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Middle convolution for completely integrable 
systems with logarithmic singularities along 

hyperplane arrangements 

Yoshishige Haraoka 

Abstract. 

The middle convolution for completely integrable systems with 
logarithmic singularities along hyperplane arrangements is defined as a 
natural generalization of the middle convolution for Fuchsian ordinary 
differential equations. Additivity of the generalized middle convolution 
is proved. It is observed that the singular locus may increase by the 
generalized middle convolution. Examples concerning with hypergeo
metric series in several variables are given. 

§1. Introduction 

The middle convolution, which is introduced by Katz [7], is an op
eration for local systems on a punctured complex line, and plays a fun
damental role in the theory of rigid local systems. By Riemann-Hilbert 
correspondence, it induces an operation for Fuchsian ordinary differen
tial equations, which we also call the middle convolution. In this paper 
we extend the latter one to the operation for completely integrable sys
tems in several variables with logarithmic singularities along hyperplane 
arrangements. The extended middle convolution possesses similar prop
erties as the original one, such as additivity, and, on the other hand, 
gives several different features from the original one. In particular, by 
combining with the prolongation-restriction process, the extended mid
dle convolution may change the index of rigidity, which is invariant under 
the original one. 
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According to Dettweiler-Reiter [1], we give a definition of the middle 
convolution for a Fuchsian system 

(1) dU _ (~~)u 
dx - L.....t x- a· ' 

i=l ' 

where a 1 , a2, ... , ar E e are distinct points, and A1, A2, ... , Ar are con
stant nxn-matrices. Take>. E C. Define rnxrn-matrices G1, G2, ... , Gr 
by 

r 

Gi = LEij Q9 (Aj +8ijA) (1 :-::; i :-::; r), 
j=l 

where Eij denotes the r x r-matrix with the only non-zero entry 1 at 
(i,j)-th position (1 :-::; i,j :-::; r). The operation which sends the system 
(1) to the system 

(2) dU _ (~ __0:__) (; 
dx L.....t x- a· 

i=l ' 

is called the convolution with parameter .A, and is denoted by C.>.. 
Let K. and .C be the subspaces of ern defined by 

K ~ { m ; v; E KerA; (1 ~ i ~ + 
.C = Ker(G1 + G2 + · · · + Gr)· 

It is easy to see that K. and .C are invariant subspaces of ern for ( G1, G2, 
... , Gr)· Then (G1, G2, ... , Gr) induces the action (Ch, Ch, ... , Gr) on 
the quotient space ern /(K. +.C). The operation which sends (1) to the 
system 

(3) dU _ (~ Gi ) [J 
dx- L.....t x -a· 

i=l ' 

is called the middle convolution with parameter >., and is denoted by 
me>.. 

It is shown that the middle convolution keeps the index of rigidity 
invariant, and if (1) is irreducible then the middle convolution system 
(3) is also irreducible. Moreover, if the residue matrices of (1) satisfies 
the conditions 

n KerAi n Ker(A -c) = 0 (Vi, Vc E C) 
#i 



and 
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LimAj + Im(Ai- c)= en (Vi, Vc E C), 
jf-i 

we have the additivity 

It is also shown that the middle convolution keeps the deformation equa
tion invariant ( [5]). 

One of the main result of the theory of rigid local systems is the 
following. 

Theorem 1.1. ([1, Theorem A.14]) Any irreducible rigid Fuchsian sys
tem can be obtained from a Fuchsian equation of rank 1 by a finite iter
ation of middle convolutions and additions. 

It is shown in [2] that the middle convolution is analytically realized 
in the following way. For a solution U(x) of (1), define rn-column vector 
V(x) by 

( 

U(x) l t(~t 
V(x) = x~a2 • 

U(x) 
x-ar 

Let U(x) be a Riemann-Liouville transform with exponent>. of V(x): 

U(x) = i V(t)(t- x)>- dt, 

where .6. is an appropriate 1-cycle. Then U(x) makes a solution of the 
convolution system (2). Solutions of the middle convolution system (3) 
can be obtained from U(x) by the linear transformation induced by the 
projection ern-+ en j(K +.C). 

We shall use this analytic realization to extend the middle convolu
tion for completely integrable systems in several variables. This will be 
done in Section 2. In Section 3 we show that the additivity of the middle 
convolution also holds for the extended case. In Section 4 we give two 
examples concerning with hypergeometric series in several variables. 

In our previous work [4] we defined the middle convolution for com
pletely integrable systems of KZ type. The results in the present paper is 
a generalization to completely integrable systems with any arrangements 
of hyperplanes as logarithmic singularities. 
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§2. Middle convolution 

We consider an arrangement A of hyperplanes in <C1• We fix a co
ordinate (xl, X2, ... 'Xt) of <C1. For each hyperplane HE A, let !H be a 
defining linear polynomial for H. For each H E A, we take a constant 
n x n-matrix AH. 

We consider the Pfaffian system 

(4) dU = DU, 

where Dis a 1-form given by 

(5) D = L AHdlogfH· 
HEA 

We assume that the system ( 4) is completely integrable: 

D 1\ D = 0. 

This condition will be stated in terms of AH in Theorem 2.1 below. 
For each i (1 ::; i ::; l), we set 

Axi ={HE A; (JH)xi =f. 0}. 

Then the system ( 4) can be written as 

(6) 

for 1 ::; i ::; l. In this paper we call the system (6) the Xi-equation. 
Take any i (1 ::; i ::; l), and set Xi = x. For each HE Ax we define 

aH by 

(7) 

Then the x-equation can be written as 

(8) 

Let j (1 ::; j ::; l) be another index, and set Xj 

HE Ay, we define bH by 
y. For each 
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For H, H' E Ax such that (aH- aH' )y #- 0, we define CHH' by 

Then obviously 

holds. For H E Ax we set 

Theorem 2.1. The integrability condition 01\0 = 0 for the system 
(4) holds if and only if, for any pair (i,j) (1::; i,j::; l) of distinct indices, 
by setting Xi = x and x1 = y, the following conditions hold: 

(9) 

for H E Ax n Ay and H' E A~ n Ay, 

(10) 

for H E Ax nAy and H' E CH,y such that CHH' #- bK for any K E 

A~ nAy, 

(11) [AH, L AH" + AH'1 = 0 
H"EAxnAy 
CHH 11 =bH 1 

for H E Ax n A~ and H' E A~ n Ay, and 

(12) 

for H E Ax n A~ and H' E Ax nAy such that CHH' #- bK for any 
KEA~nAy. 
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Proof. We regard the coefficients of the 2-form D 1\ D as rational 
functions in x. The principal part of the Laurent series expansion at 
each pole can be regarded as a rational function in y, and then we get 
the left hand sides of (9) to (12) as the residue matrices of the poles in 
y, from which the assertion follows. Q.E.D. 

Let F be the local system on C \ { aH ; H E Ax} of local solutions 
of (8). Let A. be a complex number. For each H E Ax, we define 
VH(Xl,X2,···,Xl) by 

(13) V ( ) =1 U(xl, ... ,Xi-l,t,xi+l,···,xz)( _ ).\d 
H Xl,X2,···,Xl t X t, 

1;.. t- aH 

where~ E H1(C \ {aH; HE Ax}, F) and x =Xi. We set 

Proposition 2.1. The function V = (VH )HE.Ax defined by (13) 
satisfies the following systems of differential equations: 
For x = Xi, the x-equation for V is given by 

(15) 

For other Xj, we set Xj = y. Then they-equation for V is given by 

(16) 

for H E Ax n Ay, and 

(17) 

for H E Ax n A~. 

Proof. As explained in Introduction, the x-equation for Vis nothing 
but the convolution of the x-equation for U, and then is given by (15). 
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To obtain they-equation withy= Xj, we regard Xk (k -=1- i,j) as a 
parameter, and use the notation U(x1 , x2 , ... , xz) = U(xi, Xj) = U(x, y). 
The partial derivative of VH with respect to y is 

avH j au (t- x)>-. j >-.a ( 1 ) -a = -a (t,y) dt + U(t,y)(t- x) -a -- dt. 
y Ll. y t - aH Ll. y t - aH 

Note that 

au ( "' AH' ) a(t,y) = ~ -b , u(t,y). 
y H'E.Ay y H 

If H tf_ Ay, aH is independent of y, and hence we have 

avH = "' AH' r U(t, y) . (t- x)).. dt 
ay ~ }Ll. y- bH' t- aH 

H'E.Ay 

"' 1 ).. UH')y 1 ~ AH' U(t,y)(t-x) (j ) ( ) · --dt 
Ll. H' x t - aH' t - aH 

H'E.Axn.Ay 

Since (aH)y = 0, we have 

(JH' )y . 1 1 

(JH' )x aH- aH' Y- CHH' 

for H' E Ax nAy, and hence we get (17). 
If H E Ay, there appear the two terms 

and 
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in av HI 8y. Since ~ is a twisted 1-cycle, we have 

1 ( U(t, y)) 2 (t- xf' dt = 1 88 (--1-) U(t, y)(t- x)>.. dt 
e:. t - aH e:. t t - aH 

and then we get 

= 1-1- 8
8 (U(t, y)(t- x)>..) dt 

e:. t- aH t 

=1-1-("'"""' AH' U(t,y)(t-x)>.. 
A t - aH ~ t - aH' 
'-' H'EAx 

+ >.U(t, y)(t- x)>..-l) dt 

=1 ( AH )2 U(t,y)(t-x)>..dt 
e:. t-aH 

+ "'"""' AH' (VH _ vH') _ avH, 
~ aH -aH' 8x 

H'EAx\{H} 

Thus we have, for H E Ax n Ay' 
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By the definitions of aH, bH and CHH', we have 

(JH )y 1 
(JH)x X- aH 

1 

Y- CHH' 

for HE Ax nAy and H' E CH,y, 

for HE Ax nAy and H' tf_ CH,y, and 

UH )y 1 1 

- (JH)x. aH- aH' Y- CHH' 

for H E Ax nAy and H' E Ax n A~. Thus we obtain (16). Q.E.D. 

We see that the systems for V = (VH )HEAx given in Proposition 2.1 
make a Pfaffian system 

(18) dV=DV 

with 1-form D of the form 

D = L G if d log f if, 
ifEA 

where A is the arrangement of hyperplanes obtained from A by adding 
the hyperplanes of the form {y- CHH' = 0}. 

Definition 2.1. We call the operation which sends the Pfaffian sys
tem ( 4) to the system (18) the convolution in Xi-direction with parameter 
>., and denote it by c~i. 

Remark 2.1. If there is a pair H, H' E Ax such that H' E CH,y and 

CHH' # bK for any K E A~ nAy, we have {y- CHH' = 0} E A\ A, and 
hence A ;2 A. Thus the singular locus may increase by the convolution, 
which is a different feature from the case of one variable. 
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H' 

------ Y- CHH' = 0 

H 

Fig. 1. 

Let}( and£ be the subspaces of (Cn)A" '::::' cn#Ax given by 

lC = {v = (vH)HEA,; VH E KerAH}, 

£ = {v = (vH)HEA,; L AH'vH' + AVH = 0 (VH E Ax)}. 
H'EA, 

It is easy to see that 

if>.. -=1- 0, and 

£={v=(vo); (L Aii)vo+A.vo=O} 
HEA, 

£ = {v = (vH)HEA,; L AHVH = 0} 
HEA, 

if>.. = 0. As mentioned in Introduction, }( and £ are invariant subspaces 
for the x-equation of the convolution system (18). For y = Xj (j -=1- i), 
we write the y-equation (16) and (17) of the system (18) as 

av 
By = G(y)V. 

Proposition 2.2. For any Xj (j -=1- i), the subspaces }( and£ are 
invariant for the xrequation of the convolution system {18). Namely, 
by Setting Xj = y, 

G(y)JC c JC, G(y)£ c £ 

hold for any value of y. 

Proof. Take any v = (vH)HEA, E JC, and set 

G(y)v = w = (wH)HEA,· 
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For HE Ax n A.y, noting that VHI E KerAHI, we have 

1 
WH = -- L (AHI + 8HHIA)VH' 

y- bH H 1EAx 

"""' AH' """' AHI + L..t (vH- VH1) + L..t b VH 
H1ECH,y y- CHH1 H1 EA~nAy y- H 1 

( 
A L AHI L AH' ) = ---+ + VH· -b -c I -b I y H H 1 EC y HH H1EA0 nA y H 

H,y X y 

By using the integrability conditions (9) and (10), we get 

( A """' AH1 """' AH' ) AHWH = --b- + L..t + L..t b AHVH 
y- H H 1 EC y- CHH1 H1EAcnA y- H 1 

H,y X y 

=0, 

and hence WH E KerAH. Similarly, by the help of the integrability 
conditions (11) and (12), we get WH E KerAH for HE Ax n A~. Thus 
we obtain w E K. 

Next we assume A-=/=- 0, and take any v = (vH)HEAx E £. Then we 
have VH = Vo (VH) and (LHEAx AH) vo +AVo= 0. Set 

G(y)v = W = (wH)HEA,· 

Then for H E Ax n A.y, we have 

1 
WH = --b- L (AH1 + 8HH1A)vo 

y- H H1EAx 

+ 

( """' AH' ) = L..t b ~· 
H1 EA~nAy y- H1 

Similarly, for H E Ax n A~ we have 

AH' L AH' ---=--(vo- vo) + vo 
Y- CHH1 Y- bH1 

H 1EA,nAy H1 EA~nAy 
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Thus, for every H E Ax, w H becomes the same vector, which we denote 
by w0 . 

Take any H' E A~ n Ay. Let p be an intersection point of H' and a 
hyperplane in Ax· We denote by Bp the set of hyperplanes in Ax which 
pass through p. Suppose HE Bp· If HE Ax nAy, we have 

If HE Ax nA~, we have 

{H" E Ax nAy; CHH" = bH'} = Bp \ {H}. 

Thus the integrability conditions (9) and (11) can be written in the same 
form as 

for every H E Bp, and hence we get 

Summing up these relations for all HE Bp, we get 

from which we obtain 

[ L AH,AH'l = 0. 
HE13p 

Since UP Bp =Ax, we have 
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for every H' E A~ nAy· Using this relation, we get 

=0, 

which shows wE£. 
Finally we consider the case .A = 0. Take any v = ( v H) H EAx E £. 

Then we have 

We set 

Then we have, for H E Ax n Ay' 

"" AH' + ~ b VH' 
H'EAcnA y- H' 

X y 

and for H E Ax n A~, 

Take any H' E A~ nAy· We calculate the residue of LHEAx AHWH at 
the pole y = bH'. By the help of the integrability conditions (9) and 
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(11), the residue becomes 

+ L AH{ L AH11 (VH-VH 11 )+AH'VH} 
HEA,nA~ H"EA,nAy 

CHH 11 =bH1 

L ( L AH'' + AH') AHVH 
HEA,nAy H"ECH,y 

CHH 11 =bH1 

HEA,nA~ 

HEA,nA~ 

H"ECH,y 
CHH 11 =bH 1 

H"EA,nAy 
CHH"=bH1 

H"ECH,y 
CHH"=bH 1 

H"EA,nAy 
CHH 11 =bH1 
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In the last hand side, the coefficient of AHVH for H E Ax nAy is 

H"ECH,y 
CHH 11 =bH1 

H 11 ECH,ynAy \{H} 
CHHn=bH 1 

and that for H E Ax n A~ is 

H"EAxnAy 
CHH"=bH 1 

H"EAxnAy 
CHHu=bH 1 

H"EAxnA~ 
CHH 11 =bH 1 

Thus the residue at y = b H' is 0. In a similar way, we see that the 
residue of EHEAx AHWH at y = CHH' which does not coincide with any 
bK (K E A~ nAy) is also 0. Hence we have 

which shows w = (wH )HEAx E £. Q.E.D. 

Thanks to Proposition 2.2, we can derive from the convolution sys
tem (18) a Pfaffian system 

(19) 

on the quotient space (rCn)Ax /(K + £). The matrix 1-form Dis induced 
from 0 as the action on (Cn)Ax j(K + £). 

Definition 2.2. We call the operation which sends the Pfaffian 
system ( 4) to the system (19) the middle convolution in Xi-direction 
with parameter A, and denote it by mc~i. 

Theorem 2.2. Let A be an arrangement of hyperplanes in cz, and, 
for each HE A, AH be ann X n-constant matrix. Define the 1-form n 
by (5). Assume that the Pfaffian system (4) is completely integrable. 

Then for any i (1 ::::; i ::::; l) and A E C, the middle convolution system 
( 19) of (4) in Xi -direction with parameter A is completely integrable, and 
admits an integral representation of solutions of the form 

(20) 
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where U(x 1 , x2 , ..• , Xl) is a solution of {4), Q a constant linear transfor
mation, and~ a twisted 1-cycle. If the Xi-equation of (4) is irreducible, 
the middle convolution system {18) is also irreducible. 

Remark 2.2. The linear transformation Q is given as follows. We 
set N = n·#Ax, and M = dim(IC+£). Let P be an Nx N non-singular 
matrix whose first M columns make a basis of JC + £. Then we can take 

Proof. By the construction, solutions V = (VH )HEAx· of the convo
lution system (18) are given by the integral (13). This i~plies that the 
convolution system (18) is completely integrable. The complete integra
bility of the middle convolution system (19) follows from Proposition 
2.2. 

Let P be as in the above Remark. Then, thanks to Proposition 2.2, 
the Pfaffian system of differential equations for p-1 V becomes of block 
upper triangular form, and the solutions V of the middle convolution 
system are related with V by 

Thus we have 
- -1 
V = (ON-M,M,JN-M)P V = QV, 

from which the expression (20) follows. 
Since the Xi-equation of the middle convolution system (19) is just 

the middle convolution of the Xi-equation of (4) as ordinary differential 
equations, the irreducibility follows from the result by Katz [7, Theorem 
2.9.8]. Q.E.D. 

To illustrate the results in this section, we give an example. Let 
A1, A2, ... , A5 be constant m x m-matrices. We consider the Pfaffian 
system 

(21) du -[Adx Ady A dx A dy Ad(x-y)]u - 1-+ 2-+ 3--+ 4--+ 5 ' x y x-1 y-1 x-y 

which is called of KZ- type. We assume that the system (21) is com
pletely integrable. The corresponding arrangement is A= {H1, H2, ... , 
H5} with 

H1 = {x = 0}, H2 = {y = 0}, H3 = {x = 1}, 

H4 = {y = 1}, H5 = {x = y}. 
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Then we have 

Ax= {H1,H3,H5}, Ay = {H2,H4,H5}. 

When we consider the (middle) convolution in x-direction, by the defi
nition we have 

aH1 = 0, aH3 = 1, bH2 = 0, bH4 = 1, 

CH1Hs = 0, CH3Hs = 1. 

The x-equation of the (middle) convolution of ( 21) in x-direction is noth
ing but the (middle) convolution of the x-equation 

au = (A1 + ~ + ~) u 
OX X X -1 X- y 

of (21) as a system of ordinary differential equations, which is explained 
in the Introduction. To write down the y-equation (16) and (17) of the 
convolution in this case, we note that the unknown vector is given by 
V = t(VHu VH3, VH5 ), and that 

Then they-equation of the convolution of (21) in x-direction with pa
rameter >. is given by 

8~1 ~ ~ ~ 
-!l- = -(VH1 - VH5 ) + -VH1 + --1VH1, 

uy Y Y y-
oVH3 A5 A2 A4 
-!l- = --1 (VH3- VHs) + -VH3 + --1VH3, 

uy y- y y-

oVH5 1 A2 A4 
-!l- = --(Al VH1 + A3VH3 + (A5 + >.)VH5 ) + -VH5 + --1VH5 • 

uy y-x y y-

An explicit example will be given in the last section. 

§3. Additivity of the middle convolution 

We regard en as {AH; HE A}-module, and denote it by V. When 
we regard en as {AH; HE Ax}-module, we use Vx instead of V. Then 
the convolution and the middle convolution can be understood as oper
ations for V or Vx. 

We assume 

(22) n KerAH' n Ker(AH -c) = 0 ('VH E Ax, 'tic E C) 
H'EAx\{H} 
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and 

(23) ImAH' + Im(AH- c)= en (VH E A,, Vc E C). 
H'EAx\{H} 

Then, as is mentioned in Introduction, we have the additivity 

We shall show that the additivity also holds for the middle convolution 
in Xi-direction. 

Theorem 3.1. Let i be an index (1 < i < l), and assume the 
conditions {22} and (23) with x =Xi· 

Then we have 

(25) 

Proof. Set Xi= x. First we note that mc~(V,) = mc,x(V,). Then, 
thanks to (24), there exist the isomorphisms (25) as vector spaces. It 
remains to show that these isomorphisms are compatible with the action 
of AH (HE A). 

As is shown in [1], the isomorphism mc0 (V,) ~ V, is induced from 
the homomorphism 

cfJl : co(V,) ---+ V, 

(vH)HEAx r--t L AHVH. 
HE Ax 

Take any j i- i, and set x1 = y. Let us write they-equation of Vas 

au 
ay = g(y)u, 

and that of c0 (V) as 
aV 
ay = G(y)V. 

In order to show the compatibility of mc0(V) ~ V, it is enough to check 

(26) <1>1 o G(y) = g(y) o c!>l 

for any value of y. 
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Take any v = (vH)HEAx E ucn)A'", and set G(y)v = (wH)HEA,· 
Every WH can be calculated by using (16) with A = 0 and (17), and 
then by the help of Theorem 2.1 we have 

""' AH' ) -AH ~ VH' 
H'EC y- CHH' 

H,y 
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""' A H ""' A H L... -b-(h(v) + L -b-<fJl(v) 
HEA.,nAy y - H HEA~nAy y - H 

""' AH = L... -b-<fJl(v) 
HEAy y- H 

= g(y)¢1(v). 

This shows (26). 
The isomorphism me>-.2 o me>-.1 (Vx) ~ me>-.1 +>-.2 (Vx) is induced from 

the homomorphism 

¢2 : e>-.2 o e>-. 1 (Vx) -+ 

(vH )HEA., f-+ 

e).. 1 +>-.2 (Vx) 

L GHVH, 

HEA, 

where G H ( H E Ax) are the residue matrices of the x-equation 

of e~ 1 (V). We set they-equations of et (V), e~ 1 +>-.2 (V) and e~2 o e~1 (V) 
as 

av 
8y 

~: ( ~ y~~H) V, 
HEAy 

~~ = ( ~ y~~H) V, 
HEAy 

respectively, where A is the arrangement of hyperplanes corresponding 
to the Pfa:ffian system (18) of et (V). Then, to prove the compatibility 
of me~~ o met (V) ~ met +>-.2 (V), it is enough to check 

Note that they-equation of ~1 (V) (resp. e~1 +>-.2 (V)) can be obtained 

by replacing A by A1 (resp. A1 + A2 ) and Ay by ..4y in (16) and (17). 
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Then in particular we have 

GH=G~ 

for any H E A~ n Au· Similarly, they-equation of c~2 oct (V) can be 

obtained by replacing .A by .A2 , A.y by Au and AH by G H in (16) and 
(17). 

Take any v = (vH)HEA.,, and set 

Then, for H E Ax n Ay' we have 

and for H E Ax n A~ we have 

A """ G H' (A A ) """ G H' A 
WH = ~ VH- VH' + ~ b VH. 

- Y- CHH' - Y- H' 
H'EA.,nAv H'EA;i;nAy 

By using them, we get 

By (15), we see that 

GH = L EHH'@ (AH' + 8HH'Al) 
H'EA., 

for HE Ax. Then, if we set VH = (vHK)KEA.,, we have 

GHVH = EH@ ( L AKVHK + AlVHH)' 
KEA., 
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where EH denotes the unit vector incA, with the only non-zero entry 
1 in the H-th position. Moreover we have 

GH<h(fm) =EH0(AH+>.I) ( L AKvHK+..\1vHH). 
KEAx 

Thus, for H E Ax nAy, we have 

GH<h(v) + >.2GHvH = EH 0 (AH + >.1 + >.2) ( L AKvHK + >.1vHH) 
KEAx 

= G~<h(v). 

As noticed before, for HE A; n Av we have GH = G~. Hence we get 

which proves (27). Q.E.D. 

It follows from Theorem 3.1 that the middle convolution in Xi
direction is invertible as a homomorphism of {AH; H E A}-modules. 
Then combining with Theorem 1.1, we get the following assertion. 

Theorem 3.2. Assume that, after a linear transformation of coordi
nates of C1 if necessary, for some index i (1 :::; i :::; l), the Xi -equation of 
the Pfaffian system (4) is irreducible and rigid as an ordinary differential 
equation. Then the system (4) can be obtained from a Pfaffian system 
of rank 1 by a finite iteration of middle convolutions in Xi-direction and 
additions. 

§4. Examples 

Lauricella's hypergeometric series Fv is expressed by the integral 

1 n 

Fv(xl,x2,···,xn)=C 1 ta0 (t-1)a 1 IT(t-x1)bidt 
0 j=l 

with some constant C. A Pfaffian system inn variables for Fv can be 
obtained by the middle convolution in the following way. 
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We consider the function 

n 

u(x1, x2, ... , Xn) = X1 ao (xl- 1)a1 IT (x1- Xj)bj, 

j=2 

where ao, a1, b2, ... , bn E CC. This function satisfies the Pfaffian system 

of rank 1. The singular locus of this system is given by the arrangement 
A= {Ho, H1, ... , Hn}, where 

The middle convolution of the system (28) in x 1-direction with param
eter b1 makes a Pfaffian system 

(29) dV = OV, 

which is a Pfaffian system for FD. 
The singular locus of (29) is obtained as follows. Take any j (2 -::=; 

j-::=; n). For each Hk (0-::=; k-::=; n, k =/= j), we have 

and 

(k = 0), 

(k = 1), 
(2-::=; k-::=; n, k =/=j). 

Then the singular points of the Xj-equation of (29) is given by 

Xj = X 1 , Xj = 0, Xj = 1, Xj = Xk (2-:::; k-:::; n, k =/= j). 

Hence the singular locus of the system (29) is given by the arrangement 
A= AU {Hjk; 2-::=; j-::=; n, 0-::=; k-::=; n, k =/= j}, where 
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- Xj = Xk 

- Xj = 1 

- Xj =0 

Fig. 2. Singular locus in x1xrplane 

We have another example related to Appell's hypergeometric series 
F4 . We quote the results from our previous work [4]. 

We consider the KZ-type system (21) of rank 4, where A1, A2, ... , A5 
are given by 

0 
1 ' 
0 ) 

1-'Y 

0 
0 
E 

0 

-(a+ E)(/3 +E) 

~} 

1 

0 ) 1 
0 ' 

1-'Y 
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a, (3, "(, "(1 E C, and 

E := "( + "(1 - a - (3 - 1. 

This system is obtained by Kato [6] as a transform of a Pfaffian system 
for Appell's F4 . The restriction of the system to the singular locus x = y 

becomes a system of ordinary differential equations of rank 3, which is 
explicitly given by 

(30) du = (C1 + _!2_) u 
dx x x-1 

with 

(~ 
2 

0 ) C1= 'Y'- a- (3 1 ' 
0 2(1- 'Y) 

(+ 0 0 ) 02 = "(-a-(3-1 0 
-2(E + a)(E + (3) -2"(' 

We see that the index of rigidity of the restriction is 0. 
The middle convolution of (21) in x-direction with parameter A =f. 

0, a, (3 gives the system 

[ dx dy dx dy d(x- y)] 
(31) dW= B1-+B2-+B3--+B4--+B5 W 

x y x-1 y-1 x-y 
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with the same singular locus, where 

(H~-o 0 -1 E 

~). .-\+1-')' 0 -1 
B1= 0 0 0 0 

0 0 0 0 
0 0 0 0 

( ' (a+ E)((3 +E) 0 0 -E 
0 1-')' 0 0 

0 l B2 = 0 0 0 a(3 + ')'1E 0 ' 

')'-~+E 
0 0 1-')' 

1-~-E (a+ E)((3 +E) 0 0 

BF raP+ (f -o)o' 
0 0 0 

~l 
0 0 0 

(1-')')/'1E ,\ - 'Y' 0 
(a+ E)((3 +E)+ (1- ')')/'1 0 ,\- 'Y' 

0 0 0 

(0 
0 0 0 

0 l -1 -')'' 0 0 0 

B,~ ~ 0 0 -')''E -')''E ' 
0 -1 -')'' + E 

-/-E 0 1 -E 

0 0 0 0 

0 l ( 0 
0 0 0 0 

B5 = 0 0 0 0 0 . 

1-~-E 0 0 0 
,\ 12E -(a+ E)((3 +E) -1 E 

As a restriction of (31) to the singular locus x = y, we get a system of 
ordinary differential equations of the rank 4. The explicit form is given 
by 

(32) dv = (D1 + __!!2._) v, 
dx x x-1 



where 
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CT+' E 

1-')'-E 

1-"( 

a,B + "f1E 

-(a+1-'Y) 

-(A+ 2E)E ( 

-"('- E 

-(A.+ 2E)(a,B + (1- 'Yh') 

(A.+ 2E)(a + 1- 'Y) 

1 
-1-')'-E 

0 ) 0 
0 
0 

0 
0 ' 

A.+ 2(1- 'Y) 
E 

-1-')'-E 

A+. 2(E - r../) - (1-')')E 
I 1-')'-E 

e(a.B+'Y' (2-27-e) 
1-')'-E 

(a+1-')')E 
1-')'-E 

We observe that the index of rigidity of the last system is -2 unless 
A. = 2"( - 2 or A. = 2"(', in which cases we have the index of rigidity 0. 
This is remarkable, because the index of rigidity is invariant under the 
middle convolution for ordinary differential equations. 

The system (30) appears in the conformal field theory [3], and the 
system (32) appears in the theory of Heckman-Opdam hypergeometric 
systems [8]. These systems may also be related to special solutions of 
difference Painleve equations. Thus, we expect that the combination 
of prolongation-restriction process and the middle convolution will be a 
good tool which relate several interesting equations in various areas of 
mathematics and physics. 
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