




















































































An action of a Lie algebra 445 

smooth projective surface and 1r : X --+ Y a birational map such that 
R7r*(Ox) = Oy. We first recall perverse coherent sheaves introduced 
by Bridgeland [Bl]. 

Definition 6.1. (Bl] Let Per(X/Y) be the subcategory of D(X) 
such that an object E E D(X) belongs to Per(X/Y) if and only if 

(i) Hi(E) = 0 for i =1- -1, 0, 
(ii) 7r*(H-1(E)) = 0 and R11r*(H0 (E)) = 0, 

(iii) Hom(H0 (E), c) = 0 for all sheaf con X with R1r*(c) = 0. 
An objectEE Per(X/Y) is called perverse coherent sheaf 

Per(X/Y) is an abelian category. For E E Per(X/Y), we get 
Hi(1r*(E)) = 0, i =1- 0. Thus 1r*(E) E Coh(Y). The following is due 
to Bridgeland [Bl] (cf. [N-Y, Lem. 1.2]). 

Lemma 6.1. (1) For a coherent sheaf F on Y, we have an 
exact sequence 

0--+ R 11r*(L-11r*(F))--+ F--+ 1r*1r*(F)--+ 0. 

In particular, ifF is torsion free, then F ~ 1r*1r*(F). 
(2) Let E be a coherent sheaf on X. For the natural map ¢ : 

1r*1r*(E) --+ E, we have {i) R1r*(ker¢) = 0, (ii) 1r*(im¢) --+ 
1r*(E) is isomorphic, {iii) 1r*(coker¢) = 0 and (iv) R11r*(E) ~ 
R11r * ( coker ¢). 

(3) A coherent sheaf E belongs to Per(X/Y) if and only if¢ : 
1r*1r*(E)--+ E is surjective. 

(4) For a coherent sheaf F on Y, Ext1 (1r*(F),c) = 0 for all c E 
Coh(X) with R1r*(c) = 0. 

6.2. A family of perverse coherent sheaves 
Let Y --+ S be a flat family of surfaces and 1r : X --+ Y a family of 

projective birational maps such that X --+ S is smooth and R1r* ( 0 x) = 
Oy. 

Definition 6.2. Let M~18(v) be the moduli stack of perverse co­
herent sheaves E E Per(Xs/Ys) n Coh(X8 ), s E S with topological in­
variant v(E) = v or "f(E) = v in Section 4.2 such that 1r*(E) is torsion 
free or purely !-dimensional. 

By Lemma 6.1 and the base change theorem, M~18(v) is an open 
substack of the moduli stack of coherent sheaves Eon X8 , s E S. Let w 
be a numerical invariant of 1r*(E), E E M~18 (v)8 and My;s(w) be the 
moduli stack of torsion free sheaves or purely !-dimensional sheaves F 
on Ys,S E S. 
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Proposition 6.2. We have a ''proper" map f: M~18 (v) -t My;s(w) 
by sending E to 1r*(E). More precisely, letT be a scheme of finite type 
overS and :F a fiat family of torsion free or purely 1-dimensional sheaves 
on Y xs T. Then M~18 (v) xM:v;s(w) T -t Tis proper. 

Let T' -t T be a morphism and £ a flat family of coherent sheaves 
parametrized by T' such that Ct E Per(Xt/Yt), v(et) = v and 1r*(£) ~ 
:F ®oT Or'. Since £ is a quotient of 1r* ( :F ®oT Or') in the category of 
coherent sheaves with a fixed topological invariant v, M~18(v)xM:vfs(w) 
T -t T is of finite type. 

In order to prove the properness, we use the valuative criterion. Let 
R be a discrete valuation ring and K the quotient field of R. Let s be 
the closed point of S = Spec(R). Let W C Y := Ys be the closed subset 
such that 1r 8 is isomorphic over Y \ W. 

Lemma 6.3. Let ¢ : £1 -t £2 be a homomorphism of R-ftat families 
of coherent sheaves ei, i = 1, 2 on y. Assume that (ei)s is torsion free 
or purely 1-dimensional, and¢ is an isomorphism on Y \ W. Then¢ 
is injective and coker¢ is R-ftat. Moreover if¢ is isomorphic over K, 
then ¢ is an isomorphism. 

Proof. Since ¢ 8 is isomorphic on Y \ W and (£1) 8 is torsion free 
or purely !-dimensional, cPs is injective. Hence ¢ is injective and coker ¢ 
is R-flat. If¢ is isomorphic over K, then (coker¢) 0R K = 0, which 
implies that coker ¢ = 0. Hence ¢ is an isomorphism. Q.E.D. 

Corollary 6.4. Let :F be a R-ftat family of torsion free or purely --· 1-dimensional sheaves on Y. Let 1r*(:F) be the R-torsion free quotient of 

1r*(:F). Then :F -t 1r*(1r*(:F)) -t 1r*(;;(':F)) is injective and the cokernel 
is R-ftat. 

By the following proposition, we have Proposition 6.2. 

Proposition 6.5. (I) Let £1 and £2 be R-ftat families of co-
herent sheaves on X such that (i) (ei)s E Per(Xs/Ys), (ii) 
1r*(£1) 8 is torsion free or purely 1-dimensional, and (iii) there 
are isomorphisms cPK : £1 0R K -t £2 0R K, '1/J : 1r*(£1) -t 

1r*(£2) such that ¢K induces 'ljJ over K. Then there is an iso­
morphism ¢ : £1 -t £2 extending ¢ K and 'ljJ. 

(2) Let eK be a coherent sheaf such that eK E Per(XK /YK), i.e., 
R 11r*(£K) = 0 and 1r*1r*(£K) -t eK is surjective. Let :F be a 
R-ftat family of torsion free or purely 1-dimensional sheaves 
on Y with an isomorphism '1/JK : 7r*(£K) -t :F 0R K. Then 
there is a R-ftat family £ of perverse coherent sheaves which 
is an extension of£ K with an extension 'ljJ : 1r * ( £) -t :F of 'ljJ K. 



An action of a Lie algebra 447 

Proof. (1) Let 1r*z;::(fi)) be the R-flat quotient of 1r*(1r*(£i)) by 

the R-torsions and Lithe kernel of 7r*z;::{£i)) -7 £i. Then Li are R-flat. 
Since L1 0R K -7 £2 0R K is a 0-map, L1 is contained in £ 2. Hence we 
have a homomorphism ¢ : £1 -7 £2 and we get a commutative diagram: 

Thus the claim holds. 

7r* z;:::(£1)) ~ £1 

1r*(,P) 1 1 <{> 

7r* z;:::(£2)) ~ £2. 

(2) Let¢ : ~ -7 £K be a homomorphism defined by the composi-

tions¢:~ -7 ~®RK -7 1r*(1r*(£K)) -7 £K. We set£:= im(¢). 
Then£ is a R-flat family of coherent sheaves such that R11r,.(£) = 0 and 

£ ®R K ~ £K. By Lemma 6.3, :F -7 1r*(~) -7 1r*(£) is an isomor­
phism. Q.E.D. 

The following definition of the stability is slightly different from 
[N-Y, Lem. 2.9]. 

Definition 6.3. Let H be an ample Cartier divisor on Y. An object 
E E Per(X/Y) is stable with respect to H if Eisa sheaf and 1r*(E) is 
stable with respect to H. If 1r*(E) is p,-stable, w~ say that E is p,-stable. 

Lemma 6.6. Let E E Coh(X) be a perverse coherent sheaf and F 
a coherent sheaf such that 1r * (F) is torsion free. Then Hom{ E, F) -7 

Hom(1r*(E), 1r*(F)) is injective. In particular, a stable perverse coherent 
sheaf is simple. 

Proof. Since 1r*(1r*(E)) -7 E is surjective, we have an injective 
homomorphism Hom(E, F) -7 Hom(1r*(1r*(E)), F). Since 

we get our claim. Q.E.D. 

Theorem 6.7. [N-Y, Thm. 2.14] There is a coarse moduli scheme 
M1(v) of stable perverse coherent sheaves E with the topological invari­
ant v. M1(v)JL denotes the open subscheme of p,-stable perverse coherent 

. sheaves. More generally, for a family of resolutions 1r: X -7 Y -7 S and 
a relatively ample Cartier divisor 1i on Y, we have a relative moduli 
space of stable perverse coherent sheaves Mj;18,'H(v), which is quasi­
projective over S. 
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Lemma 6.8. (1) Let v := (r, ~'a) E Z x NS(X) x Z be a 
topological invariant. Assume that there is a line bundle .C on 
X with~= c1(.C8 ), s E S. Iftr: Ext2(E,E)-+ H 2 (X8 ,0xJ 
is injective for all E E MJ:.:;s,H(v) 8 , then MJ:.:;s,H(v) -+ S is 
smooth over s E S. 

(2) We set X := X 8 , Y := Ys and assume that X -+ Y is a 
minimal resolution of rational double points. Let E be a stable 
perverse coherent sheaf on X. If 

is surjective, then tr: Ext2 (E, E) -+ H 2 (X, Ox) is injective. 

Proof. (1) is a consequence of a standard deformation theory. 
(2) By the Serre duality, it is sufficient to prove that Hom( X, Kx) -+ 

Hom(E,E®Kx) is surjective. Since Kx = n*(Ky), the claim follows 
from Lemma 6.6. Q.E.D. 

Proposition 6.9. Let 1r : X -+ Y be a contraction of ( -2)-curves 
by a linear system JnHJ on X. We set v := (r,~,a). Assume that 
-Kx is effective and gcd(r, (~,H), a)= 1. Then Mfi(v) is smooth and 
projective over C. If there is a polarized deformation ¢: (X, .C) -+ S of 
X 80 = X with a family of Mukai vectors v and a family of dvisors 1{ 

such that Hso = H and H-f- does not contain ( -2) curves for a general 
s E S. Then Mfi(v) is deformation equivalent to MH(v). 

Proof. Since Rn*(Ox) = Oy, H 1(X,Ox(nH)) = 0 for n » 0. 
Hence the base change theorem implies that ¢* ( 0 x ( nH)) is a locally 
free sheaf on S and we get a flat family of contractions 1r : X -+ Y such 
that Rn*(Ox) = Oy. We set Hn := nH +.C. For a sufficiently large 
n, let Mx;s,HJv) -+ S be the relative moduli space of (Hn)s-stable 
sheaves on Xs. Let So be the open subscheme of S such that Hs is 
ample. Then Mx;s,HJv) coincides with MJ:.:;s,H(v) over So. Hence we 
get our claim. Q.E.D. 

Corollary 6.10. Let X be a smooth projective surface with a con­
traction 1r : X -+ Y of ( -2) curves, and let H a divisor which is the 
pull-back of an ample divisor on Y. 

(1) 

(2) 

Assume that X be a rational surface and - Kx is effective. If 
gcd(r, (~,H), a) = 1, then Mfi(r, ~'a) is deformation equiva­
lent to MH(r,~,a) and H*(Mf£(r,~,a)) is identified with 
H*(MH(r, ~'a)) by an algebraic correspondence. 
Assume that X be a K3 surface with p(Y) 2: 2. If gcd(r, (~,H)) 
= 1, then Mfi(r, ~'a) is deformation equivalent to MH(r, ~'a) 
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and H*(M'!J(r, ~'a)) is identified with H*(MH(r, ~'a)) by an 
algebraic correspondence. 

Proof. We prove (2). Let N be a primitive sublattice of Pic(X) 
spanned by Hand~- Replacing~ by~+ rm7r*(TJ), TJ E NS(Y), we may 
assume that dimQ 1r*(N ® Q) = 2. Indeed gcd(r, (~,H)) = 1 means that 
the stability does not change under the change E f--7 E(mD), if D is 
the pull-back of a Cartier divisor on Y. Then there is no ( -2)-curve in 
N n H .L. Let R be the set of ( -2)-vectors on H .L n Pic(X). Since R is a 
finite set, we can take an ample divisor L such that L tf_ Qu+ N ®Q for all 
u E R. We shall consider a deformation of (X, L, H, ~). Then H deforms 
to an ample divisor, which implies that we can apply Proposition 6.9 to 
get the claim. Q.E.D. 

Remark 6.1. If ~ is relatively ample, then we can take L = ~ + 
rmH. Then the same assertion holds if gcd(r, (~,H), a)= 1 and H.LnN 
does not contain ( -2) vectors. 

6.3. An action of the affine Lie algebra 

From now on, we assume that 1r : X --+ Y is a minimal resolution 
of rational double points. For simplicity, we assume that Y has one 
singular point p E Y. Let C1, C2, ... , Cn be the irreducible components 
of the exceptional divisor and Z the fundamental cycle on X. 

Lemma 6.11. (1) Let c be a coherent sheaf on X such that 
1r * (c) = 0. Then there is a filtration 

(6.1) 0 c F1 c F2 c · · · c Fs = c 

such that each Fk/Fk-l is a subsheaf ofOc,(-1), i > 0. In 
particular, if Hom( c, 0 c, ( -1)) = 0 for all i, then c = 0. 

(2) IfR1r*(c) = 0, then cis a semi-stable 1-dimensional sheaf and 
gr(c) = EB~=l Oc,(-1)EElr;. 

Proof. (1) Assume that c =/=- 0. Since 1r*(c) = 0, cis of pure di­
mension 1. Since ((Ci,CJ)i,J) is negative definite, x(Oc,(-1),c) > 0 
for an i. Then there is a non-zero homomorphism ¢ : Oc, ( -1) --+ c or 
¢ : c --+ Oc, ( -1). For the first case, ¢ is injective and 1r * ( coker ¢) = 0. 
For the second case, 1r * (ker ¢) = 0 and im( ¢) is a subsheaf of Oc, ( -1). 
Applying the same procedure to coker ¢ or ker ¢, we get the claim. 

(2) We first note that x(c) = 0. Let E be a subsheaf of c. Then 
H 0 (X, E) = 0, which implies that x(E) ::; 0. Therefore c is a semi­
stable 1-dimensional sheaf. Obviously Oc, ( -1) are stable. We take 
a filtration (6.1). Then x(Fk/ Fk-d ::; 0 and the equality holds if 
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FkiFk-1 ~ Oci(-1). Hence FkiFk-1 ~ Oci(-1) for all k. Therefore c 
isS-equivalent to EBi0ci(-1) 9 ri. Q.E.D. 

Corollary 6.12. E E Coh(X) belongs to Per(XIY) if and only if 
Hom(E,Oci(-1)) = 0 for all i. 

Proof. Obviously E E Per(XIY) n Coh(X) satisfies 
Hom( E, 0 0 .( -1)) = 0 for all i. We prove the converse direction. We 
shall prove that the homomorphism¢: n*(n*(E)) -+ E is surjective. By 
Lemma 6.1 (2), the cokernel of n*(E) -+ n*(im ¢) satsifies 1r* ( coker ¢) = 
0. Since Hom(coker¢,0ci(-1)) c Hom(E,Oci(-1)) = 0, by Lemma 
6.11 (1), we get coker¢ = 0. Thus¢ is surjective. Q.E.D. 

Lemma 6.13. Let E be a coherent sheaf belonging to Per(XIY). 
IfHom(Oci ( -1), E)= 0, i = 1, 2, ... ,nand Ext1 (0z, E)= 0, then E is 
locally free along Z and n*(E) is reflexive at p. 

Proof. Replacing X by an open neighborhood of Z, we may assume 
that E is locally free on X\ Z. Assume that E is not torsion free. Then 
for the torsion submodule T of E, there is a surjection T -+ Cx. We 
note that there is an exact sequence 0-+ c-+ Oz -+ Cx -+ 0 such that 
c E Coh(X) with Rn*(c) = 0. Since Hom(c, T) = 0, Ext1 (Cx, T) -+ 
Ext1 (0z, T) is injective. Since x(Cx, T) = 0, Ext1 (Cx, T) -=/= 0. Thus 
Ext1 (0z, T)-=/= 0, which is a contradiction. Therefore E is torsion free. 
By the exact sequence 

Hom(Oz, Evv)-+ Hom(Oz, Evv I E)-+ Ext1 (0z, E), 

we get Hom( 0 z, Evv I E) = 0. Since Hom( Cx, Evv I E) -=/= 0 for a point 
x E Supp(Evv I E), Evv IE = 0. Thus E is locally free. Then we get 
R1n*(Eiiz) = 0, which implies that R 1n*(Ev) = 0. Therefore n*(E) is 
a reflexive sheaf. Q.E.D. 

Lemma 6.14. (1) (a) Let E be a coherent sheaf on X such 
that E E Per(XIY) and n*(E) is torsion free. For a 
subspace U c Hom( Oci ( -1), E), the evaluation map ¢ : 
U ® OcJ -1) -+ E is injective in Coh(X), coker ¢ E 
Per(XIY) and n*(coker¢) is torsion free. 

(b) Let F be a coherent sheaf on X such that FE Per(XIY) 
and 1r * (F) is torsion free. For a subspace V of 
Hom(F, Oci ( -1)[1]), the associated extension in Coh(X) 

0 -+ Vv ® Oci ( -1) -+ E -+ F -+ 0 

defines E E Per(XIY) and n*(E) is torsion free. 
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(2) (a) Let E be a coherent sheaf on X such that E E Per(X/Y) 
and 1r*(E) is torsion free. Let U C Hom(Oz[-1], E) be 
a subspace. For the associated extension in Coh(X) 

0 --+ E --+ F --+ Oz 0 U --+ 0, 

FE Per(X/Y) and 1r*(F) is torsion free. 
(b) Let F be a coherent sheaf on X such that FE Per(X/Y) 

and 1r * (F) is torsion free. Let V C Hom( F, 0 z) be a sub­
space. Then¢: F--+ Oz 0 vv is surjective in Coh(X), 
E := ker¢ E Per(X/Y) and 1r*(E) is torsion free. 

Proof. (1) (a) Since R7r*(Oci(-1)) = 0 and 1r*(E) is torsion free, 
1r*(ker¢) = 0 and R 11r*(ker¢) ~ 1r*(im¢) = 0. By Lemma 6.11, we see 
that ker ¢ ~ Oci ( -1 )EBr. Since ¢ induces an injective homomorphism 
U--+ Hom(Oci(-1),E), we haver= 0. Since 1r*(E) ~ 1r*(coker¢), 
R 11r*(coker¢) = 0 and 1r*1r*(E)--+ E--+ coker¢ is surjective, coker¢ E 

Per(X/Y). 
(b) We note that 1r*(E) ~ 1r;.(F) and R 11r*(E) = 0. Hence we shall 

prove that Hom(E,Oc;(-1)) = 0. If j -:f. i, then obviously the claim 
holds. If j = i, then we have a non-zero map vv 0 Oci ( -1) --+ E --+ 
Oci ( -1). By our choice of the extension class, this is impossible. Hence 
E E Per(X/Y). 

(2) (a) Obviously 1r*1r*(F) --+ F is surjective and R11r*(F) = 0. If 
1r*(F) has a torsion, then we have a non-trivial map Oz = 7r*(Cv)--+ F. 
Then Oz --+ F--+ Oz 0 U is injective. By our choice of the extension 
class, this is impossible. Hence 1r*(F) is torsion free. 

(b) Since Hom(F,Oz)--+ Hom(1r*1r*(F),Oz) = Hom(1r*(F),Cp) is 
injective, 1r*(F)--+ Cp 0 vv is surjective. Since 1r*(1r*(F))--+ 1r*(Cp) 0 
vv is the composition of 7r* ( 1r * (F)) --+ F and F --+ 0 z 0 vv, ¢ is 
surjective. Since Ext1(0z, Oc; ( -1)) = 0 for all j, Hom(E, Oc; ( -1)) = 
0 for all j. Thus E E Per(X/Y) and 1r*(E) is torsion free. Q.E.D. 

We set Eo := Oz, Ei := Oc1 ( -1)[1], i = 1, 2, ... ,nand set 

l.lJk~) := {(E, U)IE E Mfi(v), uv c Hom(E, Ei), dim U = m}. 

By Lemma 6.14, the Brill-Noether locus with respect to Ei, i = 0, 1, ... , n 
behaves very well and we have the following. 

Proposition 6.15. The affine Lie algebra associated to Ei, i = 
0, 1, ... , n acts on ffiv H*(Mfi(v)). 

Remark 6.2. f : Mfi(v) --+ MH(w) gives the contraction map of 
the Brill-Noether locus with respect to Ei, i = 1, 2, ... , n. 
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Remark 6.3. Let X be an abelian surface or a K3 surface with 
a symplectic G-action. Assume that there is a fixed point. By the 
Me~ correspo~ce [BKR], we have an equivalence <I> : D 0 (X) ~ 

D(X/G), where XjG ~ XjG is the minimal resolution of X/G. More­
over we can choose an equivalence so that <I> induces an equivalence 
Coh0 (X) ~ Per((XjG)j(XjG)). By this equivalence, we have an iso­
morphism MH(v)ll ~ Mk(w)JL, where w is the Mukai vector correspond­
ing to v via <I>. By this identification, the actions of the Lie algebras in 
Section 5 and Section 6 are the same. 

§7. Appendix 

7.1. Moduli of coherent systems 

In this subsection, we shall explain how to construct the moduli 
space of coherent systems s_p-~) ( v). We start with a definition of a flat 
family. 

Definition 7.1. LetS be a scheme and£.:···~ £_1 ~ &o ~ · · · 
a bounded complex on S x X. 

(i) £. is a flat family of stable complexes, if £i are coherent 
sheaves on S x X which are flat over S and (&.)s are sta­
ble complexes for all s E S. 

(ii) (&.,U) is a family of coherent systems, if£. is a flat fam­
ily of stable complexes and U is a locally free subsheaf of 
Romps (Os ~Ei, £.) ofrank nsuch that Us ~ Rom(Ei, (£.)8 ) 

is injective for all s E S. In this case, we have a resolution of 
Ei 

w. : W-2 ~ W-1 ~ Wo 

with a morphism U ~ W. ~ £. as complexes which induces 
the inclusion U ~ Romps ( 0 s ~ Ei, £.). 

For a quasi-isomorphism £. ~ £~ of families of stable complexes 
over S, we take a resolution of Ei 

W.: W-2 ~ W-1 ~ Wo 

such that ExtP(Wj, (&k)s) = ExtP(Wj, (&£) 8 ) = 0, p > 0 for j = 
0, -1, k E Z and all s E S. Then we see that ExtP(W_2 , (&k)s) = 
ExtP(W-2, (&£)s) = 0, p > 0 for k E Z and all s E S. By this choice of 
W., we have an isomorphism 

RomK(SxX)(Os ~ w.,&.[p]) ~ 

RomK(sxx)(Os ~ W.,&~[p])(~ ExtP(Os ~ Ei,£~)) 
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where K(Z) is the homotopy category of complexes on Z. Hence for a 
family of coherent systems (E;,u) and a quasi-isomorphism E._, E; of 
fiat families of stable complexes, there is a resolution of Ei and a family 
of coherent systems (E.,U) such that we have a homotopy commutative 
diagram: 

II 1 
u 1:81 w. _... E;. 

The choice of ¢ is unique, up to homotopy equivalence. In this case, we 
say that (E., U) is equivalent to ( E;, U). 

Let q: QH(v) _, MH(v) be a standard PGL(N)-covering of MH(v) 
which is an open subscheme of a suitable quot-scheme and satisfies the 
following properties: 

(i) There is a fiat family of stable complexes V. : V_ 1 _, Vo on 
QH(v) x X, which is GL(N)-equivariant. 

(ii) For a fiat family of stable complexes E. parametrized by S, if 
we take a suitable open covering S = U;_S;_, then we have 
a morphisms fA : S;_ _, QH(v) such that E•IS>- is quasi­
isomorphic to f~(V.). In particular (q o h)IS>-ns, = (q o 
fM)Is>-ns, and we have a morphism f: S _, MH(v). 

We take a locally free resolution of Ei 

such that ExtP(W1,(Vk)t) = 0, p > 0 for j = 0,-1, k = -1,0 and all 
t E QH(v). Then ExtP(W_2, (Vk)t) = 0, p > 0 for k = -1,0 and all 
t E QH(v). We set 

Hn := E9 HomPQH(v) (OQH(v) 1:81 wj, Vk)· 
-j+k=n 

Hn, n E Z are locally free sheaves on QH(v). We take a complex 

'l/;-1 'LJ 'l/;o 'LJ 'l/;1 
0--7 1{_1 --7 ILO --7 ILl --7 """ 

associated to RHomPQH(v) (OQH(v) 1:81 Ei, v.). Since 

ker(¢-l)t 9:! Hom(Ei,Et[-1]) = 0 

for all t E QH(v), ¢_1 is injective as a vector bundle homomorphism. 
Hence 1{0 := coker¢_ 1 is a locally free sheaf on QH(v). For the mor­
phism fA: S;_ _, QH(v) and a locally free subsheaf U C Homp8 (0s 1:81 
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Ei, £.) such that U8 --> Hom(Ei, (£.) 8 ) is injective for all s E S, we have 
an inclusion as a vector bundle homomorphism: 

U1s>- '----' Homps ( Os 0 Ei, £.)Is>- = ker(f~(1i~) --> f~(1il)) '----' f~(1i~). 

We take a Grassmann bundle Gr(1i~, n)--> QH(v) over QH(v) parametriz­
ing n-dimensional subspaces U of (1i~)t, t E QH(v). Then we have a 
lifting f>-: S:>---> Gr(1i~,n) of fA and an equivalence between (£.,U1sJ 

and (J>.(V.),U18J. Hence s,p~l(v) is constructed as a closed subscheme 
of Gr(1i~, n)/ PGL(N). 

7.2. The existence of semi-stable sheaves on a K3 surface 

Proposition 7 .1. Let X be a K3 surface and H an ample divisor 
on X. For v = r + ~ + ap, r E Z>o, ~ E NS(X), a E Z with (v2 ) 2': -2, 
the moduli space of semi-stable sheaves M H ( v) is not empty. 

Proof. We may assume that v is primitive. In H*(X, Q), we can 
write vas 

v = r + (dH +D)+ ap, DE Hl... 

Since venH = r + (d + rn)H + D +(a+ (dn + rn2 j2)(H2 ))p, n E Z, we 
see that 

(venH, venH) - (D2 ) = (v, v) - (D2 ). 

Hence replacing v by venH, n » 0, we may assume that d is sufficiently 
larger than (v2)- (D2 ). We shall consider the Fourier~Mukai transform 

D(X) 
Rp2*(pi(E) 18! h), 

where p1 ,p2 :X x X--> X are projections and I~:;. is the ideal sheaf of the 
diagonal L). C XxX. By [Y5, Thm. 3.1], <I>§t__.x induces an isomorphism 
M H(r + ~ + ap) ~ M H(a- ~ + rp). Moreover (Y5, Cor. 2.14] says that 
every JL-Semi-stable sheaf F with v(F) = a-~+ rp is semi-stable. For a 
sufficiently small e E NS(X) 18! Q, (Y3, Thm. 8.1] implies that there is a 
stable sheaf F with respect to H + e with v(F) =a-~+ rp. Then F is 
JL-semi-stable with respect to H, which implies that M H (a-~+ rp) i=- 0. 
Therefore MH(v) i=- 0. Q.E.D. 

7.3. The existence of stable sheaves on a rational elliptic 
surface 

We shall find the conditions for the existence of stable sheaves on 
a rational elliptic surface 1r : X --> JP1 with a section CJ. We first note 
that a divisor C with ( C2 ) = ( C, K x) = -1 is effective. Indeed since 
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(Kx -C, f)= -1, H 2(X, Ox(C)) = 0. By the Riemann-Roch theorem, 
dimH0 (X, Ox( C))~ x(Ox(C)) == 1. The following is the result for the 
case of rank 0. 

Proposition 7.2. Let X be a rational elliptic surface with a section 
a. Let D be a divisor with (D2 ) ~ 0. Assume that (0, D, x) is primitive. 
Then Mjf(O, D, x) is not empty for a general H and G if and only if 
(D,C) ~ 0 for all divisor C with (C2 ) = (C,Kx) = -1. 

Proof. We use the notation in Subsection 4.3. Since 

Mfx,?·l)fT(O, D, x) --+ T is smooth, it is sufficient to prove the claim 
for a nodal rational elliptic surface X. Let C be a divisor with ( C 2) = 
( C, K x) = -1. Since every fiber is irreducible, C must be a section 
of 1r. If (D, C) < 0, then x(Oc(k), E) = -(D, C) > 0 for all sheaves 
E with c1(E) =D. We set n := max{kJ Hom(Oc(k), E) =F 0}. Then 
Hom(Oc(n),E) =F 0 and Hom(E, Oc(n))v = Ext2 (0c(n + 1),E) =F 0. 
This means that E is not semi-stable, unless E ~ Oc(n). 

Conversely, we assume that (D, C) ~ 0 for all sections C w!th 
(C2 ) = (C,Kx) = -1. Then Dis a nef divisor. If (D,f) = 1, then 
there is a section 7 of 1r such that D = 7 + nf, n > 0. In this case, 
MH(O, 7+nf, x) ~ Hilbx =F 0 via the relative Fourier-Mukai transform. 
Since the non-emptyness does not depend on the choice of G [Y 4], we get 
our claim. Hence we may assume that (D, f) ~ 2. We shall show that 
there is a reduced and irreducible curve C E JDJ. Then a line bundle E 
on C with x(E) =X belongs to MH(O, D, x). 

(1) If (D2) ·~ 1 or (D, f) ~ 3, then D' := D-Kx is a nef divisor with 
(D' 2 ) ~ 5. In this case, we shall prove that D = D' + Kx is base point 
free by using Reider's result [R, Thm. 1]. If D is not base point free, then 
there is an effective divisor B such that (a) (B, D') = 1 and (B2 ) = 0, 
or (b) (B,D') = 0 and (B2 ) = -1. Since 0:::; (D,B):::; (D',B):::; 1, (i) 
(!,B) = 0 and (D, B) :::; 1 or (ii) (!,B) = 1 and (D, B) = 0. In the first 
case, B = nf. Since (D, f) ~ 2, this is impossible. In the second case, 
there is a section 7 and B = 7+nf. Then (B2 ) = 2n-1 =F 0. Therefore 
D = D' + Kx is base point free. . 

(2) If(D2 ) = 0 and (D, f)= 2, then D = 271 +forD= 7 1 +72 with 
(71, 7 2) = 1, where 71,72 are sections of 1r. In the first case, (D, 71) = -1, 
which is a contradiction. In the second case, D is connected and D is 
base point free. 

Applying Bertini's theorem to both cases (1), (2), we have a reduced 
and irreducible curve C E JDJ. 

Q.E.D. 
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Definition 7.2. We set 

{ . I (D, C) ~ 0 for all divisors C } 
C := DE Plc(X) with (C2) = (C,Kx) = -1 . 

Let W := W(E~1)) be the Weyl group of the sublattice fj_ ~ E~1 ) of 
Pic(X). W acts on Pic(X) and C is a W-invariant subset of Pic(X). 
Let c+ c C be the set of nef divisors. If X is nodal, then c+ =C. 

Theorem 7.3. Let r and d be relatively prime integers with r ~ 0. 

(i) For any D E (a, f)j_, there is a stable vector bundle En such 
thatrk(En) = r, c1(En) = da+D mod 7/.,f andx(En,En) = 
1. En is unique up to replacing it with En(nf), n E 7/.,. We 
set 

E(r,d) := {Eni(D,a) = (D,f) =or 

(ii) Let F E K(X) be a primitive class with rk(F) = lr and 
(c1(F),f) = ld. Assume that x(F,F)::::; 0. We take an ample 
divisor H which is sufficiently close to f. Then F is repre­
sented by a stable sheaf if and only if x(En, F) ::::; 0 for all 
En E E(r, d). Moreover F is represented by a J-L-stable vector 
bundle, if lr > 1. 

Proof. We may assume that lr > 0. By the deformation argument 
in the proof of Proposition 7.2, we may assume that X is nodal. We 
first prove (i). We note that MH(O, rf, -d) ~X. Let E be a universal 
family on X x X. Since every fiber is irreducible, we have a - D = 
T- ((a, T) + 1)f, where Tis a section of 7f. Then E&xr is a stable sheaf 
with the desired invariant. We next prove (ii). The proof of the necessary 
condition is similar to the proof of Proposition 7.2. We shall show that 
the condition is sufficient. Let q,:k-+x : D(X) ~ D(X) be the relative 
Fourier-Mukai transform defined by the sheaf£. Then q,:k-+x(En)[1] = 
Or, where Tis a section of 7f such that T- a = -D mod Zf. Then 
rk(q,:k-+x(F)[1]) = 0 and cl(q,:k-+x(F)[1]) E C. Therefore q,:k-+x(F)[1] 
is represented by a line bundle L on a reduced and irreducible curve. 
Then the inverse q,f-+x(L)[1] is a J-L-stable sheaf. Q.E.D. 

By the proof of the theorem, we also get the following. 

Corollary 7.4. If gcd(r, (~,f)) = 1 and the expected dimension 
is non-negative, then MH(r, ~' x) is not empty, where H is sufficiently 
close to f. 
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Let X be a rational elliptic surface with a section a such that there 
is a singular fiber 1r-1 (o) = L~=o aiCi, o E lP'1 of type E~1), where Ci 
are smooth ( -2)-curves. We assume that a0 = 1. Let C be a divisor 
with (C2) = (C, Kx) = -1. Then C =a+ l::~=O niCi, ni 2: 0. Hence 

c+ ={DE Pic(X) I(D,a);::: 0, (D,Ci);::: 0,0 ~ i ~ 8}. 

Thus D := ra + nf + ~' ~ E ffi~=1 7l.Ci is nef if and only if 

Let W be the affine Weyl group of E~1). Then MH (0, D', x) =f. 0 if and 
only if D' = w(D) with DEc+, wE W. 
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