complete intersection subscheme 
of codimension 2 of a nonsingular variety F can be obtained as the 
dependency locus of r - 1 sections of a rank r vector bundle over F of 
determinant L if and only if the determinant of its normal bundle twisted 
with L * is generated by r - 1 global sections, provided the vanishing of 
the second order cohomology of L *. 

Schneider [15] gave a list of problems about vector bundles and low 
odimension subvarieties in projective spaces. 

We believe that our study of varieties which are complete inter
sections with a non reduced structure on them could be used in the 
construction of vector bundles in IP'n. These multiplicity-2 structures 
passing through the singular locus of another variety provide a better 
understanding of the geometry. They could also be of interest in an
swering Totaro's Question: Does every algebraic variety Y have the res
olution property, i.e. every coherent sheaf on Y is a quotient of a locally 
free sheaf of finite rank? [16]. If Y has the resolution property, one could 
construct a resolution of any coherent sheaf F on Y by vector bundles. 
The question has an affirmative answer for quasiprojective varieties [10]. 
The answer is also affirmative for smooth and Q-factorial varieties, since 
every coherent sheaf has a resolution by sums of line bundles. Payne 
[12] studied the question for threefolds and observed that, for a com
plete toric variety X, the resolution property implies the existence of 
nontrivial toric vector bundles. These are vector bundles for the dense 
torus T C X whose underlying vector bundles are nontrivial. In general, 
there is not known way of constructing a nontrivial toric vector bundle 
on an arbitrary complete toric variety [12, p. 3]. 

All varieties are reduced and irreducible unless stated otherwise. 
We would like to thank the Department of Mathematics at the Uni

versity of Toronto for their hospitality during the preparation of this 
manuscript. 
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§2. Curves on Kummer surfaces, Multiplicity-2 structures and 
the Horrocks-Mumford bundle 

Kummer surfaces appear in many different contexts: they are re
lated to abelian surfaces and to the quadric line complex. The minimal 
desingularization of a Kummer surface is a K3 surface. 

Definition 2.1. A (16, 6) configuration is a set of 16 planes and 16 
points in JP'3 such that every plane contains exactly 6 of the 16 points 
and every point lies on exactly 6 of the 16 planes. 

A (16, 6) configuration is non-degenerate if every two planes share 
exactly two points of the configuration and every pair of points is con
tained in exactly two planes. 

Definition 2.2. A Kummer surface 8 in 1P'3 is a reduced irreducible 
quartic surface having 16 nodes, Pi, 1 :::; i :::; 16, and no other singulari
ties. 

Definition 2.3. The lines P1Pi, 2 :::; i :::; 16, are called special lines. 
The planes forming irreducible components of the sixteen enveloping 
cones of 8 at the nodes are called special planes. The section of 8 by 
one of the special planes is a non-singular conic, counted twice; we call 
this conic a special conic. 

Proposition 2.4. The union of the 16 enveloping cones at the 16 
nodes of 8 consists of 16 planes. Each plane cuts out a conic on 8 con
taining 6 nodes. Each node lies on exactly 6 of the 16 conics. Together 
the nodes of 8 and the 16 special planes form a non-degenerate (16, 6) 
configuration. We call this the (16, 6) configuration associated to the 
Kummer surface 8. 

Proof. [4, Proposition 2.16, Corollary 2.18]. Q.E.D. 

Barth's construction [1] relates nonsingular curves of degree 8 and 
genus 5 to the variety of jumping lines of a stable rank 2 vector bundle 
in 1P'4 through a fixed point P E 1P'4 (the Horrocks-Mumford bundle). 
According to Barth's construction of the Horrocks-Mumford bundle, E, 
[1, p. 43], the nonsingular curve C which would be the variety of jumping 
lines of E, has to satisfy 5 properties; we can prove that it satisfies the 
following four: 

• Set-theoretically, C is the complete intersection of a Kummer 
surface 8 1 and a quartic surface 82 in 1P'3 , since 2C ~ 4H, [5, 
(2.91)]. 

• Cis the curve of contact of these surfaces [5; (2.74), (2.93)]. 
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• The exact sequence 

16 16 

0-+ wc(L Pi)-+ Nc-+ Oc(4)(- L Pi) -+ 0 
i=1 i=1 

splits. [5, Theorem 3.17]. 
• C is linearly normal [5, (3.15)], 

but it does not satisfy the required fifth property as we show in the 
following proposition. 

Proposition 2.5. Let C be a generic irreducible nonsingular curve 
of degree 8 and genus 5 on a Kummer surfaceS, passing through its 16 
nodes Pi, 1 ~ i ~ 16. If L = wc(l:i:1 Pi) and M = Oc(4)(- l:i:1 Pi), 
then M 'f. L(-1). 

Proof. [5, (3.18)]. Q.E.D. 

Definition 2.6. Let Y be a smooth variety in lP'n, with ideal sheaf 
ly. A non-reduced structure Y is a multiplicity-2 structure on Y if 

(a) the ideal I-y is such that I-y C [y, 

(b) Y is locally a complete intersection, 
(c) Y has multiplicity 2, i.e. for each point P E Y and a general 

hyperplane H through P the local intersection multiplicity is 

i(P; Y, H)= dimkOPII(YnH) = 2. 

Lemma 2. 7. To define a multiplicity-2 structure Y on a codi
mension 2 nonsingular variety Y is equivalent to defining a subbundle 
L C NYIHDn, assuming that [y / I-y is locally free. 

Proof. Generalization of [8, Lemma 2]. Q.E.D. 

Example A. Let X be the quadric cone in 1P'3 defined by xy - z2 . 

X is normal. The line L, defined by x = z = 0, is a Weil divisor on X 
but not a Cartier divisor because it cannot be defined near the origin by 
one equation (the ideal (x, z) is not principal in the local ring of X at 
the origin). 2£ is a Cartier divisor. 

Definition 2.8. A codimension 2 variety Y C JP>n+ 2 is a Castelnuovo 
variety of dimension n if Y has a resolution 

[8, p. 442]. 
A Bordiga surface is a rational surface in JP>4 of degree 6, [8, p. 445]. 
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Proposition 2.9. Let Y be a nonsingular Castelnuovo surface in 
IP'4 of degree 2b + 1. If Y has a multiplicity-2 structure Y with induced 
canonical bundle wy- the this structure is given by a quotient Nypp>n * --+ 

wy (2- 2b). In this case Y is a complete intersection of type (2, 2b + 1). 
The hyperquadric through Y is unique and is singular along a line L0 c 
Y. 

Proof. [8, Prop. 12]. Q.E.D. 

Proposition 2.10. The only Castelnuovo manifold of dimension 
n 2 3 which admits a multiplicity-2 structure Y such that Y is a complete 
intersection is IP'n embedded linearly. 

Proof. [8, Prop. 15]. Q.E.D. 

§3. On smooth double subvarieties on singular varieties 

Notation. Let X be a normal variety. Let f: V--+ X be a proper 
birational morphism where V is a nonsingular variety. Let D be a Ql
Gorenstein divisor. The pullback f* D is the divisor f* D = f* - 1 D + 
"'2:. diEi, di E Ql, satisfying E}-(f* - 1 D + "'2:. diEi) = 0, for all EJ E Excf, 
where f* - 1 Dis the strict transform of D, [11, 4-6-3]. 

Definition 3.1. A normal variety X of dimension n has only canon
ical singularities (resp. terminal singularities, resp. log terminal singu
larities, resp. log canonical singularities) if 

(a) the canonical divisor Kx is Ql-Cartier, that is, there exists 
e E N such that eKx is a Cartier divisor. The index of the 
singularity is 

index(Kx) = min{e EN: eKxis a Cartier divisor}. 

(b) Consider a projective divisorial resolution f : V --+ X, where 
V is a nonsingular variety. In the ramification formula 

all the coefficients for the exceptional divisors are nonnegative, 
that is ai 2 0, (resp. ai > 0, resp. ai > -1, resp. ai 2 -1) for 
all i. 

Definition 3.2. (a) Let (Ox,P, Mp) be the local ring of a 
point P E X of a k-scheme. Let V C Mp be a finite di
mensional k-vector space which generates Mp as an ideal of 
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Ox,P· By a general hyperplane through P we mean the sub
scheme H C U defined in a suitable pen neighbourhood U of P 
by the ideal (v)Ox, where v E Vis a k-point of a certain dense 
Zariski open set in V, [13, (2.5)]. By a general linear variety 
of codimension r through P we mean the subscheme L c U 
defined in a suitable open neighbourhood U of P by the ideal 
( v1 , · · · , Vr )0 x, where v1 , · · · , Vr E V are k-points of a certain 
dense Zariski open set in V. 

(b) Let X be a singular n-fold. We say that a point Q E Sing(X) is 
a general point of Sing(X) if, for a general hyperplane H such 
that Q E H and for some a divisorial resolution f : V ---+ X, 
the preimage f- 1 (Q) of Q and the strict transform f; 1 (XnH) 
satisfy that f- 1 (Q) c f; 1 (X n H). 

Remark B. Saying that P E X Cohen-Macaulay and canonical 
of index 1 is equivalent to saying that P E X rational Gorenstein, [13, 
p. 286]. 

Definition 3.3. (a) Let X be a threefold. A point P E X 
is called a compound Du Val singularity or a cDV point if, 
for some hyperplane section H through P, P E H is a Du 
Val singularity. Equivalently, P E X is cDV if it is locally 
analytically isomorphic to the hypersurface singularity given 
by f + tg, where g E k[x, y, z, t] is arbitrary and f E k[x, y, z] 
represents a DuVal singularity, [13, (2.1)]. 

(b) Let X be an n-dimensional normal variety and P a point of X. 
Let P be an n-fold isolated singularity (that is, the spectrum 
of an equicharacteristic local noetherian complete ring of Krull 
dimension n, without zero divisors, whose closed point P is 
singular). Let 1r : X ---+ X be the minimal desingularization of 
X at P. The genus of a normal singularity Pis defined to be 
dimk (Rn-l7r*Ox)p· If the genus is 0, the singularity is said 
to be rational. If the genus is 1, it is elliptic. 

Proposition 3.4. Let X be ann-dimensional variety, n?: 2. 

(a) If P E X is a rational Gorenstein point then, for a general 
hyperplane section H through P, P E H is elliptic or rational 
Gorenstein. 

(b) If there exists a hyperplane section H through P such that 
P E H is a rational Gorenstein then P E X is a rational 
Gorenstein. In particular, cDV points are canonical. 

Proof. [13, (2.6)]. Q.E.D. 
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Note C (Generalized Reid's Method). Let X be a normal variety 
of dimension n in lP'N. To study canonical and terminal singularities 
of the n-fold X, we reduce by one its dimension by taking a general 
hyperplane section meeting Sing(X). We use the information on the 
hyperplane section to analyze the original singularity of X, [11, p. 198], 
[14]. We keep repeating this procedure as follows: 

Let H 0 be a general hyperplane through Sing(X). 
Let Hr+l, 0 :::; r :::; n- 3, be a general hyperplane through the 

singular locus of Xr =X n Ho n · · · n Hr. 
dim(Xr) = n- r -1. 
Let L k+ 1 be a general linear variety of co dimension k + 1 in lP'N, 

0:::; k:::; n- 3 such that Sing(X) n Lk+l -#0. Let Wk =X n Lk+l· 
Note that, if Lk+l = Ho n · · · n Hk, Xk = Wk, [7, Note 3.3]. 
This method of studying singularities by taking hyperplane sections 

encounter serious problems when studying isolated singularities. Note 
that, by Proposition 3.4, if P E X is a rational Gorenstein point then, for 
a general hyperplane section H through P, P E H is elliptic or rational 
Gorenstein. 

Remark D. Note that to study canonical terminal singularities, 
log-terminal and log-canonical of the n-fold X, we could reduce the 
problem to study X n Y, where Y is a general nonsingular variety [7, 
(3.8)]. 

Proposition 3.5. Let X be a normal singular n-fold with only 
canonical singularities. Let Wr be as in Note C. Assume that 

for all r, 0 :::; r :::; n- 3. Every point of X has an analytic neighbourhood 
which is ( nonsingular or) isomorphic to P x A n-2 , where P is a Du Val 
surface singularity. 

Proof. [7, (5.2)]. Q.E.D. 

Note E. Let C be an irreducible nonsingular curve 2C = V n W, 
where V and W are two surfaces and W has at most rational double 
points. Let us suppose that C passes through a rational double point P 
of W. Let W be the minimal desingularization of W at P, 1r : W ---+ W. 
Let Ek, 1 :::; k :::; n, be the irreducible components of the exceptional 
divisor. The total transform 1r* (2C) = I:?=l (3j Ej + 2E, where E is the 
strict transform of C, (3j E N. 

Proposition 3.6. Let C be an irreducible nonsingular curve 2C = 
V n W, where V and W are two surfaces and W has only rational double 
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points as singularities. Assume that C passes through a rational double 
point P of W. P cannot be either of type A2r, r E N, or type E5, or 
E 8 . For C to pass only through one singularity of type A2r+1, r EN, we 

must have (2::~:~ 1 /3jEj) 2 = -(2r + 2). For C to pass only through one 

singularity of type E 7 , we must have (2::}=1 f3JEj )2 = -6. For C to pass 
only through one singularity of type Dn, n :2:: 4, we must have that either 

(2::7=1 f3JEj) 2 = -4, or, for n = 2k, kEN, k :2:: 3, (2::7=1 f3JEj) 2 = -n. 

Proof. [6, Theorem 0.9]. Q.E.D. 

Proposition 3. 7. Let Z be a reduced irreducible nonsingular ( n-1)
dimensional variety such that 2Z = X n Y, where X is an n-fold and 
Y is an ( N - 1) -fold in lP'N, X normal with canonical singularities and 
such that Z n Sing(X) =J 0. Let Wr be as in Note C. Assume that 
codimwr (Sing(Wr)) = 2, for all r, 0 ::; r ::; n- 4. Then Z has empty in
tersection with canonical singularities of X which have analytical neigh
bourhoods isomorphic to P X An-2, where P is a rational surface sin
gularity of types A 2k, k EN, E 6 and E8 . For Z to have non-empty in
tersection with canonical singularities of X which have analytical neigh
bourhoods isomorphic to P x A n-2 , where P is a rational surface singu-

. ('\'2k+1 ) 2 ( ) larzty of type A2k+1, k E N we must have ~j=1 /3jEj = - 2k + 2 , 
where Ej, 1 ::; j ::; 2k + 1, are the irreducible components of the excep
tional divisor supported on 1r-1 (P) for 1r : W~_3 -+ Wn_ 3 the minimal 
resolution of P E Wn_ 3 n Y. For P to be of type E7, we must have 

(2::}=1 f3JEJ) 2 = -6, where Ek, 1 ::; k ::; 7, are the irreducible compo
nents of the exceptional divisor as above. For P to be of type Dn, n :2:: 4, 

we must have that either (2::7=1 /3jEJ) 2 = -4, or, for n = 2k, k E N, 

k :2:: 3, (2::7=1 f3JEJ) 2 = -n, where Ek, 1 ::; k ::; n, are the irreducible 
components of the exceptional divisor as above. 

Proof. [7, Corollary 7.2]. Q.E.D. 

Proposition 3.8. Let Z be a reduced irreducible nonsingular ( n-1)
dimensional variety such that 2Z = X n Y, where X is ann-fold and 
Y is an ( N - 1)-fold in lP'N, X normal with canonical singularities and 
such that Z n Sing(X) =J 0. Assume that codimx(Sing(X)) = 3. Let 
Wr be as in Note C, for all r, 0 ::; r ::; n- 4. Then, Sing(Wn-4) is a 
union of canonical isolated singularities P 's. Let us assume that there 
exists a hyperplane section H' through P such that Wn_ 4 n H' is a nor
mal surface with rational double points. Then Z has empty intersection 
with canonical singularities of X which have analytical neighbourhoods 
isomorphic to P x A n-3 , where P is a rational surface singularity in 
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Sing(Wn-4 n H') of types A2k, k E N, E6 and Es. For Z to have 
non-empty intersection with canonical singularities of X which have an
alytical neighbourhoods isomorphic to P x A n-3 , where P is a ratio
nal surface singularity in Sing(Wn-4 n H') of type A2k+1 , k E N, we 

2k+1 2 
must have (2=1= 1 f31E1) = -(2k + 2), where Ej, 1 :::; j :::; 2k + 1, 
are the irreducible components of the exceptional divisor supported on 

(7rwn-4nH')-1(P) for 1fWn-4nH': (Wn-~ n H')--+ Wn-4 n H' the min
imal resolution of P, P E Wn-4 n H' n Y, or P to be of type E7 , we 

must have (2:.::;=1 (31E1)2 = -6, where Ek, 1:::; k:::; 7, are the irreducible 
components of the exceptional divisor as above. For P to be of type Dn, 
n :2: 4, we must have that either (2:.::?=1 f3JEj) 2 = -4, or, for n = 2k, 

k E N, k :2: 3, (2:.::?=1 /3jEj) 2 = -n, where Ek, 1 :::; k :::; n, are the 
irreducible components of the exceptional divisor as above. 

Proof. Since dim(Wn-4) = 3, dim(Sing(Wn-4)) = 0. 
Thus, Sing(Wn_4) is a union of isolated canonical singularities P's. 

We assume that there exists a hyperplane section H' through P such 
that Wn_ 4 n H' is a normal surface with rational double points. Given 
2Z = X n Y we intersect it with H 0 , H,.., 0 :::; r :::; n - 4, as follows: 
2ZnH0 n · · · nHn_4 nH' = YnXnH0 n · · · nHn_4 nH'. We obtain a 
nonsingular curve C such that 2C = Y n X n H0 n · · · n Hn-4 n H' and 
that C n Sing(Wn_4 n H') =/= 0. We apply Proposition 3.6 to obtain the 
result. Q.E.D. 

Definition 3.9. A Fano variety X is a normal projective variety 
with log terminal singularities such that the anticanonical divisor -Kx 
is an ample Q-Cartier divisor. Let H E Pic(X) be a primitive ample 
divisor class. The Fano index s = i(X) is defined by Kx = -sH; 
s:::; dimX + 1. 

Lemma 3.10. Let Y be a smooth projectively normal subvariety of 
IP'N, with hyperplane divisor H such that Ky linearly equivalent to qH, 
for q E Q. Let X be the cone in JP'N+1 over Y. Let X be the 1P'1 -bundle 
1r : IP'( Oy El:l Oy (H)) --+ Y. Let Yo be the section cor-responding to the 
quotient Oy(H) of Oy El:lOy(H), such that YoiY ~-H. Let f: X--+ X 
the contraction of Y0 . We have that 

Kx = j* Kx + ( -1- q)H. 

Thus, the singularities of X are log terminal if and only if q < 0. X is 
a Fano variety if and only if Y is a Fano variety. 

Proof. [2, p. 95]. Q.E.D. 
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Corollary 3.11. Let Y be a smooth projectively normal subvariety 
of!P'N, with hyperplane divisor H such that K y linearly equivalent to qH, 
for q E Q. Let X be the cone in JP'N+l over Y. Thus, the singularities 
of X are terminal ( resp. canonical, resp. log canonical) if and only if 
q < -1 (resp. q::; -1, resp. q::; 0). 

Proof. Immediate from Lemma 3.10 and Definition 3.1. Q.E.D. 

Example F. Let us consider the canonical Fano 4-fold X obtained 
as follows. Let us embed IP'1 x!P'3 into JP'19 by the line bundle H = 0(1, 2). 
Let Y be a hyperplane section of IP'1 x JP'3 . Let X be the projective cone 
over Y. KJPlxJP3 = -2H, Ky = -H, Kx = -2H. X is a canonical Fano 
4-fold, with a canonical singularity at the vertex of the cone. Let Z be a 
reduced irreducible nonsingular threefold such that 2Z =X n Y, where 
X is the 4-fold and Y is a hypersurface in JP'19 , X normal with canonical 
singularities and such that ZnSing(X) # 0. We consider a linear variety 
of dimension 2, W, through P E Z n Sing(X), W sufficiently general. 
P' E W n Z n Sing(X) is an elliptic surface singularity. Note that the 
multiplicity of the vertex of the cone is greater than 2. 
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