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2.3. Maps between Salvetti complexes

The “center of mass” arrangement C%_; is obtained by adding hy-
perplanes to the braid arrangement A,,_;. And contravariantly we have

an inclusion
My(C,n) — F(C,n)

of the complements. We also have corresponding maps on the Salvetti
complexes.

Lemma 2.12. Let A be a real central arrangement in a vector space
V and B C A be a subarrangement. Then the inclusion

i:B— A
induces a cellular map
i* : Sal(A) — Sal(B)
which makes the followimg diagram commutative up io homotopy

Sal(A) -~ Sal(B)

VeC- |J HeC VveC- | HeC.
HeA HeB

Proof. 'The inclusion i : B < A induces a map of face posets
i*: L(A) — L(B)

(i.e. it induces a strong map between oriented matroids) which induces
a map of posets '
" LA)RC — L(IB)®C.

Since i* is given by restriction, we obtain
i LV (A) — £D(B)

and hence a map
i* : Sal(A) — Sal(B)
by Proposition 2.7.

The embeddings of the Salvetti complexes depend on choices of sim-
plicial vertices corresponding to faces in the face posets. We obtain em-
beddings by choosing w(F) for F € L£(A) first and then by choosing
vertices for B among {w(F)} which make the required diagram commu-
tative. Q.E.D.
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We would like to know the behavior of the chain map
15 : Ci(Sal(A)) — Ci(Sal(B)).

Lemma 2.13. Let A be a real central arrangement in V and B C A
be a subarrangement. Then the inclusion

i:B—A
induces a surjective chain map
i* : Ci(Sal(A)) — C.(Sal(B)).

Proof.  Generators of C,(Sal(B)) are in one-to-one correspondence
with pairs (F,C) of a face F' and a chamber C in £(B). Since

i L(A) — L(B)

is surjective, it induces a surjective map on the cellular chain complexes
of Salvetti complexes. Q.E.D.

83. The Salvetti complex for the braid arrangement

We need to understand the cellular structure of the Salvetti complex
of the braid arrangement in order to compare it with that of the center
of mass arrangement.

3.1. The structure of cell complex

The braid arrangement is a typical example of reflection arrange-
ments and the results of §2.2 apply. In particular, the cell structure
of the Salvetti complex for the braid arrangement can be described in
terms of partitions. The following symbols are introduced in [Tam].

Definition 3.1. A partition of {1,--- ,n} is a surjective map
A:A{L, -t — {1, ,n—r}

for some 0 < r < n. The number r is called the rank of this partition.
The set of partitions of {1,-:-,n} is denoted by II,,. The subset

of rank r partitions is denoted by II,,. II, becomes a poset under

refinement. Note that rank 0 partitions are nothing but elements of ¥,,.

Definition 3.2. For a partition A € I, of rank r and ¢ € ¥,, with
o > A, define a symbol S(}, o) as follows:

(1) For each 1 <4 < n —r, draw vertically stacked squares S; of
length |A~1(4)].
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(2) Order A71(i) according to o and label each square in S; from
bottom to top by elements in A~!(i). For example, when
A71(i) = {41, 42,13, 4,15} and if these numbers appear in (o(1),

- ,0(n)) in the order
i1,1%2,13, 04, 15

then S; is labeled as

5

14

13

19

11

(3) Place Si,---,Sn_, side by side from left to right. S(A,0) is
the resulting picture.

Zlasl

Z2,52

11,2

11,1]%2,1

Sl SQ Sn—r

The following observation played an essential role in [Tam].

Lemma 3.3. There is a bijection between the set of vertices (of the
simplicial structure) sko Sal(A,—1) and the set of symbols

{S(\, o) | Aell,,oc € X,,A <o}
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Thus we obtain a bijection between the cells of Sal(A,_1) and the
symbols S(A, 7).

In order to compute the boundary maps of the cellular chain com-
plex of Sal(A,_1), we need to fix orientations of cells. We follow the
orientations defined in §2.2.

We choose the chamber

Co={(z1, ,zn) ER" | 21 <@ < -+ < zp}
and define vg = (1,2,--- ,n) € Cy. Then
C(A,—1) = Conv(vgo | o € 3,).
We have the following refinement of Theorem 2.9.
Proposition 3.4. We have the following isomorphism of Fp-modules

Ci(Sal(Ay-1)) ®x, Fp(£1) = Fy([e] | [e] € F(C(Ap-1))/%n)
F, (e |ec F*(Co)).

IR

Proof. Let S be a set with an action of ¥,. Then we have an
isomorphism of Fp-modules

Z{S) ®x, Fp(£l) = Z(5/%,) @ F,.
And the result follows by the idenfitications of cells in the proof of The-
orem 2.9 in [Sal94]. Q.E.D.

The bounding hyperplanes of Cy are
Lio, Loz, Lnp1.

This ordering of hyperplanes determines orientations of cells in C'(A,_1).
Under the correspondence in Lemma 3.3, cells in C'(A,,—1) correspond
to S(A, 1) with A € TI,, and A < 1. Those cells in F*(Cy) corresponds to
ordered partitions.

Definition 3.5. An order preserving surjective map
A{l, -k — {1, Jk—1}
is called an ordered partition of rank r. The set of ordered partitions of
{1,--- ,k} of rank r is denoted by Oy .

Corollary 3.6. Under the identification in Lemma 3.3, we have the
following isomorphism of Fp,-modules

Cs(Sal(A,—1)) ®x, Fp(£1) X Fp (DA, (1] |n)) | A € Opns).
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The following formula for the boundary map follows from Proposi-
tion 2.11.

Lemma 3.7. For A € Oy n—s, we have

DA, (1] ---[n))) =
> > sgn(@)[D(A, (1] [n) : D(r, (1] -+ [n))] D(70,0)

TE€On,n—s—1,A<T 0ET(N)
in Cy(Sal(An—1)), where
YN ={ceX, | da=2}
is the set of permutations preserving the partition A.

Proof. The set of faces in Sal(A,,_1) contained in D(A, (1]---|n))
as a face is given by D(70,0) for A < 7 and ¢ € £()). Thus

OD(A, (1] -+ |n))
> > DO, (]-+|n)) : D(r0,0)]D(r0,0)

TEOn, n—s—1 AT 0€X(T)

-z

TEOp, n—s—1 AT

Y sen(@)[D(\, (1]-++[n)) : D(r, (1] - |n)}D(70,0)

oeX(T)

by Proposition 2.11. Q.E.D.

Note that the incidence number [D(X, (1|---|n)) : D(7,(1]---|n))]
can be determined by comparing the “positions of =" in A and 7.

3.2. The homology of F(C,4)

The homology H.(S.(F(C,4))®x,F,(£1)) is well-known. We need,
however, an explicit description in order to compare it with
H,(C.(Sal(C?)) ®s, Fp(£1)) in the next section.

Let us compute H,(C.(Sal(As3)) s, Fp(+1)) by using the symbols
introduced in the previous section. Sal(.Aj3) has the following cells:

o (-cells are in one-to-one correspondence with the symbols

a(D)e(2)le(3)|o(4)

e 1l-cells are in one-to-one correspondence with the symbols
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o(2) o(3) o(4)
oc(Do(3)lo(4)] lo(Llo(2)|e(4)] jo(L)le(2) 0(3).

e 2-cells are in one-to-one correspondence with the symbols

o(4) a(3)
o(3)| |o(2jo(4)] [0(2)
o(L)e(2) oL B3)] je(L)e(4)]

e 3-cells are in one-to-one correspondence with the symbols

o(4)

o(3)

o(2)
o(1)

Thus the chain complex C,(Sal(As)) ®s, Fp(£1) has the following
basis.

Co(Sal(A3)) ®@x, Fp(£1) =

Cz(Sal(Ag)) SO Fp(:le) =

O (Sal(As) @z, Fp(£1) = < 2 :; ;1 >

C3(Sal(A3)) ®x, Fp(£l) = <

The boundaries can be computed by using Lemma 3.7 as follows.
For 0-cells, we obviously have

o ([]2[3]4]) =0



432 D. Tamaki

For 1-cells, we have

2]
o (Btaa) - DLl - [l

Similarly, we have

o))
o
TN
—
I
)

w »Jk‘
N——
Il
[
=
]
]

For 2-cells, we have

v - .
8 31| = 3 —3
2(‘12) [1]2]3 [1]2]4]
2]4 4] [2]
a2<1 3) :2\1|23721 3[4]
o o - 3 3] 37
E = e[ s
14|
Finally, for 3-cells, we have
4] 3]
O3 = 4 3 —61 3+42
1[2 14

Thus we have the following well-known result.

Proposition 3.8. When p > 3, we have
Hy(C.(Sal(As)) ©5, Fy(£1)) = 0

for alli.
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Proof. Since p # 2,

(L2 [s]4)) - (a2 [s]a])

Im Oy

Kerdr - 3 4 2]
T A\ 2]e] a3 [ 2]e] [a]8]4]/
Thus we have

Hy(C.(Sal(C3)) ®x, Fp(£1)) =0.

Since p # 3, we have

3] 4] [3] (2]
Im82 = — s —
(12]4] [1]2]3][1]2]4a] [1]3]4]

= Ker 81

and
Hi(C.(Sal(€2)) @3, Fy(4:1)) = 0.

We also have

4]

1 — 11214 1

Ker32:<§ 3| - N + =
[1]2

|
w
w

>:Im33
4]

H(C.(Sal(C2)) ®x, Fp(£1)) = 0.
Since Ker 93 = 0,

and

H3(C.(Sal(C2)) ®s, Fp(£1)) = 0.

Q.E.D.
Proposition 3.9. When p = 3, we have
Ho(Cu(Sal(C3) @, Fs(+1)) = 0 B
3 4
H,(C.(Sal(C})) ®s, F3(£1)) = < ’ 212 l _l 1 | 513 }>g1[“3
4] 3]
H(C.(Sal(C})) ®x, F3(x1)) = < 3]—12 > =~ T,
[ 1]2 1]4]
Hy(C.(Sal(C2)) ©5, Fa(+1)) = 0.
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Proof. The differences are the computation of Hy and Hs. The
result follows from
4Q

<lel=]
= [re[e]

Ker 62 = <
E

The details are omitted. Q.E.D.

Remark 3.10. It is well-known that
HL(9257"H5 ) = A(Q¥(man1) | @ > 0) @ Fy[8Q5(2) | a > 0],

Under the Snaith splitting (and dimension shifts), the generators in
H1(C,.(Sal(C2))®x,F3(41)) and Ha(C,(Sal(C3))®x,F3(+1)) correspond
t0 Zan—18Q1(T2n-1) and Ta,-1Q1{x2,—1), respectively, since

degzo,-18Q1(zan—1) = (En—-1)4+32n—-1)+(p—2)
A2n—1)+1

deg ton—1Q1(T2n—1) = (2n—1)+32n—1)+(p—1)
42n — 1)+ 2.

The 2-primary case is simpler, since we don’t have to worry about
the signs. We have

H.(Ci(Sal(As)) @5, Fo(£1)) = Hi(C.(Sal(As)) @, Fa)
H.(F(C,4)/X4;TF,).

We obtain the following well-known result by elementary calcula-
tions. Details are omitted.
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Proposition 3.11. The homology H.(F(C,4)/X4;F3) has the fol-
lowing description:

Ho(F(C,4)/34;Fg) =

Hy(F(C,4)/34;F2) =

Hy(F(C,4)/34;F2) =

H3(F(C,4)/24;Fp) =

Remark 3.12. Under the stable splitting

oY

24| [1]2

2qn+2 . LAYAY]
%S E\J/F((C,j)+/\gj(5) :

the elements in the mod 2 homology of F(C,4)/%4, up to a shift of
degree, correspond to elements in H, (Q28™+2; ) as follows:

Qd

Qo(r)Q1

Qo1

2
1

(z)
(z)

(z)

(z)

—

!

FREFEEE)

4] [1]2]3

3

3f4] [1]2
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§4. The center of mass configuration

Let us recall the definition of the center of mass configuration space
introduced by F. Cohen and Kamiyama in [CKO7].

Definition 4.1. For I,J C {1,--- ,n}, define

Lyyg={(z1,- " ,2,) ER"? |J|Z$z‘: 111D =

i€l jeJ
For ¢ < n, define a real central hyperplane arrangement C5_; by
Ct . ={Lry| I,JC{1, - ,n},|I|=|J| =p,I+#J}.

The configuration space of n points with distinct center of mass of ¢
points is defined as the complement of the complexification of C%_;

MyCn)=C"~ | Lis®C.
L[}JGCZ

n—1

As we have seen in §1, we have the following inclusions of arrange-
ments

Ay =Cl cC c--cc2l 5 sl A, .

By Proposition 2.7, we obtain a sequence of maps between the Salvetti
complexes

Sal(CP_,) — --- — Sal(C2_,) — Sal(C._,) = Sal(A,—1)
when p < [Z]. We also have
Sal(C?_,) = Sal(Cl~P) — -+ — Sal(C2_,) — Sal(C}_;) = Sal(A,-1)

when p > [3].

We would like to know if these inclusions induce isomorphisms of
homology groups with coefficients in F,,(£1). Our strategy is to compute
the homology of the kernel of the map

i Cu(Sal(CE_))) @3, Fy(21) — C.(Sal(CET}) @, Fy(+1),
for k£ < [Z]. By Lemma 2.13, these chain maps are surjective.
2

Corollary 4.2. For k < [Z], the map
i% CL(Sal(CE_,)) @5, Fy(E1) — C.(Sal(Ch]) @, Fy(1),

18 surjective.
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In the rest of this article, we consider the first stage, i.e.
i2 : Cu(Sal(C2_y)) ®s, Fp(£l) —
C.(Sal(Ch_,)) ®x, Fy(1) = Cu(Sal(An_1)) s, Fp(£1).

When n = 3,
C3=C32=Cr=A

and there is nothing to compute. The first nontrivial case is
i3 : C.(Sal(C?)) ®x, Fp(£1) —
C.(Sal(C3)) ®x, Fp(£1) = Ci(Sal(A3)) @s, Fp(£1).

By Corollary 4.2, it suffices to calculate the kernel of i2 in order to
compare H,(C,(Sal(C3)) ®x, Fp(£1)) and H.(Ci(Sal(A3)) ®x, Fp(E1)).

Definition 4.3. We denote
K™* = Ker(if : C.(Sal(CF_,))®x, Fp(£1) = Cu(Sal(CF1))@x, Fp(£1)).
For simplicity, we also abbreviate
O = C(Sal(CE_,)) @3, Fy(+1).
Thus we have a short exact sequence of chain complexes

%

k
0— KPP — Ok = opkt —0.

4.1. The face poset of C3

In order to compute H,(Sal(C3) ®s, Fp(£1)), the first step is to
determine the face poset of C3.

Since C? = A3 U {L{l’g}’{3’4},L{1,3}7{2,4},L{1’4},{2’3}}, the faces of
C2 are given by splitting the faces of A3 by the hyperplanes

L1 oy,8,03: Lia a0y Linay 2,33
In order to understand these cuttings, let us see how the chamber
{($1,$2,$3,x4) € R4 l 1 < xo <23 < LE4}

is cut. Notice that under the action of Xy, the cells in M>(C,4) can be
represented by cells related to this chamber of Ajs.
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The only hyperplane among L{lyg}’{374}7 L{173},{274}, L{1’4}’{2’3} that
intersects with this chamber is Ly 4} (23} and the chamber is cut into
two pieces:

{(z1, 22,23, 24) € R* |21 < 3y < w3 <24}
= {(x1, 22,73, 24) ER* | 21 < T2 < 23 < T4, 71 + T4 < T2+ T3}

U {(z1, 2, %3, 24) € R* | 21 < 23 < @3 < T4,T1 + T4 > T2 + T3}

We denote these chambers by the following symbols:

L] [2]3]4]

= {(.'131,1132,.123,.174) S RrR* | T < T <23 < Ty, T1 +24 <X +.CC3}

HEIEINE

= {(z1,%2,23,24) € R4 | 21 < 2 < 3 < T4,%1 + T4 > T2 + T3}

The faces of these chambers of C2 are also denoted by analogous
symbols. The chamber | 1 | i 2 I 3 | 4 ‘ has five 3-dimensional faces,

but under the action of ¥4, we only need the following three faces:

1
1] |23

= {(z1,x2,23,24) € RrR* | 21 < 3 < 3 = 24},

(1] [2]4]

= {(@1, 22, 23,24) € R* |21 < xg =23 < @4, 21 + T4 < T2 + 23},

[1]z2] [3]4]

= {(z1,%2,73,24) € RrR* | 21 < 22 < 23 < T4,%1 + T4 = T2 + 23}

Similarly, we need the following three faces for the chamber
[f2]s] [4f

2
1

3 | |4 ‘:{(951,332,%3,534) ERY |21 =25 < 73 < 24},
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3]
2

1

4]

= {(wl,I2,$3,I4) S R4 | L1 < Xog =23 < Tyg,T1+2Tg > 2T +£l?3},

HEINEN

= {(121,.%‘2,333,3?4) S R* | X1 < T2 < T3 < Ty,T1+Tg = T2 +.’E3}.

The 2-dimensional faces we need are the following:

= {(z1, 79,23, 74) ER* | 71 < 29 = 13 = 14},

o e | & |

L]

2] [4]

3

= {({1317562,333,1,‘4) S R* i T1 =Tp < T3 =Ty, T1 +Tg = T2 +l’3},

3

(] (2] [4]

= {(IEl,LEQ,Jig,.’L’4) S R4 | 1 < Tg =23 < Ty, T1 +Tg = T2 +£L‘3},

= {(.’11‘1,33‘2,333,134) € R* | X1 = T2 = x3 < JI4}.

=]

[4]

All these faces have the following 1-dimensional face in common.

= {(z1, 22,23, 74) € R* | 21 = 2 = 23 = 24}

Notice that ¥4 acts on £(C3) and the action is compatible with the
ordering. We have the following description of the poset £(C2)/%4.
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Lemma 4.4. The poset L(C2)/X4 has the following structure:

HEBNn [1] [2]s]4]

A N BN

2 3] 4 3
1 e Bl arpE oren

_

4.2. The Cellular Structure on Sal(C%)/%4

Let us determine the cellular structure of Sal(CZ)/%4. The cell de-
composition of the Salvetti complex for C3 is compatible with the action
of ¥4 and the quotient Sal(C2)/%4 has the induced cell decomposition.

The cells of the Salvetti complex are labeled by pairs of a face F
and a chamber C' with C' > F. The cell for the pair (F,C) is denoted
by D(F,C) in §2.1. Thus the cells of Sal(C3)/%, are in one-to-one cor-
respondence with elements in

{(F), (O | [F] € £(C3)/£4,[C] € £9(C3) /24, F < O}

In the case of CZ, there are only two chambers in £(°)(C2)/%4, and
t]2[s] [4]])
and ([F], “ 1 | | 2 | 3 l 4 D by F'™ and F~, respectively. To be more
efficient, we simply denote them by F' when F' is contained in only one
chamber.

More explicitly,

Lemma 4.5. Sal(C3)/34 has

o two 0-cells

we denote the cells corresponding to the pair ([F], [

)

HEENE

S EIEIENE

o six 1-cells



Configuration spaces associated to centers of mass 441

R —

4

,ll[ L2 3,|112| |3|4j+7

(1] [2]4

3
T2l BIT Ge] 1oy 5T 14

o iz 2-cells

7oy G LI e [ 2] 14

o two 3-cells

We use above symbols as representatives of cells in Sal(C2). We
define orientations on these cells and then transfer orientations to other
cells in Sal(C%) via the action of ¥4. Those cells which are mapped to
cells of the same dimensions in Sal(Aj3) by the map iZ are oriented in
such a way i2 is orientation preserving. Then remaining four types of
cells

] +

| - 3
LT G 0 et T
3] _

(1] 2] [4]
are oriented as follows. As we will see below, the first two 1-cells
have [ 11 2 [3 l l 4] and [ 1 I FQIg | 4 | as vertices. We orient

these 1-cells from [ 1 [ [2T3I4 ] to rﬂ 2 I 3 l J 4 l The 2-cells
3] 3] ) 3]

+

5 d tai i
an contains in
(1] [2] [af "] [2] [4] [if2] [4]
the boundary, as we will see later. We orient these 2-cells in such a way
the incidence number to this 1-cell is positive.
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Now we are ready to consider the boundaries. This can be done
by using the formula for the boundary in Lemma 2.2 and a formula
analogous to the case of the braid arrangement (Lemma 3.7).

The first nontrivial case is the boundaries of 1-cells.

Lemma 4.6. We have the following formula in o2,

21 [2[s]4]

D

S
Fa
—
o s
B
N———

I

2] [2]3]4]

0
~~
[~ ]
o]

w| e
~—

I

= [af2fs] [af-[2] [2]3]s

QD
A
N
—
no
(%]
S
+
~——
|

(t2fs] [a)-[1] [2]s]4]

o o[z [a] 1]
o (Prare) - ORBLE

Proof. By Lemma 2.2

@Qq E?O:;”D@Fﬁﬂlﬂ3HD

(o5
o
i
—
[N}
w
s
I
| S
|
—
I

A
~
[~
[\l OV
N
~
fl

3
214

where F’ runs over all faces containing r ) l

‘ in £(C?) and

Wth z4yD@F4HI2HHD}

In this case, we have

(R
— o (o] T2[o]o) o] T2 ]a)e [ T2[]a)
veod (o] Ta[2]o) (1] T2 ]3] ] T2[o[a)-

where €1, €9 are appropriate incidence numbers.
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In order to compute the boundaries, therefore, we need to under-
stand the matroid product in the face lattice £(C2).

As we have recalled in §2, the cellular structure of the Salvetti com-
plex was originally described by face-chamber pairings. For compu-
tations, however, it is much more convenient to regard faces as func-
tions from the set of normal vectors to the poset of three elements
S1 = {0,+1,—1} and use the matroid product of these functions, as
we have seen in Lemma 2.3 and 2.4.

We choose the following set of normal vectors for the arrangement
C2:

a; = (1,-1,0,0)
a; = (0,1,-1,0)
as = (0,0,1,-1)
a;, = (1,0,-1,0)
as = (1,0,0,-1)
ag = (0,1,0,—1)
a; = (1,1,-1,-1)
as = (1,-1,1,-1)
ag = (1,-1,-1,1).

Then a face F' € L£(C?) can be regarded as a function
TF {al,ag,--~ ,ag} — Sl.

For simplicity, we denote elements +1,—1 in S; by 4+, —, respectively,
and denote the above function by the symbol

(tr(a1),7r(az), - ,7r(ae) | 7r(a7), 7r(as), 7r(ay)).

For example, the face ’ 1 | I 2 I 3 [ 4 | corresponds to the symbol

With these notations, the matroid product of a face and a chamber is
given by replacing 0’s in the face by the values at the same position in
the chamber. For example,

= (_a+a—7—a—,—|—7_7_)
L] [s]2]4]




444

Thus, by taking the orientations into an account, we have

3
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61(|1|

2

S nannn

By analogous calculations, we obtain

On the other hand,

X

) 4
81(\1| |za>

21] [2]3]4]

o () - OB

) - B

2] [3]a] s

o) - OLEEE -G EEE

D(laf2fs] [a)[a]2]s] [afe[r]2]s] [4]

and

Da] J2fsf4af[r] [2[s]a]efr]2]3] |4

as its boundary. By computing the matroid

cellsare11|2|3

definition of the orientation, we obtain

o (2] [s]a])

products, we see these 0-
| 4 ‘ and ‘ 1 I l 2 | 314 ‘, respectively. By the

[f2fs] Jaf-[1] [2]s]4]

o ([T T14])

(2fs] [al-[1] [2]s]4]

Q.E.D.

Remark 4.7. Note that in the above proof, the computation of

3

3

o1 ‘1

214

‘ is exactly the same as that of 0y 1

112

4") i

C.(Sal(A3)) ®x, Fp(£1).

In general, boundaries of those cells which do not hav + or — sign
on the shoulder can be computed by the same formulas for the corre-
sponding cells in the braid arrangement.
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Let us consider 2-cells next.

Lemma 4.8. We have the following formula in Cce2.

—
3|
2

1N

a2(l1l B |4r‘

o [4]
o
2(1 3

82(111 B |4r+) Y fmf []
)
)

5 4
SR 3
3|
O 2
1

5
|

3

g
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4] 3]
Proof. The computations of 0y 3 and 9y | | 2
HEE ] [4]
4] 3]
are essentially the same as those of Jo _5_ and Oy 2 | ‘
|12 14|
in §3.2 as is noted in Remark 4.7 and are omitted. -
There are four faces in £(C%) that contain ‘ ! ' 2 | 1 ‘ as
faces. Thus
'—é— +
32(x1| 2 |4\)
3] 3]

:€1D< 2|4|[1] 24]°11|2|3| |4‘>
+52D<‘12 5 1 'o‘1|2|3| |4|)
+eaD ([1]2] |3|41 2] Tsla]e[1]2]] [4])
+eaD ([]s] [2[a] [1]s] [2[a]e[x]2[s] [4])

3]
R e nnenan)
5] .
< (e )
weareop (1] [s[a) [1]2[s] [4))
3] [ 3]
= Elll] 2 4“,‘52[1 5 |4‘+(€3+84)[1|2| I3|4+

where g; € {£1} (i =

orientation of

3

2

we see that 1 =

1,2,3,4) are certain signs. By the definition of the
— +

, we have g5 = 1. Since 91 0 F3 = 0,

—1 and g3 + &4 = 2.

Y
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By the same calculation, we also have

82({1| B |4<):

3 _
1] 24+\12 |4]+2L1J2| [3]4] -

Finally, we have

2] [a]"
()
2] B3
- ‘”( s T el 12 ‘1'2'3H4')

+0 (2] Js]a)[1]2] [3]a]e[i]2]3] T4))
(2] |314uz|1| [s]a]e[1]2]s] [2))
(2] Tala) [1]2] [2]8]e[1]2[3] [4)
+D (| [4])

Tl
([ 3’»1[2[ LLLLU)

= g Ol el - O el
nENE

[2]1]

M2 Tals] +[2]1] J4]s] +2

22 2 4
N EI R R FINE
|

w12 [sfa] +[x]o]

34]

where coefficients (signs) of the first two terms are determined by com-
paring with the braid arrangement. The coefficients of the last two terms
are determined in the same way as in the previous calculation.
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The calculation of Oy N can be done in the same man-

ner. Q.E.D.

It remains to compute boundaries on 3-cells.

Lemma 4.9. We have

EIRnE]
= 4 3| +42
] [2] [o] 4]
(2] [4 [z [4
N EEIERERE
— T — _
+8 5 +4 3
o] Te] [af "o [2] [4]
EIRnE]
= 4 3|+4|2
[l T2 [o] 4
=) [4 2] [
R ERERE
— i S _
+4 +8 >
[1] [4] "] [o] [4]
4
Proof. Let us consider 03 3 . There are many faces contain-
1

. For example, there are (3) = 6 faces of the shape
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Matroid products can be computed, for example,

3] T[4

ST T oLl 2]8] [4]

(+,0, — ,+0—|00+) (—,—— = === —+)
= (+,——+,——|-—+)

1+ 3 < 22+ 4,
T1+ X4 > T2+ 23
o < T3 < x1 < I4,
Ty +x3 < T2+ x4 }

Ty > T2, T2 < T3, T3 < T4,
T1 > X3, L1 < Tg, T2 < T4,
= (z1,T2,73,74) € R? | T4 + 22 <23 + T4,

= {$17172a173 z4) € R? [

2[s]1] [4]

Similarly, we have

2] [4]
T eolil2ls] [4) = [xf2]s] [4]
3] [4]
Tz ll2ls] 4] = [afs]2] [4]
1] [3]
T 1510l T203]4] = [1] [4]2]s
4| [3]
T el Lz2fsle] = [2]a]n] |3
4] [2]
ST el [208[4] = [8]af1] [2]
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This implies that, in C3(Sal(C2)) ®x, Fp, if we write

[
19, = A 3|+ 4
3 e AR E eI MY
3] T 2] T[4
+A3‘1| 5 |4‘+A41 3
—El
+A52 4 +A62 ’
2 1] [4]

we have

Ay = -5, A5 = —1.

By similar calculations of matroid products and by that fact 9,95 = 0,
we can determine other coefficients and we have

4] [s]
= 4 3| +4|2
1] |2 1| |4]
o -
2l el 1
1| [3 3
m— - — _
+8 ’ +4 ;
HNEINE R NN
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Analogously we have

4] 3]
= 4 3|+4|2
1] [ 14
o —
2 4 2 4
— -5
1 3 1 3
— T I _
+4 3 +8 5
o[ ] T4 "l 2] [4]

Q.E.D.

4.3. The homology of C?

In this section, we compare H,.(Sal(C3) ®x, Fy(+1)) and
H.(Sal(Asz) ®x, Fp(£1)) for p a prime, following the strategy described
in the beginning of §4.

We have analyzed the cell structure of Sal(C?) in the previous section
based on the structure of £(C2)/%4 investigated in §4.2.

In this section, we compute the homology of

K32 = Ker(ij : C.(Sal(C3)) @x, Fp(£1) — Cu(Sal(As)) ©3, Fp(1))

for an odd prime p. We first need to know generators for K2,

The generators of the cellular chain complex C,(Sal(C3)) ®s, Fp(£1)
are in one-to-one correspondence with cells in Sal(C2)/34 even when p
is odd. Of course, we have to take the sign representation into account,
when we compute the boundary homomorphisms.
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Lemma 4.10. Define

w = (23] T4] - ] [2[514]
"= [ife] T[] J2]4]

d — [ [ala]'
me = L[ Is]i]

2
T21 =
1
+ _
Log =
Log =
X3 =

Then these are generators for Kb?

Ky® = (wo),
Kf’z = <x11,x1"2,xf2>,
Ky? = (ma1,25,75),
K3? = (z3).

Thanks to the calculations in the previous section, we can easily
compute the boundaries on these generators.
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Lemma 4.11. Boundaries are given by

O(z11) = 2m
O (m{;) = o
O1(z1,) = mo
Oa(z) = 2(afy —a7,)
Do(23,) = w1 — 217,
Oa(z5) = z11— 227,
O3(w3) = —dwo +4(vdy — 15).

By an elementary calculation, we obtain the homology of K. 2,
Proposition 4.12. When p is odd,
Hy(K?) 20
for all 4.

As a corollary, we obtain Theorem 1.3.

Corollary 4.13 (Theorem 1.3). For an odd prime p, the inclusion
M5(C,4) — F(C,4) induces an isomorphism

H.(S.(Ma(C, 4)) ®x, Fy(1)) = H. (S, (F(C, 4)) @z, Fy(£1)).

When p = 2, Lemma 4.11 implies that the boundaries in K 2 are
given by.

O (x11) 0
di(zly) = o
O1(z13) = mo
O2(z21) = 0
(k) = xu
Da(z33) = =z
03(3) 0

In particular, x3 represents a nontrivial cycle in C;f 2 that is mapped to
0 under the map i%. Thus we obtain a proof of Theorem 1.2.

Following the suggestion by the referee, we conclude this paper by
briefly describing the case of the trivial I, coefficients. We have

Cs (Sal(C,’j_l)) ®s, Fp = 0 (Sal(C,’i_l)/En) ® Fy.

By ignoring the changes of signs when we permute labels in the
calculations in §4.2, we obtain the following. The details are omitted.
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Lemma 4.14. We have the following formula in C.(Sal(C3)/4) ®

(@ Eﬂ)
() -
o (M2l Bla)") - [ 16 T 2R

o([1[2[[s[a)) = [IoIs] [a]-[[ T2ls]4]

0 1 [
0 3 = _
g FNE (1] [2[3] [1] [2]4]
o 3 [z
) T GRLTE) E
S— - —
5, = — 3 +
2(!1| 2] [4] ) (o] [2fa] " [1]2] [4]
; ol 3] 3]
A [4] ) = "] T2la) 2] 4]
ok
o (FH ) - oersn
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o= = 2] [3[a]

— T+

4 o ~

; ; 21 (4]
ke | = - -

2 1 3

ER

aT

= 51 (2 2] (4]
k| = - -

2 1 3 1

1)

Let (K7 ’k, 0) denote the chain complex given by the kernel of
C.(Sal(CF_1)/%,) ® Fy —> C(Sal(CF~1) /%) @ Fp.

Then we obtain the homology of K 2 as follows.

Proposition 4.15. We have

d(rg) = 0

d(zy1) = 0

O(zf) = o

0(z,) = o

Ian) = 2(33?2 — Ty,)

d(z3,) = an

0(15) = @n1

d(xz3) = 0.

Hence we obtain

Ho(K2?) = 0
Hy(K}?) = 0
Hz(Rf’z) = ([z3y — 73]
H3(Ky?) ([zs])
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when p is odd, and

Ho(K?) = 0

Hl(_f’Q) = ([z] 2—m12]>
Hy(K2?) = ([za1), [z — 23))
Hy(K?) ([zs])

when p = 2.
Corollary 4.16. The map

H.(M3(C,4)/%4;Fp) — H.(F(C,4)/%4; Fp)

induced by the inclusion is not an isomorphism for any prime p.
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