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Fermionic formulas for characters of (l,p) 
logarithmic model in <P2,1 quasiparticle realisation 

Boris Feigin, Evgeny Feigin and Il'ya Tipunin 

Abstract. 

We give expressions for the characters of (1,p) logarithmic con­
formal field models in the Gordon-type form. The formulas are ob­
tained in terms of "quasiparticles" that are Virasoro <I>2,1 primary 
fields and generalize the symplectic fermions. 

§1. Introduction 

In recent times, logarithmic conformal field theories are investigated 
from different directions [17, 18, 21, 12, 11, 4, 20, 23]. There exists a 
class of models that are "extensions" of minimal models [16] by some set 
of vertex operators [5]. The most popular are the so called (1,p) models. 

The logarithmic (1,p) models have the central charge 

(1.1) 
6 

c = 13 -6p- -. 
p 

The local chiral algebra of the logarithmic (1,p) models is the triplet W­
algebra studied in [20, 17]. We let W(p) denote this algebra. The algebra 
W(p) bears an action of the s£(2) algebra that differentiates OPEs. The 
adjunctive triplet refers to the fact that W(p) is generated by the fields 
w±•0 (z), which are transformed as the spin-1 representation of the s£(2). 
Moreover, w+(z) and w-(z) are highest and lowest weight vectors of 
the triplet respectively. The fields w±·0 (z) are three solutions of the 
equation 

(1.2) 83 <I>(z) + const1 : T(z)8<I>(z) : +const2 : 8T(z)<I>(z) := 0 

for the field <I>3 ,1 (z). The vertex operator algebra W(p) is an exten­
sion by <!>3, 1 (z) of the Virasoro algebra with the central charge ( 1.1). 
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We let V acv denote the vacuum representation of this Virasoro vertex 
operator algebra. 

The algebra W(p) has 2p irreducible representations x;,P (1 ~ s ~ 
p). These representations admit the action of the s£(2) as well. The 
representations labeled with the superscript + decompose into a direct 
sum of odd dimensional irreducible s£(2) representations and labeled 
with the superscript-into a direct sum of even dimensional. This leads 
to the factors 2n + 1 and 2n in the characters [12, llJ 

_..!. 

(1.3) x+ (q) = q 24 "(2n + 1)qp(n+T,f)2 
s,p n=- (1 - qn) L..J ' 

n-1 nEZ 
_..!. 

(1.4) _ ( ) _ q 24 "(2 ) p(-n+f,;-)2 
Xs,p q - n= (1 - n) L..J n q ' 

n=l q nEZ 

where x;=p(q) = Tr:x:± qLo--,ft. These expressions for the characters 
' s,p 

can be considered "bosonic" formulas because they are obtained from 
a resolution of the irreducible module constructed from some modules, 
which can be considered W(p) Verma modules. 

We obtain the "fermionic" formulas for characters in terms of "slightly" 
bigger algebra A(p) that is an extension of the Virasoro vertex operator 
algebra V acp with two solutions of the equation 

(1.5) 8 2 <I>(z) + const : T(z)<I>(z) := 0 

for the field <I>2 ,1 (z) with conformal dimension 3Pi2 . The vertex op­
erator algebra A(p) bears the action of s£(2) and two fields a±(z) are 
the highest and the lowest weight vectors of the s£(2) spin-~ irreducible 
representation. The fields a±(z) are two highest weight vectors of the 
W(p)-module Xl,p· We note that A(p) is nonlocal vertex operator alge­
bra, which means that there are exist conformal blocks with A(p) fields 
that have nontrivial monodromy. In the p = 2 case, a±(z) coincide with 
derivative of the symplectic fermions [21]. In that case "nonlocality" 
leads to two sectors in one of which symplectic fermions act with integer 
and in other with half-integer modes. We have a sequence of extensions 
of vertex operator algebras 

(1.6) Vacv Y W(p) Y A(p). 

The algebra A(p) hasp irreducible representations Xs,p (1 ~ s ~ p). 
Each irreducible A(p) module as a W(p) module decomposes as Xs,p = 

Xt,P EEl X_;,v. We set 

(1.7) Xs,p(q) = Tr:xt,pE!lX;,pqLo--,ft = Xt,p(q) + x;,p(q). 



Fermionic formulas 

The main result of the paper is formulated as follows. 

Theorem 1.1. The characters (1.7) can be written in the form 
(1.8) 

8 2_ 1 1 _ 8 c ~ q~nA·n+v8 ·n 
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Xs,p(q) = q4P+-2--24 L...t 
n+,n-,n1, ... ,np-1~0 (q)n+(q)n_ (q)n1 ... (q)np-1 ' 

where n = (n+, n_, n1, ... , np-1), (x)k = IJ7::-~(1- xqi), A is the Gor­
don matrix 

E E 1 2 3 p-1 2 2 
E '!!. 1 2 3 p-1 2 2 
1 1 2 2 2 2 

(1.9) A= 2 2 2 4 4 4 
3 3 2 4 6 6 

p-1 p-1 2 4 6 2(p- 1) 

and 

(1.10) 
p-s p-s 

Vs = (-2-,-2-,~,1,2, ... ,p-s). 

s-1 p-s 

Similar but different fermionic formulas were recently obtained in [13]. 
We emphasis that the fermionic formulas for characters depend on the 
chosen set of "particles" in terms of which the formulas are written. The 
number of particles is equal to the order of the matrix (1.9), i.e. p + 1 
in our case. First two rows and columns correspond to a+(z) and a-(z) 
and other particles appear in singular terms of the OPE a+(z)a-(w). 
We note that the matrix obtained by dropping first two rows and first two 
columns from (1.9) coincides with the standard Gordon matrix 2min( i, j). 
Our considerations in this paper have many overlaps with the construc­
tion for fermionic formulas of minimal models given in [6] in terms of the 
Virasoro primary field ~2 , 1 . Such a construction is natural in the cor­
ner transfer matrix approach to the RSOS models and their connection 
with the Virasoro minimal models [14, 15]. In this approach one should 
consider nonlocal vertex operator algebras, which are extensions. of the 
Virasoro algebra by a set of primary fields. However these nonlocal 
vertex operator algebras have treatable theory of representation. 

We now briefly describe the way we prove Theorem 1.1. We con­
struct a degeneration of the chiral algebra A(p) to some algebra A(p) 
with generators called "particles" that satisfy a set of quadratic defin­
ing relations. The structure of these quadratic relations is given by 



164 B. Feigin, E.Feigin and I.Tipunin 

the Gordon matrix (1.9). Each irreducible representation of A(p) has a 
A(p) representation counterpart that is the cyclic A(p) representation 
with the same character. The characters of A(p) representations have a 
natural expression in terms of Gordon-type formulas. 

In Sec. 2 we recall some known facts about (1,p) logarithmic con­
formal field models and in Sec. 3 give the proof of Thm. 1.1. 

§2. Short description of logarithmic (1,p) models 

2.1. Notations 

Throughout the paper we use the standard notation 

(2.11) 

where pis a positive integer. We let Mr,s;p denote the irreducible module 
with the highest weight 

(2.12) .::). ='!!.(r2 -1)+_!__(s2 -1)+ 1 -rs 1<s<p rEZ 
r,s 4 4p 2 ' - - ' 

of the Virasoro algebra with the central charge ( 1.1). We note that Mr,s;p 

is the quotient of the Verma module by the submodule generated from 
one singular vector on the level rs and such modules exhaust irreducible 
Virasoro modules that aren't Verma modules. 

In terms of the free scalar field <p with the OPE <p(z) <p(w) = log(z-w) 
the highest weight vector of Mr,s;p corresponds to the vertex field [16] 

(2.13) 

The generators of the Virasoro algebra are Laurent coefficients of the 
energy-momentum tensor 

(2.14) 
1 ao 2 

T = - :fJ<p fJ<p: + - fJ 'P· 
2 2 

2.2. The triplet W -algebra W(p) 

The triplet W -algebra can be described in terms of the lattice vertex 
operator algebra generated by the vertex operators [11] 

(2.15) 
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The algebra W(p) is a subalgebra of this lattice vertex operator alge­
bra. The vacuum representation of W(p) is the kernel of the screening 
operator 

(2.16) F = 2;i f dz:ecx_<p(z); 

acting in the vacuum representation of the lattice VOA. This kernel is 
generated by the s£(2)-algebra triplet 

(2.17) 

where 

(2.18) e = 2;i f dz :e"'+'P(z): 

is one of the s£(2) algebra generators. The generator f in terms of cp is 
given by a nonlocal expression. W(p) contains the energy-momentum 
tensor (2.14) with the central charge (1.1). The generators w±,o are 
primary fields of dimension 2p - 1. 

2.3. Irreducible representations of W(p) 
Each irreducible W(p) modules X~P can be described in terms of 

irreducible Virasoro modules Mr,s;p· Let 7rr denote the r-dimensional 
irreducible representation of s£(2). Then the spaces 

(2.19) 

(2.20) 

x;,p = EBnEN 7r2n-l ® JY(2n-l,s;pl 

x;,p = EBnEN 7r2n ® JY(2n,s;p 

admit [4] an action of W(p) and are its irreducible modules. These 
decompositions give formulas (1.3) and (1.4) for the characters. 

2.4. The algebra A(p) 
We consider the "nonlocal" vertex-operator algebra A(p) generated 

by the s£(2) doublet of fields 
(2.21) 

a+(z) = :e- "'2+ 'P(zl: , a-(z) = [e, a+(z)] = :Dp_ 1 (8cp(z))e "'i 'P(z);, 

where Dp-l is a degree p- 1 differential polynomial in 8cp(z). The 
conformal dimension of these fields is 3P,; 2 . The fields a±(z) have the 
following OPE 

(2.22) 
n?:O 



166 B. Feigin, E.Feigin and I.Tipunin 

where Hn ( w) are fields with conformal dimension equals to n. The field 
H 0 is proportional to the identity field 1, H 1 = 0, H 2 is proportional to 
the energy-momentum tensor T. About other fields Hn we can say the 
following 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

H 2n = C2n: rn: +P2n(T), 1::::; n::::; p -1, 

H 2n+l = C2n+18: Tn: +P2n+l(T), 1::::; n::::; p- 2, 

H 2p-l = c2p-18: rp-l: +P2p-1(T) + d1 W 0 , 

H 2P = c2p: TP: +P2p(T) + d28W0 , 

where: rn :is the normal ordered n-th power of the energy-momentum 
tensor, Pn(T) is a differential polynomial in T and degree of both P2n(T) 
and P2n+1 (T) in T is equal to n -1 , W 0 is the field defined in (2.17) and 
Cn, d1, d2 are some nonzero constants. The OPE (2.22) is determined 
by the conformal weight of fields. The fact that en, d 1 and d2 are not 
equal to 0 can be checked by a direct calculation using (2.21). 

2.5. The irreducible representations of A(p) 
The vertex operator algebra A(p) is graded (by eigenvalues of the 

zero mode of 8c.p) 

(2.27) A(p) = EB A(p)13 

/3E "'i Z 

and a±(z) E A(p)±"'i. We consider only the graded representations 
of A(p). For any representation X = EBtEC:x.t we have a±(z) : xt -+ 
xt±;t. and a±(z) acting in xt have the decomposition 

(2.28) -n-3p-2 ± 
z 4 an. 

nE±t "'2+- av; 2 +Z 

The irreducible representations Xs,p of A(p) are highest-weight modules 
1-s 

generated from the vector ls,p) E Xs,~ '"- satisfying 

(2.29) n EN, 1::::; s::::; p. 

The conformal dimension of ls,p) is .6.1,8 = 8:;1 + 128 • The highest 
mode of a±(z) that generate new vectors from ls,p) are 

(2.30) 

as it shown in Fig. 1. Proceeding further we obtain the set of extremal 



a2s-7p 
4 

• 
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• 

0 

Fig. 1. The irreducible A(p) modules. The filled dot on the 
top is the cyclic vector is,p). The arrows show the 
action of highest modes of a± that give nonzero vec­
tors. Filled (open) dots denote vertices belonging to 
representations :x:t (X;). 

vectors shown in Fig. 1. 
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From (2.19), we immediately obtain that the irreducible representa­
tion Xs,p as a representation of s.C(2) EB Vir decomposes as 

(2.31) 

Remark 2.1. In the rest of the paper we use the notation chV for 
the normailzed character of the space V. Namely the character chV is 
a Laurent series :LiEZ aiqi such that ai = 0 fori < 0 and ao =f. 0. For 
example for V = Xs,p we have 

The normalization above is natural for us because of the fermionic (par­
ticle) approach used in the paper. 
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§3. Proof of Theorem 1.1 

The strategy of the proof is as follows. We introduce a certain 
filtrations on the algebra A(p) such that the adjoint graded algebra 
A(p) can be described in terms of generators and quadratic relations. 
We study highest weight representations of A(p) and derive fermionic 
formula for their characters. We show that these characters are equal 
to Xs,p(q). 

3.1. Filtrations and adjoint graded algebras 
We introduce a filtration F. on A(p) by attaching 

• degree p to each mode of a+(z), 
• degree p- 1 to each mode of a-(z), 
• degree 2 to each mode of T(z). 

We denote the adjoint graded algebra with respect to F. by A(p) and 
its generators by a±(z) and T(z). 

Lemma 3.1. The following relations hold in A(p): 

(3.32) 

(3.33) 

(3.34) 

a+(z)a+(w) rv (z- w)~' a-(z)a-(w) rv (z- w)~, 

T(z)a±(w) "'z- w, 

a+(z)a-(w) rv (z- w)~, 

where A(z)B(w) "' (z- wY means that the fields A(z) and B(z) have 
the following OPE 

(3.35) A(z)B(w) = (z- wY l.")z- w)ncn(w) 
n2':0 

with some fields C(z). In addition the current T(z) is commutative and 
satisfy T(z)P = 0. 

Proof. From the formula (2.21) we obtain that in A(p) the following 
is true: 

a+(z)a+(w) rv (z- w)~. 

Therefore the first part of (3.32) holds in A(p). The second part of (3.32) 
follows from the first part and an equation [e, a- (z)] = 0, which follows 
from the fact that a-(z) is a component of the field <I> 1,2 (z). 

To prove (3.33) we use the OPE in A(p): 

T(z)a±(w) = (z- w)- 18a±(w)+: T(z)a±(w): + .... 
Now using the relation 

: T(z)a±(z) : +const · 82a±(z) = 0 
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(recall that a±(z) are two components of the field <P2 ,1 (z)) we obtain 
(3.33). We now prove (3.34). 

The OPE (2.22) gives the following OPE in A(p): 

2(p-1) 
(3.36) a+(z)a-(w) = (z- w)_ 3

P;
2 

[ L (z- w)iJli(z)+ 
i=O 

(z- w) 2p-l(c2p-10: f'P-l(z) : +d1 W 0 (z))+ 

(z- w) 2P(c2p: f'P(z): +dz8W0 (z))] + ... 

(see (2.23)-(2.26)). We recall that for any 0:::; i:::; 2p- 2 the operator 
Hi(z) is a differential polynomial in T(z) of degree smaller than or equal 
to p - 1. Therefore the degree of Ri with respect to our filtration is 
smaller than 2p- 1. But the degree of a+(z)a-(w) (which is the left 
hand side of (3.36)) is exactly 2p- 1. Therefore we can rewrite (3.36) 
as 

(3.37) a+(z)a-(w) = (z- w)_ 3p; 2 [(z- w)2P-1dl W 0 (z)+ 

(z- w)2P(czp: f'P(z): +dz8W0 (z))] + .... 

This proves (3.34). 
We now consider the current T(z). Note that T(z) is commutative, 

because the degree of each mode ofT( z) is equal to 2. We now show that 
TP = 0. From (3.37) we obtain that each mode of the current W0 (z) can 
be expressed as a linear combination of at a-;. The same is true for the 
modes of c2p : TP(z) : +d28W0 (z) and thus for f'P(z). But the degree 
of TP(z) equals 2p and the degree of at a-; is equal to 2p- 1. This gives 
TP(z) = 0. Lemma is proved. Q.E.D. 

We now want to replace the condition TP(z) = 0 by the set of 
quadratic relations. We use the standard Lemma (see [10, 6]). 

Lemma 3.2. Let B be the algebra generated by modes J0 , J1, ... 
of an abelian current J(z) with the defining relation J(z)P = 0. There 
exists a filtration G. on the algebra B such that the adjoint graded algebra 
is generated by coefficients of series J[i} ( z), which are images of powers 
J(z)i, 1 :::; i < p. In addition defining relations in the adjoint graded 
algebra are given by 

(3.38) 
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We now consider the filtration on A(p) induced from the filtration 
G. on the algebra generated with the modes of T(z). We denote the 
adjoint graded algebra by the same symbol A(p). In what follows we 
use the notation A(p) to denote the adjoint graded algebra of A(p) with 
respect to the double filtration (F. and G.). 

We now introduce a new algebra which is quadratic with the defining 
relations given by (3.38), (3.32), (3.33) and (3.34). 

Definition 3.3. Let A(p )' denote an algebra generated with the 
currents 

a,+(z), a-(z), f[il(z), 1::; i < p 

and defining relations 

(3.39) 

(3.40) 

(3.41) 

a,±(z)a±(w)"' (z- w)~, 

a±(z)f[nl(w) "'(z- w)n, 

f[nl(z)f[ml(w),...., (z _ w?min(n,m). 

We note that Lemmas 3.1 and 3.2 gives a surjection 

(3.42) A(p)'--+ A(p). 

We define the s£(2) action on A(p)' as follows. f[nl(z) are s£(2) in­
variants and a+(z) and a,-(z) are lowest and highest weight vectors of 
the s£(2) doublet respectively. This action commutes with the map­
ping (3.42). 

We now study highest weight representations of A(p)'. Let x~,P' 1 ::; 
s ::; p denote the cyclic representation of A(p )' that is generated from the 
vector Vs,p satisfying the defining relations (The Fourier decomposition 
of a±(z) is the same as in (2.28).) 

(3.43) -± =0, j>-
3p- 2s 

a1 Vs,p 
4 ' 

(3.44) -[n] 
j > { 

-n, n < s, 
Tj Vs,p = 0, -2n+ s -1, n 2:: s. 

(3.44) follows from a singular vector in the corresponding Verma module. 
We note that because of (3.42) and (2.29) there exists a surjective 

homomorphism 

(3.45) 

where Xs,p is an adjoint graded to Xs,p with respect to the filtrations 
induced from F. and G •. In particular, the characters of Xs,p and Xs,p 
coincide and Xs,p '::::' Xs,p as s£(2) modules. 
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Lemma 3.4. The character of :X~,p is given by the right hand side 
of the formula (1.8). 

Proof. We briefly recall the functional realization of the dual space 
(see for example [9]). 

Consider the decomposition 

X-, 
s,p-

where x~,p(n+, n_, n1, ... 'np-1) is the linear span of the vectors of the 
form 

with arbitrary parameters i~,i~. For() E (X~,p(n+,n-,n1,···,np-1))* 
and f'[a] defined in Def. 3.3, we consider a correlation function 

The space of thus obtained functions can be described as the space of 
functions of the form 

where X is a function given by the formula 

(3.46) 
n+ n_ s-1 p-1 

(II xt II xj ) 3p~2s II ( II xi)"' II ( II xi)2a-s+l 
i=1 j=l 

II 
a=l l:=;i:=;n"' 

II (xf-xj)~ II (xf-xj) 2a 
1:5a:5p-1 

1:5i<j$na 

II (xi -xj)~ II II (xf-xj)a II (X~-xf!)2 min(a,,B) 
• J ' 

15i:5n+ 
1:5j:5n_ 

b=+,- 1:5i:5nb 
1:5a::5p-1 1$;j:5na: 

and f is a polynomial symmetric in each group of variables 

{ +}n+ { -}n_ { "'}n"' _ 1 xi i=l' xi i=ll xi i=l' a- , · · ·, s. 

The exact form (3.46) of the functions Fe follows from the definition 
of A(p)' as an algebra with defining quadratic relations and from the 
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definition of X~,v· In particular the factor in the first line of (3.46) comes 
from the relations (3.43) , (3.44) and the the rest factors correspond to 
(3.39), (3.40), (3.41). Direct computation shows that the character of 
the space of polynomials (3.46) is given by the right hand side of the 
formula (1.8). Q.E.D. 

This Lemma gives an upper bound for the character of Xs,p· To 
prove that (3.45) is an isomorphism, we consider the decomposition 

00 

(3.47) x~,p = EB 7rn ® x~,p[nJ, 
n=l 

where i~,p[n] is a space of multiplicity of nn in X~,v· Our goal is to show 
that 

(3.48) chX~,p[r] = chMr,s;p· 

Because of the surjection (3.45) and formula (2.31) the proof of the 
equation (3.48) is enough for the proof of the Theorem 1.1. 

We divide the proof of (3.48) into 2 parts: we first show that 

chi~,p[1] = chM1,s;p 

and then deduce the general r case. 

3.2. The proof of chi~,p[1] = chM1,s;p 

We first let p = 1 and consider the decomposition 

(3.49) i~, 1 = ffivn, 
n;:::o 

where Vo is spanned by the highest weight vector and 

(3.50) Vn+l = span(aia_h ... aj;v, v E Vn), 

with arbitrary i, j1, ... , jz. Equivalently, 

with arbitrary numbers ia, j~ and l. We note that the decomposition 
(3.49) is induced from the grading on A(1)', which assignes degree 1 to 
each mode of a+(z) and degree 0 to each mode of a-(z). We note also 
that this construction applied to the algebra A(1) produces exactly the 
filtration F. (see the beginning of the subsection 3.1). 
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For any M with an action of an operator h and l E Z we set 

M 1 = { v E M : hv = lv} 

(his a standard generator of the Cartan subalgebra of s£(2)). 

Lemma 3.5. Let l 2: 0. If l > n then V~ = 0. Otherwise 

(3.51) 
(n-1.)2 

l q 2 

chVn = ( ) ( ) . q n q n-l 

Proof. We recall that a+(z) and a-(z) for two-dimensional irre­
ducible representation of s£(2). Therefore V~ is the linear span of a set 
of vectors 

with arbitrary ia, j13. This leads to the description of the dual space 
(V~)* as the space of polynomials in variables xi, ... , x;t", x;:-, ... , x;;:_1 

of the form 

n n-l 

(11 xi 11 xj)l x 
i=l j=l 

[ 11 (xi- xj) 11 (xi- xj) 11 (xi- xj)]! x g, 
lS,i<jS,n-l l<i<n 

1~}5,-;,-l 

where g(xi, ... , x;t", x;:-, ... , x;;:_1) is an arbitrary polynomial symmetric 

in each group of variables {xi}£=1 and {xj}j,:-i. The degree of the 
product above is equal to (n -l/2)2 + deg g. Lemma is proved. Q.E.D. 

Proposition 3.6. 

(3.52) chVn[1] = L 
n1,n2,···~0 

2: ni=n 

Proof. Using the relation chVn[1] = chVr?- chv;+l and Lemma 
above we obtain 

n2 n2 

ch Vn [1] = _q -2 - ~-q --,--,--
(q)n (q)n+l(q)n-1 

qn2 qn(1- q) 

(q)n(q)n+l . 
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So we need to show that 

(3.53) 
qn2 qn(l- q) 

(q)n(q)n+l 
n1 ,n2····~0 

Lni=n 

Instead we prove a more general relation 

(3.54) 
n1,n2 ,···~0 

Eni=n 

where a new variable u is introduced (see notation (x)n in Thm. 1.1). 
We note that the relation above reduces to (3.53) after the specialization 
u = q. 

After the change of varibales mi = ni+l + ni+2 + ... , i = 1, 2, ... 
the equation (3.54) becomes 

(3.55) 

or equivalently 

(3.56) 
1 

(uq)n 

where the notation (:) q 

ficient. 

(q)n is used for a q-binomial coef-
(q)m(q)n-m 

We prove (3.56) by induction on n. The case n = 1 is obvious. For 
general n we rewrite the right hand side of (3.56) as 
(3.57) 

t qmf c::J uml L q2:i~2m~uL~2m; (:~) (::) .... 
m1=0 q m1~m2~···~0 q q 

Therefore using the induction assumption it is enough to show that 

(3.58) 1 t m2 m(n) 1 
(uq)n = m=O q u m q (uq)m · 

The left hand side is equal to the (u, q) character of the space of poly­
nomials in commuting variables ei, 1 ::::; i ::::; n, where degu ei = 1 and 
degq ei = i. We consider the decomposition 
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n 

E9 <C[ei, ... , em] · span(ei1 ••• ei,, m :::; i1 :::; · · · :::; im :::; n). 
m=l 

The ( u, q) character of the right hand side is equal to the right hand side 
of (3.58). This finishes the proof of the proposition. Q.E.D. 

Consider the space :X~~P '-+ :X~,P' which is generated from the highest 
weight vector with the modes of a,±(z) (but not f'[il(z)). We have a 
decomposition 

X~~P = E9 7rr c>9 f~~p[r]. 
r2:1 

Lemma 3. 7. For any p the dual space (:X~~p[l])* is isomorphic to 
the direct sum over n 2: 0 of spaces of functions of the form 

(3.59) 

where g(x1, ... , Xzn) is a polynomial with values in the space (n~2n)s£(Z), 
which satisfy 

(3.60) 0" i ,j g ( ... , X j , ... , Xi, ... ) = g ( ... , Xi, ... , X j , ... ) , 

where O"i,j is a transposition acting on n~2n by permuting i-th and j-th 
factors. 

Proof. We start with the polynomial realization of the dual space 
(X~~p)*. Let w+, w_ be the standard basis of the 2-dimensional irre­
ducible representation of s£(2). For() E (:X~~P)* we set 

GIJ(Xl, ... , Xk) = L ((Jjaa1 (xi) ... a<>k (xk)ivs,p)Wa 1 c>9 •.• c>9 Wak. 
<>i=± 

This gives a map from (X~~p)* to the space of polynomials in variables 

x1, ... , xk with values in n~k. From (3.39) and (3.43) we obtain that 
the image of this map coincides with the subspace (3.59) with restriction 
(3.60). 

Note that if af/ ... afkkvs,p belongs to :X~~p[l] then the number of 
pluses and minuses in the set { o:i}f=1 coincide. Therefore to obtain the 
polynomial realization of the space (X~~p[l])* one needs to take an even 
number k = 2n of variables and the space of polynomials with values in 
(n~2n)s£(2). Q.E.D. 
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We consider the decomposition 

f~~p[1] = ffi(x~~p[1])n, 
n2:0 

where (X~~p[1])n is a subspace defined by the formula 

with arbitrary im j f3. We note that in the case p = 1 

(3.61) 

Corollary 3.8. 

np,np+l• ··2:0 
2: ni=n 

Proof. From the Proposition 3.6 and formula (3.61) we obtain our 
Corollary in the case p = 1. We now compare the dual space description 
(3.59) for general (s,p) and s = p = 1. The difference of the degrees is 
given by the formula 

2n 

- deg(IJ xf 

This gives 

n 1 ,n2 ,--·2:0 
Eni=n 

n1,n2 , ··2:0 
Eni=n 

We now redefine ni -+ np-l+i· Then the formula above gives the right 
hand side of (3.62). Q.E.D. 
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Lemma 3.9. The character of M 1,s;p is given by the Gordon type 
formula 

(3.63) chMl,s,p = L 

where the summation goes over all such collections n 1, n2 , • • . that only 
finite number of ni =I= 0. 

Proof. We recall that M1,s;p is a quotient of the Verma module 
V1,s;p by a submodule generated with the a singular vector on the level s 
(see [16]). Introduce a filtration H. on the Verma module V1,s;p defined 
as follows: H 0 is spanned by the highest weight vector and 

Hz+I = span{Lnv, v E Hz, n < 0} +Hz. 

In the corresponding adjoint graded space the images of the operators 
Ln commute with each other; we denote these ·operators as L~b. This 
gives 

(3.64) 

where {p(L~~)} is an ideal generated by some degrees polynomialp(L~~) 
(we put deg Lfb = -i) ~ Evidently, the character of this quotient is 
independent of p(L~bi) (only the degrees matters). We fix p to be equal 
to (L~bl)s. . 

Let Tab(z) = L~b1 + zL~b2 + .... For k 2: s let Rk be a following 
ring: 

Rk = C(L~]j{Tab(z)k+l' (L~ly}. 

Then for the character of Rk one has a formula 

(see [8]). Obviously 

chM1,s;p = chC[L~b1 ,L~b2 , •. • ]/{(L~b1 Y} = lim chRk· 
k--+oo 

Lemma is proved. Q.E.D. 

Lemma 3.10. The dual space (i~,p[l])* is isomorphic to the direct 
sum over n 1 , ... , np-b n 2: 0 of the (1rr2n)se(2 ) valued polynomials 

H( 1 1 p-1 p-1 ) 
Xl, ... 'Xni' .•. 'Xl ' ... 'Xnp-1' X!, ... ' X2n 
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of the form Y · g, where Y is a function of the form 

(3.65) 

s-1 p-1 

II II 
19:52n 1<j<n., 

1$et$p-1 - -

II ( II xn" II ( II xn2a-s+1 II 

and g is (1rr2n)s.e(2) valued polynomial symmetric in each group of vari­
ables 

(xf, ... ,x~J,a = 1, ... ,p -1; (x1, ... ,X2n)· 

In addition g satisfies the condition (3.60) in variables X1, ... , X2n· 

Proof. Recall that the currents :f[il(z) commute with the action of 
s€(2). Therefore we obtain 

(3.66) 

i.e. the space of invariants i~,p[1] can be obtained by applying all poly­
nomials in modes of the currents T[il(z) to vectors of i~~p[1]. The for­
mula (3.65) is a dual version of (3.66). Namely the first line of (3.65) 
comes from the polynomial realization of (X~~p[1])* (see Lemma 3.7). 
The second line of (3.65) describes the interaction between a±(z) and 
:f[il(z) in the algebra A(p)'. Finally the last two lines of (3.65) comes 
from the polynomial realization of the dual space of the part of i~,p[1] 
generated by modes of :f[il(z). Q.E.D. 

Corollary 3.11. 

chi~,p[1] = L 

where the summation goes over all such collections np; nv+1, ... that only 
finite number of ni =f 0. 

Proof. We note that because of the Corollary 3.8 the character of 
the space (3.65) is given by a sum over n1, ... , np-1, n ~ 0 of the terms 
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[ 
q! 2.::;,j;::p 2min(i,j)n;nj+2.::;;::p(i-s+1)n; l p- 1 

~ q2.::<>= 1 2ann"' X 

nv+np+1 +··=n (q)n1 (q)n2 · · · 

q! 2.:: 1 ::;;,j:5p- 1 2 min(i,j)n;nj+ I::,::;;::;p- 1 (i-s+1)n; 

(q)n1 · · · (q)np-1 

where the first line is the character of the first line of (3.65), the second 
line is the character of the second line of (3.65) and the third line is the 
character of the last two lines of (3.65). Rewriting the formula above in 
terms of ni, i > 0 we obtain our Corollary. Q.E.D. 

Proposition 3.12. chi~,p[l] = chM1,s;p· 

Proof. Follows from Lemma 3.9 and Corollary 3.11. 

3.3. The general case 

We recall the decomposition 

Xs,p = E91rr 0 Xs,p[r]. 
r;?:l 

Our goal is to show that 

(3.67) 

We first recall the surjection (3.45) 

Q.E.D. 

which is a homomorphism of s£(2) modules. This gives a surjection 

Suppose (3.67) doesn't satisfy. Then f3s,p is not an embedding. From 
the previous section we know that f3s,p[l] is an isomorphism. Denote by 
Kr the kernel of f3s,p[r]. Let r be a minimal number such that Kr is not 
trivial. Fix a vector u which is a lowest weight vector of some finite­
dimensional s£(2) module M ~ 1l'r C Kr. We note that for any n E Z 
the space (a~v) spanned by a~v with v EM can be embedded (as s£(2) 
module) toM 0 1r2 . In addition (a~v) is a subspace of Kr+l 0 7l'r+I EB 
Kr-1 01l'r-1 because s£(2) acts on a~ as on two-dimensional irreducible 
representation. Because of Kr- 1 = 0, we obtain that for any n E Z 

(3.68) ra;;u + a~eu = 0. 
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In fact, the condition Kr_1 = 0 means that the linear combination 
o:a;;: u + f3a-;; eu vanishes whenever 

f(o:a;;u +f3a-;;eu) = 0. 

Thus, (3.68) follows from fu = 0 and hu = ru. 
In the following Proposition we show that (3.68) can not be satisfied 

for all n. 

Proposition 3.13. Let u E i~,p be a nonzero vector satisfying 
hu = ru with r > 0. Then there exists n E Z such that ra;;:u+a-;;eu =I- 0. 

Proof. We use the vertex operator realization of i~,p· Namely, 
we consider the space ~ with a fixed nondegenerate form ( ·, ·) and an 
orthogonal basis e1, ... , ep+2 such that 

(e1, e1) = · · · = (ep+1, ep+l) = 1, (ep+2, ep+2) = -1. 

Let v+, v_, v1, ... , vp_ 1 E ~.P+2 be a set of linearly independent vectors 
with 

p 
(v+,v+) = (v+,v-) = (v_,v_) = 2, (v±,Vi) = i, (vi,vj) = 2min(i,j). 

For example, one can fix 

vi=v'2(e1+···+ei), i=1, ... ,p-1, 

1 1 
v+ = v'2(e1 + · · · + ep-1) + ep + v'2ep+2, 

1 1 
v_ = y'2(e1 + · · · + ep-1) + ep+1- J2ep+2· 

Let 
!) = ~ ® C[t, C 1] EB CK 

be the multi-dimensional Heisenberg algebra with the bracket 

For a: E ~' let 1fa be the Fock module with highest-weight o:. This 
module is generated from the highest weight vector Ia:) such that 

(/3 ® 1) Ia) = (/3, a) Ia); Klo:) = Ia:). 

The q-degree on 1r a is defined by 

(3.69) d I )-(o:,o:) egq a: --2-, 
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We also introduce the vertex operators r a(z) = :eacp(z): acting from 1rfJ 
to 1r a+fJ with the Fourier decomposition 

ra(z) = L:ra(n)z-n-(a,a)/2. 
nEZ 

We need two properties of vertex operators: 

(3.70) 

(3.71) 

[a®tn,rfJ(z)] = (a,,B)znrfJ(z), 

r a(z)r {J(w) "' (z- w)(a,fJ). 

We also need the following statement. There exists an element as E 

~such that 

(3.72) r V± (j) las) = 0, 
. 3p- 2s 

J >- . 4 ' 

-n, n < s, 
-2n+s -1, n :2: s. 

(3.73) 

We let Verts denote the space generated from the vector las) with all 
modes of the vertex operators r V± ( z)' r Vn ( z). Comparing the definition 
of x~,p and formulas (3.72), (3.73), (3.71), we obtain that the proof of 
the Proposition follows from the Lemma below. Q.E.D. 

Lemma 3.14. Let u 1 , u2 be two vectors from some Fock modules. 
Suppose 

(3.74) 

for all n. Then u1 = u2 = 0. 

Proof. To prove our lemma we apply an operator a ® ti to both 
sides of (3.74). Note that fori big enough 

(a® ti)u1 =(a® ti)u2 = 0. 

Now using (3.70) we obtain from (3.74) that for all n E Z and all a E.~ 

(a,v_)rrv_ (n + i)u1 +(a, v+)rv+(n + i)u2 = 0. 

Because of the nondegeneracy of ( ·, ·) we conclude that for all n 

This gives u 1 = u2 = 0. Lemma is proved. Q.E.D. 

Proposition 3.15. chXs,p[r] = chis,p[r] = chi~,p[r]. 
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Corollary 3.16. chXs,p = chX~,p and therefore the statement of 
the Theorem 1.1 is satisfied. 

Proof. Follows from Lemma 3.4 and Proposition 3.15. Q.E.D. 

§4. Conclusion 

From the results of the paper we can obtain the following descrip­
tion of A(p) irreducible representations Xs,p· We know that Xs,p is 
generated from the vacuum vector js,p) satisfying the defining rela­
tions (2.29). This means that Xs,p is induced from trivial representation 
of the subalgebra generated by a; with i = 3P~28 + n, n E N. In [9], 
fermionic· formulas for irreducible representations of 1-dimensionallat­
tice vertex operator algebras and fermionic formulas for coinvariants in 
irreducible representations with respect to different subalgebras were 
obtained. These give graded (or quantum) version of the Verlinde for­
mula for !-dimensional lattice vertex operator algebras. In this paper 
generalization of some results of [9] are obtained. 

The A(p) representation category is equivalent to the representation 
category lt(p) of the small quantum s£(2) group Uq(st'(2)) with q = e~. 
This group differs from the quantum group Uqst'(2) from [4] by the rela­
tion KP = 1. The coinvariants in A(p) irreducible representations can be 
described in terms of lt(p). Therefore the next natural step of investiga­
tions can be obtaining of fermionic formulas for coinvariants, which gives 
q-versions for multiplicities of a given indecomposable representation in 
a tensor product of irreducible representations. 

The close related to the previous direction of investigations is a 
monomial basis constructed in terms of a±(z)-modes like in [7]. These 
basises allows to establish a contact with some RSOS-like models as 
in [15]. 

For applications to percolation type models, a generalization of the 
results of this paper to (p,p') models [5] and especially to (2, 3) model 
would be very useful. 
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