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Twisted covers and specializations 

Pierre Debes and Fram;ois Legrand 

Abstract. 

The central topic is this question: is a given k-etale algebra 
I1z Ez / k the specialization of a given k-cover f : X -+ B at some 
unramified point t 0 E B ( k)? Our main tool is a twisting lemma that 
reduces the problem to finding k-rational points on a certain k-variety. 
Previous forms of this twisting lemma are generalized and unified. New 
applications are given: a Grunwald form of Hilbert's irreducibility the
orem over number fields, a non-Galois variant of the Tchebotarev the
orem for function fields over finite fields, some general specialization 
properties of covers over PAC or ample fields. 

§1. Presentation 

1.1. The central question 

If f : X -+ B is an algebraic cover defined over a field k and t 0 a 
k-rational point on B, not in the branch locus of j, the specialization of 
f at t 0 is defined as a finite k-etale algebra of degree n = deg(f). For 
example, if B = lP'1 and f is given by some polynomial P(T, Y) E k[T, Y], 
it is the product of separable field extensions of k that correspond to the 
irreducible factors of P(t0 , Y) (for all but finitely many t 0 E k). Our 
central question is whether a given degree n k-etale algebra ITz Ez/k 
is the specialization of a given degree n k-cover f : X -+ B at some 
unramified point t 0 E B(k). The classical Hilbert specialization property 
corresponds to the special case for which etale algebras are taken to be 
single degree n field extensions and the answer is positive for at least 
one of them. 
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The question has already been investigated in [DGlla] and [DGllb] 
for regular Galois covers and in [DL] for covers with geometric mon
odromy group Sn (definitions recalled in §2.2). The aim of this paper 
is to handle the situation of arbitrary covers, to provide a unifying ap
proach and to give further applications. 

1.2. The twisting lemma 

Our main tool is a twisting lemma that gives a general answer to 
the question: under certain hypotheses, the answer }:s Yes if there exist 
unramified k-rational points on the covering space X of certain twisted 
covers 1: X -+ B. This lemma has several variants. The first one, for 
regular Galois covers, was established in [Deb99a] for covers of IP'1 and 
in [DGlla] for a general base space. It is used in [DL] to obtain the 
second one, for covers with geometric monodromy group Sn. We will 
prove the two variants shown on the top row of the following diagram, 
which indicates that they generalize the two previous ones, shown on 
the bottom row. 

Galois {=} general 

JJ- JJ-
regular Galois ==? monodromy Sn 

The Galois variant is for the situation f : X -+ B is a Galois cover, 
regular or not; it is proved in §3.1. The general variant is proved in §3.2 
and concerns arbitrary covers, Galois or not, regular or not. Implication 
==? in the upper row means that the general variant will be obtained 
from the Galois variant. We will also be interested in the converse of 
the twisting lemma: the answer to the original question is Yes if and 
only if there exist unramified k-rational points on the twisted covers. 

The twisting lemma is a geometric avatar of an argument of Tcheb
otarev known as the Field Crossing Argument and which notably appears 
in the proof of the Tchebotarev density theorems over global fields and 
in the theory of PAC fields (see [F J04]). The twisting lemma formalizes 
t!Ie core of the argument and produces a geometric tool: the variety 
X. This allows a unifying approach over an arbitrary base field: ques
tions are reduced to finding rational points on X. Letting the base field 
vary then yields previous results in various contexts and leads to new 
applications. The twisted cover 1 : X -+ B, which appeared first in 
[Deb99a] and [Deb99b], could also be defined by using the language of 
torsors. Another related approach using an embedding problem presen
tation has also been recently proposed by Bary-Soroker [BSlO]. 
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1.3. Applications 

As in previous papers, they are obtained over fields with good arith
metic properties: PAC fields, finite fields, number fields, ample fields. 
We present them below in connection with those from previous works. 

1.3.1. Over a PAC field k (definition recalled in §4.1), the regular 
Galois variant was used in [Deb99a] to prove that, given a group G and 
a subgroup H C G, any Galois extension E/k of group His a special
ization of any regular Galois k-cover f : X -+ 1P'1 of group G (thereby 
proving the so-called Beckmann-Black conjecture for PAC fields). A 
not necessarily Galois analog with an arbitrary degree n k-etale algebra 
f11 Ez/k replacing E/k is proved in [DL] under the assumption that f 
is a degree n k-cover of geometric monodromy group Sn. Corollary 4.1 
is a refinement of the first result (the regularity assumption is relaxed) 
while Corollary 4.2 is a variant of the second one (allowing more gen
eral monodromy groups). Similar applications have been obtained by 
Bary-Soroker [BS10]. 

The general spirit of these results is that over a PAC field there is no 
diophantine obstruction 1 to a given etale algebra being a specialization 
of some given cover; obstructions only come from Galois theory. This has 
some impact on the arithmetic of PAC fields. For example a by-product 
of [DL] is that if k is a PAC field of characteristic 0 (for simplicity), every 
degree n extension E / k can be realized by some trinomial yn - Y + b 
with bE k. 

1.3.2. Over a finite field k = lF q, the twisting lemma can be com
bined with Lang-Weil to obtain an estimate for the number of points 
to E lF q at which a given degree n etale algebra f11 Ez/lF q is a specializa
tion of a given degree n lF q-cover f : X -+ 1P'1 of geometric monodromy 
group Sn (Corollary 4.3). This type of result is known in the litera
ture as a Tchebotarev theorem for function fields over finite fields. For 
example, if f11 Ez/lF q is the single degree n field extension lF qn /lF q, the 
estimate is of the form qjn + O(yq). In the specific case where f is 
given by the trinomial yn + Y- T, it yields results of Cohen and Ree 
proving a conjecture of Chowla. See §4.2 for details and references. 

For finite fields lF q, the same general spirit as for PAC fields can be 
retained-no diophantine obstruction to the problem-, but provided 
that q be suitably large. 

1.3.3. The local-global situation of a number field k given with some 
completions kv was central in [DG lla]. The main result was a Hilbert
Grunwald theorem showing that every regular Galois k-cover f : X -+ lP'1 

1 In the sense that existence of rational points on some variety, which is a 
condition of our twisting lemma in general, is automatic over a PAC field k. 
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of group G has specializations at points t0 E k that are Galois field 
extensions of group G (Hilbert) with the extra property (Grunwald) 
that they induce prescribed unramified extensions Ev /kv of Galois group 
Hv C G at each finite place v in a given finite set S, the only condition 
on the places being that the residue fields be suitably big and of order 
prime to IGI. An analog is given in [DL] for not necessarily Galois covers: 
the Hilbert condition becomes that the specialization at to is a degree 
n field extension and the Grunwald condition that the local degrees are 
imposed at each v E S; this is proved under the assumption that f is a 
degree n k-cover of geometric monodromy group Sn. 

§4.3 has a similar local-global flavor. The outcome is a generaliza
tion to general regular covers f : X -+ lP'1 of the non-Galois analog above 
(Corollary 4.5). On the way the following typical result of Fried is re
proved (and generalized): if the Galois group G C Sn over ij(T) of a 
degree n polynomial P(T, Y) E Q(T)[Y] contains an-cycle, then the as
sociated Hilbert subset contains infinitely many arithmetic progressions 
with ratio a prime number. See §4.3 for details and references. 

Here it is the relative flexibility of the local extensions obtained from 
global specializations that is the striking phenomenon. In the Galois sit
uation, the very existence of global extensions with such local properties 
may sometimes even be questioned. Recall for example that results from 
[DG lla] lead to some obstruction to the Regular Inverse Galois Prob
lem (yet unproved to be not vacuous) related to some analytic questions 
around the Tchebotarev density theorem. 

Other local-global situations can be considered, for example that of 
a base field that is a function field ii( x) with li either a suitably large 
finite field or a PAC field with enough cyclic extensions. We refer to 
[DGllb] where these situations have been considered. 

1.3.4. Over ample fields (definition recalled in §4.4), the twisting 
lemma leads to this general property of ample fields (Corollary 4.6): if a 
k-cover f: X-+ B of curves specializes to some k-etale algebra Ilz Ez/k 
at some unramified point t 0 E B(k), then it specializes to the same 
k-etale algebra Ilz Ez/k at infinitely many unramified points t E B(k). 

§2. Basics 

In this section we set up the terminology and notation for the basic 
notions we will use. The reader who is familiar with etale algebras, 
covers and their specializations, Galois groups, fundamental groups and 
their representations can skip this section to get to the core of the paper 
and come back to it when needed. 
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Given a field k, we fix an algebraic closure k and denote the separable 
closure of k ink by ksep and its absolute Galois group by Gk· If k' is an 
overfield of k, we use the notation ®kk' for the scalar extension from k 
to k': for example, if X is a k-curve, X ®k k' is the k'-curve obtained 
by scalar extension. For more on this section, we refer to [DD97, §2] or 
[DE~b09, Chapitre 3]. 

2.1. Etale algebras and their Galois representations 

Given a field k, a k-etale algebra is a product IJ;=1 Ez/k of finite 
sub-field extensions EI/k, ... , Eslk of ksep lk. Set m 1 = [Ez : k], l = 
1, ... , sand m = 2::;=1 mz. If Nlk is a Galois extension containing the 
Galois closures of EI/k, ... , Eslk, the Galois group Gal(Nik) acts by 
left multiplication on the left cosets of Gal(N I k) modulo Gal( N I E 1) for 
each l = 1, ... , s. The resulting action Gal( N I k) -+ Sm on the set of 
these m left cosets, which is well-defined up to equivalence (i.e. up to 
conjugation by an element of Sm), is called the Galois representation of 
11;=1 Ez/k relative toN. Equivalently it can be defined as the action of 
Gal(Nik) on the set of all k-embeddings E 1 '--+ N, l = 1, ... ,s. 

Conversely, an action f-1 : Gal( N I k) -+ Sm determines a k-etale 
algebra in the following way. For i = 1, ... , m, denote the fixed field in 
N of the subgroup of Gal( N I k) consisting of all T such that f.l( T) ( i) = i 
by Ei. The product Ilz Ez/k for l ranging over a set ofrepresentatives of 
the orbits ofthe action f-1 is a k-etale algebra with Lz [Ez : k] = m. If two 

k-etale algebras 11;=1 Ez/ k and 11;~ 1 E{/ k are obtained in this manner 
from two different choices of the set of representatives of the orbits of 
f-1, then they are equivalent in the sense that s = s' and there exist 
0"1 , ... , 0"8 E Gal(Nik) such that O"z(Ez) = Ef, l = 1, ... , s. Equivalently 
an equivalence class of k-etale algebras can be viewed as a product of 
k-isomorphism classes of finite sub-field extensions of ksep lk. 

G-Galois variant: if Ilf=1 Ez/k is a single Galois extension Elk, the 
restriction Gal( N I k) -+ Gal( E I k) is called the G- Galois representation 
of E I k (relative to N). Any map r.p : Gal(N I k) -+ G obtained by com
posing Gal(Nik)-+ Gal(Eik) with a monomorphism Gal(Eik)-+ G is 
called a G-Galois representation of E I k (relative to N). The extension 
E I k can be recovered from r.p : Gal( N I k) -+ G by taking the fixed field in 
N of ker( r.p). One obtains the Galois representation Gal( N I k) -+ Sn of 
E I k (relative to N) from a G-Galois representation r.p : Gal( N I k) -+ G 
(relative to N) by composing it with the left-regular representation of 
the image group r.p(Gal(Nik)); here n = lr.p(Gal(Nik))l. 
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2.2. Covers and function field extensions 

Given a regular projective geometrically irreducible k-variety B, a 
k-cover of B is a finite and generically unramified morphism f : X -+ B 
defined over k with X a normal and irreducible variety. Through the 
function field functor k-covers f : X -+ B correspond to finite separable 
field extensions k(X)Ik(B). The k-cover f: X-+ B is said to be Galois 
if the field extension k(X)Ik(B) is; if in addition f : X -+ B is given 
together with an isomorphism G-+ Gal(k(X)Ik(B)), it is called a k-G
Galois cover of group G. 

A k-cover f : X -+ B is said to be regular if k(X) is a regular 
extension of k, i.e. if k(X) n k = k, or equivalently, if X is geometrically 
irreducible. In general, there is some constant extension in f : X -+ B, 
which we denote by ktfk and is defined by kJ = k(X)nksep (the special 

case k1 = k corresponds to the situation f: X-+ B is regular). 
Iff : X -+ B is a k-cover, its Galois closure over k is a Galois k-cover 

g: Z-+ B, which via the cover-field extension dictionary, corresponds to 
the Galois closure of k(X)Ik(B). The Galois group Gal(k(Z)Ik(B)) is 
called the monodromy group of f. Denote next by k88P(Z) the composi
tum of k(Z) and ksep (in a fixed separable closure of k(B)) 2 . The Galois 
group Gal( ksep ( Z) I ksep (B)) is called the geometric monodromy group of 
f; it is a normal subgroup of the monodromy group Gal(k(Z)Ik(B)). 
The branch divisor of the k-cover f is the formal sum of all hypersurfaces 
of B &h ksep such that the associated discrete valuations are ramified in 
the field extension ksep ( Z) I ksep (B). 

Iff : X -+ B is regular, f ®k ksep is a ksep_cover, the Galois closure 
of its function field extension is ksep ( Z) I ksep (B) and its branch divisor 
is the same as the branch divisor of f, and it is the formal sum of all 
hypersurfaces of B ®k ksep such that the associated discrete valuations 
are ramified in the field extension k88P(X)Iksep(B). From Purity of the 
Branch Locus, f is etale above B \D. 

2.3. 1r1-representations 

Given a reduced effective divisor D C B, denote the k-fundamental 
group of B \ D by 1r1(B \ D, t)k where t E B(k) \ D is a base point 
(which corresponds to the choice of an algebraic closure of k( B)). Con
joining the two dictionaries covers-function field extensions and field 
extensions-Galois representations, we obtain the following correspon
dences: k-covers of B of degree n (resp. k-G-Galois covers of B of 

2Note that as g : Z -t B is Galois, k(Z) only depends on the k(B)
isomorphism class of k(X)/k(B) (but not on k(X)/k(B) itself). 
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group G) with branch divisor contained in D correspond to transi
tive morphisms3 ¢ : 1r1 (B \ D, t)k ---+ Sn (resp. to epimorphisms ¢ : 
1r1 (B \ D, t)k ---+ G). The regularity property corresponds to the extra 
condition that the restriction of¢ to 1r1 (B \ D, t)ksep remains transitive 
( resp. remains onto). These morphisms are called fundamental group 
representations (1r1-representations for short) of the corresponding k
covers and k-G-Galois covers. 

2.4. Specializations 

Each k-rational point to E B(k) \ D provides a section St0 : Gk ---+ 
1r1 (B \ D, t)k to the exact sequence 

1 ---+ 1r1 (B \ D, t)ksep ---+ 1r1 (B \ D, t)k ---+ Gk ---+ 1 

which is uniquely defined up to conjugation by an element in the funda
mental group 1r1(B \ D, t)ksep. 

If ¢ : 1r1 ( B \ D, t )k ---+ G represents a k-G-Galois cover f : X ---+ B, 
the morphism ¢ o St0 : Gk ---+ G is a G-Galois representation. The fixed 
field in ksep of ker( ¢ost0 ) is the residue field at some point above t0 in the 
extension k(X)/k(B) (in fact at any point above t 0 since the extension 
k(X)/k(B) is Galois). We denote it by k(X)t 0 and call k(X)t0 /k the 
specialization of the k-G-cover f at to. 

If ¢ : 1r1 ( B \ D, t )k ---+ Sn represents a k-cover f : X ---+ B, the 
morphism ¢ o St0 : Gk ---+ Sn is the specialization representation off at 
t 0 . The corresponding k-etale algebra is denoted by Tif=1 k(X)t0 ,z/k and 
called the specialization algebra off at t0 . Each field k(X)t0 ,z is a residue 
extension at some prime above t 0 in the extension k(X)/k(B) and vice
versa; k(X)t0 ,z is called a specialization of f at to. The compositum in 
ksep of the Galois closures of all specializations at t 0 is the specialization 
at to of the Galois closure of f (viewed as a k-G-Galois cover). If the 
k-cover f is regular, the fields k(X)t0 ,z correspond to the definition fields 
of the points in the fiber f- 1 (to) and ¢ o St0 : G k ---+ Sn to the action of 
Gk on them. 

§3. The twisting lemma 

Given a field k, the question we address is whether a given k-cover 
specializes to a given k-etale algebra at some unramified k-rational point. 
We first consider the situation of Galois covers in §3.1 and then handle 
the non-Galois situation in §3.2 by "going to the Galois closure". The 

3 i.e. such that the image group is a transitive subgroup of Sn. 
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Galois situation was considered in [DG lla] in the special case of regular 
Galois covers. But the Galois closure of a k-cover is not regular in 
general, even if f : X -+ B is regular, and this special case needs to be 
extended. §3.1 is a generalization of the twisting lemma from [DGlla] 
to not necessarily regular Galois covers. 

3.1. The twisting lemma for Galois covers 

Fix the field k and a Galois k-cover g : Z -+ B. Denote its 
branch divisor by D, the Galois group Gal(k(Z)Ik(B)) by G, the 7f1-

representation of the k-G-Galois cover g : Z -+ B by ¢ : 1r1 ( B \ D, t) k -+ 
G, the geometric monodromy group Gal(ksep(Z)Iksep(B)) by G and the 

constant extension in g: Z-+ B by kglk. 
3.1.1. Twisting Galois covers Let N I k be some Galois extension 

with Galois group H isomorphic to a subgroup of G. With no loss we 
may and will view H itself as a subgroup of G. The constant exten
sion kg I k is characterized by this condition: kg (B) is the fixed field in 
k(Z) of geometric monodromy group G c G. We assume the following 

compatibility condition of Nlk with the constant extension kglk: 

( const I comp) the fixed field N HnG of H n G in N is the field kg. 

This condition is trivially satisfied in the regular case as both fields 
NHnG and kg equal k. 

Consider the homomorphism A : Gk -+ GIG induced by¢ on the 
quotient Gk = 1r1 (B \ D, t)kl1r1 (B \ D, t)ksep. The map A is a G-Galois 
representation of the constant extension kglk (relative to ksep); it is 
called the constant extension map [DD97, §2.8]. As it is surjective, 

we have Gal(kglk) ~GIG and so condition (constlcomp) implies that 
HG=G. 

Let i.p : Gk -+ H be the G-Galois representation of the Galois exten
sion N lk (relative to ksep) and lj5: Gk -+ GIG be the composed map of 
i.p with the canonical surjection.., : G -+ GIG. Hypothesis ( const I comp) 
rewrites as follows: 

( const I comp) There exists x E Aut (GIG) such that A = x o lj5. 

(The equivalence follows from kg = (ksep)ker(A) and 

(ksep)ker(ip) = ((ksep)ker(<p))ker('P)/ker(<p) = N'P(ker(ip)) = NHnG. 

Also note that as A: Gk-+ GIG is onto, an automorphism x satisfying 
( const I comp) is unique). 
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Assume there exists an isomorphism x : H ---+ H' onto a subgroup 
H' C G that induces x modulo G. With Per( G) the permutation group 
of G, consider then the map 

;jx'P: 1r1 (B \ D, t)k---+ Per( G) 

defined by this formula, where r is the restriction 1r1 (B \ D, t)k---+ Gk: 
forB E 1r1(B \ D, t)k and x E G, 

;jx'P(B)(x) =¢(B) x (x o cp o r)(e)- 1 . 

It is easily checked that cpX'P is a group homomorphism. However the 
corresponding action of 1r1 (B \ D, t)k on G is not transitive in general. 
More precisely we have the following. 

Lemma 3.1. Under hypothesis (const/comp), we have ;jx'P(B)(G) c 
G for every e E 1r1(B \ D, t)k. 

Proof. For all e E 1r1(B \ D, t)k and x E G, we have: 
-- 1 

cpx'P(B)(x) =¢(B) .x.(xocpor)(e) = A(r(B)).x(c.p(r(e)))- 1 = 1. 
Q.E.D. 

Consider the morphism, denoted by ¢¥J : 1r1 (B \ D, t)k---+ Per( G), 

that sends e E 1r1 ( B \ D, t )k to the restriction of ;jx'P (B) on G. Its 
restriction 1r1(B \ D, t)ksep ---+Per( G) is given by 

¢¥J(B)(x) =¢(B) x ( B E 7r 1 ( B \ D, t )ksep , x E G) . 

Thus this restriction is obtained by composing the original 7r1-represen
tation ¢ restricted to 1r1 ( B \ D, t) ksep with the left-regular representation 
G ---+ Per( G) of G. This shows that ¢¥J : 1r1 (B \ D, t)k ---+ Per( G) 
is the _1r1-representation of some regular k-cover, which we denote by 
gX'P : zx'P ---+ B and call the twisted cover of g by xcp. 

3.1.2. Statement of the twisting lemma for Galois covers The fol
lowing statement gives the main property of the twisted cover. 

Some notation is needed. Conjugation automorphisms in some group 
g are denoted by conj(w) for wE Q: conj(w)(x) = w xw- 1 (x E Q). The 
set of all isomorphisms x : H ---+ H' onto a subgroup H' C G that induce 
x modulo G is denoted by Isomx-(H, H'). 

Fix then a set {x, : H ---+ H, I r E r} of representatives of all iso
morphims x E Isomx-(H, H') with H' ranging over all subgroups of G iso
morphic to H, modulo the equivalence that identifies X1 E Isomx-(H, H{) 
and X2 E Isomx-(H, H&) if H& = wHf w-1 and X2X!1 = conj(w) for some 
wE G. 
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Twisting lemma 3.2 (Galois form). Under condition (const/comp), 
we have the following conclusions (a) and (b). 

(a) For each subgroup H' c G isomorphic to H, each x E Isomx-(H, H') 
and each t 0 E B(k) \ D, these conditions are equivalent: 

(i) there exists a point x 0 E ZX'P(k) such that gX'P(x0 ) = t0 , 

(ii) there is w E G such that (¢ o St0)(T) = w (x o cp)(T) w-1 , T E Gk, 
(where St0 : Gk -+ n 1 (B \ D, t)k is the section associated with to). 

(b) For each t0 E B(k) \ D, the following are equivalent: 

(iii) the specialization k(Z)t0 /k of the k-G-Galois cover g : Z -+ B zs 
the extension N / k, 
(iv) there exists an isomorphism X E Isomx-(H,¢ o St0 (Gk)) such that 
conditions (i)-(ii) hold for this x, 
( v) there exists 1 E r such that conditions (i) -(ii) hold for X = X 1 . 

Furthermore an element 1 E r as in (v) is necessarily unique. 

A single twisted cover is involved in (a) while there are several in 
(b). In this respect the representation viewpoint used in (a) may look 
more natural than the field extension one in (b). The latter however 
is more useful in practice. Also note that conditions (iv)-(v), being 
equivalent to (iii), do not depend on the chosen n 1-representation ¢ : 
n 1 (B \ D, t)k-+ G of g: Z-+ B modulo conjugation by elements of G. 

Remark 3.3. (a) Existence of some subgroup H' C G such that 
the set Isomx-(H, H') is non-empty, which amounts tor# 0, is not guar
anteed; if r = 0, conditions (iii)-(iv)-(v) fail. It is however guaranteed 
under each of the assumptions x = Idc;c or Out(G/G) = {1}. Indeed 

ifx = Id010 , then IdH E Isomx(H,H), and ifOut(G/G) = {1}, the au

tomorphism x E Aut(G/G) is inner, of the form conj(w) with wE G/G, 
and, as HG = G, lifts to some isomorphism conj(w) : H -+ H with 
wE H. Both assumptions include the regular case as then G/G = {1}. 

(b) Some uniqueness property can be added to (iv), as in (v). Indeed an 
isomorphism x E Isomx(H,¢ost0 (Gk)) satisfying conditions (i)-(ii), as 
the one in (iv), is necessarily unique up to left composition by conj(w) 
with w E N or0 ( ¢ o St0 ( G k)). The advantage of condition ( v) is that the 

set U,Er zx'"~'P(k) where unramified k-rational points should be found 
to conclude that (iii) holds does not depend on t 0 (although the element 
1 E r in (v) does). Moreover the uniqueness property in (v) makes it 
easier to count the points t0 E B(k) for which (iii) holds. 
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(c) The proof of (i) ¢? (ii) below shows further that the number of k

rational points on ZX'+' above some given unramified point t 0 E B(k ), if 
positive, is equal to the order of the group Cen0 (x(H)). 

3.1.3. Proof of the twisting Lemma 3.2 (a) Fix a subgroup H' c G 
isomorphic to H, an isomorphism x E Isomx-(H, H') and a point t0 E 

B(k) \D. The map ¢ij o St0 : Gk--+ Per( G) is the action of Gk on the 
fiber ((]X'+')-1(t0); it is given by 

The elements ¢ij ( St0 ( T)) have a common fixed point w E G if and 

only if ¢(st0 (T)) = w (X o cp)(T) w-1 (T E Gk)· This yields (i) ¢? (ii). 
Furthermore, the set of all w E G satisfying the preceding condition, if 
non empty, is a left coset w0 Cen0 (x(H)); this proves Remark 3.3 (c). 

(b) Fix t 0 E B ( k) \ D and a representative of the section St0 : G k --+ 
1r1 (B\D, t)k (defined up to conjugation by an element in 1r1 (B\D, t)ksep ). 

Implication (iv) ==?(iii) follows from the fact that if X E Isomx-(H, q\o 
St0 (Gk)) satisfies (i)-(ii), then ker(¢ o St0 ) and ker(cp) are equal, hence 
so are their fixed fields in ksep. Conversely assume that the extensions 
k(Z)t0 /k and N/k are equal, i.e. ker(¢ost0 ) and ker(cp) are the same sub
group, say K, of Gk. The two morphisms ¢ost0 : Gk--+ ¢ost0 (Gk) C G 
and cp : Gk --+ H C G then differ from Gk --+ Gk/K by some iso
morphisms ¢ o St0 (Gk) --+ Gk/K and H --+ Gk/K, respectively. Thus 
they differ from one another by an isomorphism x : H --+ ¢ o St0 ( G k): 
¢ o St0 = x o cp. It follows from this and from uniqueness of X satisfying 
(const/comp) that x automatically induces X modulo G. Conclude that 
x E Isom-x(H,¢ost0 (Gk)) and conditions (i)-(ii) hold for this X· 

Assume (v) holds, i.e., for some 1 E r, condition (i)-(ii) are sat
isfied for the isomorphism x, : H --+ H 1 and some w E G. It readily 
follows that x = conj ( w) o x 1 also satisfies (ii) and is in Isomx( H, ¢ o 
St0 (Gk)). This establishes (iv). Conversely assume (iv) holds. Let 
x E Isomx-(H,¢ o St0 (Gk)) be an isomorphism such that conditions 
(i)-(ii) hold, for some w E G. There exist 1 E r and w' E G such 
that X = conj(w') o x,. It follows that condition (ii) holds for x, 
as well (with conjugation factor ww'). Uniqueness of 1 E r in condi
tion (v) readily follows from condition (ii) and the definition of the set 
{x, 11 E r}. Q.E.D. 
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3.2. The general form of the twisting lemma 

We fix a degree n k-cover f : X --+ B and a degree n k-etale algebra 
IJ:=1 Ez/k and the question we address is whether IJ:=1 Ez/k is (equiva
lent to) the specialization algebra I1z k(X)t0 ,z/k off at some unramified 
point t 0 E B(k). 

3.2.1. Statement of the result Denote the branch divisor off : X --+ 
B by D, its Galois closure by g : Z --+ B, the Galois group Gal( k( Z) I k( B)) 
by G, the 7f1-representation of the k-G-Galois cover g : Z --+ B by 
¢ : 7f 1 ( B \ D, t) k --+ G, the Galois representation of the field exten
sion k(X)Ik(B) relative to k(Z) by v : G --+ Sn, the geometric mon
odromy group Gal(ksep(Z)Iksep(B)) by G and the constant extension in 

g: Z--+ B by k9 lk. 
Let N I k be the compositum inside ksep of the Galois closures of the 

extensions Ezlk, l = 1, ... , s, and H = Gal(N lk). A necessary condition 
for a positive answer to the question is that N be the compositum inside 
ksep of the Galois closures of the extensions k(X)to,zlk. In particular, 
H should be isomorphic to some subgroup of G. From now on we will 
assume it. With no loss we may then and will view Has a subgroup of G. 
Finally let rp : Gk --+ H be the G-Galois representation of N lk relative to 
ksep and f-L: H--+ Sn be the Galois representation of I1~= 1 Ezlk relative 
toN. 

Some further notation from §3.1 is retained. The constant exten
sion compatibility condition ( const I comp) determines a unique automor
phism X of GIG (§3.1.1). The twisted cover gX'P : zx'P --+ B is defined 
for every isomorphism X : H --+ H' onto a subgroup H' C G inducing 
x modulo G (§3.1.1). The set of all such isomorphisms x : H--+ H' is 
denoted by Isomx-(H, H'). The isomorphisms X": H--+ H" (IE f) are 
defined in §3.1.2. 

Twisting lemma 3.4 (general form). Let f : X --+ B be a k
cover and IJ:=1 Ezlk be a k-etale algebra as above. Assume further that 
condition (constlcomp) from §3.1.1 holds for the Galois closure g: Z--+ 
B of f. Then for each to E B(k) \ D, the following conditions are 
equivalent: 

(i) IJ1 Ez/k is the specialization algebra I1z k(X)t0 ,z/k off at to. 

(ii) there is a subgroup H' c G isomorphic to H and an isomorphism 
x E Isomx-(H, H') such that 

1. There exists Xo E zx'P ( k) with gX'P ( Xo) = to' and 

2. there exists a E Sn that v o x(h) =a J.L(h) a- 1 for every hE H. 

Furthermore if (ii) holds, it holds for some isomorphism x" : H--+ H" 
for some 1 E r and the element 1 is then necessarily unique. 
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3.2.2. About condition (ii-2) We focus on condition (ii-2) which is 
the group-theoretical part of condition (ii) (while condition (ii-1) is the 
diophantine part). 

We first note for later use that if condition (ii-2) holds for x = X'Yo 
with /o E r, the number of r E r for which condition (ii-2) holds for 
x = x 'Y is equal to the number of isomorphisms x 'Y (r E r) such that 
the actions v o X'Y : H--+ Sn and v o X'Yo : H--+ Sn are conjugate in Sn. 

Below we give three standard situations where condition (ii-2) holds. 

(a) Geometric monodromy group Sn: G = G = Sn as in [DL]. Condition 
( const I comp) holds and v : Sn --+ Sn is the natural action: v = Idsn . 
Condition v o x'Y(h) = rJ JL(h) CJ- 1 (h E H) is satisfied with X'Y the 
representative of the isomorphism JL : H --+ JL(H) C Sn (and some 
rJ E Sn)· 

(b) Galois situation: f : X --+ B is a Galois k-cover, ITz Ezl k is a Galois 
field extension E I k of group H c G and r -1- 0. Then vis the left-regular 
representation G--+ Per( G) and JL its restriction H--+ Per( G). Note next 
that if r E r, the restriction viH: H--+ Per( G) and vox~': H--+ Per( G) 
are conjugate actions. Condition (ii-2) follows. 

In (c) below, the type of a permutation rJ E Sn is the (multiplicative) 
divisor of all lengths of disjoint cycles involved in the cycle decomposition 
of rJ (for example, ann-cycle is of type n 1 ). 

(c) Cyclic specializations: condition ( const I comp) holds, H is a cyclic 
subgroup of G generated by an element w such that v(w) is of type equal 
to the divisor of all degrees [Ez : k] of field extensions in the etale algebra 
ITz Ez/k. 

Indeed for every integer a?: 1 such that (a, IHI) = 1, let Xa : H--+ H 
be the morphism that maps w to wa. As HG = G, each map Xa induces 
an automorphism of the cyclic group GIG. Then there is necessarily an 
integer a?: 1 such that Xa induces X modulo G and (a, IHI) = 1 4 . From 
the hypothesis, the types of v(w) and JL(w) are the same. But so are the 
types of v( w) and voX a ( w). Conclude that the actions voX a and JL are 
conjugate. 

3.2.3. Comparizon with previous forms We compare the general form 
(Lemma 3.4) with the Galois form (Lemma 3.2) and the geometric mon
odromy group Sn form [DL, Lemma 2.1] of the twisting lemmas. 

4 An exercise: this amounts to showing that if b is an integer prime to 
v = IG/GI and IGI = J.LV, then there exists an integer a= b + kv that is prime 
to J.LV. Take for k the product of the prime divisors of J.L that do not divide b. 
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Lemma 3.4 (general form) =? Lemma 3.2 (Galois form): Both forms 
have the assumption (constjcomp). In the Galois situation from §3.1, 
the k-cover is Galois (and so f = g) and the k-etale algebra is a Galois 
field extension E/k with group Gal(E/k) = H (so I1~= 1 Ez/k = E/k and 
N =E). Then statement (i) ¢? (ii) in Lemma 3.4 exactly corresponds 
to statement (iii) ¢? (v) in Lemma 3.2. 

Indeed condition (ii) from Lemma 3.4 reduces to its first part (ii-1) 
(see §3.2.2 (b)) and then coincides with condition (v) from Lemma 3.2, 
and condition (i) from Lemma 3.4 corresponds to condition (iii) from 
Lemma 3.2 (note that the etale algebra Ill Ez/k (resp. Ill k(X)t0 ,z/k) 
from condition (i) is a product of IGI/IHI copies of the Galois field 
extension E/k (resp. k(X)t0 /k)). 

Lemma 3.4 (general form) =? Lemma 2.1 from [DL]: In [DL], the k
cover f : X --+ B is of degree n and geometric monodromy group Sn. 
Then G = G = Sn, that is, we are in the standard situation (a) from 
§3.2.2. Thus condition (ii-2) holds. The twisted cover ?fN : zN --+ B 
in [DL, Lemma 2.1] is the twisted cover ?f~"'P : Z~"'P --+ B in this paper. 
Conclude that (i) =? (ii) in [DL, Lemma 2.1] exactly corresponds to (ii) 
=? (i) in Lemma 3.4. 

3.2.4. Proof of the twisting Lemma 3.4 We will use the Galois form 
of the twisting lemma to establish the general form. 

(i) =? (ii): Assume (i) holds. Necessarily N is the compositum of the 
Galois closures of the extensions k(X)t0 ,z/k. From the twisting Lemma 
3.2 for Galois covers, there is a unique '/ E r satisfying condition (ii-
1) from Lemma 3.4. And from Lemma 3.2 (a), this last condition is 
equivalent to existence of some w E G such that ( ¢ o St0 ) ( T) = w (X, o 
cp)(T) w-1 for all T E Gk. Thus we obtain: 

(v o ¢ o St0)(T) = v(w) (vox, o cp)(T) v(w)- 1 (T E Gk)· 

But condition (i) gives vo¢ost0 (T) = (3 p,ocp(T) (3-1 (T E Gk), for some 
(3 E Sn. Conjoining these equalities yields condition (ii-2). 

(ii) =? (i): Assume (ii) holds. From Lemma 3.2, existence of x0 E ZX'P(k) 
such that ?fX'P(xo) =to implies that N is the compositum of the Galois 
closures of the k(X)t0 ,l, and so we have (¢ o St0)(T) = w (X o cp)(T) w-1 

for some wE G and all T E Gk. 
Denote the orbits of p, : H--+ Sn, which correspond to the extensions 

E1, ... Es, by 01, ... , 0 8 • Fix one of them, i.e. l E {1, ... , s}, and let 
i E { 1, ... , n} be some index such that El is the fixed field in ksep of the 
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subgroup of Gk fixing i via the action p, o cp. For j = v(w)(o-(i)) (with a 
given by condition (ii-2)), we have 

(v o ¢ o St0 )(T)(j) = v(w) (voX o cp)(T) (o-(i)) 
= v(w) (conj(a) o p, o cp)(T) (a(i)) 
= v(w) a (p, o cp)(T) (i) 

and so j is fixed by (v o ¢ o St0 )(T) if and only if i is fixed by (p, o cp)(T). 
Conclude that the specialization k(X)to,j is the field Ez. Q.E.D. 

§4. Applications 

4.1. PAC fields 

Recall that a field k is said to be PAC if every non-empty geomet
rically irreducible k-variety has a Zariski-dense set of k-rational points. 
If k is PAC, the twisting lemma leads to the following statements in the 
two standard situations (b) and (c) from §3.2.2 (the standard situation 
(a) corresponds to Corollary 3.1 from [DL]). Similar applications over 
PAC fields can also be found in Bary-Soroker's works [BS10] [BS09]. 

Corollary 4.1. Let k be a PAC field, f : X --+ B be a k-G-Galois 
cover of group G and geometric monodromy group G, and let E I k be a 
Galois extension of group H C G. Assume that condition ( const I comp) 
from § 3.1 holds and Out (GIG) = { 1}. Then E I k is the specialization 
k(X)t0 lk off at each point to in a Zariski-dense5 subset of B(k) \D. 

The special case G = G corresponds to theorem 3.2 of [Deb99a] 
(which proved the Beckmann-Black conjecture over PAC fields). 

Proof. Assumption Out(GIG) = {1} assures that r =/= 0 (Remark 
3.3 (a)). Pick ry E r. Since k is PAC, the variety zx-r'P has a Zariski
dense set Z of k-rational points. From Lemma 3.2, the Zariski-dense sub
set gX-r'P(Z) \DC B(k) \D satisfies the announced conclusion. Q.E.D. 

Corollary 4.2. Let k be a PAC field, f : X --+ B be a degree n k
cover and let 1131 · · • nl3n be the type of some element of the monodromy 
group G in the Galois representation v : G --+ Sn of k( X) I k( B). Let 
ITz Ez I k be an etale algebra such that 
- the divisor of all degrees [E1 : k] is 1131 · • · nl3n, 
- condition ( constl comp) holds, 
- the compositum N I k of the Galois closures of the extensions Ez/ k is 
a cyclic extension of order lcm { i I f3i =/= 0}. 

5But not necessarily Zariski open. 
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Then I1z Ez/k is the specialization algebra I1z k(X)t0 ,z/k off at each 
point t 0 in a Zariski-dense subset of B(k) \D. 

A useful special case is for 1131 • · · nl3n = n 1 : it can then be concluded 
that f : X --+ B specializes to some degree n field extension at each t 0 

in a Zariski-dense subset of B ( k) \ D (i.e. the Hilbert irreducibility 
conclusion) under the assumptions that there is an-cycle in v( G) and k 
has a degree n cyclic extension satisfying condition ( const / comp). This 
can be compared to [BS09, Corollary 1.4] (and [DL, Corollary 3.1]) which 
has the same Hilbert conclusion under the assumptions that G = G = Sn 
and k has a degree n separable extension. 

Proof. Let w E G with v( w) of type 1131 · • • nl3n. Identify the Galois 
group H = Gal(N/k) with the subgroup (w) c G. We are in the stan
dard situation (c) from §3.2.2 and so condition (ii-2) from Lemma 3.4 
holds for some isomorphism x, bE f). Since k is PAC, condition (ii-1) 
holds for all t0 in a Zariski-dense subset of B(k) \D. Therefore condition 
(i) from Lemma 3.4 holds as well, thus ending the proof. Q.E.D. 

4.2. Finite fields 

If k is a suitably large finite field lF q, the Lang-Weil estimates can 
be used to guarantee that the twisted covers have lF q-rational points. 
More specifically we have the following result, where we take B = lP'1 for 
simplicity. 

Corollary 4.3. Let f : X --+ lP'1 be a regular lF q-cover of degree 
n ~ 2, with r branch points and with geometric monodromy group Sn. 
Let m1 , ... , ms be some positive integers (possibly repeated) such that 
I:f=l mz = n. Then the number N(f, m1, ... , ms) of unramified points 
to E lF q such that Tif=1lF q"'t /lF q is the specialization algebra off at t 0 

can be evaluated as follows: 

I (q+1)lmi···m!ll 1 N(f,ml,···,ms)- n! ~rn.ylq 

where lmi · · · m! I is the number of elements in the conjugacy class in Sn 
corresponding to the type mi · · · m!. 

This extends similar estimates that have appeared in the literature 
for Galois covers under the name of Tchebotarev theorems for function 
fields over finite fields. See [Wei48], [Fri7 4] [Eke90], [F J04, §6], and 
also [DG llb, Corollary 3.5] where the Galois analog of Corollary 4.3 is 
obtained as the outcome of our approach in standard situation §3.2.2 
(b). 



Twisted covers and specializations 157 

For the type ml· · · m! = n 1 of n-cycles, we obtain that the number 
N(f, n) is asymptotic to qjn when q --+ +oo. For example iff : X --+ 
lP'1 over IB'p is given by the trinomial yn + Y- T (which satisfies the 
assumptions of Corollary 4.3 if p ln(n -1) [Ser92, §4.4]), the number of 
irreducible trinomials yn + Y +a E IF' P [Y] realizing the extension IF' Pn jiB' P 

is asymptotic to pjn asp--+ oo, a result due to Cohen [Coh70] and Ree 
[Ree71] proving a conjecture of Chowla [Cho66]. 

Proof. We are in the standard situation G = G = Sn. Condition 
( const / comp) trivially holds. Furthermore, it follows from the beginning 
note of §3.2.2 that the number of 1 E r for which condition (ii-2) holds is 
1; denote by Xo the corresponding isomorphism. From Lem~a 3.4, the 
set of unramified IF' q-rational points on the twisted variety zxo'P maps 

via the cover gXo'P : zxo'P --+ JP'1 to the set of points to E JP'1 (IF' q) satisfying 
the desired conclusion. Using Remark 3.3 (c), we obtain 

where H = Gal(IB' qM jiB' q) with M = lcm( m 1 , ... , ms) anc~_the term rn! /2 

is an upper bound for the number of ramified points on zxo'P. Also note 
that gXo'P and g being isomorphic over ksep, they have the same branch 
point n~mber, which is the branch point number r of j, and that the 
curves zxo'P and Z have the same genus, say g. 

The cyclic subgroup xo(H) c Sn is generated by a permutation 
of type mi · · · m! (condition (ii-2) from Lemma 3.4). Hence we have 
ICensn(Xo(H))I = nl/lml· · ·m!l· The Lang-Weil estimates give: 

IIZXO'P(JB'q)l- (q + 1)1 s:; 2gyq. 

The Riemann-Hurwitz formula yields g s:; (r- 2)(n! - 1)/2. The an
nounced estimate easily follows. (We use that the largest cardinality 
of a conjugacy class in Sn is n(n- 2)!, i.e., that of the class of n- 1-
cycles). Q.E.D. 

4.3. Number fields 

Over number fields, we will follow a local-global approach as in [DL] 
and [DG lla]. We start with a local result at one prime. We give two 
versions: a mere version for a cover f : X --+ lP'1 and a G-version for a 
G-Galois cover g : Z --+ lP'1 . 

For the next two statements, let k be a number field, f : X --+ lP'1 

be a degree n regular k-cover, r be the branch point number, G (resp. 
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G) be the monodromy group (resp. the geometric monodromy group), 
g : Z --+ JP'1 be the Galois closure of j, v : G --+ Sn be the Galois 
representation of k(X)/k(T) (relative to k(Z)) and k9 /k be the constant 
extension in g. A prime number p is said to be bad if it is one from the 
finite list of primes for which the branch divisor is not etale or there is 
vertical ramification at p [DG lla], it is said to be good otherwise. 

Corollary 4.4. Suppose given 

(in the mere version): the type 1/31 ·· ·ni3n of an element ofv(G) C Sn, 

(in the G-version): an element wE G. 

Then for each prime p?: r 2 IGI 2 , good and totally split in k 9 j!Q, there 
exists an integer bp E Z such that for each integer t 0 = bp mod p, 

(mere version) the specialization algebra of f (i<)k !Qp at to is an etale 
algebra IJ1 Ez/!Qp with degree divisor IJz[Ez : !Qp] 1 = 1131 · • • ni3n, 

(G-version) the specialization of the !Qp-G-Galois cover g (i<)k !Qp at t 0 is 
the unramified extension Npj!Qp of degree I (w) 1. 

The mere version generalizes Theorem 4 from [Fri74]: if v(G) con
tains an n-cycle, then, for 1!31 • · • ni3n = n 1 , the conclusion, stated as 
in [Fri74] in the situation f is given by a polynomial P(T, Y), is that 
P(t0 , Y) is irreducible in !Qp[Y], and so in k[Y] too. 

Proof. Consider first the mere version. Let p be a totally split 
prime in the extension k 9 j!Q (infinitely many such primes exist from 

the Tchebotarev density theorem). In particular !Qpkg = !Qp. For each 
i = 1, ... , n with f3i > 0, let EP,i j!Qp be the unique unramified exten
sion of !Qp of degree i. Here we use the twisting Lemma 3.4 in the 
"cyclic specializations" standard situation (c) from §3.2.2; we apply it 
to the cover f (i<)k !Qp and the !Qp-etale algebra IJi(EP,ij!Qp)f3i, where 
the exponent f3i indicates that the extension EP,i j!Qp appears f3i times. 

Condition (constjcomp) holds by definition of k9 and condition (ii-2) 
from Lemma 3.4 holds for some iso~orphism x,, 1 E r (§3.2.2 (c)). If p 
is a good prime, the twisted curve zx-,'P (i<)k !Qp has good reduction, and 
the Lang-Weil estimates then show that if p?: r 2 IGI 2 , the special fiber 
has at least one unramified lFp-rational point; see [DL, Corollary 3.2] for 
more details. From H~nsel's lemma, such a lFp-rational point lifts to a 

!Qp-rational point on zx-,'P. Conclude with Lemma 3.4 that the etale 
algebra IJi(EP,i j!Qp)f3i is the specialization algebra off rg,k !Qp at each 
point t 0 in a coset of Zp modulo pZP. 
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The G-version is very similar, but it is the Galois form of the twist
ing Lemma (Lemma 3.2) that should be applied, to the regular QP
G-Galois cover g &h Qp and the unramified extension of Qp of degree 
l(w)l. Q.E.D. 

Corollary 4.4 can be used simultaneously for several types of el
ements in v(G) C Sn and for several elements of G. The weak ap
proximation property of lP'1 (the Artin-Whaples theorem) then provides 
arithmetic progressions (am+ b)mEZ C ;z; with ratio a the product of 
several corresponding primes. In particular by using all non-trivial ele
ments of G, it can be guaranteed that the specialization at am+ b (for 
every m E Z) of the k9 -G-Galois cover g ®k k9 be a Galois extension of 
group G; this uses a standard argument (recalled in [DGlla, §3.4]) based 
on a lemma of Jordan. This implies that the specialization at am+ b of 
the k-G-Galois cover g is a Galois extension of group a subgroup of G 
containing G. As the k-cover f : X --+ lP'1 is assumed to be regular (and 
so v( G) is a transitive subgroup of Sn), it follows that the specialization 
algebra at am+ b of the k-cover f is a single field extension of degree n, 
i.e. Hilbert's conclusion holds at am+ b (for every mE Z). 

We obtain the following statement, which generalizes [DL, Corollary 
4.1] to arbitrary regular covers. 

The constants however are not as good as in the "G = G = Sn" 
situation of [DL] because of the preliminary condition on the primes p 
that uses the Tchebotarev theorem. 

Corollary 4.5. There exist integers m 0 , (3 > 0 depending on f such 
that the following holds. Let S be a finite set of primes p > m 0 , good 
and totally split in k9 /Q, each given with positive integers dp,l ... , dp,sp 
(possibly repeated) such that d~,l · · · d~,sp is the type of some element in 

v( G). Then there exists an integer b E ;z; such that 

(*) for each integer t 0 = b mod ((3 IJpES p) , t 0 is not a branch point 
of f and the specialization algebra of f at t 0 is a single degree n field 
extension with residue degrees dp,l ... , dp,sp at p for each pES. 

Addendum 4.5 (on the constants). Denote the number of non-trivial 
conjugacy classes of G by cc( G). One can take m 0 such that the interval 
[r2 IGI 2 , m 0 ] contains at least cc( G) primes, good and totally split in 
k9 /Q, and (3 to be the product of cc( G) such primes. 

Proof. We use Corollary 4.4 simultaneaously for several primes: a 
first set of primes associated to all non-trivial elements of Gas explained 
above, and the set of primes given in the statement with the associated 



160 P. Debes and F. Legrand 

types. We apply the G-version of Corollary 4.4 to the former data and 
the mere version to the latter. This provides an arithmetic progression 
(am+ b)mEZ C Z with ratio a= ;J ITpES p where ;J > 0 is the product 
of the primes in the first set. The primes dividing ;J guarantee that the 
specialization algebra at am+b of the k-cover f is a single field extension 
E / k of degree n. And each of the primes p E S gives that the Qp-etale 
algebra E ®k QP has degree divisor d~, 1 · · · d~,sv. Q.E.D. 

4.4. Ample fields 
Recall that a field k is said to be ample if every smooth k-curve 

with a k-rational point has infinitely many k-rational points. Over an 
ample field, the twisting Lemma 3.4 yields the following statement which 
generalizes §3.3.2 (***) from [Deb99a]. 

Corollary 4.6. Let k be an ample field and f : X --t B be a degree n 
k-cover of curves. Let t 0 E B(k) not in the branch point set t. There 
exist infinitely many t E B ( k) \ t such that the specialization algebras 
ITz k(X)t,z/k and ITz k(X)t0 ,z/k at t and to respectively are equal. 

Proof. Take the k-etale algebra f1~=l Ez/k from Lemma 3.4 to be 
the specialization algebra IT~=l k(X)t0 ,z/k at t 0 . With the notation from 
§3.1, we have cp = ¢ o St0 and lj5 = A. Hence condition (const/comp) 
holds with X= IdG/G' and r -1- 0 (Remark 3.3 (a)). From implication 
(i) =? (ii) in Lemma 3.4, there exists '/ E r such that conditions (ii-1) 
and (ii-2) are satisfied for t 0 with x = XT Condition (ii-1) is that there 
exists x 0 E ZX'P(k) with gX'P(x0 ) = t 0 . As k is ample and zx'P Js a 
smooth k-curve, there are infinitely many k- rational points x on ZX'P. 
The corresponding points t = gX'P(x) E B(k), excluding the branch 
points, satisfy conditions (ii-1) and (ii-2) from lemma 3.4. Implication 
(ii) =? (i) of this Lemma finishes the proof. Q.E.D. 

Remark 4. 7. The proof and the result generalize to higher dimen
sional covers f : X --t B. It should be assumed however that the covering 
space zsep of the cover zsep --t B ®k ksep corresponding to the field ex
tension k88P(Z)/ksep(B) is smooth (zsep is the normalization of B in 
the field ksep(Z) (defined in §2.2) and so is a priori only normal). The 
amp __ !eness of k then provides a Zariski-dense subset of k-rational points 
on zx'P and the conclusion becomes that there exists a Zariski-dense 
subset B c B(k) \ D such that the specialization algebra f11 k(X)t,z/k 
at each t E B equals ITz k(X)t0 ,z/k. 
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