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Complex and Kahler structures on compact 
homogeneous manifolds-their existence, 

classification and moduli problem 

Keizo Hasegawa 

Abstract. 

We will survey basic results and recent progress in the existence, 
classification and moduli problems of complex and Kahler structures 
on compact homogeneous manifolds. We also state and discuss some 
related conjectures for further study in this field. 

§1. Introduction 

In the field of complex geometry one of the primary problems is 
whether given real manifolds admit certain complex geometrical struc­
ture such as complex structures, Kahler structures, or Stein structures. 
For the case of complex structures, for instance, we have a long standing 
problem of whether S6 admits a complex structure. We can consider this 
problem in a more general setting: we extend the problem to the case 
of homogeneous manifolds of compact semi-simple Lie groups, including 
S 6 and CPn; and propose a closely related conjecture: 

Conjecture 1. A compact homogeneous manifold of compact semi­
simple Lie group admits only homogeneous complex structures. 

We see, according to Wang's classification of compact simply con­
nected homogeneous complex manifolds [26], that S 6 admits no homoge­
neous complex structures; and thus the above conjecture implies that S 6 

admits no complex structures. We also know that the complex structure 
of cpn is rigid, that is, admits no non-trivial small deformations; and 
CP2 admits no complex structures but the original one (which is ho­
mogeneous complex). More generally, we have a class of flag manifolds 
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including cpn, which are simply connected, homogeneous Kahlerian; 
and according to Borel [4], they are the only homogeneous manifolds 
of compact semi-simple Lie groups which admit Kahler structures. On 
the other hand, according to Samelson [23], compact semi-simple Lie 
groups of even dimension (being considered as homogeneous manifolds) 
admit homogeneous complex structures but no Kahler structures (since 
b2 = 0). It seems that there are not yet known any counter-examples to 
the above conjecture. 

For the case of compact homogeneous manifolds of dimension 4, 
we have a complete classification of those which admit complex struc­
tures (see Section 2 and [14]); in particular we showed that any complex 
structure on a 4-dimensional compact solvmanifold r\ G (up to finite 
covering) is left-invariant, that is, induced from a left-invariant com­
plex structure on a simply connected solvable Lie group G with lattice 
r. Furthermore, we recently showed (see Section 5 and [15]), based on 
Nakamura's results [20], that there exists a compact solvmanifold of di­
mension 6-actually a compact complex solvmanifold of complex dimen­
sion 3-which admit a continuous family of non-left-invariant complex 
structures as small deformations of the original complex structure. This 
result is important since it implies that there are "abundant" complex 
structures on compact solvmanifolds of higher dimension, while as men­
tioned above, it seems that compact homogeneous manifolds of compact 
semi-simple Lie groups admit only "restricted" complex structures. Con­
cerning left-invariant complex structures on simply connected solvable 
Lie groups, we have a related conjecture: 

Conjecture 2. Any left-invariant complex structure on a simply 
connected unimodular solvable (nilpotent) Lie group of dimension 2n is 
Stein (biholomorphic to en respectively}. 

It should be noted that an n-dimensional simply connected complex 
solvable Lie group is biholomorphic to en (cf. [20]), and the conjecture 
holds for n = 2 [21]. 

We have more decisive results for the classification problem of Kahler 
structures on compact homogeneous manifolds. For the case of compact 
solvmanifolds, we have the following result: 

Theorem ([14], [15]). A compact solvmanifold admits a Kahler 
structure if and only if it is a finite quotient of a complex torus which 
has a structure of a complex torus bundle over a complex torus. 

We can express a class of compact Kahlerian solvmanifolds in the 
theorem explicitly as those of the form r\G, where G is a simply con­
nected 2-step solvable Lie group with lattice r -they are exactly hyper­
elliptic surfaces for dimension 4 (see Section 2). For the case of reductive 
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Lie groups, the classification of compact homogeneous Kahler manifolds 
suggests the following conjecture to us: 

Conjecture 3. A compact homogeneous manifold of reductive Lie 
group admits a Kahler structure if and only if it is the product of a 
complex torus and a flag manifold. 

As mentioned before, a homogeneous manifold of compact semi­
simple Lie group admits a Kahler structure if and only if it is a flag 
manifold. On the other hand, we know that S1 X r\SL2(R), where 
SL2(R) is the universal covering of SL2(R) (which is a simply connected 
non-compact semi-simple Lie group), and r is a lattice of SL2 (R), admits 
a non-Kahler complex structure-defining an elliptic surface [27]. 

A pseudo-Kahler structure is a pseudo-Hermitian structure with its 
associated fundamental form w being closed (see Section 2). It is known 
that a compact homogeneous pseudo-Kahler manifold is biholomorphic 
to the product of complex torus and a flag manifold [10]. There exists 
a compact homogeneous complex pseudo-Kahler solvmanifold which is 
not homogeneous pseudo-Kahlerian, that is, the pseudo-Kahler form w 
may not be invariant by the ·group action [29]. The classification of 
compact homogeneous complex pseudo-Kahler solvmanifolds is not yet 
known; at this moment, we have a complete classification for complex 
dimension 3 (see Section 4 and [15], [16]), and a structure theorem that it 
is a holomorphic fiber bundle over a complex torus with fiber a complex 
torus [30], which is, unless trivial, not a principal bundle. Recently 
Guan [12] has shown a fundamental theorem on cohomology groups of 
compact solvmanifolds, which could be applied to our problem. 

§2. Complex and Kahler structures on compact homogeneous 
manifolds 

A homogeneous manifold M is a differentiable manifold on which a 
real Lie group G acts transitively. M is a homogeneous complex manifold, 
if M is a complex manifold and the group action is holomorphic. 

We will first make some important remarks: 

(1) In the case where M is a compact homogeneous complex manifold, 
we can assume that G is a complex Lie group [26]. 

(2) A Lie group G, as a homogeneous manifold, admits a homogeneous 
complex structure J if and only if J is a left-invariant complex struc­
ture on G. 

(3) A complex structure J on a Lie group G is both left and right­
invariant if and only if G is a complex Lie group (w.r.t. J). 
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The complete classification of 2-dimensional compact homogeneous 
complex manifolds are known: 

Theorem 1 (Tits [25]). 2-dimensional compact homogeneous com­
plex manifolds are biholomorphic to one of the following: 

T 2' CP2' CP1 X CP1 ' T 1 X CP1 ' Homogeneous Hopf surface, 

where Tk denotes a k-dimensional complex torus. 

For instance, we have 

(1) CP1 = B\G = (B n H)\H, where G = SL2(C), H = SU2(C) and 
B is a Borel subgroup of G: 

(2) A homogeneous Hopf surfaceS is by definition Wjr 7 , where W = 
( C 2 - {0}) and r 7 is a group of automorphisms on W generated 
by the multiplication by 'Y (# 1). S is diffeomorphic to U2(C) = 
SU 2 (C) ><3 8 1 ~ 8 3 x 8 1, and S = B7 \ G, where B7 is the subgroup 
of B with a = 'Yk, 8 = 'Y-k (k E Z). Note that S has a structure of a 
holomorphic T 1-bundle over CP1. 

M is a homogeneous complex Kahler manifold, if M is a homoge­
neous complex manifold which admits a Kahler structure. M is a ho­
mogeneous Kahler manifold, if M is a homogeneous complex manifold 
which admits a Kahler structure invariant by the group action. The 
following theorem (Theorem 2) is well known, which was first proved by 
Matsushima for homogeneous Kahler cases, and later by Borel-Remmert 
for homogeneous complex Kahler cases. 

Theorem 2 (Matsushima [17), Borel-Remmert [9]). A compact ho­
mogeneous complex Kahler manifold is biholomorphic to the product of a 
complex torus and a homogeneous rational manifold (which is a compact 
simply connected algebraic manifold}. 

Let M = r\ G be a compact homogeneous complex manifold, where 
G is a simply connected complex Lie group with discrete subgroup r. 
Then, Theorem 2 implies that M admits a Kahler structure if and only 
if M is a complex torus. In particular, the only compact homogeneous 
complex Kahler solvmanifold is a complex torus. 

Let M be a symplectic manifold with symplectic form w. If Mad­
mits a complex structure J such that w(JX, JY) = w(X, Y) for any 
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vector fields X, Y on M, we call (w, J) a pseudo-Kiihler structure on 
M. For a pseudo-Kahler structure (w, J), we have a pseudo-Hermitian 
structure (g, J) defined by g(X, Y) = w(X, JY). In other words, a 
pseudo-Kahler (Kahler) structure is a pseudo-Hermitian (Hermitian) 
structure (g, J) with its closed fundamental form w, where w is defined 
by w(X, Y) = g(JX, Y) for any vector fields X, Y. 

The following theorem (Theorem 3) asserts that Theorem 2 holds 
also for homogeneous pseudo-Kahler cases. However, as we will see in 
Section 4, it does not hold for compact homogeneous complex pseudo­
Kahler manifolds. 

Theorem 3 (Dorfmeister and Guan [10]). A compact homogeneous 
pseudo-Kiihler manifold is biholomorphic to the product of a complex 
torus and a homogeneous rational manifold. 

A compact solvmanifold M can be written as, up to finite covering, 

M=f\G, 

where G is a simply connected real solvable Lie group and r is a lattice 
of G. A complex structure J on M is left-invariant complex structure, 
if it is deduced from a left-invariant complex structure on G. 

A left-invariant complex structure J on G can be considered as a 
linear automorphism of g, that is J E GL(g, R), such that J 2 = -I; and 
the integrability condition is satisfied: 

NJ(X, Y) = [JX, JY]- J[JX, Y]- J[X, JY]- [X, Y] 

vanishes for X, Y E g. 

We have a complete list of complex structures on compact solvman­
ifolds of dimension 4, all of which are left-invariant: 

Theorem 4 ([14]). A complex surface is diffeomorphic to a solv­
manifold of dimension 4 if and only if it is one of the following surfaces: 
Complex torus, Hyperelliptic surface, Inoue Surface of type S 0 , Primary 
Kodaira surface, Secondary Kodaira surface, Inoue Surface of type s±. 
Furthermore, every complex structure on each of these complex surfaces 
(considered as solvmanifolds) is left-invariant. 

We can express each of these complex structures as a linear auto­
morphism J of g. In the following list, for each surface the Lie algebra g 
of G has a basis {X1 , X2 , X3 , X4} with only nonzero brackets specified. 
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Except for (6), the complex structure J is defined by 

(1) Complex Tori 
[Xi, XJ] = 0 (1 ~ i < j ~ 4); 

(2) Hyperelliptic Surfaces 
[X4,XI] = -X2, [X4,X2] =XI; 

(3) Inoue Surfaces of Type 8° 
[X4, XI] =aX I - bX2, [X4, X2] = bXI + aX2, [X4, X3] = -2aX3, 
where a, b (# 0) E R; 

(4) Primary Kodaira Surfaces 
[X1.X2] = -X3; 

(5) Secondary Kodaira Surfaces 
[X1.X2] = -X3, [X4,XI] = -X2, [X4,X2] =XI; 

(6) Inoue Surfaces of Types+ and s-
[X2,X3] = -X1. [X4,X2] = X2, [X4,X3] = -X3, and, 

Example 1 (Hyperelliptic Surfaces). Let G =: (C x R) ~ R, where 
the action¢: R --t Aut(C x R) is defined by 

where 'T/ = n, ~n, !nor !n. 
Since the action on the second factor R is trivial, the multiplication 

of G is defined on C2 as follows: 

(WI, W2) · (zi, Z2) = (WI + e.;=I71t ZI, W2 + Z2), 

where t = Rew2. 

We can see that there exist seven isomorphism classes of lattices r 
of G, which correspond to seven classes of hyperelliptic surfaces. 

Example 2 (Primary Kodaira Surfaces). Let G = N x R be the 
nilpotent Lie group, where 
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which has the lattice r n with s = ~' x, y, z E Z. 
n 

Taking the coordinate change~ from N x R to R 4 : 

( 1 2 2 ~: ( x,y,s),t)---+ (x,y,2s-xy,2t+ 2(x +y )), 

and regarding R 4 as C2 , the group operation on G can be expressed as 

Let M be a solvmanifold of the form r\G. M is of completely solv­
able type, if the adjoint representation of g has only real eigenvalues. M 
is of rigid type, if the adjoint representation of g has only pure imaginary 
(including 0) eigenvalues. We note that 

(1) It is clear that M is both of completely solvable and of rigid type 
if and only if g is nilpotent, that is, M is a nilmanifold. 

(2) A hyperelliptic surface can be characterized as a solvmanifold of 
dimension 4 of rigid type which admits a Kahler structure [14]. 

Example 3. Let G =: C 1 ><1 R 2k, where the action ¢ : R 2k ---+ 

Aut(C1) is defined by 

where ti = tiei (ei: the i-th unit vector in R 2k), and ev'=1 17; is the si-th 
root of unity, i = 1, ... ,2k,j = 1, ... ,1. 

If an abelian lattice Z21 of C1 is preserved by the action ¢ on z2k' 

then M = r\ G defines a solvmanifold of rigid type, where r = Z21 ><1 Z2k 

is a lattice of G. 

The Lie algebra g of G is the following: 

where the bracket multiplications are defined by 

fori= 1, ... , k,j = 1, ... , l, and all other brackets vanish. 

The canonical left-invariant complex structure is defined by 
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JX2!+2i-1 = X2!+2i, JX2!+2i = -X2!+2i-l 

fori= 1, ... ,k,j = 1, ... ,l. 

Example 4. Let G =: C 1 ><3 R 2k, where the action ¢ : R 2k ---+ 

Aut(C1) is defined by 

¢(fi)((zl, z2, ... , zz)) = ( e21rv'-1 ti z1, e21ry'=I ti z2, ... , e21ry'=I t; zz), 

where fi = tiei (ei: the i-the unit vector in R 2k), i = 1, ... , 2k. Then, 
Z2n\G is a solvmanifold diffeomorphic to a torus T 2n (n = k + l). 

A compact solvmanifold M in Example 3 is a finite quotient of a 
complex torus and has a structure of a complex torus bundle over a 
complex torus, admitting a canonical Kahler structure. We could have 
shown the converse that if a compact solvmanifold admits a Kahler 
structure, then it must be of this type: 

Theorem 5 ([14), [15]). A compact solvmanifold admits a Kahler 
structure if and only if it is a finite quotient of a complex torus which 
has a structure of a complex torus bundle over a complex torus. 

We note that 

(1) Since Kahlerian solvmanifolds (as defined in Example 3) are ofrigid 
type, it follows that a compact solvmanifold of completely solvable 
type has a Kahler structure if and only if it is a complex torus. This 
is the so-called Benson-Gordon conjecture ([6]). 

(2) We know [5], [13] that a compact nilmanifold admits a Kahler struc­
ture if and only if it is a complex torus; and this result holds also for 
bimeromorphic Kahler structures [13]. We see that Theorem 5 also 
holds for bimeromorphic Kahler structures, since the proof is based 
on this result and a result of Arapura and Nori [1] that a polycyclic 
Kahler group must be almost nilpotent. 

(3) As noted in the paper [15], the Benson-Gordon conjecture (stated 
in (1)) can be proved directly from the· above results on Kahlerian 
nilmanifolds and polycyclic Kahler groups, together with a result of 
Auslander [2] that for a compact solvmanifold r\G, the Lie algebra 
g of G is of rigid type if and only if r is almost nilpotent (where G is 
a simply connected solvable Lie group with discrete subgroup r): If 
M = r\ G admits a Kahler structure and g is of completely solvable 
type, then r is almost nilpotent. Hence g is both of rigid type and of 
completely solvable type; and thus g is nilpotent. Therefore, M is a 
compact Kiihlerian nilmanifold, that is, a complex torus. There is a 
recent paper {by Baues and Cortes [3]) discussing the Benson-Gordon 
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conjecture and other relevant topics from more topological point of 
v1ew. 

Concerning Kahler structures on a compact homogeneous manifold 
of compact semi-simple Lie group, we have a fundamental theorem: 

Theorem 6 (Borel [4], Goto [11]). Let G be a compact real semi­
simple Lie group and D is a closed subgroup which is the centralizer of 
a toral subgroup of G. Then, M = D\G (of even-dimension) admits a 
homogeneous Kahler structure, which is a simply connected and projec­
tive algebraic manifold. Conversely, if a compact homogeneous manifold 
of compact semi-simple Lie group admits a Kahler structure, it must be 
of the above form, admitting a homogeneous Kahler structure. 

We note that 

(1) M = D\G has a homogeneous complex structure P\Gc, where Gc 
is the complexification of G, and P is a parabolic subgroup of Gc 
which contains a Borel subgroup B of Gc. 

(2) It is known (Samelson [23], Wang [26]) that any even-dimensional 
compact semi-simple Lie group admits a homogeneous complex struc­
ture but no Kahler structures. 

(3) It is known (Burstall et al. [8]) that if a compact inner Riemannian 
symmetric manifold admits a Hermitian structure (which is com­
patible with the given metric), then it is Hermitian symmetric. In 
particular, 8 6 (considered as a compact inner Riemannian symmetric 
manifold) admits no complex structures compatible with the given 
metric. 

§3. The classification of 3-dimensional compact complex solv­
manifolds 

Let M be a 3-dimensional compact complex solvmanifold. Then, 
M can be written as r\ G, where r is a lattice of a simply connected 
unimodular complex solvable Lie group G (cf. [7]). 

The Lie algebra g of G is unimodular (i.e. the trace of ad (X) = 0 
for every X of g), which is one of the following types: 

(1) Abelian Type: [X, Y] = [Y, Z] =[X, Z] = 0. 

(2) Nilpotent Type: [X, Y] = Z, [X, Z] = [Y, Z] = 0. 

(3) Non-Nilpotent Type: [X, Y] = -Y, [X, Z] = Z, [Y, Z} = 0. 
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(1) Abelian Type: G = C 3 

A lattice r of G is generated by a basis of C 3 as a vector space 
over R. 

(2) Nilpotent Type: G = C 2 ><l C with the action¢ defined by 

¢(x)(y, z) = (y, z + xy), 

or in the matrix form, 

A lattice r of G can be written as 

r=~><lA, 

where ~ is a lattice of C2 and A is a lattice of C. 
Since an automorphism f E Aut( C) defined by f(x) =ax, a:::/= 

0 can be extended to an automorphism F E Aut(G) defined by 
F(x, y, z) = (ax, a- 1y, z), we can assume that A is generated by 
1 and A (A tf_ R) over Z. 

Since ~ is preserved by ¢(1) and ¢(A), we see that ~ is gener­
ated by (a1, fJ1), (a2, fJ2), (0, a1), (0, a2) over Z, where fJ1 and fJ2 are 
arbitrary complex numbers, and a1 and a2 are linearly independent 
over R such that (a1 , a 2 ) is an eigenvector of some A E GL(2, Z) 
with the eigenvalue A. 

Conversely, for any A E GL(2, Z) with non-real eigenvalue A, we 
can define a lattice r of G. 

(3) Non-Nilpotent Type: G = C 2 ><l C with the action¢ defined by 

or in the matrix form, 

0 

0 
0 

~ ~ x,y,zEC}. 
0 y) 
0 1 

A lattice r of G can be written as r = ~ ><! A, where ~ is a 
lattice of C 2 , and A is a lattice of C generated by A and p, over Z. 
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Since~ is preserved by¢(>..) and ¢(JL), we see that~ is generated 
by (o:i, f3i), i = 1, 2, 3, 4 over Z such that 

,-1o:i = '2::~=1 aijO:j, lf3i = '2::~= 1 aiif3i, 

15-1o:i = '2::~= 1 biio:i, 8{3i = '2::~=1 aiif3i, 

where 1 = e\15 = eP., and A= (aij),B = (bij) E SL4(Z) are semi­
simple and mutually commutative. In other words, we have simulta­
neous eigenvectors a: = (o:1, 0:2,0:3, 0:4), {3 = ({31, fJ2, {33, {34) E C4 of 
A and B with eigenvalues ,-1, 1 and 15-1,15 respectively. 

Conversely, for any mutually commutative, semi-simple matrices 
A, B E SL( 4, Z) with eigenvalues ,-1, 1 and 15-1, 15 respectively, take 
simultaneous eigenvectors a:, {3 E C4 of A and B. Then, (o:i, f3i), i = 
1, 2, 3, 4 are linearly independent over R, defining a lattice of~ pre­
served by¢(>..) and ¢(JL) (>. = log/,JL =logo). 

Since >. and JL are linearly independent over R, we have either 
111 =f. 1 or 181 =f. 1. And if, for instance, Ill =f. 1 and 1 ¢. R, then A 
has four distinct eigenvalues ,-I,/, ·;::ri, "f. 

For the case where both A and B have real eigenvalues ,-1, 1 and 
15-1,15 respectively, take simultaneous non-real eigenvectors a:, {3 E C4 

for them; then we see that ( o:i, f3i), i = 1, 2, 3, 4 are linearly indepen­
dent over R, defining a lattice ~ of C 2 preserved by¢(>..) and ¢(JL). 

Example 5. The Iwasawa manifold is obtained by putting >. = 
A,o:1 = o:2 = o,f31 = 1,{32 =A. 

Example 6. Take A E SL(4, Z) with four non-real eigenvalues 
/,,-I, "f, 7-1 ; for instance, 

1 
0 
0 A=(· ~ 

-1 1 

0 0) 1 0 
0 1 ' 
-3 1 

with the characteristic polynomial given by 

det(ti- A) = t4 - t3 + 3t2 - t + 1. 

For the lattice A ofC generated by>.(>.= log1) and JL = k7rA (k E Z), 
and the lattice~ of C 2 generated by (o:i, f3i), i = 1, 2, 3, 4, we can define 
a lattice r = ~ ><1 A of G, where (o:1, 0:2,0:3, o:4), ({31, fJ2, f3s, {34) E C4 are 
eigenvectors of A with eigenvalue ,,,-1. 
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Example 7 (Nakamura [20]). Take A E SL2 (Z) with two real eigen­
values')'-\')',')' =f. ±1, and their real eigenvectors (a1, a2), (b1, b2) E R 2. 
Then, for any E fJ. R (e.g. E =H), (a1, a2, a1E, a2E) and (b1, b2, b1E, b2E) 
are non-real eigenvectors for A EB A E SL4(Z) with eigenvalues')'-\ 'Y· 

For the lattice A of C generated by .X (.X= log')') and 1-L = k1rA 
(k E Z), and the lattice .6. of C2 generated by (a1, b1), (a2, b2), (a1E, b1E), 
(a2E, b2E), we can define a lattice r = .6. ~A of G. 

Theorem 7 (Winkelmann [28]). Let G be a simply connected com­
plex solvable linear algebraic group with lattice r. Then, we have 

dimH1 (r\G, 0) = dimH1 (g, C)+ dim W, 

where 0 denotes the structure sheaf of M, n the nilradical of g, and W 
the maximal linear subspace of [g, g]/[n, n] for which Ad(~) on W is a 
real semi-simple linear endomorphism for any ~ E r. 

We have dimH1 (g,C) = dimg- dim[g,g], and Ad(~)IW is diago­
nalizable over R. 

Applying the Winkelmann's formula above and our classification of 
3-dimensional compact complex solvmanifolds, we can determine h1 (M) 
= dimH1(M, 0) completely: 

(1) Abelian Type: dim W = 0, h1 = 3; 

(2) Nilpotent Type: dim W = 0, h1 = 2; 

(3a) Non-Nilpotent Type with either')' or 8 fJ. R: dim W = 0, h1 = 1. 

(3b) Non-Nilpotent Type with ')',8 E R: dim W = 2, h1 = 3; 

Example 8. We see that Example 6 is of type (3a), and Example 7 
is of type (3b). 

§4. Pseudo-Kahler structures on a 3-dimensional compact com­
plex solvmanifold 

We can see from Theorem 3 that a compact solvmanifold admits a 
homogeneous pseudo-Kahler if and only if it is a complex torus. Yamada 
gave the first example of homogeneous complex pseudo-Kahler non-toral 
solvmanifold; and showed the following fundamental result: 

Theorem 8 (Yamada [29], [30]). Let M be ann-dimensional com­
pact complex solvmanifold which admits a pseudo-Kiihler structure. Then, 
we have h1 (M) ~ n; and M has a structure of a complex torus bundle 
over a complex torus. 
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We remark that Winkelmann's formula implies that if we have h1 2: 
n then [n, n] = 0; and thus the Mostow fibration gives a structure of a 
complex torus bundle over a complex torus. 

Theorem 9 ([16]). A 3-dimensional compact complex solvmanifold 
M admits a pseudo-Kiihler structure if and only if it is of abelian type, 
or of non-nilpotent type with "(, c5 E R. 

Proof (Sketch). If M is of type (2) or (3a), then M admits no 
pseudo-Kahler structures. Therefore, it suffices to show that M of type 
(3b) admits a pseudo-Kiihler structure. 

We have"(, c5 E R if and only if A is generated by)..= a+knA, p = 
b + lnA, where a, b E Rand k, l E Z. 

We can construct a pseudo-Kiihler structure w on f\G in the fol­
lowing: 

w = Hdx A ax + dy A az + dfJ A dz, 

or using Maure-Cartan forms, w1 , w2 , w3 ,on G, 

Q.E.D. 

Concerning pseudo-Kiihler structures on compact complex nilmani­
folds, we have 

Theorem 10 (Kodaira [20]). Let M be ann-dimensional compact 
complex nilmanifold, and denote by r the number of linearly independent 
closed holomorphic 1-forms on M. Then, we have h1 (M) = r, and r = n 
holds if and only if M is a complex torus. 

In particular, applying Theorem 8, we see that a non-toral compact 
complex nilmanifold admits no pseudo-Kiihler structures. 

We have the following result on holomorphic principal fiber bundles 
over a complex torus with fiber a complex torus: 

Theorem 11 (Murakami [19]). A holomorphic principal fiber bun­
dle over a complex torus with fiber a complex torus is a compact 2-step 
nilmanifold with a left-invariant complex structure: and it has a holo­
morphic connection if and only if it is a compact complex nilmanifold. 

We see in particular that a holomorphic principal bundle over a com­
plex torus with fiber a complex torus admits no pseudo-Kiihler struc­
tures. 
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§5. Small deformations and non-left invariant complex struc­
tures on a compact complex solvmanifold 

Let G be a connected simply connected Lie group of dimension 2m, 
and g the Lie algebra of G. 

Lemma 1. An almost complex structure J on g is integrable if and 
only if the subspace ~J of gc generated by X+ .;=IJX(X E g) is a 
complex subalgebra of gc such that gc = ~J EB ~J. 

Lemma 2. Let V be a real vector space of dimension 2m. Then, for 
a complex subspace W ofV®e such that V®e = WEBW, there exists a 
unique Jw E GL(V,R),Jw2 =-I such that W ={X +HJwXIX E 

V}c. 

There exists one to one correspondence between complex structures 
J on g and complex Lie subalgebras ~ such that gc = ~ EB ~' given by 
J--+ ~J and~--+ J~. 

For a complex structure J, the complex Lie subgroup HJ of Gc 
corresponding to ~J is closed, simply connected, and HJ\Gc is biholo­
morphic to em. The canonical inclusion g <----> gc induces an inclusion 
G <----> Gc, and r = G n HJ is a discrete subgroup of G. We have the 
following canonical map g = i o 1r: 

where 1r is a covering map, and i is an inclusion. The left-invariant 
complex structure J on G is the one induced by g from an open set 
U = Im g c em. For the details of the above argument we refer to the 
paper [24]. 

Let G be a 3-dimensional complex solvable Lie group of non-nilpotent 
type, and g its Lie algebra. Recall that g has a basis X, Y, Z over e with 
bracket multiplication defined by 

[X, Y] = -Y, [X, Z] = Z, [Y, Z] = 0. 

Let 9R denote the real Lie algebra underlying g, and gc the com­
plexification of 9R, that is, gc = 9R EB H9R· 

Let Jo be the original complex structure with its associated com­
plex subalgebra ~o of gc such that gc = ~o EB ~o, and Ho the complex 
subgroup of Gc corresponding to ~O· 
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Lemma 3 ([16]). For any complex structure Jon G with its associ­
ated complex subalgebra ~ of gc such that gc = ~ EB [), there exists a com­
plex automorphism of Lie algebras <I? : gc --+ gc such that <I? o To = To <I? 
and <l?(~o) = ~' where To and T are the conjugations with respect to J0 

and J respectively. 

As a consequence we have 

Theorem 12 ([16]). Let G be a 3-dimensional simply connected 
complex solvable Lie group of non-nilpotent type. Then, any left-invariant 
complex structure on G is biholomorphic to C 3 . 

Proof. The complex automorphism of Lie algebras <I? induces a 
complex automorphism of Lie group \1! : Gc --+ Gc such that q o \1! = 

~ o q0 , which send H 0 to H biholomorphically; 

(G,Jo) 

(G,J) 

i 
~ Gc 

wl 
i 
~ Gc 

~ Ho\Gc 
.r,t 

--'!... H\Gc 

Here, we have r = G n Ho = {0}, and g0 = q0 o i is a biholomorphic 
map to Ho\Gc = C 3 . Q.E.D. 

We can also see that all left-invariant complex structures on a 3-
dimensional simply connected complex solvable Lie group are biholo­
morphic to C 3 . 

Nakamura constructed small deformations of 3-dimensional compact 
complex solvmanifolds; and showed in particular that there exists a con­
tinuous family of complex structures on those of type (3b) whose uni­
versal coverings are not Stein (as noted in the paper, this construction 
is actually due to Kodaira). 

Theorem 13 ([16]). There exists a continuous family of non-left­
invariant complex structures on a 3-dimensional compact complex solv­
manifold of non-nilpotent type with h1 = 3. 

We note that small deformations of a 3-dimensional compact com­
plex nilmanifold (Iwasawa manifold) are all left-invariant (due to Sala­
mon [22]). We conjecture that this also holds for higher dimension. 
Recently, there appears a preprint (by McLaughlin et al. [18]) which 
proves the conjecture for a more general class of left-invariant complex 
structures on compact nilmanifolds. 
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