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Abstract. 

Let k be an algebraically closed field of characteristic 0. We give 
a brief survey on multiplicity-2 structures on varieties. Let Z be a 
reduced irreducible nonsingular ( n - 1 )-dimensional variety such that 
2Z = X n F, where X is a normal n-fold with canonical singularities, 
F is an (N- 1)-fold in lP'N, such that Z n Sing(X) =1- 0. Assume 
that Sing(X) is equidimensional and codimx(Sing(X)) = 3. We study 
the singularities of X through which Z passes. We also consider Farro 
cones. We discuss the construction of some vector bundles and the 
resolution property of a variety. 

§1. Introduction 

Multiplicity-2 structures on nonsingular varieties appear in several 
instances; for example, when studying nonsingular curves on a Kum­
mer surface in JP>3 , passing through some of its nodes [3]. In [1, p. 43], 
W. Barth gave a construction of the Horrocks~Mumford bundle assum­
ing the existence of a nonsingular irreducible curve with certain prop­
erties. The Horrocks-Mumford bundle is a stable indecomposable rank 
2 vector bundle over lP'4 . A generic irreducible nonsingular curve of de­
gree 8 and genus 5 on a Kummer surface satisfies all but one of Barth's 
conditions [5, Proposition 3.5] to be the variety of jumping lines of the 
Horrocks-Mumford bundle in lP'4 . 
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To define a multiplicity-2 structure Y on a codimension 2 nonsin­
gular variety Y is, under some conditions, equivalent to defining a sub­
bundle L C NYIJP'n. 

Hulek, Okonek and Van de Ven [8] studied multiplicity-2 structures 
on Castelnuovo and Bordiga surfaces in JP>4 as well as on codimension-
2 Castelnuovo manifolds. They also studied locally free resolutions on 
them as well as the stability of the normal bundle on Castelnuovo and 
Bordiga surfaces. Let Y denote a Castelnuovo surface in IP'4 and Y a 
multiplicity-2 structure on Y. Under suitable conditions one can con­
struct a rank 2 vector bundle, E, in IP'4 with the non-reduced structure 
Y as the zero-set of a section of E, [9]. 

Vogelaar [17] proved that any local complete intersection subscheme 
of codimension 2 of a nonsingular variety F can be obtained as the 
dependency locus of r - 1 sections of a rank r vector bundle over F of 
determinant L if and only if the determinant of its normal bundle twisted 
with L * is generated by r - 1 global sections, provided the vanishing of 
the second order cohomology of L *. 

Schneider [15] gave a list of problems about vector bundles and low 
odimension subvarieties in projective spaces. 

We believe that our study of varieties which are complete inter­
sections with a non reduced structure on them could be used in the 
construction of vector bundles in IP'n. These multiplicity-2 structures 
passing through the singular locus of another variety provide a better 
understanding of the geometry. They could also be of interest in an­
swering Totaro's Question: Does every algebraic variety Y have the res­
olution property, i.e. every coherent sheaf on Y is a quotient of a locally 
free sheaf of finite rank? [16]. If Y has the resolution property, one could 
construct a resolution of any coherent sheaf F on Y by vector bundles. 
The question has an affirmative answer for quasiprojective varieties [10]. 
The answer is also affirmative for smooth and Q-factorial varieties, since 
every coherent sheaf has a resolution by sums of line bundles. Payne 
[12] studied the question for threefolds and observed that, for a com­
plete toric variety X, the resolution property implies the existence of 
nontrivial toric vector bundles. These are vector bundles for the dense 
torus T C X whose underlying vector bundles are nontrivial. In general, 
there is not known way of constructing a nontrivial toric vector bundle 
on an arbitrary complete toric variety [12, p. 3]. 

All varieties are reduced and irreducible unless stated otherwise. 
We would like to thank the Department of Mathematics at the Uni­

versity of Toronto for their hospitality during the preparation of this 
manuscript. 
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§2. Curves on Kummer surfaces, Multiplicity-2 structures and 
the Horrocks-Mumford bundle 

Kummer surfaces appear in many different contexts: they are re­
lated to abelian surfaces and to the quadric line complex. The minimal 
desingularization of a Kummer surface is a K3 surface. 

Definition 2.1. A (16, 6) configuration is a set of 16 planes and 16 
points in JP'3 such that every plane contains exactly 6 of the 16 points 
and every point lies on exactly 6 of the 16 planes. 

A (16, 6) configuration is non-degenerate if every two planes share 
exactly two points of the configuration and every pair of points is con­
tained in exactly two planes. 

Definition 2.2. A Kummer surface 8 in 1P'3 is a reduced irreducible 
quartic surface having 16 nodes, Pi, 1 :::; i :::; 16, and no other singulari­
ties. 

Definition 2.3. The lines P1Pi, 2 :::; i :::; 16, are called special lines. 
The planes forming irreducible components of the sixteen enveloping 
cones of 8 at the nodes are called special planes. The section of 8 by 
one of the special planes is a non-singular conic, counted twice; we call 
this conic a special conic. 

Proposition 2.4. The union of the 16 enveloping cones at the 16 
nodes of 8 consists of 16 planes. Each plane cuts out a conic on 8 con­
taining 6 nodes. Each node lies on exactly 6 of the 16 conics. Together 
the nodes of 8 and the 16 special planes form a non-degenerate (16, 6) 
configuration. We call this the (16, 6) configuration associated to the 
Kummer surface 8. 

Proof. [4, Proposition 2.16, Corollary 2.18]. Q.E.D. 

Barth's construction [1] relates nonsingular curves of degree 8 and 
genus 5 to the variety of jumping lines of a stable rank 2 vector bundle 
in 1P'4 through a fixed point P E 1P'4 (the Horrocks-Mumford bundle). 
According to Barth's construction of the Horrocks-Mumford bundle, E, 
[1, p. 43], the nonsingular curve C which would be the variety of jumping 
lines of E, has to satisfy 5 properties; we can prove that it satisfies the 
following four: 

• Set-theoretically, C is the complete intersection of a Kummer 
surface 8 1 and a quartic surface 82 in 1P'3 , since 2C ~ 4H, [5, 
(2.91)]. 

• Cis the curve of contact of these surfaces [5; (2.74), (2.93)]. 
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• The exact sequence 

16 16 

0-+ wc(L Pi)-+ Nc-+ Oc(4)(- L Pi) -+ 0 
i=1 i=1 

splits. [5, Theorem 3.17]. 
• C is linearly normal [5, (3.15)], 

but it does not satisfy the required fifth property as we show in the 
following proposition. 

Proposition 2.5. Let C be a generic irreducible nonsingular curve 
of degree 8 and genus 5 on a Kummer surfaceS, passing through its 16 
nodes Pi, 1 ~ i ~ 16. If L = wc(l:i:1 Pi) and M = Oc(4)(- l:i:1 Pi), 
then M 'f. L(-1). 

Proof. [5, (3.18)]. Q.E.D. 

Definition 2.6. Let Y be a smooth variety in lP'n, with ideal sheaf 
ly. A non-reduced structure Y is a multiplicity-2 structure on Y if 

(a) the ideal I-y is such that I-y C [y, 

(b) Y is locally a complete intersection, 
(c) Y has multiplicity 2, i.e. for each point P E Y and a general 

hyperplane H through P the local intersection multiplicity is 

i(P; Y, H)= dimkOPII(YnH) = 2. 

Lemma 2. 7. To define a multiplicity-2 structure Y on a codi­
mension 2 nonsingular variety Y is equivalent to defining a subbundle 
L C NYIHDn, assuming that [y / I-y is locally free. 

Proof. Generalization of [8, Lemma 2]. Q.E.D. 

Example A. Let X be the quadric cone in 1P'3 defined by xy - z2 . 

X is normal. The line L, defined by x = z = 0, is a Weil divisor on X 
but not a Cartier divisor because it cannot be defined near the origin by 
one equation (the ideal (x, z) is not principal in the local ring of X at 
the origin). 2£ is a Cartier divisor. 

Definition 2.8. A codimension 2 variety Y C JP>n+ 2 is a Castelnuovo 
variety of dimension n if Y has a resolution 

[8, p. 442]. 
A Bordiga surface is a rational surface in JP>4 of degree 6, [8, p. 445]. 
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Proposition 2.9. Let Y be a nonsingular Castelnuovo surface in 
IP'4 of degree 2b + 1. If Y has a multiplicity-2 structure Y with induced 
canonical bundle wy- the this structure is given by a quotient Nypp>n * --+ 

wy (2- 2b). In this case Y is a complete intersection of type (2, 2b + 1). 
The hyperquadric through Y is unique and is singular along a line L0 c 
Y. 

Proof. [8, Prop. 12]. Q.E.D. 

Proposition 2.10. The only Castelnuovo manifold of dimension 
n 2 3 which admits a multiplicity-2 structure Y such that Y is a complete 
intersection is IP'n embedded linearly. 

Proof. [8, Prop. 15]. Q.E.D. 

§3. On smooth double subvarieties on singular varieties 

Notation. Let X be a normal variety. Let f: V--+ X be a proper 
birational morphism where V is a nonsingular variety. Let D be a Ql­
Gorenstein divisor. The pullback f* D is the divisor f* D = f* - 1 D + 
"'2:. diEi, di E Ql, satisfying E}-(f* - 1 D + "'2:. diEi) = 0, for all EJ E Excf, 
where f* - 1 Dis the strict transform of D, [11, 4-6-3]. 

Definition 3.1. A normal variety X of dimension n has only canon­
ical singularities (resp. terminal singularities, resp. log terminal singu­
larities, resp. log canonical singularities) if 

(a) the canonical divisor Kx is Ql-Cartier, that is, there exists 
e E N such that eKx is a Cartier divisor. The index of the 
singularity is 

index(Kx) = min{e EN: eKxis a Cartier divisor}. 

(b) Consider a projective divisorial resolution f : V --+ X, where 
V is a nonsingular variety. In the ramification formula 

all the coefficients for the exceptional divisors are nonnegative, 
that is ai 2 0, (resp. ai > 0, resp. ai > -1, resp. ai 2 -1) for 
all i. 

Definition 3.2. (a) Let (Ox,P, Mp) be the local ring of a 
point P E X of a k-scheme. Let V C Mp be a finite di­
mensional k-vector space which generates Mp as an ideal of 
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Ox,P· By a general hyperplane through P we mean the sub­
scheme H C U defined in a suitable pen neighbourhood U of P 
by the ideal (v)Ox, where v E Vis a k-point of a certain dense 
Zariski open set in V, [13, (2.5)]. By a general linear variety 
of codimension r through P we mean the subscheme L c U 
defined in a suitable open neighbourhood U of P by the ideal 
( v1 , · · · , Vr )0 x, where v1 , · · · , Vr E V are k-points of a certain 
dense Zariski open set in V. 

(b) Let X be a singular n-fold. We say that a point Q E Sing(X) is 
a general point of Sing(X) if, for a general hyperplane H such 
that Q E H and for some a divisorial resolution f : V ---+ X, 
the preimage f- 1 (Q) of Q and the strict transform f; 1 (XnH) 
satisfy that f- 1 (Q) c f; 1 (X n H). 

Remark B. Saying that P E X Cohen-Macaulay and canonical 
of index 1 is equivalent to saying that P E X rational Gorenstein, [13, 
p. 286]. 

Definition 3.3. (a) Let X be a threefold. A point P E X 
is called a compound Du Val singularity or a cDV point if, 
for some hyperplane section H through P, P E H is a Du 
Val singularity. Equivalently, P E X is cDV if it is locally 
analytically isomorphic to the hypersurface singularity given 
by f + tg, where g E k[x, y, z, t] is arbitrary and f E k[x, y, z] 
represents a DuVal singularity, [13, (2.1)]. 

(b) Let X be an n-dimensional normal variety and P a point of X. 
Let P be an n-fold isolated singularity (that is, the spectrum 
of an equicharacteristic local noetherian complete ring of Krull 
dimension n, without zero divisors, whose closed point P is 
singular). Let 1r : X ---+ X be the minimal desingularization of 
X at P. The genus of a normal singularity Pis defined to be 
dimk (Rn-l7r*Ox)p· If the genus is 0, the singularity is said 
to be rational. If the genus is 1, it is elliptic. 

Proposition 3.4. Let X be ann-dimensional variety, n?: 2. 

(a) If P E X is a rational Gorenstein point then, for a general 
hyperplane section H through P, P E H is elliptic or rational 
Gorenstein. 

(b) If there exists a hyperplane section H through P such that 
P E H is a rational Gorenstein then P E X is a rational 
Gorenstein. In particular, cDV points are canonical. 

Proof. [13, (2.6)]. Q.E.D. 
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Note C (Generalized Reid's Method). Let X be a normal variety 
of dimension n in lP'N. To study canonical and terminal singularities 
of the n-fold X, we reduce by one its dimension by taking a general 
hyperplane section meeting Sing(X). We use the information on the 
hyperplane section to analyze the original singularity of X, [11, p. 198], 
[14]. We keep repeating this procedure as follows: 

Let H 0 be a general hyperplane through Sing(X). 
Let Hr+l, 0 :::; r :::; n- 3, be a general hyperplane through the 

singular locus of Xr =X n Ho n · · · n Hr. 
dim(Xr) = n- r -1. 
Let L k+ 1 be a general linear variety of co dimension k + 1 in lP'N, 

0:::; k:::; n- 3 such that Sing(X) n Lk+l -#0. Let Wk =X n Lk+l· 
Note that, if Lk+l = Ho n · · · n Hk, Xk = Wk, [7, Note 3.3]. 
This method of studying singularities by taking hyperplane sections 

encounter serious problems when studying isolated singularities. Note 
that, by Proposition 3.4, if P E X is a rational Gorenstein point then, for 
a general hyperplane section H through P, P E H is elliptic or rational 
Gorenstein. 

Remark D. Note that to study canonical terminal singularities, 
log-terminal and log-canonical of the n-fold X, we could reduce the 
problem to study X n Y, where Y is a general nonsingular variety [7, 
(3.8)]. 

Proposition 3.5. Let X be a normal singular n-fold with only 
canonical singularities. Let Wr be as in Note C. Assume that 

for all r, 0 :::; r :::; n- 3. Every point of X has an analytic neighbourhood 
which is ( nonsingular or) isomorphic to P x A n-2 , where P is a Du Val 
surface singularity. 

Proof. [7, (5.2)]. Q.E.D. 

Note E. Let C be an irreducible nonsingular curve 2C = V n W, 
where V and W are two surfaces and W has at most rational double 
points. Let us suppose that C passes through a rational double point P 
of W. Let W be the minimal desingularization of W at P, 1r : W ---+ W. 
Let Ek, 1 :::; k :::; n, be the irreducible components of the exceptional 
divisor. The total transform 1r* (2C) = I:?=l (3j Ej + 2E, where E is the 
strict transform of C, (3j E N. 

Proposition 3.6. Let C be an irreducible nonsingular curve 2C = 
V n W, where V and W are two surfaces and W has only rational double 
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points as singularities. Assume that C passes through a rational double 
point P of W. P cannot be either of type A2r, r E N, or type E5, or 
E 8 . For C to pass only through one singularity of type A2r+1, r EN, we 

must have (2::~:~ 1 /3jEj) 2 = -(2r + 2). For C to pass only through one 

singularity of type E 7 , we must have (2::}=1 f3JEj )2 = -6. For C to pass 
only through one singularity of type Dn, n :2:: 4, we must have that either 

(2::7=1 f3JEj) 2 = -4, or, for n = 2k, kEN, k :2:: 3, (2::7=1 f3JEj) 2 = -n. 

Proof. [6, Theorem 0.9]. Q.E.D. 

Proposition 3. 7. Let Z be a reduced irreducible nonsingular ( n-1)­
dimensional variety such that 2Z = X n Y, where X is an n-fold and 
Y is an ( N - 1) -fold in lP'N, X normal with canonical singularities and 
such that Z n Sing(X) =J 0. Let Wr be as in Note C. Assume that 
codimwr (Sing(Wr)) = 2, for all r, 0 ::; r ::; n- 4. Then Z has empty in­
tersection with canonical singularities of X which have analytical neigh­
bourhoods isomorphic to P X An-2, where P is a rational surface sin­
gularity of types A 2k, k EN, E 6 and E8 . For Z to have non-empty in­
tersection with canonical singularities of X which have analytical neigh­
bourhoods isomorphic to P x A n-2 , where P is a rational surface singu-

. ('\'2k+1 ) 2 ( ) larzty of type A2k+1, k E N we must have ~j=1 /3jEj = - 2k + 2 , 
where Ej, 1 ::; j ::; 2k + 1, are the irreducible components of the excep­
tional divisor supported on 1r-1 (P) for 1r : W~_3 -+ Wn_ 3 the minimal 
resolution of P E Wn_ 3 n Y. For P to be of type E7, we must have 

(2::}=1 f3JEJ) 2 = -6, where Ek, 1 ::; k ::; 7, are the irreducible compo­
nents of the exceptional divisor as above. For P to be of type Dn, n :2:: 4, 

we must have that either (2::7=1 /3jEJ) 2 = -4, or, for n = 2k, k E N, 

k :2:: 3, (2::7=1 f3JEJ) 2 = -n, where Ek, 1 ::; k ::; n, are the irreducible 
components of the exceptional divisor as above. 

Proof. [7, Corollary 7.2]. Q.E.D. 

Proposition 3.8. Let Z be a reduced irreducible nonsingular ( n-1)­
dimensional variety such that 2Z = X n Y, where X is ann-fold and 
Y is an ( N - 1)-fold in lP'N, X normal with canonical singularities and 
such that Z n Sing(X) =J 0. Assume that codimx(Sing(X)) = 3. Let 
Wr be as in Note C, for all r, 0 ::; r ::; n- 4. Then, Sing(Wn-4) is a 
union of canonical isolated singularities P 's. Let us assume that there 
exists a hyperplane section H' through P such that Wn_ 4 n H' is a nor­
mal surface with rational double points. Then Z has empty intersection 
with canonical singularities of X which have analytical neighbourhoods 
isomorphic to P x A n-3 , where P is a rational surface singularity in 
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Sing(Wn-4 n H') of types A2k, k E N, E6 and Es. For Z to have 
non-empty intersection with canonical singularities of X which have an­
alytical neighbourhoods isomorphic to P x A n-3 , where P is a ratio­
nal surface singularity in Sing(Wn-4 n H') of type A2k+1 , k E N, we 

2k+1 2 
must have (2=1= 1 f31E1) = -(2k + 2), where Ej, 1 :::; j :::; 2k + 1, 
are the irreducible components of the exceptional divisor supported on 

(7rwn-4nH')-1(P) for 1fWn-4nH': (Wn-~ n H')--+ Wn-4 n H' the min­
imal resolution of P, P E Wn-4 n H' n Y, or P to be of type E7 , we 

must have (2:.::;=1 (31E1)2 = -6, where Ek, 1:::; k:::; 7, are the irreducible 
components of the exceptional divisor as above. For P to be of type Dn, 
n :2: 4, we must have that either (2:.::?=1 f3JEj) 2 = -4, or, for n = 2k, 

k E N, k :2: 3, (2:.::?=1 /3jEj) 2 = -n, where Ek, 1 :::; k :::; n, are the 
irreducible components of the exceptional divisor as above. 

Proof. Since dim(Wn-4) = 3, dim(Sing(Wn-4)) = 0. 
Thus, Sing(Wn_4) is a union of isolated canonical singularities P's. 

We assume that there exists a hyperplane section H' through P such 
that Wn_ 4 n H' is a normal surface with rational double points. Given 
2Z = X n Y we intersect it with H 0 , H,.., 0 :::; r :::; n - 4, as follows: 
2ZnH0 n · · · nHn_4 nH' = YnXnH0 n · · · nHn_4 nH'. We obtain a 
nonsingular curve C such that 2C = Y n X n H0 n · · · n Hn-4 n H' and 
that C n Sing(Wn_4 n H') =/= 0. We apply Proposition 3.6 to obtain the 
result. Q.E.D. 

Definition 3.9. A Fano variety X is a normal projective variety 
with log terminal singularities such that the anticanonical divisor -Kx 
is an ample Q-Cartier divisor. Let H E Pic(X) be a primitive ample 
divisor class. The Fano index s = i(X) is defined by Kx = -sH; 
s:::; dimX + 1. 

Lemma 3.10. Let Y be a smooth projectively normal subvariety of 
IP'N, with hyperplane divisor H such that Ky linearly equivalent to qH, 
for q E Q. Let X be the cone in JP'N+1 over Y. Let X be the 1P'1 -bundle 
1r : IP'( Oy El:l Oy (H)) --+ Y. Let Yo be the section cor-responding to the 
quotient Oy(H) of Oy El:lOy(H), such that YoiY ~-H. Let f: X--+ X 
the contraction of Y0 . We have that 

Kx = j* Kx + ( -1- q)H. 

Thus, the singularities of X are log terminal if and only if q < 0. X is 
a Fano variety if and only if Y is a Fano variety. 

Proof. [2, p. 95]. Q.E.D. 
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Corollary 3.11. Let Y be a smooth projectively normal subvariety 
of!P'N, with hyperplane divisor H such that K y linearly equivalent to qH, 
for q E Q. Let X be the cone in JP'N+l over Y. Thus, the singularities 
of X are terminal ( resp. canonical, resp. log canonical) if and only if 
q < -1 (resp. q::; -1, resp. q::; 0). 

Proof. Immediate from Lemma 3.10 and Definition 3.1. Q.E.D. 

Example F. Let us consider the canonical Fano 4-fold X obtained 
as follows. Let us embed IP'1 x!P'3 into JP'19 by the line bundle H = 0(1, 2). 
Let Y be a hyperplane section of IP'1 x JP'3 . Let X be the projective cone 
over Y. KJPlxJP3 = -2H, Ky = -H, Kx = -2H. X is a canonical Fano 
4-fold, with a canonical singularity at the vertex of the cone. Let Z be a 
reduced irreducible nonsingular threefold such that 2Z =X n Y, where 
X is the 4-fold and Y is a hypersurface in JP'19 , X normal with canonical 
singularities and such that ZnSing(X) # 0. We consider a linear variety 
of dimension 2, W, through P E Z n Sing(X), W sufficiently general. 
P' E W n Z n Sing(X) is an elliptic surface singularity. Note that the 
multiplicity of the vertex of the cone is greater than 2. 
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