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Abstract. 

We will give a survey on the theory of p-adic multiple zeta values 
and p-adic multiple £-values. 
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survey on the theory of p-adic multiple zeta values and related topics. 
For positive integers k1, ... , kd-1 :2: 1, kd :2: 2, the infinite sum 

1 
((k1, ... ,kd) := L k k)= lim Lik1, ... ,kd(z)) ElR. 

n1 < ... <nd n11 ... nd <C3z-+1 

absolutely converges, and we call it multiple zeta value. (Some people 
use the convention of ((kd, ... , ki).) Here, 

is a multiple poly logarithm function. We call k1 + · · · + kd its weight and 
d its depth (This weight times -2 corresponds to the weight of a motive). 
It was Euler who first studied the multiple zeta values ( d = 2 case), and 
Zagier refound them in the modern era (Some people call the multiple 
zeta values Euler-Zagier sums). Now, they attract mathematicians and 
physicists, because we found that they were related with many areas of 
mathematics and physics. 

For positive integers k1, ... , kd :2: 1 and N-th roots of unity (1, ... , (d 
satisfying (kd, (d) "I- (1, 1), we can define a variant of multiple zeta values, 
which are called multiple L-values by the following converging infinite 
sum: 

-nl n1 -n2 nd-1 -nd nd 

Here Li . (z) ·= '\' (1 (2 ... (d z is the 
' kl, ... ,kd,(I,···,(d · L...n 1< ... <nd nk1···nkd 

1 d 

twisted multiple polylogarithm function. 
Now, we would like to consider a p-adic analogue of multiple zeta 

values and multiple L-values. The infinite sum 

1 
L nk1 .. ·nkd 

n1 < ... <nd 1 d 

does not p-adically converge. On the other hand, the multiple polylog­
arithm Lik1, ... ,kd(z) has the iterated integral expression by using induc­
tively the following formula: 

dLik1, ... ,kd(z) 
dz 

{ 
lLi (z) z k1, ... ,kd-1 

- 1 Li z - 1lz k1, ... ,kd-1( ) 

1-z 

if kd > 1, 

if kd = 1, and d > 1, 

if kd = 1, and d = 1. 
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H. Furusho constructed a p-adic multiple polylogarithm function 

as a p-adic analogue of the above iterated integral expression by using 
Coleman's p-adic integration theory (Here, a is a branching parameter. 
We will see the details later.), defined a p-adic multiple zeta value as the 
limit value at 1, 

and studied their properties ( cf [Ful], [Fu2], [Fu3], [BF], [F J]). Here, 
CP denote the p-adic completion of an algebraic closure of QP. We will 
see the meaning of lim' later. Similarly, we can define a p-adic multiple 
L-value 

by using a twisted p-adic polylogarithm function Lit, ... ,kd;(1, ... ,(d(z) for 
pf N. 

We will give a survey on these in this short article. In Chapter 1, 
we will give a short review of Coleman's theory of p-adic integration. In 
Chapter 2, we will define the (twisted) p-adic multiple polylogarithms 
and the p-adic multiple zeta values (L-values). In Chapter 3, we will 
explain their relation with p-adic KZ equation and p-adic Drinfel'd as­
sociator. In Chapter 4, we will give explicit relations among the p-adic 
multiple zeta values. In Chapter 5, we will explain a Tannakian in­
terpretation of multiple polylogarithms, p-adic multiple polylogarithms, 
and their variants. In Chapter 6, we will give a upper bound of the 
dimensions of p-adic multiple zeta value (L-values) spaces. In this short 
article, we do not give proofs. 

§1. Coleman's p-adic integration theory 

R. F. Coleman established his p-adic integration theory for curves 
and defined p-adic polylogarithms in his studies of a p-adic analogue of 
Bloch's results on the dilogarithm and the regulator (cf [C], [Bl]). 

In this chapter, we will give a brief review of Colman's p-adic in­
tegration theory. We need and expect the following two properties for 
p-adic integration theory: 

(A) The "theorem of identity" holds. Thus, we can consider the 
analytic continuation, and 
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(B) We can locally integrate any differential forms, and it is unique 
up to a constant. 

Coleman constructed p-adic integration theory for curves by using Tate's 
rigid analysis. We do not give a review of Tate's rigid analysis here. For 
an affinoid U, put A(U) := r(U, Ou ). In Tate's rigid analysis, the 
above (A) holds, however, the above (B) does not hold in general (for 
example, when the point t = 0 is removed for a local coordinate t, we 
cannot integrate dtjt in the affinoid algebra). So, we will extend A(U) 
so that we can integrate any differential forms in a bigger ring. 

Let X be a proper smooth curve over Orcp, D c X a closed sub­
scheme which is etale over Orcp' y :=X\ D, and j : Ywp '----7 XIFp. (Here, 
Orcp is the valuation ring of CCP.) Put XIFp \ Ywp = {e1, ... ,e8 }. For 

0 :s; r < 1, put Ur := X(CCp)an \ Uf=1D+(ei,r). Here, ei E X(CCp) is a 
lift of ei, D+ (ei, r) is the closed disk centered at ei with radius r. (We 
do not mind the choice of a lift, since we will take a limit r--+ 1 later.) 
For S C X(lFp), let ]S[:= sp- 1 (S) C X(CCp) denote its tubular neigh-

bourhood, where sp is the specialization map X ( CCp) = X ( OrcP) red~on 
X(lFp)· Let a E CCp be fixed, and loga : cc; --+ CCP the p-adic logarithm 
function with loga p =a (the value logp decides p-adic logarithm func­
tion by the requirement log x +logy = log xy). We call a branch of the 
p-adic logarithm. Coleman's p-adic integration theory depends on the 
choice of the branch of the p-adic logarithm. 

Remark . The cardinality of the branch of the logarithm is count­
able ( #Z) in the case over CC, and it is uncountable ( #CCp) in the case 
over CCp. So, one might see the situation is so different. However, the 
"branch" in the case over CCp does not correspond to a monodromy, but 
corresponds to a vector in the tangent space, which is CCP' We have no 
monodromy in Coleman's theory. In the case over CC, we have ccx as 
non-zero vectors in the tangent space. On the other hand, in the case 
over CCP, we have cc; as non-zero vectors in the tangent space, and we 
can extend it to CCp since we have no monodromy in his theory. 

Besser's Frobenius invariant path (we will explain later) from 0 to 1 
in IP'1 does not depend on the choice of branch of the p-adic logarithm, 
however, the one from 0 to 1 in IP'1 \ {0, 1} does depend on the choice 
of branch of the p-adic logarithm. This fact also corresponds that the 
branch of the p-adic logarithm corresponds to a tangent vector. 

Furthermore, we can understand that we have no monodromy in 
Coleman's theory by seeing the sum of "the interior angles" of "the 
triangle" is 0 in the 3-cycle relation, and "2nH = 0" in the p-adic 
analytic world. 
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If we use Fontaine's p-adic period ring Berys, not Cp, then we can 
see "monodromy" and that "27rH" corresponds t E Berys· (Then the 
branch is parameterized by Z.) See also [Y2]. Note that any variety with 
good reduction is simply connected in the p-adic analytic geometry (In 
particular lP'1 minus finitely many points is simply connected). (Cole­
man's p-adic integration theory treats only the good reduction case.) 

Now, we define 

Aa (U ) := {A(]x[) 
log x limr-+1 A(]x[nUr)[loga Zx] 

if x E Y(lFp), 

ifx E {e1, ... ,es}, 

Dlog(Ux) := Alog(Ux)dzx, 

where Zx is a local coordinate around x Zx :]x[nY(Cp) ---=-+ D-(o, 1), 
and we define 

Aloe := IT Alog(Ux), Dloe := IT 
xEX(lFv) xEX(lFp) 

These do not depend on the choice of Zx· We can define a derivative d: 
Aloe -+ Dloe in the natural way. We define the ring of overconvergent 
functions as At := f(]Yr[,jtO]y;-[)· Then, Aloe and Dloe are AL 

P Fp 

algebra, and A Lmodule respectively. Now, d: Aloe -+ Dloe is surjective. 
So, we can integrate any elements in Dloe (i.e., (B) holds). However, 
the kernel of d is I1xEX(lFv) CP, and we do not have the notion of the 
analytic continuation yet (i.e., (A) does not hold). Thus, we will define 
a subalgebra A001 C Aloe and a submodule D001 C Dloe to get the notion 
of the analytic continuation, keeping the surjectivity of d as follows: 

First, we state the expected properties of the integration J: 
(l)dJw=w, 
(2) (Frobenius invariance) J cp*w = ¢* J w (where¢* is Frobenius 

homomorphism), and 
(3) J dg = g + const. forgE At. 

Thus, if we have a polynomial P(t) with coefficients in Cp such that we 
already know that P(cp*)w can be integrated, then we have P(¢*) J w 
up to a constant. If P(t) has no roots of unity, then we can get J w 
up to a constant by the Frobenius invariance. The principal idea is 
to extend the classes of the integrable differential forms from d(At) by 
using Frobenius invariance like this. Note that we extend the classes 
of integrable differential forms so that the integration is unique up to a 
constant in Cp, not in I1xEX(IFv) Cp. 
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We omit the details of extending. We define the ring of Coleman 
functions Acol and the module of Coleman 1-forms nco! as follows: 

A col ( n) : = At J (nco! ( n ~ 1)), 

na (n) := {Aco!(n)nt 
Col d(At) 

if n;::: 1, 

if n = 0, 

where nt := f(]Yr[,jtnJY:-[)· Then, we have the following short exact 
P Wp 

sequence: 

In other words, we can integrate any Coleman 1-form w E nCo!, and it 
is unique up to a constant. We got a p-adic integration theory satisfying 
(A) and (B) like this. 

§2. (twisted)p-adic multiple polylogarithms, 
and p-adic multiple zeta values (£-values) 

Fix a E reP. In this chapter, we define (twisted) p-adic multiple poly­
logarithms and p-adic multiple zeta values (£-values) by using Coleman's 
p-adic integration theory for 1U(rep) := J!D1 (rep) \ {0, 1, oo} (in the case of 
p-adic multiple zeta values) or 1UN(rep) := J!D1 (rep) \ {0, oo} U f.lN (p f N) 
(in the case of p-adic multiple £-values). When we consider p-adic mul­
tiple L-values in this article, we always fix an integer N which is not 
divisible by p, and an embedding !Qp(f.lN) '-+reP. 

Definition 2.1. (Furusho [Full) For positive integers k1 , ... , kd ;::: 
1, we define p-adic multiple polylogarithm function Li%1 , ... ,k)z) E 
Aco1 = Aco1 (1U (reP)) as follows: 

if kd > 1, 

if kd = 1, and d > 1, 

if kd = 1, and d = 1. 

Definition 2.2. Similarly, for positive integers k1 , ... , kd ;::: 1 and 
for N-th roots of unity ( 1 , ... , (d, we define twisted p-adic multiple 
polylogarithm function Lit, ... ,kd;(1 , ... ,()z) E Acol = Ac01 (1UN(rep)) 
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as follows ( [Yl]): 

Lia (z) ·= kl, ... ,kd;(l,····(d . 

{ 
rz l Lia . (z)dz Jo z kl, ... ,kd-1,(1, ... ,(d 

z 1 L·a d fo (d-z 1kl, ... ,kd-l;(l,····(d-1 (z) z 
rz - 1-dz := -loga((1 - z) 

Jo <:1 -z 

if kd > 1, 

if kd = 1, and d > 1, 

if kd = 1, and d = 1. 

We call k1 + · · · + kd its weight and d its depth. 

By definition, we can see that Li~1 , ... ,kd;(1 , ... ,(d (z) satisfies 

Lit, ... ,kd;(1, ... ,<:Jz)IJ0 [ E A(]O[), 

Li~ 1 , ... ,kd;(1, ... ,(d(z)l]([ E A(]([)[loga(z- ()] (( E f.LN), and 

Li~1 , ... ,kd;(1, ... ,(d(z)IJ=[ E A(]oo[)[loga(l/t)]. 

Theorem 2.1. (Furusho [Full) The convergence of 

I 

lim Liak k (z) 
ff"' 1 1 , ... , d 
'-'p3Z~ 

does not depend on the choice of a. Furthermore, the limit value does 
not depend on the choice of a either when it converges. Here, we write 
lim~~cf(z) when for any sequence {zi}~ 1 converging to c such that the 
ramification index of Qlp(z1, z2 , .. . )/Qlp is finite, the limit limi~= f(zi) 
exists and does not depend on the choice of the sequence { zi} ~1 . 

The same thing holds for limcp 3z~1 1Lit, ... ,kJz) ([Yl]). 

Definition 2.3. (Furusho [Full) When lim~P 3z~ 1 Li~ 1 , ... ,kd(z) con­
verges, we call it (p(k1, ... , kd) p-adic multiple zeta value. 

By the same way, when lim~p 3z~ 1 Lit, ... ,kd;(1, ... ,(Jz) converges, we 
call it Lp(k1 , ... , kd) p-adic multiple L-value ([Yl]). 

Theorem 2.2. (Furusho [Full) For kd > 1, lim~p 3 z~ 1 Li~ 1 , ... ,kJz) 
converges. 

Remark . It may converge even when kd = 1. Then, the limit value 
is a normalized p-adic multiple zeta value (we will explain it later). In 
particular, it is a linear combination of p-adic multiple zeta values of the 
same weight ( [Ful]). 

In the case of p-adic multiple L-values, for (kd, (d) -/= (1, 1), 

I 

lim Liak k .r r (z) 
ff"' 1 1, ... , d,..,l,··•)..,d 
'-'p3Z~ 

converges ( [Yl]). 
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Example 2.3. (Coleman) For n > 1, 

( ) 1 ( 1 n) (p n = Lp n, w - . 
1- p-n 

Here, Lp is Kubota-Leopoldt's p-adic L function, and w is the Te­
ichmuiiller character. In particular, (p(2n) = 0 for n :::0: 1. Note that 
Kubota-Leopoldt's p-adic L function is characterized by the p-adic in­
terpolation of L-values at negative integers, and that the above com­
parison between the p-adic polylogarithm and the p-adic L function is 
at positive integers. On the other hand, Furusho showed (p(2n) = 0 by 
using 2- and 3-cycle relations. This comes from the fact that the sum­
mation of "the interior angles of the triangle is 0" in the p-adic analytic 
world, and we call it "2nA is 0" in the p-adic analytic world. 

The values at odd integers are more difficult. In fact, (p(2n + 1) =/=-

0 {o} Lp(2n + l,w-2n) =/=- 0 {o} H 2 (Z[ljp],IQ!pjZp(-n)) = 0 (higher 
Leopoldt conjecture) for n :::0: 1. This holds if p is a regular prime or 
if n is divisible by p - 1. The general case is not settled yet. 

Theorem 2.4. (Furusho [Full) We have (p(k1 , ... , kd) E !Qp. 

By the same way, Lp(k1, ... , kd; ( 1 , ... , (d) E IQ!p(J.LN) ([Yl]). 

Question 2.5. (Furusho) When does (p(k1 , ... , kd) land in Zp? 

We have no results on this question except the case of the value is 
0 like (p(2n), (p(2n, ... , 2n), and (p(3, 1, ... , 3, 1). By the same way, we 
can also consider the question when Lp(k1 , ... , kd; ( 1 , ... , (d) E Zp[J.LNJ? 

For w > O,we define Z~ [N] c IQ!p as follows: 

Z~[N] := 

( L (k k r ~")I d:::O:l,ki:::O:l,(iEJ.LNfori=l, ... ,d,) 
P 1 , ... , di'>1 , ... ,-,d k1 +···+kd=w,(kd,(d)=/=-(1,1) IQJ' 

(the IQ-vector space generated by Lp(k1 , ... , kd; ( 1 , ... , (d)'s), and put 
Z6[N] := IQ, and Zr[N] := EBwZ~[N]. Put also Z~ := Z~[l], zr := 
Zr[l]. We call Z~ (resp. Z~[N]) p-adic multiple zeta value space 
(resp. p-adic multiple L-value space) of weight w. We will discuss 
the dimensions of these spaces in Chapter 6. 

§3. p-adic KZ equation, and p-adic Drinfel'd associator 

The Drinfel'd associator was originally introduced in [Dr] related 
with the associativity constraint in a quasi-tensor category (in other 
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words, braded tensor category), and Drinfel'd gave another (clearer) 
proof of Kohno's theorem which says that all representations of quan­
tum groups can be constructed as the monodromy representations of 
KZ equation. Furthermore, he studied the pentagon axiom and the 
hexagon axiom ( +x) which the unit element, the associativity constraint 
and the commutativity constraint should satisfy, he got the notion of 
Grothendieck-Teichmiiller group, and showed that it was closely related 
with the absolute Galois group of Ql. We call the pentagon axiom, the 
hexagon axiom ( +x) and some modifications of them the associator 
relations, or 2-, 3-, 5-cycle relations. 

In this chapter, we explain p-adic KZ equation, and p-adic Drinfel'd 
associator. We do not discuss the braded tensor category. 

Let Cp ((A, B)) denote the non-commutative formal power series ring 
with variables A and B. For a word Win Cp( (A, B)), we call the number 
of letters in W its weight, and the number of B in W its depth. 

Definition 3.1. (Furusho [Ful]) We call the following p-adic differ­
ential equation for a p-adically analytic function G ( z) valued in CP ((A, B)) 
p-adic KZ equation1: 

-(z) = - +- G(z), dG (A B ) 
dz z z- 1 

z E 1U(Cp)· Here, a function valued in Cp( (A, B)) is called p-adically an­
alytic, if the coefficients of any words of A and B are p-adically analytic 
functions. 

Similarly, for the p-adic multiple L-value case, we consider the fol­
lowing p-adic differential equation for a p-adically analytic function G(z) 
(z E 1UN(Cp)) valued in Cp((A, {Bdc)) ([Yl]): 

dG (A Be ) -(z) = - + L - G(z), 
dz z z- ( 

(E/"N 

Theorem 3.1. (Furusho [Full) There exists a unique solution G0(z) 
(resp. Gj'(z)) E Acol ((A, B)) of the p-adic KZ equation with the follow­
ing boundary condition: 

1The author thanks the referee for kindly informing him that this equation 
and its generalization are studied also in [Wl]. 
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(resp. G~(z) ~ (1- z)B (z --t 1) ), 

where Gg(z) ~ zA (z --t 0) means that Gg(z)z-AIJo[ is in 

A(]O[)( (A, B) )A+ A(]O[)( (A, B) )B 

and that its value at z = 0 is 1 (similarly, for Gf(z) ~ (1- z)B (z --t 

1)) (Note that zA depends on the choice of the branch of the p-adic 
logarithm.). 

We have the same result for the p-adic multiple L-value case ([Yl]). 

Theorem 3.2. (Furusho [Full) The element 

does not depend on z or a, and lands in Cp ((A, B)) x. 

We have the same result for the p-adic multiple L-value case ([Yl]). 

Definition 3.2. (Furusho [Full) We call <I>f<z (A, B) E Cp( (A, B)) x 

p-adic Drinfel'd associator. 

In the p-adic multiple L-value case, we define p-adic Drinfel'd asso­
ciator <I>f<z(A, {Be;}<:) in the same way ([Yl]). 

Theorem 3.3. (explicit formulae, Furusho [Full) Put <I>f<z(A, B)= 
1 + I:w Ip(W)W, where W runs all words of A and B. Take W = 
BrVA8 , V E ACp((A,B))B or V = 1, then we have 

Ip(W) = ( -l)depth(W) 

where f is the composition 

Cp( (A, B)) _..(CP( (A, B)) /(BCp( (A, B))+ Cp( (A, B) )A) 

~ Cp · 1 + ACp( (A, B) )B '-+ Cp( (A, B)), 

w is the shuffle product of words (i.e., inductively defined as 

XWwYW' := X(WwYW') + Y(XWwW') 

for X, Y = A orB, and Wwl = lwW := W), and Zp(W) is defined 
by Zp(Akrl B · · · Ak1 - 1 B) = (p(kb ... , kd) and its extension to CP · 
1 + ACp((A,B))B by the linearity. In particular, we have Ip(W) = 
( -1 )depth(W) Zp (W) for W E ACP ((A, B)) B. 
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We have a similar result for p-adic multiple L-values ([Yl]). 
In general, we have (-l)depth(W)Jp(Akd- 1B· · ·Ak1 - 1B) even in the 

case of kd = 1 in the above definition, and we call them normalized 
p-adic multiple zeta values. In particular, normalized p-adic multiple 
zeta values are linear combinations of p-adic multiple zeta values of the 
same weight ([Full). Furthermore, if lim~p:3z--+l Lit, ... ,kd (z) exists in the 
case of kd = 1 (it can happen as mentioned in the previous chapter), 
then the value coincides with the normalized p-adic multiple zeta values 
([Full). In particular, when we define Zf:, as 

ZP ·= w· 

( (p(k,,,,,, k,) ld > 1, k,,,,, k, ;> 1, c,~~~,'Li;,, ,,,,(z) exiet~) 
0

, 

then this Zf:, coincides with the old one. The same result holds for the 
p-adic multiple L-values ([Yl]). 

We define a 1Cp-algebra homomorphism 

~: ICp((A,B)) -c> ICp((A,B))®ICp((A,B)) 

by ~(A)= A 181 1 + 1 181 A and ~(B)= B 1811 + 1 181 B. 

Theorem 3.4. ([Full) We have ~(<I>f<z) = <I>f<z®<I>f<z· 

Corollary 3.5. (integral shuffie product, [Full) We have 

for W, W' E AICP ((A, B)) B. In particular, Z~ is a graded ring, i.e., we 
have Zf:, · Z~, c Z~+w'. 

In the p-adic multiple L-value case, we also have 

Lp(W) · Lp(W') = Lp(WwW'), and Zf:,[N]· Z~,[N] c Z~+w'[N] ([Yl]). 
We omit the explicit formulae of G0(z) and the functional equation 

with respect to z +-+ 1- z here (see [Full). 

§4. Relations among p-adic multiple zeta values (L-values) 

We have enormous relations like ((3) = ((1, 2), ((4) = ((1, 1, 2) = 

4((1, 3) = 1((2, 2) among the multiple zeta values, and it is one of 
the most interesting research areas of the multiple zeta values, because 
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these relations are related with many areas, for example, the hypergeo­
metric differential equations, the quasi-tensor category (in other words, 
braded tensor category), the representations of quasi-triangular quasi­
Hop£ quantized universal enveloping algebras, the quantum invariants of 
knots, the integrable lattice models, the moduli of curves, the category 
of mixed Tate motives, and the algebraic K-theory. 

In this chapter, we introduce the known relations among p-adic mul­
tiple zeta values. 

Theorem 4.1. (double shuffle relations, Besser~Furusho [BF]) For 
W, W' E ACp ((A, B)) B, we have Zp (W * W') = Zp (W) Zp (W') 
Zp(WwW'), where* means the series (or harmonic) shuffle product. 

Remark . We mentioned the integral shuffle product in the pre­
vious chapter. The series (or harmonic) shuffle product is non-trivial, 
because we have no description of the p-adic multiple zeta values in 
terms of converging infinite sums. They are defined only by the limit 
values. In the proof, they used p-adic multiple polylogarithms of 
two variables, Besser's higher dimensional generalization of Coleman's 
p-adic integration for curves (see, [B]), and higher dimensional version 
of tangential base points. 

Remark . We also have the regularized version of double shuffle 
relations in the case where the last index is 1 by suitably formulating 
the series regularized p-adic multiple zeta values and the integral regu­
larized p-adic multiple zeta values in Qp[T], where Tis a formal variable 
(see [FJ]). The integral regularized p-adic multiple zeta values 
({,(kl, ... ,kd) E Qp[T] is defined by ({,(kl, ... ,kd) := l::':obi(O)Ti for 
Lik1 , ... ,kd(1- E) = 2::::':0 ME)(loga E)i, (for example, ({,(1) = -T) and 
the series regularized p-adic multiple zeta values (f (k1 , ... , kd) E 

Qp[T] is defined by (f (k1, ... , kd) := Li~;~~-~L (:r1, ... , xd) IL, where 

is the analytic continuation of the p-adic multiple poly logarithm of sev­
eral variables to a part of the normal bundle of certain divisor in the 
stable compactification Mo,d+ 3 of the moduli of curves of type (0, d+3), 
L is a tangent line in the divisor at certain point, and T = loga t. For 
the details, see [F J]. The regularized double shuffle relations ( [F J]) 
is as follows: 
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where lLp a Qp-linear map from Qp[T] to itself characterized by 

This is a p-adic analogue of the regularized double shuffie relations in 
[IKZ]. A similar result for the p-adic multiple L-values is not known yet. 

Furusho announced the following theorem (he is preparing the third 
article in the series papers): 

Theorem 4.2. (Furusho) The p-adic Drinfel 'd associator <l>kz (A, B) 
satisfies the 2-, 3-, and 5-cycle relations, i.e., 

<l>kz(A, B)<l>kz(B, A)= 1, 

<l>kz(C,A)<I>kz(B,C)<I>kz(A,B) = 1, where ABC= 1, and 

<1>kz(X12, X23)<l>kz(X34, X45)<l>kz(X51, x12)<1>kz(X23, X34)<l>kz(X45, X51) 

= 1, in P5 . 

Here, P5 denotes the Malcev completion of the pure sphere braid group 
with 5 strings, Xij 's are its standard generators, and for any unipotent 
group U over Qp and for any elements a, b E U ( Qp), let <l>kz (a, b) denote 

the image of <l>kz (A, B) E F2 ( QP) by the unique homomorphism F2 --+ U 
sending A and B to a and b respectively, where F2 denotes the Malcev 
completion of the free group of rank 2. 

Remark . Furusho also proved that the associator relations implied 
the regularized double shuffie relations (see, [Fu5], [T2]). Combining this 
and the above theorem, we will have another proof of the regularized 
double shuffie relations. 

Remark . The 2-cycle relation comes from the symmetry of 1U with 
respect to z B 1- z, and the 3-cycle relation comes from the symmetry 
of 1U with respect to z f---1 l~z f---1 1- ~ f---1 z (by which 0,1,oo are sent to 
1,oo,O, then to oo,0,1). The variety 1U is the moduli space M 0 ,4 of curves 
of genus 0 with 4 (ordered) marked points, and we have 10 morphisms 
from it to the boundaries of the stable compactification M 0 ,5 of the 
moduli space of curves of genus 0 with 5 (ordered) marked points. In 
this way, we get 12 pentagons on it. The 5-cycle relation comes from 
the symmetry of these pentagons (or one of these pentagons). 

Remark . We do not have the symmetry on 1UN (N > 1) with 
respect to z B 1- z or z f---1 l~z f---1 1- ~ f---1 z. Thus, we cannot expect a 
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naive analogue of 2- or 3-cycle relations for p-adic multiple £-values. We 
have a relation corresponding to the symmetry of 1U N with respect to z ++ 
~ ([Y1]). We can also expect the relation corresponding to the symmetry 
with respect to 1 H (N H (fv H ... H cJ:-l H 1. In the case of N = 4, 
we have the special symmetry, i.e., {0, 1, A, -1, -A, oo} forms a 
regular octahedron. So, we can expect a special relation corresponding to 
it in the case of N = 4. The author does not know that 1UN (N > 1) has 
a suitable moduli interpretation for an analogue of the 5-cycle relation. 

By the above theorem, we have the crystalline side of the relations 
with Grothendieck-Teichmiiller groups, which fits into the following pic­
ture (we omit the details here): 

- $ ~ 
• Gal(Q/Q) Y GT for the profinite side (here, the injectivity is 

Belyi's theorem), 
1>(£) 

• Gal~\Q) ~ GT1(Q) for the £-adic Galois side, 

2 <l'>Kz 
• HomQI-alg. (Z./rr , Q) Y GRT1 (Q) for the Hodge side, 

<j)P 

• HomQI-alg.(Zr,Q) ~ GRT1(Q) for the crystalline side, and 
<j)M 

• Gal(MT(Z),w) Y GRT for the motivic side (here, the injec-
tivity is highly non-trivial and due to F. Brown [Br]. we will 
give some explanations in the next chapter). 

As a digress, we would like to remark that 2-, 3-, 5-cycle relations 
were originally studied by Drinfel'd as (a modification) of the following 
commutativity diagrams which the associativity constraint and the com­
mutativity constraint ( +x) in a quasi-tensor category (or braided tensor 
category) should satisfy: 

<1>102,3,4 ~ 

""'l idl ®1>2.3.4 

( V1 181 V2 ) 181 ( v3 181 v4) ----=-,.. V1 181 ( v2 181 ( v3 181 v4) ) , 
1>1.2.304 



p-adic MZV's, p-adic MLV's, and motivic Galois groups 643 

R1 2®id3 il>2 1 3 

(V1 129 V2) 129 V3 ~ (V2 129 Vl) 129 V3 ~ V2 129 (V1 129 V3) 

il>1,2,3l"" - - id2®R1,31"" 

V1 129 (112 129 V3) ~ (V2 129 V3) 129 V1 ~ V2 129 (V3 129 V1), 
R1.203 1>2,3,1 

q,-1 

(V1 0 V2) 0 v3 R1~2 • 3 v3 0 (V1 0 V2) 1
;:·

3 (V3 0 Vi) 0 V2 

ii>1,L l"" - - ""l R3,1®id2 

V1 129 (V2 129 V3).~ V1 129 (V3 129 V2) ~ (V1 129 V3) 129 V2. 
1d1®R2,3 i1>1,b 

Here, R was originally found as an R-matrix in the studies of integrable 
lattice models, and these relations yield the Yang-Baxter equation in 
the studies of braids and integrable lattice models. Such views of quasi­
tensor category (or braided tensor category) are also interesting. How­
ever, we do not investigate this direction in this short article. 

Returning to the p-adic multiple zeta values, we have the following 
conjecture on the relations among them: 

Conjecture 4.3. (Furusho) All Q-linear relations among the p-adic 
multiple zeta values are generated by 2-, 3-, and 5-cycle relations. 

Conjecture 4.4. (p-adic isobar conjecture, Furusho) All Q-linear 
relations among p-adic multiple zeta values are generated by the relations 
of the same weights, i.e., we have 

zr := EfJzE = l:ZE (summation in Qp)· 
w w 

For the p-adic multiple L-values, it is conjectured that all Q-linear 
relations are generated by the relations of the same weights ([Yl]). 

§5. Tannakian interpretation 
and a variant of (p-adic) multiple polylogarithms 

In this chapter, we explain the Tannakian interpretations of the 
multiple polylogarithms and the p-adic multiple polylogarithms. Many 
contents of this chapter came from Furusho's Japanese article [Fu3]. See 
also [Y2]. 

First, we will give a brief review on Bloch-Zagier's variant of poly­
logarithms. For an odd (resp. even) integer k ~ 1, we define 



644 G. Yamashita 

where Ba is the a-th Bernoulli number, i.e., defined by 

For example, we have 

P1 ( z) = - log 11 - z I, 
P2(z) = Im(Li2(z)) +log lzlarg(1- z). 

These functions have no monodromy, that is, they are single valued 
functions on 1U(C) (for example, when z goes around 1 anticlockwise, 
then P2(z) becomes Im(Li2(z) + 27rilogz) +log lzl(arg(1- z)- 27r) = 

Im(Lb(z)) +log lzlarg(1- z) = P2(z). So P2(z) is a single-valued func­
tion). Bloch used this variant for k = 2 (the dilogarithm) to calculate 
regulators from the algebraic K-theory ([Bl]). After that, Zagier used 
this variant to formulate a conjecture (so-called Zagier's conjecture, [Z]), 
and Beilinson-Deligne gave a Hodge-theoretic interpretation of this vari­
ant ([BD]). 

Furusho constructed a single valued variant of complex multiple 
polylogarithms and an overconvergent variant of p-adic multiple poly­
logarithms by the Tannakian interpretations. 

Put 1U := lP'~- {0, 1, oo }. We do not give a review on the tangential 

base point 61 in this short article. 
First, we begin with the complex case. Fix z E 1U(C). We consider 

the Tannakian category of unipotent local systems on 1U(C) with the 
fiber functors corresponding to 61 and z. We call the corresponding 
prounipotent groupoid 

1r~(1U(C); 61, z) 

over ((Jl the Betti prounipotent fundamental groupoid of 1U(C). 
Similarly, we consider the Tannakian category of coherent Ou modules 
with unipotent integrable connections on 1U with the fiber functors corre­
sponding to 61 and z. We call the corresponding prounipotent groupoid 

over ((Jl the de Rham prounipotent fundamental groupoid of 1U. 
Put 

7r~(1U(C), 61) := 7r~(1U(C); 61, 61), 
and 
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Choose a topological path bz from 61 to z on 1U(C). We can consider bz to 

be an element in 7rf(1U(C); 61, z). On the other hand, all 1r?R(1UjQ, 61)­
torsors are trivial, because of H 1 (1U, Ou) = 0. Therefore, we have a 
canonical element dz in 7r?R(1U/Q; 61, z). We also have a canonical el­

ement d2 in 1r?R(1U /Q; 61, z) in the same way, where z is the complex 
conjugate of z. 

We define ¢oo to be the inverse of the isomorphism 

which is induced by the complex conjugate. Now, by using the compar­
ison isomorphism 

1r~(1U(C); 61, z)(C) ~ 7rfR(1U/Q; 61, z)(C), 

we can consider bz to be an element in 7r?R(1U/Q; 61, z)(C). In the same 
way, by the comparison isomorphism, we can consider ¢00 to be the 
following isomorphism: 

rPoo: 7rfR(1U/Q;61,:z)(C) ~ 7rfR(1U/Q;61,z)(C). 

Therefore, now we have three special elements in 7r?R(1U/Q; 61, z)(C): 

bz, dz, rPoo(d-z) E 7rfR(1U/Q; 61, z)(C). 

Theorem5.1. Weembed7r?R(1U/Q,61)(C) intoe((A,B)) bysend­
ing the dual of dz and ....<!0_ toeA :="' Anjn! and eB :="' Bnjn! z z~l ~n>O ~n>O 

respectively. Then we have the following: ~ 

(1) (Chen) By the embedding 

7rfR(1U/Q,61)(C) '-+ C((A,B)), 

Go(z) = 2_) -l)depth(W)Liw(z)W, 
w 

where Liw(z) is the multiple polylogarithm defined for the word 
W in the same way. The choice of bz corresponds to the branch 
ofLiw(z). 

(2) (Furusho) We define exp(G0(z)) to be the image of(dz)~ 1 ¢oo(d2) 
by the above embedding, and put 

G()(z) = L(-l)depth(W)ew(z)W. 
w 
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Then, £Ak-lB(z) coincides with Pk(z), and Cw(z) is a single­
valued function for any word W. We call it a single-valued 
variant of multiple polylogarithm2 . 

(3) (Differential equation, Furusho) Here, G0(z) satisfies the fol­
lowing differential equation: 

- = -+-- G(z) dG (A B ) 
dz z z -1 

( dz dZ 1 ) - G(z) -(-A)+ -<I>l(z(A, B)- ( -B)<I>l(z(A, B) , 
z z-1 

where we do not explain the details of <I>l(z (A, B) ( cf. [Fu2]). 
(4) (Relation, Furusho) We have 

G()(z) = Go(A, B)(z) [Go( -A, <I>l(z(A, B)-1 ( -B)<I>I(z(A, B))(z)] - 1 . 

Remark . We fixed z E 1U(C), and did not consider Cw(z)'s as the 
functions of z. However, by using the above (4), we can describe Cw(z) 
by the multiple polylogarithms. Thus, we can see that Cw(z) is a real 
analytic function on 1U(C) (they are not holomorphic, since z appears 
there.). 

Remark . The differential equation (3) comes from the compatibil­
ity of the complex conjugate and the connections. 

Remark . The relation (4) comes from 

Next, we consider the p--adic case. Fix z E 1U(Qp) C IP'1 (Qp) 
IP'1 (Zv) satisfying z0 := z mod p E 1U(lFv)· We consider the Tannakian 
category of unipotent overconvergent isocrystals on 1UIFp with the fiber 

functors corresponding to at and z0 (we can omit the overconvergence 
here, because Chiarellotto-Le Sturn proved that any unipotent isocrys­
tals are overconvergent). Then, we call the corresponding pro unipotent 
groupoid 

over Qp the rigid prounipotent fundamental groupoid of 1UIF P. Put 

7r~ig(1UIFp/Qv, at) := Jr~ig(1UIFp/Qv; at, at). By Besser's theorem ([B]), we 

2The author thanks the referee for kindly informing him that the same or 
related single valued function are constructed in [W2] (see Proposition 10.1 of 
this), and also in [W3] (see Lemma 2.8.2 and 2.8.4 of this). 
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have the unique Frobenius invariant path Cz0 from ol to z0 in 

Jr~ig (1UJF v / Qlp; ol' zo). 

On the other hand, we have the canonical element dzv in 1r~R(1U /Ql; ol, zP). 
We define c/Jp to be the inverse of the isomorphism 

7r~ig(1UJFP/Qlp; ol, zo) --'=-+ 7r~ig(1UJFv/Qlp; ol, zo), 

which is induced by the Frobenius. Now, by using the comparison iso­
morphism 

7r~ig(1UlFv/Qlp; ol, zo)(Qlp) ~ 7r~R(1U/Ql; ol, z)(Qlp), 

we can consider Cz0 to be an element in 7r~R(1U/Ql; ol, z)(Qlp)· In the 
same way, by the comparison isomorphism, we can consider c/Jp to be the 
following isomorphism: 

c/Jp: 7r~R(1U/Ql; ol, zP)(Qlp)--'=-+ 7r~R(1U/Ql; ol, z)(Qlp). 

Therefore, now we have three special elements in Jr~R(1U/Ql; ol, z)(Qlp): 

Cz0 , dz, c/Jp(dzv) E 7r~R(1U/Ql; ol, z)(Qlp)· 

Theorem 5.2. We embed Jr~R(1U/Ql,ol)(Qlp) into Qlp((A,B)) by 
sending the dual of dz and ...!i!'_ to eA := "" Anjn! and eB ·-z z-1 ~n>O 

Ln:;o.o Bn jn! respectively. Then we have the following: 

( 1) (Furusho) By the embedding 

7r~R(1U/Ql,ol)(Qlp) '----+ Qlp((A,B)), 

Go(z) = 2..) -l)depth(W)Liw(z)W, 
w 

where Liw(z) is the p-adic multiple polylogarithm defined for 
the word W in the same way. 

(2) (Furusho) We define exp(Gb(z)) to be the image of(dz)-1¢p(dzv) 
by the above embedding, and put 

Gb(z) = 2:) -l)depth(W) l'w(z)W. 
w 

Then, l'w ( z) is an element in At (1UIQlp). We call it an over­
convergent variant of p-adic multiple polylogarithm. 



648 G. Yamashita 

(3) (p-adic differential equation, Furusho-Y.) Here, G6(z) satisfies 
the following p-adic differential equation: 

dG = (~ + ~) G(z) 
dz z z -1 

- G(z) (dzP (p-1 A)+ ~<I>i;(A, B)-1 (p-1 B)<I>i;(A, B)), 
z zP -1 

where we do not explain the details of <I>i;(A,B) (cf. [Y1], 
[Fu2]). 

( 4) (Relation, Furusho) We have 

G6(z) = Go(A, B)(z) [Go(p- 1 A, <I>i;(A, B)-1 (p- 1 B)<I>i;(A, B))(zP)j-1 . 

Remark . We fixed z E U(Qp), and did not consider l'w(z)'s as the 
functions of z. However, by using the above (4), we can describe l'w(z) 
by the p-adic multiple poly logarithms. Thus, we can see that l'w ( z) can 
be extended to a p-adically analytic function on 1P'1 (Cp)-]1, oo[. We can 
also see that none of Cz0 , Li w ( z) and l'w ( z) depends on the choice of 
the branch a of the p-adic logarithm on the region z E lP'1 ( CP) -]1, oo [. 

Remark . The function l'w(z) is an element of At(UQJP), that is, 
an overconvergent function. So, it can be p-adic analytically extended 
to a region which is 1P'1 ( CP) minus open disks centered at 1 and oo with 
smaller radii than 1, and l'w ( z) does not depend on the choice of the 
branch a of the p-adic logarithm on this region. However, we can p-adic 
analytically extend it to a larger region, and it does depend on the choice 
of the branch a of the p-adic logarithm on this larger region. 

Remark. The p-adic differential equation (3) comes from the com­
patibility of Frobenius and the connections. This method of yielding the 
p-adic differential equation from the compatibility of Frobenius and the 
connections came from Deligne's paper [D1, (19.6.2)] (in which he stud­
ied the meta-abelian quotients). 

Remark . The relation (4) comes from 

(dz)- 1c/Jp(dzP) = (dz)- 1Cz0 [c/Jp((dzP)- 1Cz0 )]-1. 

The twisted p-adic multiple poly logarithms also have the Tannakian 
interpretation and the p-adic differential equation ([Y1]). 

§6. The upper bounds of the dimensions and the motivic Ga­
lois groups 

In this chapter, we will discuss the dimensions of the p-adic multiple 
zeta value (resp. £-value) spaces, and the relation with the motivic 
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Galois groups of the mixed Tate motives over Z (resp. over the ring of 
S-integers of the cyclotomic fields). 

We define the spaces of the multiple zeta values and £-values Zw, 
Zw[N] by the same way as Z~ and Z~[N] respectively. First, we have 
the following conjecture on the dimensions of the complex multiple zeta 
value spaces. 

Conjecture 6.1. (Dimension conjecture, Zagier) We define a se­
quence {Dn}n by Do = 1, D1 = 0, D2 = 1, Dn+3 = Dn+l + Dn for 
n 2: 0 (In terms of the generating function, it is defined by L:~=O Dntn = 

1/(1- t 2 - t 3 )). Then, we have dimiQJ Zw = Dw for w 2: 0. 

The following celebrated theorem of Goncharov, Terasoma, and 
Deligne-Goncharov says the upper bound: 

Theorem 6.2. (Goncharov, Terasoma, Deligne-Goncharov [G1], 
[T1], [DG]) We have dimiQJ Zw :S: Dw for w 2: 0. 

This says that there exist enormous lfJ-linear relations among the 
multiple zeta values (the difference between the upper bound on the 
weight w 2: 0 and the number of the indices ( k1 , ... , kd) of the weight 
w = k1 + · · · + kd grows exponentially when w goes to the infinity). The 
other inequality is a kind of transcendental number theoretic problem, 
and it seems that algebraic geometric approaches are not sufficient. On 
the multiple £-values, we have the following theorem: 

Theorem 6.3. (Deligne-Goncharov [DG]) For N = 2 ( resp. N > 
2), we define a seq?.Lence {Dn[N]}n by a generating function 1/(1 -

t- t 2 ) = I:~>o Dn[2]tn (resp. 1/(1- ('P~N) + v)t + (v- 1)t2 ) = 
I:~>o Dn[N]tn ~where cp(N) := #(Z/NZ)x, and v is the number of 
the prime numbers dividing N). Then, we have dimiQJ Zw[N] :S: Dw[N] 
for w 2: 0. 

Remark. In the case where N > 4 and N is a prime number, then 
the equality does not hold (Goncharov [G2]). The gap comes from the 
relation with the motivic Galois group (we will explain it later), and a 
part of the gap is related with the space of cusp forms of weight 2 with 
the level f 1 (N) (Zoe. cit.). The gap is not fully explained by the terms 
of cusp forms. It might be related with a kind of "iterated integrals of 
cusp forms" . 

Next, we consider the p-adic case. We have a p-adic analogue of 
Zagier's dimension conjecture: 

Conjecture 6.4. (Dimension conjecture, Furusho-Y.) We define 
a sequence { dn}n by do = 1, d1 = 0, d2 = 0, dn+3 = dn+l + dn for 
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n ;:::: 0 (In terms of the generating function, it is defined by l::~=O dntn = 
(1- t2)/(1- t2 - t3 )). Then, we have dimiQJ ZE = dw for w;:::: 0. 

Theorem 6.5. (Y. [Y1]) For N = 2 (resp. N > 2), we define a 
sequence {dn[N]}n by a generating function (1- t 2)/(1- t- t 2 ) (resp. 

(1 - t)/(1 - ( cp~N) + v)t + (v- 1)t2 ) where ip(N) := #(7!../NZ)X, and 
v is the number of the prime numbers dividing N). Then, we have 
dimiQJ ZE[N]::; dw[N] for w;:::: 0. 

This theorem also says that there exist enormous !Q-linear relations 
among the p-adic multiple zeta values (the difference between the upper 
bound on the weight w ;:::: 0 and the number of the indices ( k1, ... , kd) 
of the weight w = k1 + · · · + kd grows exponentially when w goes to the 
infinity). The other inequality is a kind of p-adic transcendental number 
theoretic problem, and it seems that algebraic geometric approaches are 
not sufficient in this case either. 

Remark . It is not known that dimiQJ ZE[N] is independent of p, 
and it seems difficult ( cf higher Leopoldt conjecture in Example 2.3). 

Remark . In the case where N > 4 and N is a prime number, 
the equality does not hold by the same reason as in the complex case. 
The gap comes from the relation with the motivic Galois group (we will 
explain it later), and a part of the gap is also related with the space of 
the cusp forms of weight 2 with the level r 1 ( N) in this case too. 

First, we will explain the K-theoretic meaning of these sequences 
(In fact, all of the above upper bounds are proved by the relation with 
the algebraic K-theory). For example, we have 

1 1 1 1 1 
1 - t 2 1 - _t2__ 

l-t2 
1- t2 1- (t3 + t5 + t7 + ... ). 

Here, 1/(1- t2) corresponds to 1r2 in the weight 2, and t3 + t5 + t7 + · · · 
corresponds to 

rank K2n-l (Z) = { ~ 
In this way, we use 

for n : even or n = 1, 

for n : odd and n =f. 1. 

rank K2n-1 (z[J.LN, {-1-}wiNl) 
1- (w 

for n = 1, 

for n: even, 

for n : odd and n =f. 1. 
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in the case of N > 1. In the p-adic case, the generating function is 
( 1 - t 2 ) I ( 1 - t 2 - t 3 ), and it loses the factor 1 I ( 1 - t 2 ). This corresponds 
to the fact "1r2 = 0 in the p-adic analytic world" (See also [Y2]). In the 
case of N > 2, the difference between the complex case and the p-adic 
case is not 11(1- t 2 ), but 11(1- t). This corresponds to the fact that 
-log(1- () + log(1- (-1 ) = -log(-() E CQl·7r in the weight 1, and that 
it disappears, since "1r = 0 in the p-adic analytic world". 

We will give a brief sketch of the proof of the upper bounds of [DG] 
and [Y1]. For the simplicity, we assume that N = 1 (In the general 
case, we use MT(Z[JLN, { 1_1(w}wiN]) and 1IJN := 1P'1 \ {O,oo} U JLN etc. 
instead). The key ingredients are as follows: 

• Deligne-Goncharov's Tannakian category MT(Z) of mixed Tate 
motives over Z, 

• Deligne-Goncharov's motivic fundamental groupoids 

{ 1r{'i (1IJ; a, b)} a,b=oi, ... ' 

• Tannakian interpretation of complex (resp. p-adic) multiple 
zeta values due to Chen and Drinfel'd (resp. Furusho), 

• Borel's calculation of the rank of the algebraic K-groups 

• in the p-adic case, Besser's Frobenius invariant path [B], and 
• in the p-adic case, p-adic Hodge theory for open varieties [Y3], 

(and Bloch-Kato's HJ. see [Y1]). 

First, we consider the Tannakian category MT(Z) of mixed Tate mo­
tives over Z. This category is unconditional (First, we consider the sub­
triangulated category DMT(k) generated by the Tate objects in Voevod­
sky's triangulated category of (geometric) mixed motives DMgm(k) ® CQl 
over a field k (see [V]) tensored with Q. Next, M. Levine defined sub­
categories DMT(k):::0:0 and DMT(k):S:0 of DMT(k), and he showed that 
these give at-structure on DMT(k) if Beilinson-Soule's vanishing con­
jecture holds for k (see [L]). In particular, if k is a number field, then 
the conjecture holds, and we can get an abelian category MT( k) by tak­
ing the heart. It is easy to see that it is a Tannakian category. Finally, 
Deligne-Goncharov defined a sub-Tannakian category MT(Z) in MT(Q) 
by putting the condition "unramified" at all prime p (see [DG])). We 
have a canonical fiber functor 

w : MT(Z) --+ Vect!Qh 

which sends M to EBnEzHomMT(z)(gr~nM, CQl(n)). Then, we have the 
Tannakian fundamental group Gw := Aut(w) of MT(Z) with respect to 
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w. We call it the motivic Galois group of MT(Z) (with respect to 
w). This is a pro-algebraic group over Q, and it is known that Gw is a 
semi-direct product Gw = Gm 1>< Uw of Gm with a prounipotent group 
Uw, and that w is equal to the de Rham realization functor (see [DG]), 
where the homomorphism Gw -+ Gm corresponds to the action of Gw on 
w(Q(l)). We call Uw the pro-unipotent part ofthe motivic Galois group 
of MT(Z) (with respect tow). Let T denote the splitting Gm -+ Gw· 
The functorial comparison isomorphisms C ®IQI MB ~ C ®IQI MdR for M E 
MT(Z) between the Betti realization MB and the de Rham realization 
MdR give us an element aa E Gw(C) which is unique up to Gw(«Jl) (Here, 
(]" is an embedding Q(JLN) '-+ C. Now we are assuming N = 1. So we 
have only one such element). In other words, the element aa E Gw(C) 
expresses the difference of the Q-structure of the Betti realizations and 
the one of the de Rham realizations. The period of Q(l) is 2Iri. So, 
a~:= aaT(27ri)-1 is in Uw(C). 

In the p-adic case, we have functorial comparison isomorphisms 
Mcrys ~ Qp ®IQI MdR (see [Yl]), and the Frobenius action FP- 1 on Mcrys· 

By functorially transporting FP- 1 to QP ®IQI MdR, we get an element 
FP- 1 E Gw(«Jlp)· In other words, the element FP- 1 E Gw(Qp) expresses 
the difference of the Q-structure of the de Rham realizations and the one 
of the de Rham realizations twisted by the crystalline Frobenius (via the 
comparison isomorphisms). The action of FP- 1 of Q(l) is given by p. So, 
I.{Jp := FP- 1T(p)- 1 is in Uw(Qp)· 

Remark . In the complex case, the comparison isomorphisms C ®IQI 
MB ~ C®IQIMdR are given by the iterated integrals, two realizations give 
two Q-structures MB and MdR, and the difference between them gives 
the multiple zeta values via the iterated integrals for M = 1rf1 (1U, 01). 

However, in the p-adic case, the comparison isomorphisms Mcrys ~ 
QP ®IQI MdR are not given by the iterated integrals, or we have no natural 
Q-structure on Mcrys other than MdR via the comparison isomorphism. 
In the p-adic case, the Frobenius action on Mcrys gives the p-adic iterated 
integrals (This corresponds to the fact that the p-adic integration theory 
was constructed by the p-adic analytic continuation via Frobenius.), and 
the difference between MdR and Fp-1(MdR) (via the comparison isomor­
phism) gives the p-adic multiple zeta values via the iterated integrals for 

M = 1rf'1(1U,ol) ([Fu2], [Yl]). 

We have the following relation with the algebraic K-theory and the 
theory of motives (see [L], [DG]): 

Lie(U~b) = IJExtLT(Z)(Q(O),Q(n))v ~ IJ K2n-1(Z)Q· 
n n 
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Next, we consider the motivic fundamental groupoids 

{1r~(1U; a, b)} a,b=oi, ... ' 

and its realization 7T1 (1U; a, b) := w ( 7T~ (1U; a, b)) with respect to w. Here, 
1T~ (1U; a, b) is a pro-object in MT(Z). We have a pro-algebraic group Hw 
of automorphisms of { 7T1(1U; a, b)} a,b=oi, .... It is also known that Hw is a 
semi-direct product Hw = Gm IX Vw of Gm with a prounipotent group Vw. 
Roughly speaking, Vw is big and it has no power to give upper bounds of 
the space of (p-adic) multiple zeta values (In fact, Vw is the pro-vector 
space subscheme of Q( (A, B)) which consists of group-like elements, and 
<I>Kz E rc( (A, B)) or <I>f<z E Qp( (A, B)) does not give any information 
on the upper bounds). On the other hand, Uw is enough small by the 
above relation with algebraic K-groups of Z and Borel's calculation of 
their ranks. 

The fact that 1T1(1U;a,b) comes from 1T~(1U;a,b) gives a homomor­
phism 

L: Gw --+ Hw, and L: Uw --+ Vw. 

Finally, we can relate the element L((a~, T(27ri))) E L(Uw ><1 Gm)(C) C 
Vw(C) ><I Gm(C) (resp. L(cpp) E L(Uw)(Qp) C Vw(Qp)) with the Drin­
fel' d associator <I>Kz ( resp. the p-adic Drinfel' d associator <I>fs), roughly 

because the period (resp. the Frobenius action) of 7T1 (1U, 01) is given 
by the multiple zeta values (resp. p-adic multiple zeta values). Pro­
algebraic varieties are defined by defining equations. So, L((a~, T(27Ti))) 
(resp. L(tpp)) should satisfy the defining equations of L(Uw ><1 Gm)(C) 
(resp. L(Uw)(Qp)), these yield enormous relations among the multiple 
zeta values (resp. the p-adic multiple zeta values) via the relation with 
<I>Kz (resp. <I>f< 2 ), and this gives the required upper bounds (We have 
no need of knowing concrete descriptions of the defining equations. It 
is just a general theory). This is the rough sketch of the proof. As a 
summary, the upper bounds come in the following way: 

K2n-l(Z)QJ +----t Uw, where the differences of realizations live 

i.e., (Uw ><1 Gm)(C) 3 (a~, T(27Ti)) (resp. Uw(Qp) 3 tpp) 

+----t <I>Kz ( resp. <I>f<z) 

+----t MZV's (resp. p-adic MZV's). 

We return to the general case of N. We have some remarks on 
L: Gw--+ Hw, au E Gw(C), and Cfp E Uw(Qp(f.LN)). 

Theorem 6.6. The homomorphism L : Gw --+ Hw is injective in the 
following cases: 
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• (Deligne [D2]) N = 2, 3, 4, 8, and 
• (Brown [Br]) N = 1. 

Remark. In the case where N > 4 and N is a prime number, then 
the injectivity does not hold (Goncharov [G2]). In fact, he showed that 
the restriction of ~ to Lie(Uw )cieg=l 1\ Lie(Uw )deg=l ( C Lie(Uw )cieg=2) is 
not injective. The gaps explained in the remarks after Theorem 6.3 and 
Theorem 6.5 come from this non-injectivity. The injectivity holds in the 
above exceptional cases, and we cannot expect it for other N's. 

Remark . The injectivity for N = 1 (resp. N = 2, 3, 4, 8) implies 
the following (in fact, each of (1) and (2) is equivalent to the injectivity): 

• MT(Z) (resp. MT(Z[p,N, 1/N])) is generated by 1rf1(1U, ol) 
(resp. 1rf1 (1U N, ol)), 

• the motivic multiple zeta values (resp. the motivic multiple 
L-values) generate the coordinate ring of Gw. 

• All the periods of the motives in MT(Z) (resp. MT(Z[p,N, 1/N])) 
are linear combinations of the multiple zeta values (resp. the 
multiple L-values for N), and 

• so-called Deligne-Ihara's problem (resp. an analogue of 
Deligne-Ihara's problem) 3 . i.e. we consider the filtration I on 
Gc := Gal(Q/Q(P,c= )) induced by the lower central series on 

1rf (1U«J, ol) (resp. 1rf (1U«J, ol)) via the natural action, where 1rf 
is the pro-£ fundamental group. Then, EBn:;>o(gr'[Gc) ® Q is a 
free graded Lie algebra with one generator in each odd degree 
> 1 (resp. with one generator in each odd degree for N = 2, 
resp. with cp(N)/2- 1 + v = cp(N)/2 generators in degree 1, 
cp(N)/2 generators in each degree > 1 for N = 3, 4, 8). 

Remark . The proof in the case of N = 2, 3, 4, 8, and the one in 
the case of N = 1 are different. The latter one is more difficult. The 
difficulty for N = 1 comes from the fact that the lower central series of 
Lie U w does not coincide with the depth filtration. This non-coincidence 
was first observed by Ihara in [I]. The coincidence for N = 2, 3, 4, 8 
comes from the proof of the injectivity theorem. We will briefly explatin 
their proofs. 

First, we consider Deligne's proof for N = 2, 3, 4, 8 (He also has 
a similar result for N = 6). He got an explicit description of a ba­
sis in the image of Lie u::,b to the first graded quotient of the depth 

3The author thanks the referee for kindly informing him that some results 
in this direction are also in [W4] (see Theorem 15.4.7, Theorem 15.5.3, Corollary 
15.6.4, and 15.6.5 of this). 
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filtration by using the distribution properties in the depth 1 in [DG]. 
For N = 2, 3, 4 (resp. for N = 8), he considered a homomorphism 
7r'{(Gm-J.LN)--} 7r'{(Gm-{1})1><7r'{(Gm-{(i\/}) (resp. 7r'{(Gm-J.LN)--} 
1r'{(Gm- {1, -1}) IX 1r'{ (Gm- { (j\/, -(A/})) and the first graded quotient 
of the depth filtration of the Lie algebras of the above homomorphisms, 
and took the reduction modulo p for p = 2 and p = 3 in the case of 
N = 2, 4, 8, and N = 3 respectively after suitably taking an integral 
model (which does not come from a geometry). Then, from the explicit 
description of the above basis, we can see that the reduction modulo p 

is injective, and then we have the required injectivity by considering the 
ranks of free Lie algebras. 

On the other hand, in the proof of N = 1, Brown used Goncharov's 
motivic multiple zeta values defined by using the theory of the motivic 
iterated integrals [G3]. We have the inclusions 

r(AJ X Uw, Ouw) 

:.=> { subalgebra generated by the motivic MZV's} 

:.=> { subalgebra generated by the motivic MZV's with indices 2 and 3}. 

The first inclusion corresponds to the full subcategory generated by 

1rtt (u, ot): 
MT(Z) :.=> (1rtt (1U, m)). 

It is easy to show that the number of indices of weight n consisting only 
of 2 and 3 (we call it the motivic Hoffman basis) is the same as the 
dimension of r (A 1 X u w' Ou w) of weight n. His strategy is to show the 
former one is linearly independent (So, the motivic Hoffman basis is a 
basis as the vector space). 

One of the key ingredients is Goncharov's coproduct formula in [ G3], 
or its slight generalization to the coaction by considering "1r2" (or h). 
He studied the derivation version of coaction formula and its kernels. A 
determination of its kernels is useful for the induction in the proof. He 
used the induction on an increasing filtration given by the number of 3 
in the indices, which is called a level filtration. The level filtration is 
stable under the derivation version of the coaction. By taking the graded 
quotients, we get square matrices. The last step of the proof is to show 
that these matrices are invertible. In this step, he needed Zagier's ana­
lytic linear relations of the multiple zeta values. By combining Zagier's 
relations and the determination of the kernel of the derivation version 
of the coaction, he lifted Zagier's relations to the relations among the 
motivic multiple zeta values. Then, seeing 2-adically certain coefficients 
of the relations gives us the invertibility of the matrices. 
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We finish this article by giving remarks on the elements au E Gw(C) 
and t.pp E Uw(Qp(f.LN)). 

Conjecture 6. 7. (Grothendieck [DG]) The element au E Gw(rc) 
is Q-Zariski dense. In other words, this element gives an injection 
f(Gw, Ocw) '---+C. 

In the case of N = 1, 2, 3, 4, 8, by using Theorem 6.6, this conjecture 
is equivalent to the combination of Zagier's dimension conjecture 6.1 and 
the isobar conjecture ( cf. p-adic isobar conjecture 4.4). 

In the p-adic case, we can formulate a p-adic analogue of the above 
Grothendieck's conjecture on a special element in the motivic Galois 
group (See also [Y2]). 

Conjecture 6.8. (Y. [Y1]) The element t.pp E Uw(Qp(/LN )) is Q­
Zariski dense. In other words, this element gives an injection 

In the case of N = 1, 2, 3, 4, 8, by using Theorem 6.6, this conjecture 
is equivalent to the combination of Furusho-Y's dimension conjecture 6.4 
and the p-adic isobar conjecture 4.4 by the same way. 
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