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Two small remarks on Nori fundamental group 
scheme 

HelEme Esnault and Phung Ho Hai 

Abstract. 

For X a complete, reduced, geometrically connected scheme over 
a perfect field of characteristic p > 0, we analyze the decomposition of 
Nori's fundamental group scheme into its local and etale parts and raise 
the question of the relation between the geometry and the splitting of 
the group scheme. We also describe in categorial terms the functor 
which corresponds to the inclusion of the maximal reduced subgroup 
scheme. 

§1. Nori's fundamental group scheme 

Let X/k be a complete, reduced, geometrically connected scheme 
over a perfect field k. Let us briefly recall Nori's construction[4] of the 
fundamental group scheme of X. A vector bundle V on X is said to 
be finite if it satisfies a non-trivial polynomial equation with integral 
coefficients f(V) 8:! g(V) for two polynomials j, g E N[X], f =f. g. Here 
m · V = V EB ... EB V (m-times) and xm(V) = V 181m. Subquotients 
of finite bundles are called essentially finite bundles. Nori showed that 
when f : C -+ X is a morphism of a smooth projective curve to X, then 
f*V is semi-stable of degree zero in the sense of Mumford whenever V 
is an essentially finite bundle. Essentially finite bundles form an abelian 
rigid tensor category k-linear category eN (X), where morphisms are 
morphisms of vector bundles. We call these bundles Nori finite bundles. 
For X fixed, we shorten the notation by eN :=eN (X). 
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Let us fix x E X(k). The fiber functor V f-7 Vjx endows eN with 
the structure of a neutral Tannaka category. Tannaka duality yields an 
affine (profinite) group scheme 1rN (X, x), called Nori fundamental group 
scheme of X with base point x. For x --+ X fixed, we shorten the notation 
by 1rN := 7rN (X, x). 

For each V E eN, we denote by (V) the full subcategory of all 
subquotients of direct sums of tensor powers of V. This is a full Tannaka 
subcategory of eN (X) (with the same fiber functor). The Tannaka group 
of this category is denoted by G(V, x), or G(V) for short. It is a finite 
group scheme. There is a canonical surjection 1rv : 1rN --+ G(V) and 7rN 
is the projective limit of G(V). Furthermore, Tannaka duality applied to 
(V) also yields a G(V)-principal bundle Pv : Yv --+X with the property 
that Yv is connected, is endowed with a rational point above x and 
Pv * (W) is trivial for any W E (V). 

Let eet (resp. eF) be the subcategory of bundles v in eN' such 
that G(V) is etale (resp. local). Tannaka duality applied to eet (resp. 
eF) and the fiber functor at x yields the group scheme 1ret(X, x) (resp. 
1rF (X, x)). For x --+ X fixed, we shorten the notation by 1ret : = 1ret (X, x) 
(resp. 7rF := 7rF(x, x)). The inclusion functors cet c eN and eF c eN 
yield surjective flat homorphisms 1rN --+ 1ret and 7rN --+ 1rF. 

The group scheme 1ret is pro-etale, while the group scheme 1rF is 
pro-local. In fact 1ret (resp. 1rF) is the largest pro-etale (resp. pro-local) 
quotient of 1rN. In [2) the relationship between these group schemes 
has been studied. It is shown in particular that there is a canonical 
homorphism 1rN --+ 1ret x k 1rF which is flat surjective but generally not 
an isomorphism. The description of the kernel of this map in terms of 
Tannaka duality was given. 

For a finite group scheme G over k, let G0 denote the connected 
component of the unit element. The reduced subscheme Gred C G is a 
subgroup scheme. The composite homomorphism Gred --+ G --+ Get is 
an isomorphism and furthermore, G0 is a normal subgroup. So Gred ~ 
G/G0 . In other words, G is the semi-direct product of G0 with Gred, 
with G0 c G normal. The aim of this short note is to discuss the 
behavior of this semi-direct presentation of G in the pro-system defining 
7rN. 



Two small remarks on Nori fundamental group scheme 239 

§2. The reduced part of 1rN 

2.1. The pro-local group (1rN) 0 

Let ( 1rN )0 be the pro-local subgroup scheme of 1rN. That is, with 
the notations as in the previous section 

(1) 

Lemma 2 .1. ( 1rN) 0 is the kernel of 1rN ---> 1ret . 

Proof. For V E CN given, G(V)"t = G(V)/G(V)0 is the largest 
etale quotient of G(V). Thus by Tannaka duality, G(V)"t is the Tannaka 
group of the sub category (V) n cet c (V). Hence 

(2) 1fet = ~ G(V)"t. 
VECN 

The lemma follows. Q.E.D. 

A description of the kernel of 1rN ---> 1fet in terms of Tannaka duality 
was given in [2] (there it is denoted by L). It is shown that ( 1rN)0 

may differ from 1fF, more precisely, the composition homomorphism 
(1rN)O ___. 1fN ___. 1rF may be not injective. 

2.2. The reduced group 1f~d 

In the language of function algebras, 0(1r"t) is the largest pro-etale 
sub Hopf algebra of 0(1rN) and 0(1rF) is the largest nilpotent sub Hopf 
algebra of 0(1rN). Furthermore, 0(1rN) is the ind limit of its finite 
dimensional sub Hopf algebras O(G) over k. 

On the other hand, let 1)1 be the nilradical of 0(1rN). Then for 
each sub Hopf algebra O(G) c 0(1rN), 1)1 n O(G) is the nilradical of 
O(G). Further we have O(G)/(IJl n O(G)) = O(Gred), where Gred is 
the reduced subgroup of G with the same underlying topological space. 
Thus the quotient 0(1rN)/IJ1 is the ind-limit of O(Gred), its spectrum 
1f~d is the largest pro-etale subgroup of 1rN, which is also the pro-reduced 
subscheme of 1rN. 

(3) 

Proposition 2.2. With the settings above we have 

(i) The composition homomorphism 

is an isomorphism. Consequently the inverse of this map de
fines a splitting of 1fN ---> 1fet. 
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(ii) 1fN is the semi-direct product of its subgroups (1rN)0 and 1fred, 
with (1rN) 0 normal. 

Corollary 2.3. The composition map (1rN) 0 -+ 1fN -+ 1rF is an 
isomorphism if and only if 1fN is the direct product of 1fF with 1fet in a 
compatible way in the pro-system, i.e. 

Proof. For a finite group scheme G, the claim of Corollary holds. 
Passing to limit in the prosystem defining 1fN we obtain the claim of 
Corollary. Q.E.D. 

If G is a commutative (pro )-finite group scheme, then G = G0 X kcet. 

Of course G need not be commutative to split in this way. We raise the 
question of the geometric conditions on X which force an isomorphism 
1fet 9:! 1fF x k 1f~d. More precisely we ask for the relation between this 
strong splitting condition and the commutativity of 1fN. If X has di
mension 1, there is a simple answer. 

Proposition 2.4. Let X be a smooth projective geometrically con
nected curve over a char. p > 0 algebraically closed field k. Let x E 

X(k). Then 1fN (X, x) 9:! 1fF (X, x) Xk 1f~d (X, x) if and only if 1fN (X, x) 
is commutative. 

Proof. Assume that 1fN = (1rN)0 xk 1f~d· Then (1rN)0 -+ 1fN -+ 
1fF is an isomorphism. According to [2, Thm 3.5], the representation 
category of (1rN) 0 is equivalent to the category V, which consists of 
pairs (Xs, V) where Xs -+ X is the principal bundle associated to a 
full subcategory of cet generated by some object of cet' morphisms are 
appropriately determined, (see [2, Defn 3.3]), and V E CF(Xs). The 
morphism (1rN)0 -+ 1fF is Tannaka dual to the functor V 1--t (X, V) 
(i.e. sis the trivial subcategory of cet). The isomorphism (7rN)O-+ 1fF 

implies that each V E CF(Xs) is the pull back of some WE CF(X). 
If X is a smooth curve of genus~ 2, Raynaud [6] shows that there 

exists an etale cyclic cover XL -+X and a p-torsion line bundle on XL 
which does not come from a line bundle on X. Thus, in this case one 
cannot have isomorphism (1rN)0 -+ 1fF. On the other hand, if X has 
genus 1, the point x gives X the structure of an abelian variety. It is 
shown by Nori [5] that eN (X) is commutative. Finally, if X has genus 
0, then 1fet = 1f~d = {1} so there is nothing to show. This finishes the 
proof. Q.E.D. 
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§3. Tannaka description of the map 1ret -+ 1rN 

Our aim in this section is to describe the functor Et : eN -+ eet that 
corresponds, through the Tannaka duality, to the injection 1ret -+ 1rN. 

3.1. The Frobenius functor on a representation category 

Let G be a group scheme over k. The Frobenius functor :F on 
Rep( G) is defined as follows. For each representation V of G, :F(V), as 
a k vector space, is V{l) := V ®Fk k, where Fk is the Frobenius of k. 
Let { ei} be a k basis of V. If the action of g E G on V is given by a 
matrix (Yii), its action on V(l) is defined by the the matrix (YiiP). In 
the dual language of functions algebras, if the coaction of 0( G) on V is 
8 : v ~---+ Li Vi ® ai then the coaction of 0( G) on v<1) is 

(4) 

Recall that the absolute Frobenius F : X -+ X of X induces a 
functor F* :eN (X) -+eN (X), V ~---+ F*(V). It should be a well-known 
fact that :F is compatible with the Frobenius functor through the fiber 
functor Wx· We provide here a simple proof of this fact (see also [7, 
Thm.ll]). 

Lemma 3.1. The functor F* is compatible with the Probenius func
tor on Rep( eN (X)) through fiber functor as follows. The following dia
gram is commutative: 

(5) eN (X)~ eN (X) 

Wz! ! Wz 

Rep( G) --r Rep( G). 

Proof. It is easy to see that :F is a p-linear tensor functor. This 
means :F(>..!) = )..P:F(f), for all>.. E k and all morphisms f. Moreover, 
:F(V) can be determined by using only "algebraic tensor constructions" 
as follows. Denote by sn(V) the n-th symmetric power of V, i.e. the 
largest quotient of v®n invariant by all symmetries on v®n' and de
note by STn(V) the subspace of Tn(V) of symmetric tensors. Both 
sn(V) and STn(V) are representations of G. Moreover, the image of 
the composition 

(6) 
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is naturally isomorphic to F(V) = V(1) as a G-representation. In
deed, the image of STP(V) in SP(V) is spanned by { e~Ph=l, ... ,n where 
{ eih=l, ... ,n is a basis of V and the restriction of the coaction on SP(V) 
on this subspace has the same form as the action 8(P) given in ( 4). 

On the other hand F(V) can also be defined using only "algebraic 
tensor constructions" as V(l) above. Since w is exact and compatible 
with the tensor structures, it satisfies the diagram in (5). Q.E.D. 

Corollary 3.2. The functor F*, restricted on eet, is an equivalence 
of categories. 

Proof. For an etale k-algebra, the absolute Frobenius homomor
phism is an isomorphism. Hence the same holds true for a pro-etale 
k-algebra. Looking at the coaction in (4) we see that the Frobenius 
functor on Rep(1ret) is an equivalence of categories. By Tannaka dual
ity, the functor F* on eet is an equivalence of categories. Q.E.D. 

We henceforth denote by F*-1 the inverse functor and by F*-n its n-th 
power, which is the inverse functor to F*n := F* o ... oF* (n-times). 

The proof of the proposition below is now obvious. 

Proposition 3.3. Let (V) be the full tensor subcategory of eN, 
generated by an object v in eN. The restriction of the functor Et to (V) 
is equivalent to functor F*-n(F*n(V)) for any n larger than some nv 
depending on V. 

Proof. Indeed, there exists an integer nv such that F*nv is etale. 
Since F*, restricted in eet, is an equivalence of categories, for .n ;::: nv, 
F*-n(F*n(W)) is a well-defined, k-linear functor from (V) C eN to 
eet. Q.E.D. 
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