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Wave front set defined by wave packet transform 
and its application 

Keiichi Kato, Masaharu Kobayashi and Shingo Ito 

Abstract. 

We introduce the wave front set W F'f•q by using the wave packet 
transform. This is another characterization of the Fourier-Lebesgue 
type wave front set WF.rL~· We apply this to the propagation of 
singularities for the wave equation. 

§1. Introduction 

In this talk, we introduce the wave front set W F[•q (Definition 1.1) 
by using the wave packet transform. 

The wave packet transform has been introduced by C6rdoba-Fefferman 
[1]. For u E S'(JRn) and¢ E S(JRn) with ¢(0) f=- 0, the wave packet trans­
form W q, u is defined by 

(1) Wq,u(x, e)= { ¢(y- x)u(y)e-iy·t;,dy, 
J.JRn 

which has the information of frequency of u around x. 

Definition 1.1. Let 1 :::; p, q :::; oo, s E lR, (xo, eo) E ]Rn x (lRn\ {0}) 
and u E S'(JRn). Then (xo,eo) ~ WF[·q(u) means that there exists 
a neighborhood K of Xo, a conic neighborhood r of eo and a function 
¢ E CQ"(JR) with ¢(0) f=- 0 satisfying that 

(2) 

where (e) = (1 + lel2 ) 112 , XK and xr are characteristic functions of K 
and r' respectively. 
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As an application of W FJ,q, we give the following theorem on prop­
agation of singularities. 

Theorem 1. Let 1 :::; p, q :::; oo and r E R Suppose that u E 

C(JR; S'(JR.n)) satisfies 

(3) {
(8t ± iiDI)u(t, x) = 0, 

u(O,x) = uo(x), 

(t, x) E JR.n+l, 

where i = A and IDI = F-1 I(IF. If (xo,(o) tJ. WFf,q(uo) then 
(xo ± ~t,(o) tJ. WFf,q(u(t, ·))for all t E R 

We briefly review some background on the wave front sets and prop­
agation of singularities. The notion of wave front set, introduced by 
Hormander [3] is a main tool of microlocal analysis. There are many 
kind of wave front sets. For example, 0 00 type, analytic type, Sobolev 
type, Fourier-Lebesgue type and so on (see Hormander [4], Sato-Kawai­
Kashiwara [8], Pilipovic-Teofanov-Toft [6]). Here, we focus on the 
Fourier-Lebesgue type wave front sets. For 1 :::; q :::; oo and s E JR., 
the Fourier-Lebesgue space FLHJR.n) is the set of all distributions u E 

S'(JR.n) such that u(() = fJRn u(x)e-ix·e is a function and 11(() 8 u(~)llq· 

We note that FL~(JR.n) is the sobolev space H 8 (1R.n). While, the Fourier­
Lebesgue type wave front set W F .FL~ ( u) defined by [6] is defined as fol­
lows. For (xo,~o) E JR.n x (lRn\{0}), (xo,~o) tJ. WFFL~(u) means that 
there exist a conic neighborhood r of ~0 and a function a E C(f (JR.n) 
with a(x0 ) =1- 0 satisfying that 

(4) 

We note that WFF£2 is the Sobolev type wave front set WFH•· Al­
though a considerabl~ number of studies have been done on the prop­
agation of singularity in the framework of Sobolev type wave front set 
(see Beals [2]), a few works have been done in the framework of Fourier­
Lebesgue type wave front set ([6], [7]). 

In Theorem 2, we show WFJ,q coincides with WFFL~· Thus, using 
Theorem 1 and Theorem 2, we obtain the result concerning the propaga­
tion of singularity in the framework of the Fourier-Lebesgue type wave 
front set. 

Theorem 2. For 1:::; p, q:::; oo, s E JR. and u E S'(JR.n), we have 

(5) 
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Notation. For x E !Rn and r > 0, Br(x) stands {y E !Rn; ly-xl:::; r}. 
F[f](() = f(() = JJRn f(x)e-ix·t;dx is the Fourier transform of f. For 
a subset A of !Rn, we denote the complement of A by A c, the set of 
all interior points of A by A 0 and the closure of A by A. Throughout 
this paper, C and Ci (i = 1, 2, 3, ... ) serve as positive constants, if the 
precise value of which is not needed and CN denote positive constants 
depending on N. 

§2. Sketch of the proof of Theorem 2 

To show Theorem 2 we use the following lemma. 

Lemma 1. (Kato-Kobayashi-Ito [5]) Let ( be a measurable function 
on !Rn such that (Y( E L 1 (!Rn) for all k E !R, FE S'(!Rn), 1 :::; q:::; oo, 
and r, r' be open conic sets satisfying r' c r c !Rn. Assume that 
llxr(()(() 8 F(()IIL• < oo and 11(()-NF(()IIL• < oo for somes E lR and 

~ . 
N EN. Then we have 

for some positive constant Cs,N,(,. 

Suppose that (x0 ,(0 ) tJ. WF.n~(u). Then there exist a conic neigh­
borhood r of ( 0 and a function a E C0 (!Rn) with a(x0 ) =I 0 satis­
fying llxr(()(() 8 au(()IIL• < oo. For r > 0 and b E C0 (!Rn) satis­

< 
fying suppb C B4r(xo) C suppa and b = 1 in B2r(xo), simple cal-

culation yields llxr(()(() 8 bt;;(()IIL• < oo. Take a neighborhood K of 
~ 

x 0 and a function ¢ E C0 (!Rn) satisfying K C Br(x0 ), ¢(0) =I 0 
and supp ¢ C Br(O). Note that x E K and y - x E Br(O) imply 
y E B2r(xo). So XK(x)</J(y- x)u(y) = XK(x)¢(y- x)b(y)u(y). Let r' 
be a conic neighborhood of ( 0 such that r' c r. Since W¢(bu)(x, () = 

F[¢(·- x)] * F[bu](() we have by Lemma 1 

IIIIXK(x)xr' (()(() 8 W¢u(x, ()IlL~ IlL~ 

:::; Cs,N,</>,K ( jjxr(()(()sft;(()t~ + ll~i~ tJ . 
• 

Since lbt;;(()l has at most polynomial growth we obtain (xo,(o) t}. WFf•q 
if we take an integer N sufficiently large. 

Conversely, if (x0 , ( 0 ) tJ. W Ff,q then we can choose r being a conic 
neighborhood of ( 0 , R E lR and ¢ E C0 (!Rn) which satisfy ¢ = 1 in 
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B2R(O) and IIIIXBR(xa) (x )xr(.;) (.;)sWq,u(x, .;) IlL~ IlL~ < oo. Put K = 

BR(x0 ) and take a E CQ'(~n) satisfying a(x0 ) =f. 0 and suppa C BR(xo). 
Since ¢(y- x) = 1 for x E K andy E suppa, we have XK(x)au(.;) = 
XK(x) IJR.n a(.; -ry)Wq,(x, ry)dry. So we have by Lemma 1 

llxK(x) IlL~ llxr' (.;) (.;)sau(.;) I ILl 

~ Cs,N,a (1111XK(x)xr(.;)(.;)sWq,u(x, .;)IlL~ IlL~ 

+II (.;~N IIXK(x)Wq,u(x,.;)IIL~tl) 
for a conic neighborhood r' of eo satisfying r' c r. Since XK has 
compact support and IWq,u(x,.;)l is majored by a constant times (.;)No 
for sufficiently large No, we obtain (xo,.;o) tJ_ WFFL~(u) if we take an 
integer N > N 0 sufficiently large. 

§3. Sketch of the proof of Theorem 1 

In the sequel, for a function f(t,x) on~ x ~n, we denote f(t,.;) = 
JJR.n f(t, x)e-ix·l;dx and Wq,f(t, x, .;) = Wq,(f(t, ·))(x, .;). Here, we only 
treat the initial value problem 

(6) {(at- iiDI)u(t,x) = o, 
u(O,x) = uo(x), 

(t,x) E ~n+I, 

X E~n, 

since we can treat the case (at+ iiDI)u(t,x) = 0 in the same way. Let 
¢ E C0(~n) with ¢(0) =f. 0. The initial value problem (6) is transformed 
by the wave packet transform to 

(7) { (at- l~l · V' x- ilel) Wq,u(t, x, .;) = iRq,(u; t, x, .;), 

Wq,u(O, x, .;) = Wq,uo(x, .;), 

where ary = (2n)-ndry and 
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It is easy to see that (7) is equivalent to the integral equation 

(8) Wq,u(t, x, e)= eitJ.;lWq,uo (x + I~ It, e) 

+ i 1t ei(t-O)J.;I Rq, ( u; B, X+ 1~1 (t- B), e) dB. 

LetT> 0. FortE [-T, T], we show (xo- ~t, eo) tf- WFf•q(u(t, ·))by 
induction. 

Since u(t, ·) E S'(JRn), there exists s E lR satisfying ll(-) 8 au(t, ·)IILq < 
oo for all a E C0 (1Rn) and t E [-T,T]. Thus we have (x0 - ~t,eo) tf­
WF.f•q(u(t, ·))for all t E [-T, T] by Theorem 2. 

Next we show (xo- fnTt,eo) tf- WF:~1 (u(t,·)) for all t E [-T,T] 

and s ~a~ r-1 under the assumption (xo- ~t,eo) tf- WFJ'•q(u(t, ·)) 

for all t E [-T, T]. Let K be a neighborhood of x0 - fnTt, r be a conic 

neighborhood of eo and r = r n {lei?: 1}. From the equation (8), it is 
enough to show that 

(10) I~}r,q,,,;, == llllxK(x)xr(e)(e)""lel 

X 1t IRq, ( 1Pu; B, X+ 1~1 (t- B), e) ldBt~ IlL~ < 00 

and 

(u) I~!r,q,,,;, == llllxK(x)xr(e)(e)""lel 

x 1t1Rq,((l-1P)u;B,x+ l~l(t-B),e)ldBt~IILl <oo 

for some 1P E C0 (1Rn) and all t E [-T, T]. From the assumption 
(xo,eo) tf- WF.f•q(uo), there exist a constant c: > 0, a function <PI E 
C0 (1Rn) with 11>I(O) #- 0 and a conic neighborhood r' of eo such that 
IIIIXB2,(xo) (x )Xr' (e)(etwq,l uo(x, e) IlL~ I ILl < 00. Let Kl = Be:(Xo -
fnTt) and r1 be a conic neighborhood of eo satisfying c:T- 1 > d1 = 
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SUPeHl dist( Jfr, ~) and I\ c r'. If X E Kl and~ E rl then X+ ftrt E 

B2e ( Xo). Thus we have 

I~;,i\,<!>1 ~ llllxB2.{xo)(x)xr'(~)(~rw4>1uo(x,~)t~IIL~ < oo, 

where i\ = rl n {1~1 ~ 1} 
Next we show (10). By the assumption of induction and Theorem 

2 we can take a conic neighborhood r" of ~0 and '1/Jt E C0 (JR.n) such 

that '1/Jt = 1 near Xo- ~t and IIXr"(~)(~) 17 '1/Jtu(t,~)IILl < oo for all 

t E [-T,T]. Take e' > 0 satisfying '1/Jt = 1 on B6e'(xo- ~~~ 1 t). Let 
¢2 E C0 (JR.n) with ¢2(0) -=/:- 0 and supp¢2 C B2e'(O), K2 = Be'(xo­
~t) and r2 be a conic neighborhood of ~0 satisfying r2 c r" and 

e'T-1 > d2 = SUPeH2dist(Jfr, ~). Put]\ = r2 n {1~1 ~ 1}. By 
integration by parts and an inequality 

we have 

T -where JA = fo llfAXf2 (~)(~) 17 ("7-~)-2NI'l/Jeu(O,ry)ld"711LldO and N E 

N. Since (~) ~ 2(ry - ~) or (~) ~ 2(ry) hold, we have 

(12) 
(~)IT < c 

(ry _ ~)2N (ry)a - (ry _ ~)2N -JaJ 

for 2N > lal. Thus if we take an integer N sufficiently large, then 
Young's inequality, (12) and the assumption of induction yield 

On the other hand, if 17 fj-. r", ~ E f2 and 2N > Ia I then we have 

(13) 
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where N1 + N2 = 2N- Ia I. Since 1'1/Jeu(B, ~)I has at most polynomial 
growth with respect to ~' Young's inequality and (13) yield 

if we take N1 and N2 sufficiently large. Thus we have J(2) - < oo. 
K2,r2,¢2,'1/Je 

Finally we show (11). Let (1 E c=(JR.n) equal to 0 for 1771 :::; 1 and 
equal to 1 for 1771 2: 2 and put (2(77) = 1- (1(77). It suffices to show that 

where 

Rj = hl~~~-4o!!lan c/J2(y-x-l~l(t-B))(1771- ~~~nb(hl77)(j(77) 
x (1- '1/Je(x))u(B, x)b(h2x)e-i(x·ry-y·rJ+Y·fJdxii17dy 

for b E S(JR.n) with b(O) = 1. From the structure theorem of S'(JR.n), 
there exist l,m 2:0 and fa(B,·) E £ 2(JR.n) for multi-indices a such that 

(14) u(B, x) = (x) 1 ~ Da fa(B, x). 
lai:'Om 

We note that x E K2, ~ E I\, y- x- (t- B)~/1~1 E supp¢2 and 
x E supp (1- '1/Je(x)) imply lx- Yl 2: E1 > 0 and, hence, lx- Yl 2: C(x). 
Since 

for positive integers N3 and N4 , (14) and integration by parts imply 

On the other hand, since (2 E C(f (JR.n) we have 
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Since 

for positive integers N 3 and N 4 , (14), (15) and integration by parts imply 

Since 

for N3 ~ (2 +lad+ u)/2 and N4 ~ (u + 1)/2, we have by Young's 
inequality 

Thus if we take N 3 and N 4 sufficiently large, we obtain 

Hence we get the inequality (11). Taking K c K1 nK2, r c r1 nr2 and 
¢ E C0(~n) with ¢(0) =1- 0 and supp¢ C supp¢1 n supp¢2 , we obtain 
(xo -~ot/l~ol,~o) tf_ WF,;+ 1(u) fortE [-T,T]. Since Tis an arbitrary 
positive number, we obtain the desired result. Q.E.D. 
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