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Principal g@ subspaces and quantum
Toda Hamiltonian
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Tetsuji Miwa and Evgeny Mukhin

Abstract.

We study a class of representations of the Lie algebra n®C[t, 1],
where n is a nilpotent subalgebra of sl3. We derive Weyl-type (bosonic)
character formulas for these representations. We establish a connection
between the bosonic formulas and the Whittaker vector in the Verma
module for the quantum group U,(sl3). We also obtain a fermionic
formula for an eigenfunction of the sl; quantum Toda Hamiltonian.

§1. Introduction

Let n = Cea; @ Cesa ® Cez; be the nilpotent subalgebra of the
complex Lie algebra sl3, and let n = n ® C[t,t~!] be the corresponding
current algebra. In this paper we study a class of n-modules. The
simplest example of the modules in questiorl\is the principal subspace
V of the level k vacuum representation of sl3 (see [FS]). Namely, let
MP* be the level k vacuum representation of the affine Lie algebra ;I;
Fix a highest weight vector v* € MF*. Then

The principal subspaces are studied in [AKS], [C], [CLM], [FS], [G],
[LP], [P]. In particular, the following fermionic formula is available for
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the character of V*:
(1.1)

k . k . . L.
Dimy Z2Zi=1 M qu-c,j:l min(z,5)(nsn; —min;+mim;)

k 2
avi= 3 ) I S v ’

where (a), = H?z_ol(l — ag'). One of our results is the following new
formula for chV'*. For non-negative integers dj, da, set

(027 25 "), +d,
(9)a: (9)dz (227 ") a, (025 V) a (@217 25 M ay (027 25 ) a
Id1,d2 (21, Z2)

L4y a,(21,22) =

Jay,do(21,22) = )
w2 22) = (@) (@7
We show that
(1.2)
chV* = Z Z{cdlZécdqu(df+d§—d1d2)Jdl’d2(Zlq2d1—d2’Z2q2d2—d1).

dy,d2>0

In the right hand side, each summand is understood as a power series
expansion in 21, ze. Formula (1.2) was conjectured in [FS1].

The functions Iy, 4,(#1,22) are known to be the coefficients of the
expansion of an eigenfunction of the sl3 quantum Toda Hamiltonian (see
[GL]). Namely, define the generating function

1(Q1,Q2,21,22) = > QPQ5 M4, 45(21,22).

dy,d22>0
The sl3 quantum Toda Hamiltonian His an operator of the form
ﬁ — qa/ato + q8/3t1(1 _ Ql) + qa/atz(l _ Q2)

acting on the space of functions in variables @1, Q2. The variables ¢;
are introduced by @; = eti-17% and

qa/atf Pty t + di5lng.

Let the variables p;, po be such that z; = p1_2p2, 29 = p1py 2. Then
(1.3)

o~

tQ—t] t]—tz
H (leq Pyt I(Q1,Q27Z1,Z2)) = (p1+p7 "2 + 03 NI(Q1, Qa, 21, 22)



Principal subspaces and quantum Toda Hamiltonian 111

(see [GL], [E], [BF]). Equation (1.3) can be rewritten as a set of recurrent
relations

(14) (pa(g™ = 1) +pr'p2(q™ ™4 — 1) +p3 (g% — 1)) 14, 4, (21, 22)
= popy tq TN Ty, 1, (21, 20) + D3 g, gy 1 (21, 22).

In this paper we call (1.4) the Toda recursion.
One of the consequences of the formulas (1.1) and (1.2) is the fol-
lowing recurrence relations for the rational functions Iy, 4, (21, 22):

di  d2 —ny_—n2_n24nZ-nin
22 qt 2 1n2

(15)  Iga(z,z)=Y S 2

TL]:O TL2:0

I 21,22),
(q)dl—nl (q)dz—n2 "1,"2( ' )

which leads to the fermionic formula
(1.6)
=0, = TisoMi 57 (n?+m? —nims)
z Z. i>0\"Y i TG
Id1,d2 (Zl, z2) = Z 1 2 q

(ni}iso,{mi}iso (Q)d1—n1 (Q)n1~n2 cee (q)d2~—m1 (q)ml—m2 s

b

where the sum is over all sequences {n;}, {m;} such that
ni,M; €ZLso, diZni>n2>..., da>mi>mg>...,

and n;, m; vanish for almost all ¢. We conjecture that the obvious gen-
eralization of (1.6) to the case of sl,, gives the coefficients of an eigen-
function for the corresponding quantum Toda Hamiltonian.

Let us briefly explain our approach to the computation of the char-
acter formulas. Recall (see [K1]) the Weyl-Kac formula for the character
of an integrable irreducible representation My of a Kac-Moody Lie al-
gebra. It is written as a sum over the set of extremal vectors in M. We
call the summands the contributions of the extremal vectors. There are
two different ways to compute these contributions. The first one is alge-
braic (see [K1], [Kum]) and uses the BGG resolution. The second uses
the realization of M), as a dual space of sections of a certain line bundle
on the generalized flag manifold and the Lefschetz fixed point formula
(see [Kum]). We want to obtain a formula of the same structure by a
combinatorial method. Let us explain our method on the example of
My. In this case the extremal vectors are labeled by elements of the
affine Weyl group W, and the character formula can be written as

(1.7) chMy = Z exp(w) nllrgo(exp(—w(nA))cthA).
weW
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Roughly speaking, we compute the character of M,y in the “vicinity”
of the extremal vectors and sum up the results. We apply the same
approach to the characters of n-modules. We use combinatorial tools to
compute the terms corresponding to the limit lim,,_ (exp(—w(nA))ch
M,) in (1.7). Thus to obtain a bosonic formula for the character of an
n-module M we follow the three steps:
(i) find (guess) the set of extremal vectors of M;

(ii) find (guess) the contribution of each vector;

(iii) prove that the sum of all contributions equals to the character
; of M.
Step (i) is more or less easy, while steps (ii) and (iii) are subtler. For
example, for the principal subspace V*, the extremal vectors are la-
beled by Z2, and the corresponding bosonic formula is given by (1.2).
In particular, the contributions of the extremal vectors are given by
Ja, 4, (21g°% 72 25¢?32=d1) Tn order to complete step (iii) for V¥, we
introduce a set of ﬁ-modulei which contains, in particular, all princi-
pal subspaces in integrable sl3-modules. We describe these n-modules
below.

Let

€5 [n] =€ th e ﬁ, eij(z) = Z eij[n] [ Z_n_l.
ne€Z

The module V¥ can be described as a cyclic n-module with a cyclic
vector v such that the relations

k+1:0 k+1_.0
, =

621(2) 632(2)

hold on V*, and that the cyclic vector satisfies
eij[nlv=0 (n>0).
Let ki,k2,l1,l2,l3 be non-negative integers satisfying k1 < ks. The

module U, l’il ifis is a cyclic n-module with a cyclic vector v such that the

relations

ki1+1 k2+1

621(2) = 07 632(2)

hold on Ulkl’l’ l’:fla, and that the cyclic vector satisfies

ear[n]v =0, esznjlv=0 (n>0),
621[O]l1+1’0 = 0, 631[1]l3+1v = 0, 832[0]l2+1’u = 0.

Similarly, the module Vl’fllfia is a cyclic n-module with the cyclic vector
v such that the relations

621(Z)k1+1 =0, €32(Z)k2+1 =0
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hold on Vl’fll;kfs, and that the cyclic vector satisfies

ea1[njJu =0, esnjv=0, e3nlv=0 (n>0),
621[0]l1+1v =0, 632[0]l2+11) =0,
621[0]a€31[0]l3+1_av =0 (0<a<lis+1).

The structure of the set of extremal vectors is more complicated for
the modules Ul'il if2l3 and V}’fll’fz than for V*. The extremal vectors of

the modules Ullil,iles and ‘/llf,llzk§3 are labeled by (d, o), where d € Z3,

and o is an element of the Weyl group of sl3. On the other hand, the
computation of the contributions of extremal vectors for U:*2 and

l1,la,ls
Vl’fjl:Z is simpler than for V*. We write these contributions explicitly

and prove that they sum up to the characters of the modules U ke

l1,l2,l3
and Vl’fjl’ki when the parameters l1, [, l5 belong to a certain region. To
do that, we show that the characters and the sums of the contributions
satisfy the same set of recurrent relations. We also show that the solution
of these recursion relations is unique.

The principal space V* is isomorphic to U(]i 70’6,0_ Equating the bosonic
formula and (1.2), we arrive at the identity

min(dy ,dz)
(1.8) Li, 4, (21, 22) = Z L4, dp,n(21, 22),
=0
where
Iy, dp (21, 22) = 1 — X
(Dd1—n(Dda—n{Dn(g21 )dy—n
(g22) 0

(g21 23 (@B =2 22) 00 (g~ N 2125 ), —n(g22) s —n (g2 )

The functions Iy, 4,(21, 22) in the limit ¢ — 1 appear in the study of
the Whittaker functions (see [IS]). For generic g, they are also closely
related to the Whittaker vectors in Verma modules of quantum groups
(see [Kos], [E], [S]). We interpret (1.8) in terms of the representation
theory. Namely, let w and & be the Whittaker vectors in the Verma
modules of the quantum groups U,:/2(sl3) and U,-1/2(sl3). We fix the
decompositions of w and @ in the Gelfand—Tsetlin bases:

min(di,d2) min(dy,d2)

w = E E Wdy,dg,ny W= E § Wdy,d2,n-

dl,dzZO n=0 dl,dQZO n=0
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We prove that

Id1,d2,n = (wdl»dzymwdlydz,n)v

min(d1,d2) min(dy,dz2)
Ina, =( Y. Wardsns Y, @didan)s
n=0 n=0

where (, ) denotes the dual pairing. For the connection of the Whittaker
vectors and Toda equations see also [GL], [BF], [GKLO].

Our paper is organized as follows.

In Section 2, we recall known bosonic and fermionic formulas for
the simplest case of slo. This section is meant to be an illustration of
the discussions which follow. In Section 3, we introduce the family of
n-modules

(1.9)
U3 | (02, 1s) € P™Y, (Vs | (o, 1a) € Py},

li,la)ls
where the index sets P{}l’k 2 P";l’kz are defined in the text (see (3.23),
(3.24)). Studying the structure of some of their subquotients, we derive a
recurrent upper estimate for their characters. In Section 4, we introduce
another family of n-modules

(1.10)
{Uvo) 2, | (a2, 1s) € REVFH{(Wo) 2, | (1, 12, 1s) € RyH*2 )

l1,l2,l3

using the vertex operator construction. They are parametrized by sub-
sets Rkl’k2 C Pgl’b, R"c}’kz C P‘Iﬁl’kz (see (3.39),(3.38)), and are quo-
tients of the corresponding modules (1.9). For these modules we derive
a recurrent lower estimate for the characters. In Section 5, we show
the uniqueness of solutions for the recurrent estimates (see Proposition
5.1 for the precise statement), and prove that in the parameter regions
R’fj’kz and R"c}’kz, the modules (1.9) and (1.10) are isomorphic (Theo-
rem 5.3). In Section 6, we proceed to write bosonic formulas for these
modules utilizing an inductive structure with respect to the rank of the
algebra. We start by recalling previous results on bosonic formulas for
modules over the abelian subalgebra @ C n spanned by e21[n], es1[n]
(n € Z). To make distinction we call the latter modules sl small prin-
cipal subspaces. Combining the characters for the sls principal subspaces
and those of the sl small principal subspaces, we present a family of
formal series. Then we prove that these formal series coincide with the
characters of (1.9) in appropriate regions (Theorem 6.2; the region of va-
lidity for V*;2 is Ry} *2, while for U} it is a subset R;#** ¢ RjH*2,
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see (5.5)). In Section 7, we consider the special case k; = k2. In this
case some of the terms in the bosonic formula can be combined to give
a simpler result of the type discussed in [GL]. We obtain such a formula
(Theorem 7.3), which includes as a particular case the character formula
for the principal subspace V* (Corollary 7.8). In the final Section 8, we
discuss the connection to Whittaker vectors in the Verma modules of
quantum groups.

Throughout the text, eqp denotes the matrix unit with 1 at the (a, b)-
th place and 0 elsewhere. For a graded vector space M = @, ... m;.dez
M, ... m,,d with finite dimensional homogeneous components M, , ... m,,
4, we call the formal Laurent series

. m my d
chzy ez, M = E (dim Mo, ... m,,a)27" - 21" q

mi, - ,my,d€EZ

the character of M. In the text we deal with the case [ = 1 or 2. We
often suppress ¢ from the notation as it does not change throughout the
paper. For two formal series with integer coefficients

fO = Z fr(,i)l,...,mhdz{'” cezMgt (i=1,2),
d

Mgy, MM,

we write f) < £ to mean ffnll)’m’ml’d < fsl),”_,mhd for all mq,---,
ml,d.

§2. Bosonic formula for the case of ;[2.

In this section, we study the characters of the principal subspaces
of integrable modules for 5A[2. We present fermionic and bosonic formu-
las for these characters. The contributions of the extremal vectors are
calculated in two different ways, one from the combinatorial set which
labels a monomial basis, and another from the fermionic formula.

2.1. Principal spaces for ;{2

Consider the Lie algebra sly = Cej2 ® Cea; ® C(e11 — ea2) where egp
are the 2 x 2 matrix units. We also consider the affine Lie algebra sl
spanned by the central element ¢ and

e[n] = e12 ®t", fln] = e21 @™, h[n] = (e11 — e22) 1" (n € Z).

Let MF be the level k irreducible highest weight module of the affine Lie
algebra sly with the highest weight [ (0 <1 < k). On MF, c acts as a
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scalar k. The module M} has a highest weight vector vf characterized
up to scalar multiple by

zlnjof =0 (z=e, f,h;n > 0),
el0lvf =0, f[0]'""wf =0, R[O]vf = luf.

Let f be the subalgebra of sly generated by f[n] (n € Z). Let V/ be

the subspace of M[® generated by f[—n] (n > 0) from vf. The space

V;¥ is called the principal subspace of Mf. It is known [FS] that V}* is
isomorphic to the cyclic module U(f)vf with the defining relations

fRM =0, fl0]"*vf =0, flnjvf =0 (n>0),

where f(2) = 3,z fIn]z7""" It is graded by weight m and degree
d. Namely, we have the decomposition V;¥ = D a=0(V{¥), ,» where
(Vl’“)m o is spanned by the monomial vectors

(2.1) flo]ee f[—1]2 f[—2]%2 - - - vf

with

(2.2) Zaj =m, Zjaj =d.
=0 =0

A basis of the principal subspace VEk is described by the set of integer
points Pf = RPF N Z> where
Rpk _ .
Py = {(an)n>0 | an € R0, an =0
for almost all n, a; +aj41 <k (j >0), ao <1}

Proposition 2.1. [FS] The set of monomial vectors (2.1) with the
ezponents (an)n>o taken from the set P} constitutes a basis of V}F.

The condition a; + a;41 < k comes from the integrability condition
f2)F =0,
The character of V¥ is the formal power series

xF(2) = Z dim(Vlk)m’dzqu.
m,d=0

Two different formulas are known for this quantity.
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Proposition 2.2. [FS] The character x¥(z) is given by

0 Xk oy mimy min(ig) =T, minim 5K ims

23) = Y @mr - (D

my,...,mi=0

This formula is called fermionic.
Proposition 2.3. [FL] The character xF(z) is given by

anqn2 k—nl

(2.4) Xt (2) = Z (q2nz Yoo (@)n (g2 F12-1),

nk+l

qn2 k+nl

+ Z 2n+1 ) (q—~2nz——1)n+1 :

This formula is called bosonic.

2.2. Recursion relation
The recursion relation for the characters

1
F2) =Y 2"k a(g2)
a=0

follows immediately from the definition of PF. It can be rewritten as

(2.5) XF(z) = xF_1(2) + 2'x5_1(g2).

In this form, the recursion can be explained by the representation theory

as follows. Let V;*[i] be the U(n)-module identical with V}* as a vector

space, where f[n] acts as f[n + ). We denote the vector v¥ considered

as the cyclic vector of the module V;¥[i] by vF[i]. The identity (2.5) for
the characters corresponds to a short exact sequence of U (fi)-modules.

Proposition 2.4. There is an ezact sequence of U(f) modules
0 = Vi [-1] = ViF[0] = Vi£,[0] = 0,
where the homomorphism ¢ is defined by
L(vk_([=1]) = F[0]'v( [0]-

Proof. Let (f[0]') be the submodule of V;*[0] generated by the vec-
tor f[0]'vF[0]. By the definition, there is an isomorphism

ViF[0]/{f10]") ~ V¥, [0].
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On the other hand, the integrability condition f(2)**! =0 implies
FI=1F 1 f[0) v 0] = .

Therefore, the mapping ¢ is well-defined. The character identity implies
that it is an inclusion. Q.E.D.

2.3. Contributions of extremal vectors

Let P be a convex subset of a real vector space. A point in P is called
extremal if and only if it is not a linear combination P; + (1 — 6)P»
(0 < 8 < 1) of two distinct points P;, P, € P. A general principle
in “counting” the number of integer points in convex polygons is to
write it as the sum of contributions from the extremal points. In this
subsection, we show how we can guess the bosonic formula (2.4) by using
this principle.

Weyl’s character formula is of this kind: the simplest case is

1— zH—l 1 Zl

(2.6) 1—2 :1—z+1—z‘1'

The polygon in this example is the interval [0,!]. For the character, in-
stead of counting the number of integer points, we count z" for each in-
teger point n in [0,!]. The extremal points are 0 and I. The contribution
from an extremal point is counted as the sum of 2™ over the integer points
near that point in the limit [ — oo. For 0 this is 1+2+2%+--- = 1/(1-2),
and for [ this is 2! + 2!=1 4 ... = 2!/(1 — 27!). These are the two terms
in the right hand side of (2.6). To obtain the left hand side of the for-
mula, we write the second term as —z!*!/(1 — z). Because of rewriting
b2 4o to =2 — 242 — ... the obtained formula contains
both positive and negative coefficient terms. The formula (2.4) should
be understood as an equality of non-negative power series in z. The
n-th summand of the first sum (respectively, of the second sum) in the
right hand side contains negative coefficient terms if and only if n is odd
(respectively, even). This is the difference between the bosonic formula
(2.4) and the fermionic one (2.3). In the latter, each term corresponds
to an integer point, and therefore, the formula consists of positive coef-
ficient terms only.

There is an important point in counting contributions of extremal
points. For the characters of the principal subspaces, we count mono-
mials 2™q¢ using two linear functions (2.2). It means that we count not
the integer points in the infinite dimensional polygon RP{“ but rather the
integer points with multiplicities in a polygon in R?, which is the image
of ®PF by the mapping (m,d). Not all extremal points remain to be ex-
tremal when they are projected to R%. We guess that the contributions
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from such extremal points in ®P} that are projected to a non-extremal
point in the image cancel out. Thus we count only the contributions
from the extremal points in the image.

In the case of the Weyl-Kac character formula for integrable mod-
ules, the relevant extremal points in the weight space are given by the
Weyl group orbit of the highest weight. In the case of the principal sub-
spaces, we also take the extremal points in ®PF whose weights belong
to the orbit of the highest weight. They are

(2.7)

won -

a=la=k-1,...,a0n2=1Lawm-1=k—-1,a; =0 (5 > 2n),
(2.8)

Wan41 -

ap=lar=k—-1,...,a0n-1=k—la2, =1,0; =0 (j > 2n+1),

where n > 0. The monomials z™(*)q*®) at these points are given by

2
2mw) gdw) _ {Z"kqn fonl for w = wap;

) 2
znk-{—lqn k+nl for w = Woni1.

The contribution from an extremal point is defined to be the formal
series obtained in the limit

2@ gd@) o fim W)Wy k()

lk—l—o0

The contribution can be calculated in several different ways. Here we
present two such calculations.

A direct calculation using P} is possible for the present case of sly.
In the limit the shape of RPlk in the vicinity of each extremal point w
becomes a cone of the form w + RC. For the extremal point

w=wym =, k—1,1k—1,...,1,k—10,0,0,...),
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the cone ®C is generated by the following vectors:

(0,0 0, 0,...,—1, 1, 0, 0, 0,...), ¢,

yooy—1, 1, 0, 0, 0,..), ¢"7%,
yeeey—1, 1, 0, 0, 0,..)), q",
yeery 0,—=1, 0, 0, 0,...), g 2tiz71

)

—
o \‘I-l—l o
o = o
[en) =
O = =

)

(o0 0 0-1,..., 1,-1, 0, 0, 0,...), g "1z}
( 0,-1, 1,-1,..., 1,-1, 0, 0, 0,...), q "z},
(0 0 0 0,..., 0,0 0, 1, 0, 0,..)), ¢*z,
(0 0 0, 0,..., 0, 0, 0, 1, 0,...), ¢>"tlz,

where in the first line —1 follows 2{n — 1) zeros. After each vector
we wrote the corresponding monomial. Note that all these vectors are
linearly independent and the integer points in the cone, C = RCNZ>, are
linear combinations of the generating vectors with non-negative integer
coefficients. Therefore, the contribution of the extremal point ws, is
the sum of products of powers of these monomials. Thus we get the
summands in the first term in the right hand side of (2.4). The case of
W = Wap+1 is similar.

The second calculation of the contribution uses the fermionic for-
mula. In the fermionic formula, terms are labeled by (mq,...,my). In
this case, the term corresponding to each point is not a monomial but
a formal power series. It is written explicitly in (2.3). It is known
that there is a mapping ®* : Pf — Z%, such that the sum of mono-
mials over (®%)~1(m1,ma,...,my) N PF is the series corresponding to
(m1,ma,...,mg). The mapping is defined inductively as follows. Let
a = (an)n>o0 € 'P,’j. If a; + a;41 < k for all ¢ we have a € 73,’;:11, and we
define ®*(a) = (®*1(a),0). If a; + a;+1 = k for some 4, define b € P
by

b = )% (4 <1);
j C
ajy2  (J >1).
Then, we define ®*(a) = ®*(b) + (0,0,---,0,1). For example, consider
the extremal points wante € ®PF given by (2.7), (2.8). We have

OF (wante) = (0,0,...,0, ¢ 0,.... wM).
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The points of the cone RC are linear combinations of the generating
vectors. For M € Z > 0, let wanyc + C(M) be the subset of wapie +C
such that the sum of the coefficients in front of the generating vectors is
bounded by M. Set

M?(N) = {(ml’mZa 1, MY, M1, 7 ’mk—lvmk)
| Z Mg—i =N, Z My = €}.
0<i<N <N

For any M, if k—1— N,l— N, N are large enough, the points in wo, 1+
C(M) are mapped to M?(N). Thus, the contribution of the extremal
point wa, 1. is equal to the sum of series corresponding to the points in
M?(N) in the limit k — 1 — N,Il — N, N — oc.

Let us check this statement by direct calculation. We first prepare
two lemmas.

Lemma 2.5.
oo ng,ojzl mym; min(i,j)zz;’i1 im; 1

(29) Z Hl?il(q)mi - (Zq)oo '

mi,ma,...=0

Proof. According to [F'S], Theorem 2.7.1, a restriction of the sum-
mation in (2.9) to a region mgy; = M2 = - -+ = 0 gives a formula for
the character of the space Cle1, ez . ..]/Ix, where I is an ideal generated
by elements

Z eil...eik+1,n2k+1.

i1+ tigr1=n

Therefore the k — oo limit of the characters of Cley, ez ...]/Ix is equal
to the character of the polynomial algebra itself, which is given by the
right hand side of (2.9). Q.E.D.

Lemma 2.6. Set

Z??j:() nin; min(k—i,k—j) zz;’io(k—i)ni

i)=Y 4 @

(no,m1,.-.), Z;’;O nj=n

Then we have the equality

n?k nk

g "z ,
(@n(g2 2710

(210) gn,k(z) =
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Proof. Splitting the sum in g, x(z) into n+ 1 subsums correspond-
ing to ng = 0,1,...,n, we obtain

gn,k(z)=zq gn ik—1(q%2).

This recursion has a unique solution of the form g, x(2) € 1+ 2C[[z]].
One can check the recursion is satisfied by (2.10). The check reduces to
the equality

2

Z( 1 (q Z) qz(i+1)/2—in — qn P
i=0 -

QED.
Let F*(N) be a sum
gk sa mem; min(i.g) =5, min(ims 35 ims
2 @my - (@ ’
where the terms are labeled by (mq,...,mg) € MZ(N).

Proposition 2.7. The N,I — N,k -1~ N — oo limit of F**(N) is
equal to

anqnzk—nl

(®"2) o (@n(g2" 127 1)y

if € =0 and is equal to

(2.11)

qn2 k+nl

(q2n+lz)00(q)n(q—-z”z_l)n+l

an+l

(2.12)

if e =1.

Proof. Since we want to pass to the limit N,[-N,k—[—-N — oo it
is natural to split any k-tuple (mq,...,my) € MZ(N) into three groups:
m; with ¢ ”around” 1 (not too big), m; with ¢ ”around” I and m; with ¢
”around” k. An important point is that in the limit N,I— N, k—I—-N —
oo the following statement holds: for any m; from the first group and
m; from the second group (or m; from the second group and m; from
the third group) one has ¢ < j. In what follows we leave the notation
m,; for the entries from the first group and introduce new notations

Ds = Miys, Nj = Mp—j
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for the second and third groups. Here s € Z, j € Z> and for (my, ..., my)
€ MZ(N) we have 3 7 ps =€, 3 ;501 =n.

Suppose € = 1. We note that the limit of F*(N) is equal to a
sum of terms labeled by three infinite sequences of non-negative inte-
gers: (m;)i>1, (Pi+s)sez and (n;);>0 with the properties YosczPivs =1,
> j>0Mj =n. A term is given by the formula

qzi,j21 m;m; min(i,j)+2 Zi21 im;+2 Zizl,jzo imin; _ZiZI imizZiZl im;

X
H¢21(Q)mi
qz+s—min(l+s,l)+2 Yisollt+s)n; er+8
X
1—¢q .
qu,jZO ning min(k—i,k—j) =% ;50105 , ¥ (k—i)n;
szo(Q)nj

Using Lemmas 2.5 and 2.6 and the equality >0 =N we obtain that
the sum over all (m;)i>1, (n;);>0 and s € Z of the terms above is equal
to

nk?—nl

1 q2lnzl (2n+1) 5 Z'n,kq
qu I 54 qu ns ,
T | 2 @nlg 2,

which is equal to (2.12). The case ¢ = 0 is similar (even simpler since
all p; = 0). Proposition is proved. Q.E.D.

§3. Highest weight n-modules

In this section, we introduce a family of modules which generalize
the principal subspaces of integrable sig-modules.

We fix the notation as follows. Let 1 = n ® C[t,t™!] denote the
current algebra over the nilpotent subalgebra n = Ceg; @ Cez; @ Cess
of sl3. The basis elements egp[n] = €, @t" (1 <b<a<3, neZ)ofn
satisfy the relations

[es2[m], ea1[n]] = e31[m + n], [e21[m], e31[n]] = 0, [e32[m], €31[n]] = 0.
We set

ean(2) = Z eap[n]z™™ L.

neZ

With the degree assignment
degea[n] = (1,0,—n), degesz[n] = (0,1,—n),
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n is a Z2, x Z-graded Lie algebra. All n-modules considered in this
paper are graded n-modules.

3.1. Principal subspaces for ;[;

For non-negative integers k, l1, s satisfying [; + 1o <k, let Ml’i Iz be
the level k integrable highest weight sl3-module of highest weight (I1,12).
The highest weight vector vl’“1 1, is characterized up to scalar multiple by

zlnjvf ;. =0 (z €slz;n > 0),
eab[O]vlkhl2 =0 (a<b),
(e11[0] — e22[0])of! 1, = luvf} 4, (e22[0] — eas[O)f] 4, = lovf 4,
621{0]114_1’01]61712 = 0, 632[0]l2+lvlk1’ = 0
We call the U(n)-submodule
Vi, =U®) ol ,, € M,

the principal subspace of Ml’ilz. The following relations for v = vl’cl I

vk
take place in Vj7  :

(3.1) eaifnjlv=0 (n>0),

(3.2) esijnjlv=0 (n>0),

(3.3) es2[njv=0 (n>0),

(3.4) e21[0)"* Tty = 0,

(3.5) e32[0]2 v =0,

(3.6) e21(2)FT1 =0, es(2) =0.

We remark that also
(3.7)  ea[0]%s [0ty =0 (0<a<h+l+1)

holds, due to the following lemma.

Lemma 3.1. Let w be a vector in an n-module such that €5, w = 0

and e w = 0 for some non-negative integers ly,lo. Then egleglw =0
holds for all a, B3>0 witha+ 8=1; +1s + 1.

Proof. Let W be the irreducible slz-module with highest weight
(l1,12). It is simple to check that the lemma holds for the highest weight
vector of W. On the other hand, W is isomorphic to the quotient of the
free left U(n)-module U(n) by the submodule generated by efyt!, et
Hence U(n) - w is a quotient of W, and the assertion follows. Q.E.D.

Our goal is to find a formula for the character of V}’f,lz.
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3.2. Modules U‘tF2 = ykuke
I1,l2,l3% Via,l2,l3

We shall introduce a family of cyclic n-modules Ul,il,l’f?lg7 l’ffl;kjs
parametrized by non-negative integers k1, k2 and [, ls,l3. The param-
eters ki, ke play a role similar to that of the level of representations,
while [, 12,13 correspond to the highest weight. Throughout the paper

we assume that
k1 < ko.

Definition 3.2. We define Vl’fll’zkig to be the n-module generated by
a non-zero vector v under the following defining relations:

(3.8) enfnlv=0 (n>0),

(3.9) esinjlv=0 (n>0),

(3.10) ese[njlv=0 (n>0),

(3.11) e [0]"* v =0,

(3.12) e21[0]%3:[0]* 170 =0 (0< a<liz+1),
(3.13) e32[0]'2 1w = 0,

(3.14) ean(2)F =0, es(2)2t =0.

Definition 3.3. We define Ulkl”cz to be the n-module generated by

1,l2,ls
a non-zero vector v with the following defining relations:

(3.15) ennjlv=0 (n>0),

(3.16) es1fnjv=0 (n>1),

(3.17) 6’32[1%]1) =0 (n > 0),

(3.18) ea1[1]* v =0,

(3.19) ear[0]%ez1 (1] %0 =0 (0<a <l +1),
(3.20) e32[0]'2 v = 0,

(3.21) e ()T =0, es(z)2t =0.

Taking commutators of e32[0] and (3.14) or (3.21), we obtain also
the relations

(322) 621(Z)a631(z)k1_a+1 =0 (0 <a<k + 1).
We use the following notation for the characters of these modules:

k1,k2 _ k1,k2
¢11,12,13 (21,22) = Chzl,zz,qul,l;,lg’

k1,k2 _ ki1,k2
Pl ip1s (715 22) = iy 2y UL 0 T
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Note that our characters are normalized in such a way that the degree
of the cyclic vectors is (0,0, 0).

Remark 3.4. From the definition it readily follows that V;kf Lty =
1,62501 2

U, l’j’ffz’o. The principal subspace V;’fh is its quotient. Indeed, comparing

(3.8)—(3.13) with (3.1)—(3.6) and the remark after that, we see that there
is a surjection of n-modules

k.k k
‘/llyl2’ll+l2 - ‘/ll,lz — 0.

Later it will turn out to be an isomorphism (see Corollary 5.4).

Some of the modules are the same which follows immediately from
the definition.

Lemma 3.5. We have

w = ViR, (> k),
Vgllc,ll’zkjs = ‘/l’:,llélzc,?la (l2 > kQ)’

l]f,ll;kjg = Viih, (a> k),

llf,ll’:fa = Vlf,llfja (> 1),
Vllf,ll’zkﬁs = Vzllc,ll;k,i+lz (l3 > ll + lz) .

Proof. For example, (3.11), (3.13) and Lemma 3.1 imply that egq[0]*
e31[0)itle—atly = for all 0 < o < I; + I + 1. This proves the last
relation. Other cases can be verified similarly using either the definition,
(3.14) or (3.22). Q.E.D.

Lemma 3.6. We have

k1,k2 _ k1,k2
Ul1712,l3 - Uk11l27l3 (ll > kl)’
k1,k2 _ k1,k2
Uipzs = Ulju, (2> k2),
1,k k1K .
Ut = U (l3 > mln(ll,lg)).

l1,l2,l3 ly,l2,min(ly,l2)

Proof. By (3.19) we have e3;[1]4+1v = 0. Taking the commutator
of ex1[1] with eg2[0]27! and using es;[1Jv = 0 and (3.20), we obtain
es1[1)!2*1v = 0. This proves the third relation. The other relations are
proved similarly. Q.E.D.

In view of Lemmas 3.5-3.6, we may restrict our attention to the
modules

(USR] (1,1, 15) € PEY™Y, (ViR | (1,10, 15) € P2,

l1,l2,l3 l1,l2,l3



Principal subspaces and quantum Toda Hamiltonian 127

where the parameter regions are the following subsets of Z%O:

(3.23)
PER = {(l,1a,13) | 0 < Iy < ka, 0 <y < ko, 0 <3 < min(ly,l2)},
(3.24)
P";I’kz = {(l1,12,13) | 0 <13 < k1, 0< 1y < ko,
Iy <l3 <min(ly + I3, k1)}.

3.3. Subquotient modules

In this subsection we study a recurrent structure for some subquo-

tients of U, llil,lf?lg’ Vl’fllzkig Denote by Ty, the automorphism of 1l given
by

Trmnealt) = eaifi —m|, Tmnesifi] =esifi —m —n),

Tm7n632 [’L] = €32 [7, - n]

For an n-module M, we denote by M[m,n| the module with the same
underlying vector space on which z € n acts as T, ,z. For a cyclic
n-module M with a cyclic vector v and f € U(n), we use the notation

In what follows, we set UFF2 =0, V"% = 0if one of I;’s is negative.
’ l1,l2,l3 7 lyLlo,ls

Lemma 3.7. We have an exact sequence of n-modules

Vk1,k2 [1’ _1] N Uk17k2 = [k 0.

I3, k2—l2,l1 l1,l2,l3 I1,la—1,l3

Proof. Consider the submodule (e32[0]2) of Ulljl’l’ffh. By the defi-
nition we have an exact sequence

! k1,k k1,k
0 — (e32[0]"*) — Uzll,z:zg - Ulll,l;ug — 0.

We show that there is a surjection

‘/lf,lléfz—lz,ll[]" _1] - <€32[0]l2> — 0.
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It suffices to verify the following relations for v; = e32[0]"2v where v

kik
denotes the generator of U,*; ™ :
t 1

(3.25) ea1[njJug =0 (n>1),
(3.26) es1[n|jv1 =0 (n>0),
(3.27) es2[njvy =0 (n>-1),
(3.28) ean[1]# vy =0,

(3.29) e21[1]%e31[0] 1%y, =0,
(3.30) esa[—1]F27l2 41y, = 0.

Equation (3.25) follows from e2;[n]v = 0, [e32[0], e21[n]] = esi1[n], es1[n]v
= 0 and [e31[n], e32[0]] = 0 with n > 1. Equation (3.26) follows from
(3.16) for n > 2. For n = 1 it follows from ez [1]Jv = 0 and (3.20) by using
[e32]0], e21[1]] = es1[1]. Equation (3.27) follows from (3.17) and (3.20).
Equation (3.28) follows from (3.18), ez1[1]Jv = 0 and [e32[0], e21[1]] =

631[1].
Let us prove (3.29). We first assume « > l3. Then

ea1[1]%e31[0] 1 %e35[0]2v = €31[0]"2 1 7% (€21 [1]%€32[0]2v) = 0,
because ez1[1]v = 0 and thus
621[1]ae32[o]l2v = —l§e21[1]°‘"12e31[1]12v = 0.
Now suppose a < lz. From (3.19) we have
621[0]l1+1”°‘631[1]°‘v =0.
From (3.20), using ez [1]v — 0, we obtain
e32[0]"2F1 7% [1]%0 = 0.
A variant of Lemma 3.1 and the last two equations above lead to
e31[0]" 1 %e35[0)2 " %31 [1]%v = 0.
It follows that
e21[1]%e31[0] 1" %e3,[0]'20 = —lyaes; [0]1 T %es; [1]%e32[0]2 %0 = 0.
Finally, (3.30) is a consequence of eza(2)*2*! = 0. Q.E.D.

Lemma 3.8. We have an exact sequence

k1,ka ki1,k2 k1,k2
Uls,}cz—lz,h[o’ —1] - lel;,lQ - V;hl’z—l,ls — 0.
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Proof. We consider the submodule {e32[0]"2) of V}’f ’1[’2’?3, so that

0= (esaf0]) = ViR, — Vi, =0

I,l2,l3 1,l2—1,l3

is exact. We then show that there is a surjection
Upie 1,0[0,—1] — (es2[0]2) — 0

by checking the defining relations. The rest of the proof is similar to
that of Lemma 3.7, we omit the details.

Q.E.D.
Lemma 3.9. We have exact sequences
k1,k2 k1,k2 k1,k2
(3'31) Vzr-la,lz—ls,kl—ls - Ulhlz,ls - Ull,lz,la—l -0,
ky,k2 k1,k2 k1,k2
(332) Uk17—11y11+l27l3*l1 [_1’0] - ‘/llal2yl3 - %1—1,12,13 —0.

Proof. We repeat the argument of Lemmas 3.7 and 3.8.
To show (3.31), we take the submodule generated by ez [1]%v €
U l’jl if?ls and check the exact sequence

’

I3 k1,k2 ki1,k2
0= (ear[1]*) = U5, = Uiliya,o1 = 0
k1,k2

{
Vl1—l3,lz—l3,l1+l2—2lg - <€31[1] 3) — 0.

For the proof of (3.32), we take e21[0]"'v € V;**2 and verify

11,l2,l3

0— <€21[O]l1> s yhuke | ykks — 0,

l1,l2,l3 l1—1,12,l3

k1,k
Ukll—lzl,l1+l2,lg—l1[_170] - <€21[0]l1> — 0.

Q.ED.

From Lemmas 3.7-3.9, we obtain the following upper estimate for
the characters of all modules in the parameter regions (3.23),(3.24) :

(3.33)

k1,k ki,k Iy, K1,k -1
Pryiats (21 22) S0 (21, 22) + 2870, 3, 0, (47 215 422),

(3.34)
ko k kik lo ki,k
s (715 22) SYLE (21, 22) + 257000, 0, (21, 922),

(3.35)

k1 .k k1,k - kik
01 s (21 22) S @ (21, 22) + (0 eize) SRR 1 kg (21 22),

(3.36)

Kok k.k L K1k
Bry gots (F122) ST, 0, (215 22) + 20000 1 g 151 (9715 22)-
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In general, the equality does not hold, however, we will see that it does
hold in a restricted range of the parameters. Define the following sets:
(337)  REP™ ={(ln,lo,1s) | b <l + 1o — I3 < ko} 0 PRH™,

(3.38) R ={(li,l2,13) [0 <l + 1o —Is < ko — kn } 0 P,
(3.39)  RE™ ={(la,l2,15) | 0 <l + o — I < ko} N PF2,

Theorem 3.10. The following recurrence relations hold.
If (I1,12,13) € Rk1 *2  then

(3.40)

k1,ko k1,ko . Iy 1 k1,k2 -1
<pl1,7lz 13(Z1’ 22) (pll,lz 1,min(l3,lo— 1)(Z1’ Zz) + 29 "/)l37k2—127[1 (q ZlquZ) .

If (l17l27l3) € Rkl,kz then

(3.41)
ki,k K1,k lo _ki,k
’ﬂlll,lz,zls(zl’ 22) = ¢l11,l22—1,min(l3,ll+lz—1)(Z17 z2) + 222‘/7131,@2_12,11(217 qzz).

If (1,19, 13) € REV™ and either'ly + 1y — I3 # kg or I3 = 0, then

K1,k ' k1,
(3.42) %:lzzlg(zl’ZZ) 80111,1;13 1(21722)

1 l k2
+(q Z]'ZQ) 3¢111—l3,l2—l3,min(k1 —l3,11+l2~2l3)(zl’ zz)’
If (I1,15,13) € RE™ then

K1,k _ kk
(3.43) 1/"111,l2,2l3 (21, 22) - "[}lll 1212,mm(13711+12 1)(21, 22)
k1,k
+ 2 O 1ttt (021, 22)-
The proof of Theorem 3.10 will be completed in Section 5.
We remark that, in (3.42), the condition l; + I3 — I3 # ko is imposed
so that the parameters of the first term in the right hand side stay
within the region R(k}’kz. In all other cases, the parameters appearing in

the right hand side belong to the proper region (R’f}’kz for 90;?,2,313 and

R’f}’kz for zbfll’;’;zh). In what follows we refer to (3.40)—(3.43) as short

exact sequence (SES) recursion.

84. Vertex operators

In this section we construct another family of n-modules

{(Uvo)F P | (I, 0, 13) € REV Y {(Vwo)FP, | (1h, 1o, 13) € REV*2},

l1,l2,l3 I1,l2,l3
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as subspaces of tensor products of certain Fock modules. These modules
have the following properties.
(1) (Uvo)l1 12213 is a quotient of Ul’?,l’ %, and (Vvo)l1 1221 is a quo-
tient of V/“’kz

1,l2,l3"

(ii) The characters
k1K
(‘PVO)ll,lz,lg (#1,22) = Chzl,ZQ,q(UVO)lll,l;la’

k1,k
(1/’VO)11,12?13 (21,22) = Chzhzz,q(VVO)ll,l;lg.

satisfy the following inequalities.
If (Iy,12,13) € Rgl’kz, then

k
(4.1) (‘F’VO)l1 l2, 13(21,22) Z (‘PVO)JIJ; 1,min(ls,l2— 1)(z1,22)

k: -
+ z2 (¢VO)13,k22_12,l1(q 2, qz2).
k1,k2
If (ll, la, l3) € RV , then

ks, oy b
(42)  (Wvo)i ik, (21, 22) = (Wvo)i i 1 mingis by +ia—1) (215 22)

l k1,k
+ 23 ((PVO)lgl,k:—lz,ll (21, q22).

If (I1,la,13) € REV* and Iy 4 1o — I3 # 0 or I3 = 0, then

1k k1;k
(4.3) (‘on)zll,l;,)lg(zlaZZ) 2 ((PVO)lll,l;lg—l(zlaZiZ)

-1 l k1,k
+(¢7 2122) 3(wvo)lll—lz,lg-lg,min(kl—13,l1+l2—2lg)(zl’ 22)-

If (I1,12,13) € R¥*2 then
14

K1,k k1,k
(4'4) (d)vo)lll,lz?ls (21,22) = (¢V0)l11 lzlzymiﬂ(l37l1+l2—1)(z1’z2)

+ zll (SOVO)kl 1217l1+l2,l3—l1 (g21, 22).

These inequalities differ from (3.40)—(3.43) by the change of the sign =
to the sign >.

Let us recall some constructions from the theory of lattice vertex
operator algebras (see [D], [K2]). Let b be a two-dimensional complex
vector space with a basis a,b and an inner product defined by the sl3
Cartan matrix:

(a,a) =2, (b,b) =2, (a,b) = —
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Let N
h=hoC[t,t e Cl

be the corresponding Heisenberg Lie algebra with the bracket
[a[lLﬂ{]” =i6i,—j(a7ﬂ) (aHB € h)v

where afi] = a ® t'. For a € b define the Fock representation F,
generated by a vector |a) such that

Blnjla) =0, n>0,  B[0]je) = (B, x)|).

Set L = Z{2a + b}/3 & Z(a + 2b)/3. For a € L we consider the cor-
responding vertex operators acting on the direct sum of Fock spaces

€BaEL]L:
of

To(2) = Saz* exp(— Z —nﬁ]-z_") exp(— Z 2[7-?—],2_”),
n<0 n>0

where 229 acts on Fs by 2(®8) and the operator S, is defined by
SalB) =la+pB), [Sa,Bn]l=0 (n#0,a,8¢€h).

The Fourier decomposition is given by
Lo(2) =) Taln]e (@2,
nez

In particular,

La[—(a,)/2 = (, B)]IB) = o+ B).

We need three vertex operators corresponding to the vectors a, b
and ¢ = a + b. The Frenkel-Kac construction for level 1 modules (see
[FK]) defines the action of i on @ e F via the homomorphism

e21[n] — Loln], esz2[n] — Ty[n], es1[n]— Lcn].

Let vy, be a vacuum vector of F_(2mn | )q (2ntm | qyp-
Lemma 4.1. We have

e21[i|vmn =0 (i >m),

632[i]Um,n =0 (i>n),

e31[t]vmn =0 (1>m+n+1),

ezl[m]vm,n = Um—2,n+1,

€32[N)Vm,n = Vm41,n—2,

esi[m~+n+ 1vmn = Um—1,n-1-
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We denote by Wi, ,, — @qerFao the cyclic i-module with the cyclic
vector vp, . The shift automorphism T, ,, induces an isomorphism be-
tween Wy o[m, n] and W, ,,.

We also need one-parameter analogues of the modules W, ,,. Fix
a one-dimensional space with a basis vector b and an inner product
defined by (b,b) = 2. The vertex operator I';(z) acts in the direct sum
of Fock modules over the Heisenberg algebra Cb® C[t,t~] @ C- 1. We
set W,, = C[{T'3[i]}icz] - vn where v, = | — (n + 1)b/2), and make it an
n-module by letting es2[i] act by T'j[i] and e21[i], e31[i] by 0. Then we
have

es2lilun, =0 (i >n), esa[n]v, = vp_a.

Ukl,kz

Now we define the VO (vertex operator) versions of the spaces U, ’; "

and Vl’f 1l,2k23 utilizing the modules

Wo,0, Wo,—1, W10, W_1,1, Wy, W_;

as building blocks.

Definition 4.2. Let (I1,lo,l3) € R ™.
If (14, 12,13) € lej’kz, then we define

vt € WEl W WOl 6 Wit
®(ka—l1—la-+l3)
®W_1( 2—l1—l2+l3

to be the cyclic n-module with the cyclic vector

! (1 ®k1—1 @l +la—la—k1)
wy(ly,la, ls) = v§ ®v0,(_i 3) ®v_§,5 2 ®uy T :

ko—l1—la+1
®’U?§ 2—l1—l2+ 3)'

If I1 + I3 — I3 < kq, then we define

Uvo)iin, < Wk @ Wl ™ @ W™ @ weh ittty
®(ka—k
®W_1( 2—k1)

to be the cyclic n-module with the cyclic vector

w2(l1,l2,l3) _ ’U®l3 ®,U(<)8g11—la) ®,U®(12 l3) Qv ®(k1 —l1—l2+l13)

®’U_§k2 kl)
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Lemma 4.3. Let (I1,1s,13) € RZ"’”. Then there exists a surjective
homomorphism of n-modules

kl,k‘g klykZ
Ull,lz,ls - (UVO)ll,lz,la :

Proof. It is sufficient to check that the defining relations of U, k1 k2

l1,l2,l3

are satisfied in (Uyo)™:™ . That follows from Lemma 4.1. Q.E.D.

l1,l2,l3"

Definition 4.4. If (I1,15,13) € Rl‘c,l’kz, then we define

(Vvo)kl,kz - W(?l_ll ® W?ffg_ll) Q Wi®l(’k_11—l3) ® W(;@(l1+l2—l3)

l1,l2.l3

®W®(k2—k1 ~l1—l2+13)
—1

to be the cyclic n-module with the cyclic vector

l l3—1 k1—1 Li+la—1
wa(ly, Iz, 13) = v, @ v®{97) @B T1) g @ ita—le)

®U®£k2‘kl —l1—l2+l13)

Lemma 4.5. Let (I1,l,13) € RiP*2. Then there exists a surjective
homomorphism of n-modules

kl,kz k17k2
Vlhlz,ls - (Vvo)l17l2713'

Proof. The lemma follows from Lemma 4.1. Q.E.D.

Theorem 4.6. There exist the following complezes of n-modules
which are exact in the first and third terms.
For (I1,12,13) € RE*?, we have

(45) 0— (Vvo)fgl,}clz2—l2,ll [17 _1] L}(Uvo)khkz

l1,l2,l3

ki, k2
—'>(UVO)11 Jz—1,min(ls,l—1) 0,

such that 11 (T17-1('LU3(Z3, ko — 1o, ll))) = €l322[0]’w1 (ll, ls, 13).
For (l1,l5,13) € R’f}’kz, we have

(4.6) 0— (UVO)ZI,}Ciz—lQ,ll[O’ ~1] 2 (Vyo)fty

l1,l2,l3

k1,k2
”’(VVO)II,12—1,min(13,ll+12—1) — 0,

such that 12Ty, —1(w1 (I3, k2 — lo, 11))) = eR[0lws(ly, la, I3).
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For (l1,l2,13) € —Rllcjl’kz with l; + 1o —l3 # ko orl3 =0,

ki,k L3 k1,k
(47) 0— (Vvo)lll—lz,lg—lg,min(kl—l3,l1+l2—2l3) _’(UVO)llllZzg

ki,k
_)(Uvo)lll l22l3 1 07

such that t3(ws(ly — 3,12 — I3, k1 —13)) = € [wi(I1,12,13) in the case of
’(ll, ls, l3) S R[k}hkz and L3(’w3(ll—l3,l2 ls, l1+l2—2l3)) = 6l331[1]w2(11,l2,
l3) otherwise.

For (ll,lg,lg) S Rkl’k2,

k2 ki,k
(4.8) 0— (UVO)k1 —l1,l1412,l3— zl[ 1 0] (VVO)lll,lz?ls

k1,k2
’_>(VVO)11 1,l2,min(l3,l1+12—1) 0

such that L4(T_170(’w1(k)1 — I, 11+ 1a, 13 — ll))) = 621[0]l1w3(ll, la, lg)

In these formulas, if one of the indices is negative, then the corre-
sponding term is understood as zero.

Corollary 4.7. Inequalities (4.1}, (4.2), (4.3) and (4.4) are satis-
fied.

The rest of the section is devoted to the proof of Theorem 4.6. We
start with the proof of the existence of the embeddings.

Proposition 4.8. Let (I1,15,13) € Rkl’k2 Then we have embeddings
of n-modules

k N>
(Vvo)lgl,f;—h,h [1’ _1] _Li_) (Uvo)fllvlz?ls’
k1,k t k1,k
(Vvo)lll—liylZ—lISakl“lii — (Uvo)lll’lz?ls’
such that 1y (T1, 1 (ws(l3, ka —12,11))) = €3 [0)wi(l1,la, 13) and t3(ws(ly —
Is, Iy — lg, k1 — 13)) = €2 [1Jw1(Ly, I, I3).

Let (13,15,13) € lej’kz and Iy + 1o — I3 < k1. Then we have an
embedding of n-modules

ki,k2 L3 k1,k2
(Wo )l1 —l3,la—l3,l1+12—2l3 _)(Uvo)llylLla’

such that t3(ws(ly — I3, lo — I3, 1y + la — 213)) = €3 [1wa(l1, I, I3).
Let (1y,12,13) € R‘k,l’kz. Then we have embeddings of n-modules

K1,k k1,k
(UVO)l;k; la, 11[0 - ] 'LE" (VVO)ll1 l22l3’
k2 K1,k
(UVO)k1 Y P A P ll[ 1 0] (Vvo)l117l2?l3’

such that Lg(Toy_l(’wl(lg,k'Q - lz,ll))) = 6322[0]11)3(11, lz, l3) and
L(T-10(wi (k= 11,1 + 12,13 — 1)) = e21[0]ws(lh, la, I3).
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Proof. We prove the first embedding. The proof of the other em-
beddings is similar. By Lemma 4.1 we have

632[0]12(v®l3 ®U®(l11 I3) QU ®(k1 1) Q Ua@(lﬂﬂlz-ls—kl) ®v§>§k2—l1—lz+l3))

_vi®l_32 ® ,U®(l1 13) Qu ®(k1 —11) ® v?§l1+l2—ls—k1) ® vi@j§k2-l1—lz+l3).‘

The vector in the second line coincides with the cyclic vector of
K1,k
(Wo)iy ka—ipn (L, —1]- Q.E.D.
We prepare some facts about the isomorphisms between the modules

ki1,k2 ki,k2
Uizas 80d (Uvo); 17, -

Proposition 4.9. Let I3 = min(ly,lz2). Then we have the isomor-
phism

kl,kz ~ k17k2
Uiizas = (Uvo); 1.

and the corresponding character is given by the fermionic formula

(4.9)

k1,
¢lll,l2213 (21, 22) =(¢Vo)ll 2,13 (21,22)
qQ(m,n)—Zfél min(ll,i)miwzf__%l min(lz,i)n;
B Z (Q)m1 Tt (Q)mkl (q)‘n1 e (Q)nkz

)

where
k1
Q(m,n) Z min(i, j)m;m;+ Z min(i, j)n;n;
4,=1 i,j=1
ki kg
- Z Zmin(i,j)mmj.
i=1 j=1

Proof. Because of the existence of the surjection of fi-modules

(4.10) UFk2 Uy o)kke

ly)l2,l3 ly,l2,l8”
it is sufficient to prove (4.9).

For the rest of the proof, we assume I3 = min(ly,l2). In this case
the defining relations of U”“’k2 reduce to (3.15), (3.16), (3.17) and

ezl(z)kl+1 =0, 632(Z)k2+1 =0, egl[O]l”'lv =0, 632[0]l2+1v =0,
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where v is a cyclic vector of U, l’il ilez Denote the fermionic formula in the

right hand side of (4.9) by Fl’fllf"’ (21, 22). By using the Gordon filtration
technique and repeating the proof in [AKS] in the case k1 < k2, we
obtain an upper estimate

ki, k: k1,
'l?llllzz(zla 22) Qolll’lz,ls(z:[,zg).

From surjection (4.10) we know that

k1,k k
(plll,lzzlg (Zl) z2) 2 ((pVO)llliz Is (21, 22).

To finish the proof it remains to show the inequality
K1,k
(4.11) (SDVO)ll l22l3(z1,zz) > F 2 (2, 22).

The space (UVO)ZI”I’:?,3 is generated by the modes of

k1 k2
e21(z) = ZFai(z) and e3ga(2) = ZF”J' (2)

from the vector wi(l1,l2,13) or wa(ly,l2,1l3) (see Definition 4.2). The
vertex operators I'y, (2), I'y; (2) correspond to the vectors a;, 1 < i < ki,
and b;, 1 < j < ko, respectively, with the scalar products given by

(aiu aiz) = 26i1,i27 (bjubjz) = 26j1 2 (a'iv b]) = ‘51 7

For a non-zero complex number ¢, set

ko

e5(z) = ZETa,(Z e5y(2) = Zstbj (2).

=1

The currents I'y,(2) are mutually commutative and I'y,(2)? = 0. The
same holds for the currents I', (2). Hence we have

lim e CHD/2(e5, (2))F = ilT,, (2) ... Tq, (2),

e—0

lil% e /2 (5, (2))! = iy, (2) ... T, (2).

£

Consider the subspace generated from the vector wy (11, l2, l3) or wa(l1, l2,
I3) by the modes of the operators

a;(2) =T, (2)...Ta;(2) (1<i< k),
bj(z) = Fbl(z) .. 'Fbj(z) (1 <7< k2)a
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and let (g‘o‘vo)f; }];2l3(21a z2) be its character. Clearly, we have

k1,k — k1,k
(SOVO)zll,l;la (21,22) 2 (‘on)lll,l;lg (21, 22).

The operator a;(z) is a vertex operator corresponding to the vector
a; = a1 +--- +ai, and b;(z) is a vertex operator corresponding to the
vector b; = by + - - - + b;. The scalar products of these vectors are given
by

(aimaiz) = Qmin(ihi?)a (bjmbjz) = 2m1n(.717.]2)
(a;, b;) = — min(s, 7).

Using the standard technique (see for example [FJMMT]), we obtain
— k1,k k1 .k
(SOVO)lllJz?la (21,22) = Fllllgz(zl, 22).

Inequality (4.11) follows.
The proposition is proved. Q.E.D.

Corollary 4.10. We have the isomorphisms
Wo ~ U o, Wor = UQs
0= 0 1 00 -1 — Y90,0,0
Woo = ULy, Wo—1=Ulyo Weio Uty W ~ U
0,0 = VU111, Wo,-1 = 1,0,0» -1,0 = Vg1,00 W-1,-1 = Ug,0-

Next, we prove the surjections in Theorem 4.6 and show that all
sequences are in fact complexes.

Proposition 4.11. Let (I1,1s,13) € R’,}l”” and lo > 0. Then there
exists a surjective homomorphism of n-modules

(UVO)l1 l§2l3/<e32[ ] *) — (UVO)fll’z: 1,min(l3,l2—1)
such that, if Iy + 1o — 1 — min(l3,lo — 1) > ky then
wi(ly,l2,13) = wi(ly,l2 — 1,min(l3,ls — 1)),
and if 1y + 1o — 1 —min(ls,lo — 1) = k; — 1 then
wi(l1,l2,l3) — wa(ly,lo — 1, min(l3, I — 1)).

Proof. We consider the case ls > I3 and l; + 13 — 1 — I3 < ky. The
other cases are similar. Replacing a factor v_; ¢ in wy(l1,l2,13) by the
factor v_; _1, we obtain wa(ly,l2 — 1,13). We have an obvious surjective
homomorphism of n-modules (see Corollary 4.10)

W_10—=W_1_1, vo10+—v_1-1.
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Therefore, we obtain a surjective homomorphism

(UVO)Zl,’z’:?zs - (UVO)Zl,’zIZz_1,z3v w1 (l,l2,13) = wa(ly, l2 — 1,13).

In addition, the vector esz[0]*2ws (11, la, l3) maps to zero, because
632[0]l2w2(l1712 - 15 l3) =0.
The proposition is proved. Q.E.D.

Corollary 4.12. Sequence (4.5) is exact in the first and third terms.

Proposition 4.13. Suppose (I1,12,13) € R’fj’kz, i+l =13 < ko
and I3 > 0. Then we have a surjective homomorphism of n-modules

(4.12) (Uvo)tik, e (1) — (Uvo)itk, _,

l1,l2,l3
w1(117127l3) = wl(llal27l3 - 1)

Proof. Replacing a factor vp o ® v—1 in wi(l1,12,13) by the factor
v0,—~1 ® Vg, we obtain wi(ly, 2,13 — 1). By Definition 4.2,

U®) - (voo ®v-1) = (Uvo)y11, U®) - (vo,—1 ® o) = (Uvo)i’so-

Therefore to construct (4.12) it is sufficient to construct a homomor-
phism

(Uvo)iﬁg - (Uvo)i:io, vg,0 ® U_1 > Vp,—1 ® Vp.
Using Proposition 4.9, we have
(Uvolits = Uity = Ubte — (Uvo)ts -
The proposition follows from |
es1[1)2w; Iy, 12,13 — 1) = 0.
Q.E.D.

Proposition 4.14. Suppose (I1,12,13) € lej’kz, lh+l—-13 <k
and I3 > 0. Then we have a surjection of n-modules
K1,k K1,k
(UVO)zll,z;zg/(%l[1]l3> - (UVO)zll,z;la—v
wa(l1,l2,13) — wa(ly, lo, I3 — 1).
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Proof. Replacing a factor vg,o ®v_1,—1 in wa(l1,l2,13) by the factor
vo,—1 ® v_1,0, we obtain wa(l1,l2,l3 — 1). We have

U(ﬁ) “Vp,0 ®V—_1,—1 = (UVO)%:?J» U(l‘l) V9,-1 Q@ V-1,0 = (UVO)1 1,0

" . 2,2 2,2 I
We have a surjective homomorphism (Uvo)7'7; — (Uvo)7’1 0, Which is
the composition

(UVO)1,1,1 >~ U1 11 U12,’12,0 - (UVO)if,o
Therefore we obtain a surjection
Uvo)wz, — (Uvo)itie, —1-
The proposition follows from
es1[1)2w(ly,la, 13 — 1) = 0.
Q.E.D.

Corollary 4.15. Sequence (4.7) is exact in the first and third terms.

Proposition 4.16. Let (ll,lg,lg) € Rk1 *2 ond 1y > 0. Then there
exists a surjective homomorphism of n- modules

k1,k K1,k
(VVO)lll,l;lg,/(e?’z[O] ) — (VVO)lll,lzz-l,min(ls,ll+lz—1)’
’w;g(ll, lz, l3) —> 'wg(ll, l2 - l,mln(lg, l1 + 12 — 1))
Proof. The proofis similar to the proof of Proposition4.11. Q.E.D.
Corollary 4.17. Sequence (4.6) is exact in the first and third terms.

Proposition 4.18. Let (ll,lz,lg) € R’Cl *2 and 1, > 0. Then there
exists a surjective homomorphism of - modules

k1 k k1k
(VVO)hlJz?la/(ezl[O]h) - (VVO)hl‘lz,lz,min(la,l1+l2'1)’
wg(ll,l2,l3) — w3(l1 — l,lz,min(lg,,ll + 1y — 1))

Proof. The proof is done similarly to the proof of other cases with
the help of the surjective homomorphism

(4.13) (Uvo)}:io — (Uvo)(l):io, Vo,-1 @ Vo — V-1,0 @ V-1,

which we construct below.
First, we show that

(4-14) (UVO)I 1,0 — U1 1,0°
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By (3.33), we have the inequality
90}:?,0(217 z) < 901:3,0(21, z2) + Zziﬁé,’il(q”lzl, qz2).
By the definition we have an isomorphism
V01121 = Uo 1,00
Therefore
o173 o(21,22) < o1 o(21, 22) + 220077 o (a7 21, g22).

By Proposition 4.11 and (Vvo)é:il ~ (UVO)(I):%,O C W_i10® W_q, we
have the inequality

(bvo)rs o(21,22) > (pvo)ra 021, 22) + 22(0v0)y's o (@ 21, g22).
By Proposition 4.9, we obtain the following diagram:
2
Sotio(zl, 22) < 22 ‘P(1):1,0((1 121,q2) + 80}:3,0(21’ z2)

V| Il Il
1,2 1,2, - 1,2
(SOVO)1,1,0(Z1aZ2) > 2 ((pVO)O,l,O(q 1217‘122) + (‘PVO)1,0,0(21,22)

From here we obtain isomorphism (4.14).
Map (4.13) is a composition of the following mappings:

(Uvo)r': 1,0~ U1 1,0 ™ Uol,’12,0 - (UVO)(%Z%,()-
Q.E.D.
Corollary 4.19. Sequence (4.8) is exact in the first and third terms.

Theorem 4.6 is proved.

85. Uniqueness of the solution to the SES-recursion

5.1. The main case of the recursion

Recall the definition of the regions of the parameters Rk 1ka R’“’k2
Rk
i (see (3 37)—(3.39)).

Let <,0l1 Iy, 13(21, z2) ((l1,12,13) € Rkl’kz) and Tﬁlkll’b %, (21, 22)
((l1,12,13) € Rf}””) be formal power series in variables zi,z> whose
coefficients are Laurent power series in q.

We use the following convention. A series with a negative index is

understood to be zero. If I3 > min(ly, l2), then gﬁf; ’12 s (21, 22)
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= ¢71172§?m1n(l1 lz)(zl’ z2) If I3 > I + Iz, then wl l22l3 (zl’ 22)

wlkll,zz2l1+l2 (21, 22)
Assume that the following inequalities hold:
If (l17 l?a l3) € Rkl”m’ then

ki, , Gk -
(5.1) apllllQZZs(zl,zz) < ‘Pl: 122 115 (71, 22) + 2 U er i, (@721, 422).-

If (1,12, 13) € RE™, then

ki1, k1,
(5'2) P! k2 (21722) < wll 12 1,5 (ZI,ZZ) + 22 90131 k;—lz [1(zlyqz2)

11,03
If (I1,12,13) € lej’kz and either [y + lo — I3 5 kg or I3 = 0, then

(5. 3)

~k k k1,k
galll,kgilg ('21’ 22) < Q0l11,322l3 1(2’1, 22) + ( Z z2)l3¢l117 lz,lz—l3,k1—l3 (21, ZQ)'

If (I1,l2,13) € RE™, then

Tk1,k Tki1,k 11 =ki1,k
(5.4) @Z’zll,lz,?zg(zly@) < 1/’z11—12,12,13(21722) + 21190161 121,11+12,13 zl(qzlazZ)

We call formal power series of the forms

Pz, 2) B0 (0721, ¢ 22) (I, las Is) € REP™),
P21, 2)00 0 (¢%21, P 22) (I, 2, 13) € RyPF2)

1,l2,l3

higher degree seriesif a,b € Z>o, p(21,22) is a polynomial in 21, 2 whose
coefficients are Laurent polynomials in ¢ and if p(0,0) = 0.
Let F'(21,22) and G(z1, 22) be formal power series in variables 21, 23.
We write F(21, 22)<.G(21, 22) if there exist higher degree series H; (21, 22),
.y Hg(z1, 22) such that
F(z1,22) < G(z1,22) + Y11 Hi(z1, 22).

Lemma 5.1. Under the assumptions above, let F(z1,z22) be ei-
ther <,0;°11’l2 1, (21, 22), for some (11,12,13) € Rkl’kz, or wlkllifla (z1,22), for

some (li,la,13) € Rkl””. Then there exist mi,mg € Z>1 such that
F(z1,22) <o 50 (4™ 21, 4™ 22).

Proof. First, consider the case F(z1,22) = 010 G (21,22). We use
the given inequalities as follows:

k )
010 o (=1, 22)<900 kzzo(zl, ‘122)<¢0 k22k1 (21, qz2)<<ﬁk1 ka,k1 (gz1,q22).
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Here we used (5.2) then (5.3) then (5.4). Then we use inequality (5.1)
ks times to obtain:

k1, _k1,k
‘Pki,k;,kl(qzlaq'z@) *goki,o’zo(qzl,ng).

Finally, using (5.3) followed by the k; applications of (5.4), we obtain:

k1, ki, Tk k
P, 020 qz1, q22)<1/’k11 02k1 (g21,922)<«¥g 5.0 (921, q22)-

Combining, we obtain: _gfo’ﬁf (21, zz)g*& ’B (gz1,q22).
Next, consider the case F'(21,22) = gbflly’l]?ls(zl,zg), (I1,10,13) €

Rp*2.
We start using inequality (5.1) followed by (5.3). We repeat this
step I3 times. Then we apply (5.3) one more time. We get

ki k ki, oy
(p111,122l3 (21, z2)<"‘(‘0l11 122 I3, 0(21’ 22)51'0111,7122—13,’91 (21, 22)'

Then we use the I; applications of (5.4) and after that the I; — I3
applications of (5.2). We obtain

Tk,
¢l11122 ls, kl(zl’Z2)< 7/’0 do— lg k1(21722)< d’o (21722)

Combining, we obtain

_k1, -
90111 Iy ,ls (21, 22) < % 0,0 (Zla z2)< 1/’ (qzl, qz2).

Next, we consider the case F(z1,22) = 95?11,’/:13 (21,22), (l1,12,13) €
Rl[cj},kz and (ll, lg,l3) ¢ Rgl’kz.

Let | = min(l3, k1 — I3 — l2 + I3). We use | applications of (5.3) and
obtain

k1, _kik
Qohl,lz I3 (Zl’ zQ)S*Lplll,l;la—l (Zl’ 22)'

We have either (I1,ls,l3 —1) € R[kf’kz, or I3 — 1 = 0. In the first case we
are reduced to the situation treated above. In the second case, we use
(5.3) to obtain

k1, T k1,k Tki,k
‘pllll;O(Zly 22)<wl11,l2,2k1 (21, 22) = wlll,lg?l1+l2 (21, ZQ),

where the last equality holds since I + I3 < k. Using I times (5.2) and
then I3 times (5.4) we obtain:

Thik ki, k1 k
YL oty 4o (21, 22)<*’/’l110 1, (21, 22) <y 0.0 (21, 22)-
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Last, consider the case F(z1, z2) = ¢11122213 (21, 22), (I1,12,13) € Rkl’k:’.
We use (5.2) I3 + 1 times and obtain:

—ky,k ki, >
"/’111122l3(zlaz2) *"blllolzl (21,22)< 90111 k;ll(thZz)

Therefore we are again reduced to the previous cases and the lemma is

proved. Q.E.D.
—ki1,k2 k1,k2 Tk1,k2

Corollary 5.2. Let ¢;, ;% , (I, 12, 13) € RiF™, and Ui dss (I1,1a,
l3) € Rf}””, be formal power series in variables 21, za, such that inequal-
ities (5.1)-(5.4) are satisfied.

Assume that all coefficients of the power series are Laurent power
series in q with non-negative integer coefficients. Assume also that the
formal power series 1/1510’%2 has no constant term.

Then all these formal power series are identically zero.

Proof. Suppose the contrary, and let ni,ns be non-negative inte-
gers such that one of the series has a non-trivial coefficient of 27! 23? and

all coefficients of 2z 252 of all power series are zero if either a3 < ny or
a2 < nz. By the assumption and LLemma 5.1, we have n; + ns > 0.

Let n3 be an integer such that the coefﬁment of 2] 25%¢™ is non-

Tk k
zero in one of the series F'(z1, 22) and coefficients of 27 25%¢™ of ¥4 &

vanish for n < ns.
By Lemma 5.1, we have

F(21,22) < ZH (21, 22) + Ugle (214™ , 224™),

=1

where H; are higher degree series and mj, ms > 1. Clearly, the coeffi-
cient of z7*252¢™ is zero on the right hand side of this inequality and
does not vanish on the left hand side, which is a contradiction. Q.E.D.

5.2. All inequalities are equalities

Recall that we have a set of fi-modules (UVO)Zl,’lzfzy Uﬁf;ffla for
(I, l2,13) € Ri™ and (Vo)) V,’fl,f‘;’s for (I1,12,13) € Rp}™,
whose characters we denote by (c,ovo)l1 I 13(z1,22), @fll”l';fla(zl,zz) and
(wvo)ﬁl,}ffb (21, 22), wll’l;ls (21, z2), respectively.

Theorem 5.3. We have

k1 ok ki k k1,k
(pvo)iin,(z1,22) = @ri(z,22) (s 1z, 18) € Ry ™),

(@Z)VO)I: 712213 (21, 22) = ¢l]il,}5?l3 (Zla 22) ((l17 l27 l3) S R(C/IJ%)’
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and therefore surjections in Lemmas 4.3 and 4.5 are isomorphisms of
n-modules.
Moreover, Theorem 3.10 holds.

Proof. The theorem immediately follows from Corollary 5.2 applied
to the series

k1 k Ky k k
(plll l22l3 (zl’ 22) (plll l;ls( 1, 22) - ((pvo)lll,’lmla (21, 22)’
Tk Wk ks k
¢Qf2213(217Z2) Vi 1s (21, 22) — (Yvo)y, 1,7, (21, 22)
QE.D.
Corollary 5.4. The principal subspace V;* | C My, is isomorphic
to ;"
lii2,litla”

Proof. As we noted in Remark 3.4, there is a surjectlve homomor-
phism of n-modules

kk

k
‘/21712‘11-6-!2 - Vll,lz — 0.

On the other hand, taking tensor products of the Frenkel-Kac construc-
tion we obtain a surjection

k K.k
Viia, = (Woli iy 41, = O
Hence the assertion follows from Theorem 5.3. Q.E.D.

5.3. Other cases ,
In this section we describe two more versions of Corollary 5.2 which

we use later to establish the bosonic formulas for our characters.
Set

(5.5) Ry ={(lu,l2,03) | ks — 1 < L+ 1o — I3 <k} N PGHFe,

Proposition 5.5. Let ¢ (21, 2) ((l1,12,13) € Rkl’kz) and

11,l2,l3

1/1{“1132 s (z1,22) ((11,12,13) € Rkl’kz) be formal power series in variables
21, 22 such that equations (3.40)—(3.43) are satisfied (where (3.42) is as-
sumed for (I1,12,13) € REVF and either Iy + 1y — I3 # ko or 13 = 0).

Assume that all coefficients of the power series are Laurent power
series in q. Assume also that the formal power series 1/7(’)“’16%2 (21,22) has
no constant term.

Then all these formal power series are identically zero.

Proof. The proof of the proposition is similar to the proof of Corol-
lary 5.2. Q.E.D.
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Consider the case k; = kz = k. Then if (I1,l2,13) € Rp*, then
I3 =1 + 1l — k. And if (I1,l2,13) € RE®, then I3 = [; + I».

Let ¢ 1 (21, 22) (I, 12, 13) € RG®) and 9 | (21, 22) (1,12, 13)
€ R’f/’k) be formal power series in variables z1, 22 such that the equations

—k k Tk Iy K.k
wl17l27l1+l2 (21, 22) - ¢l1712—1,l1+12—1(z1’ 22) + 222¢l1+lz,k—12,l1 (zl’ ng),
~ko.k  Shk Iy kk
Uiyt e (21 22) = V20 0, 40,1 (215 22) + 20 Bl 4, 0,0, (9215 22)

and

_k,k  _kk
Bl gy 12—k (F1:22) = Py 110, 415 —k—1 (21, 22)

12 7k .k 1
+z221/}ll+lz—k,k—l2,l1(q 21,q%2)
~1 lit+la—k 7k.k
+ (g7 zze) T wk—lg,k—ll—l,Qk—ll—lz—l(21722)
are satisfied.
Note that the last equation is obtained from equations (3.40) and
(3.42) via eliminating the term cﬁfl”iz,h“z_k_l(zl, 22).

Proposition 5.6. Assume that all coefficients of all power series
Pl 1o (215 22) ((1,12,13) € RG*) and 9, 4, (21, 22) ((,12,15) € Ry*)
are Laurent power series in q. Assume also that the formal power series
ﬁg,’g’o(zl,zz) has no constant term.

Then all these formal power series are identically zero.

Proof. The proof of the proposition is similar to the proof of Corol-
lary 5.2. Q.E.D.

§6. Bosonic formulas for the characters of n-modules

In this section we write explicit solutions of recursion relations (3.40)-
(3.43) in the regions Bf* and RE™ in the bosonic form. First, we

prepare notation and recall basic facts about the small principal 5/[; sub-
spaces (see [FJLMM1]).

6.1. The small principal subspaces.
Let a denote the abelian Lie algebra spanned by ez [n], es1[n], n € Z.
For non-negative integers k, 1, lo satisfying l; + lo < k, define X,kl,l2 to
be the cyclic a-module with a cyclic vector v and the defining relations
ea1[nJv =esi[nJv =0 (n>0),
e[0Ty =0,
621[0]a631[0]ﬁv =0 (OZ + ,@ = l1 + l2 + 1),
621(Z)a631(2)ﬂ = (a +06=k+ 1)
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The space X, l’i,l2 has a monomial basis of the form
.. €31 [—1]a3€21 [—1]‘”631[0]0'1 €21 [O]aO’U,

where {a;}i>0 run over sequences of non-negative integers such that
a; = 0 for almost all ¢ and that satisfy the conditions

ao <1y, ap+a1 <l + 1o,
a; + aip1 + a2 < k.

Let Xﬁ,lg (z1, 22) denote the character of X lkl 5 (normalized in such
a way that the degree of the cyclic vector v is (0,0,0)). The description
of the monomial basis of X l’j 1, leads to the following recursion relations

(6.1) X{cl,lg (21,22) = Xﬁ-uz(zla z2) + ZiIXﬁ,k—zl—lz (2122, 422—1)-

We now write a formula for X;c17l2 (21, 22). Let the quantities p(m, n, s,
21, 22) (m,n € Z>o, 0 < s < 5) be given by
A,
km+l1 kn

7

pl1 1,(m,n,0,21,22) =
z2)
2) km+l1+lz hntla
z2) =
22)
)

pll’lz(m7 n, 1,21, 22

k
Py, (ma n, 2a 21, %2

k km+ll+l2 kn+l1+l2
pll,lz(m7n137 Zl) 2 9

km+l1 kn+l1 +l2

K
by, 1, (Myn, 4,21, 22
km kn+l2

pl1 1, (M, n, 5, 21, 22
Let the quantities a(m,n, s) (m,n € Zxg, 0 < s < 5) be given by

aﬁ,lz (m,n,0) = kQ2(m,n) — ml; — nla,
afhlz(m, n,1) = kQ2(m,n) + (m — n)ly — nly,
afhlz (m,n,2) = kQz(m,n) + (m — n)ly + mly,
afl,lz (m,n,3) = kQ2(m,n) + nly + mls,

afhlz (m,n,4) = kQa2(m,n) + nly + (—m + n)la,
afhh (m,n,5) = kQ2(m,n) — mly + (—m + n)ls,

where Qa2(m,n) = m? + n? — mn.
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Let the quantities d(m,n, s, z1,22) (m,n € Z>p, 0 < s < 5) be
defined by

d(m,n,0,21,22) =(q) ( )m n(zlq2m ”)oo(z 1 —2m+n+1) m—n

X(2122qm+n) (Zl 2z 1q—m n+1) (ZQan m)m—n(zz_lq__zn+m+1)n,

d(m7 n, 17 21, 22) = _21 q—2m+nd(m’ n, 07 21, ZQ)a
-1 _—m—n 1- ZQqn
d(m,n,2,21,22) = —27 25 1q i_—zT—d(m,n,l,zl,ZQ),
d(m,n,3,z1,22) = -z{lq_2"+md(m n,2,z1,22),
o 1—27lgm
d(m) n,4, 21, Z2) = _zlqzm nT;m—qnd(m’ n,3, 21, 22),
d(m’ n, 57 21, 22) = _zlz2qn+md(ma n, 43 21, 22)-

We note that for all s the quantities d(m,n, s, 21, 22) factor in a similar
way as d(m,n,0, z1, 22) does. For instance

d(m,n,5,21,22) = (Qn(Dm-n-1(218""""oo (21 "¢ > )
x (zlz2qm+n)oo(z1—1z2—1q—-m—n+l)n(z2q2n—m+1)m_n(z 2n+m) 1
We also note the following simple relations:
1 — n
d(m,m —n,5,2120,25") = —%%d(m,n,o,zl, z2),
—q
1 _ n
d(m,m —n,4,2120,25 1) = 1 ZZZ dim,n, 1,21, 22)
1—z27tg™
dim,m —n,3,2122,25 ") = 211 _ql d(m,n,2, 2, 2)

For all integers k, 1,13, we define
(6.2)

k
all,Lz(mffhs)

k
Z pllylz(ma n95721522)q

k
Z1,%2) =
(XB)ll,l1+l2( 1, 2) d(m, n,3,21,z2)

m>n>0,s=0,...,5

Remark 6.1. We deal with expressions (XB)Z,th (g%21,9%22),
(XB)ﬁ,ll +l2(q°‘zlzg,qﬂzz_ 1) etc. All these expressions are sums where
each term is a ratio of a monomial in 21, z2 and of a product of factors
of the form (1 — 2423q*), where either i > 0,5 > 0 ori <0, j < 0,
1+ 7 < 0. In the first case we expand

oo
Z 2122‘1

a=0

1 - z1z2(1
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and in the second case

1 —i =7 — - i.J —a
= (—27"27¢7%) Y (zi2dq") .

1— 2tz q =0
Using these expansions we can always rewrite our expressions as formal
power series in the variables z;, zo whose coefficients are Laurent power
series in gq.
The following result can be extracted from [FJLMM1]. For com-
pleteness we give a proof.

Theorem 6.2. For non-negative integers k,l1,ly such that [ +1y <
k, we have

X1, 1, (21, 22) = (XB)f, 1, (21, 22).

Proof. The formal power series Xﬁ,lz (z1,22) (0 <13,lz,0l1 +12 < k)
are uniquely determined by
(i) relations (6.1),

(ii) the normalization x}. ;. (0,0) =1,

(iii) the initial condition x* 1is (21,22) =0.
This follows from the [FJLMM1], Proposition 2.5 and also can be proved
directly using the notion of the higher degree series (see Section 5).
All the conditions above can be verified for (XB)ZJ2 (21, 22) by a direct
computation. Q.E.D.

6.2. The bosonic formula for the n-modules.

For all integers ki, k2,13, 2,13 we introduce the formal power series
in z1, z2 whose coefficients are Laurent series in ¢:

(6.3)
(0B)E, (21, 22) = Z 4 T xa)y, (qi__l.zlzzl?_mﬂzz_l)
n >0 (0)i(¢*22)00(g™ 21 25 )
gfrtlagithatia (g1 (g7 12, ¥ 2,)
Z% (@)i(4%122)00 (47225 Vi ’
(6.4)
gt ke=ila (XB)f]l,lg (g %21,9%22)
(VB )11,12 %, (21, 22) = g (@)@ 5,
iko+lg

.2 . ;o
P qz ka+ila (XB)ll I (q 2129,q 2122 1)

+.Z (@)i(¢%*1 22)o0 (7225 )i

>0
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Proposition 6.3. For all integers ki, k2,11,12,13 we have

(6:5) (#8)1} 1y (21, 22)

= (oB)I 1 (21, 2) + 22 (YB) ey, (07 21, q20),
(6:6) (81, iy, (21, 22)

= (W) 1, (2 2) + 22 (0B) ey, 1, (21, 422),

(6.7) (pB)1" 1, (21, 22)

(‘PB)zl,zg,13 1(21,22) + (4 2122)l3(¢3)zf’k[§,12 s ka —15 (215 22),
(6:8) (¥B)iyisny (21, 22)

(‘/’B)Zl’ Liails (21,22) + le (‘PB)Zi’kll,th Is— 1, (71, 22).

Proof. We prove (6.5). The proof of other formulas is similar.
We have

E1k 1 ki,k -
(‘PB)lll,zzzza(zl’@) - 222(¢B)131,k22 lz,ll(q '21,q22)

lk2 z kz—ilg(XB)ls’ll(qz 1Z1z2 q —2i+1, )[1_ (1_ )]

a Z (Q)z(qz"zz)oo(Q”z’“Z;l)i

>0

. o L . ) o
+Y 2yt g hatila (x )P (g7 21, 2 ) [1 — (1 — g 725 )]
o~ (2)i (g% 22)00 (4% 25 )it
ky.kz
(‘PB)llllz ”3(21,22).
Q.E.D.

Theorem 6.4. If (I3,12,13) € Ri**2, then

k1K k1,
(‘PB)llll:la (21,22) = ‘Plllzz Is (21, 22)-

If (l1,19,13) € RIV™2, then
k k k
(@Z’B)zf,lﬁla(zlv 22) = ¥y, 1,0, (215 22)-

Proof. Consider ¢"%2 (21, 25) ((I1,l2,1s) € R;V*?) and

l1,l2,l3
wlkll;z s (z1522) (L2, 1) € R’f}’kZ). They satisfy recursion relations
(3.40)—(3.43).

The series (p5);" 157, (21, 22) ((l1, 2, 13) € R§™) and ()} 1, (21, 22)

I1,0a,l3

((14,12,13) € Rkl’ ?) satisfy relations (6.5)—(6.8).
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We want to use the uniqueness of the solution of (3.40)—(3.43) (see
Proposition 5.5). So we compare two sets of relations: (3.40)—(3.43) and
(6.5)—(6.8). The difference is two-fold. Firstly, the expressions of the
form min(a, b) do not enter the right hand sides of (6.5)—(6.8). Secondly,
it is not assumed that the series (903)11 115 (71, 22) and (1,[)3);“11’[2 15 (21, 22)
vanish unless all /; are non-negative. Therefore our theorem follows from

the Proposition 5.5 and the following relations:
1) (¥8)215 1 (21, 22) =0,
2) (¥B);tk2 |, (21,22) =0,
3) (pB)™ (21, 22) =0,
4) (B)P 1 (21,22) =0,
5) (SOB)Zl,’lI;?min(ll,b)(21’22) = (@B)fll,}’;?mm(h,12)+1(zlv22)’
6) (1113)711,’1’:?11+12(Z1»22) = (1/’B)fll,z§?zl+l2+1(zlv22)~

We prove the last formula. The proof of the rest is similar. We need to
show that

ika i2ko—il
Z2 q 2 2

k1 —1 21
Z (@): (@ 22) o0 (g2 125 1), (XB)i} 1,41, (0 21,47 22)
i>0

lkz +lo ko +ils

q Ky i —2i_—1
+ E - 212 z
1>0 (q2z+lz2) (—22Z;1)i+1 (XB)11711+12(q 122, 9 2 )

ik2 i k2—il2
)

‘ q k —i 24
=> (@)i(g%22)00 (g7 2125 1); (XB)L, 141,12 (0 21,67 22)

i>0
ik2+lz qi2k2+z’lz . ) vi 1
+Z (XB) 1y +1p+1(@°2122,07 " 25 ).
z>0 (q2z+1z2) (q—21z2 )H— 1,0+l + ’

It is sufficient to show that the coefficients of z%’”q’ k2 for each i are
equal:
(6.9) z(l2+2) (XB)11,11+12(CI 21,(1 22)

+ g2z (XB)11,11+12 (¢'2122,47%25")
;l(XB)Zl,ll+12+1(q_izla 42i32)

+q" 23 (XB)fll,ll+z2+1(qizlz2» %25 h).

Each term in (6.9) has the form

5 *y
k a m,n,s
E E pl11,l2(m, n,s,zl,zz)q 11'12( )gs(zlaz%q)
m>n>0 s=0
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where g, are independent of k1, {; and I5.
Equating coefficients of pfll,lz (m,n,0, 21, 22) we are led to show

k1

Lk
—92; alll,lg (m,n,0) qualIJ2 (m,m—n,5)

—q ~q
d(m,n,0,q7%z1,9%22) =~ d(m,m —n,5,qiz1 22, q 225 })

(6.10)

.k . ok _

_ _q—2zq011,12+1(m7n,0) q_zzqall«lz‘*'l(m’m n,5)

= — oh - o7 1N
d(m7n707q 1z1,q 122) d(m,m—mf),qlzlz%q 21‘22 )

Equation (6.10) is equivalent to the equation

d(manao’q_—izlanizQ) 1- qn

: A .y
d(m,m —n,5,q'z120,q7 225 1) 1 — 299"+

which can be checked by a direct calculation. In a similar way we check
that the coefficients of all monomials p{“hlz(m7 n, s, 21, 22) coincide. The
theorem is proved. Q.E.D.

§7. Case of k1 = k; and Toda recursion

In this section we restrict to the case of k1 = ko = k. If (I1,12,13) €
RYF, then I3 = Iy +lo, and if (I1,lz,13) € RE¥, then I = Iy + 1y — k. As
a result, in (6.3) and (6.4) several terms have the same dependence on
k,l1,l2. In principle, these terms can be summed up. However, a direct
summation is not completely obvious. We use our recursion to obtain
the result of the summation, which turns out to have a factorized form.

Set

(7.1)
(921 '25 )ds+ds '
(q)d1 (q)dz (qzl—l)dl (qz2—l)d2 (qz1—122—1)d1 (qzl_lz2_l)d2

Idlyd2 (21, 22) =

Proposition 7.1. The functions Iy, 4,(21,22) satisfy the following
recurrence relation
(201 (g™ = 1)+ (¢%7" = 1) + 22(¢™% = 1)) 14, 4, (21, 22)
= q® Ny, 1,4,(21, 22) + 2247 1u, 4,1 (21, 22).-
We call this relation the Toda recursion.
Set further
1
(21)00(z2)oo(zlz2)oo

jdl,dz (ZI,ZQ) = Id1,d2(21’22)-
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Definition 7.2. We define the series A ; (21, 22), By, 4,(21,22) as
follows:

A3, 4, (21, 22) = Jay (w1, w2) £* (w1, w2),

BY, 4, (21,022) = (1 — 23 g™ %) (—w2) Ja, 4, (w1, w2),

B, a,(21,q22) = (1 — 27 257 g~ P )wiwa Jy, g, (w1, w2),

Bl 14, 1(21,922) = (1 — d2)(—w1)jd1,d2(w1,w2)
331—1,d2—1(zlaq22) = (1 — " 22y Ywiwl Iy, 4, (w1, w2),
Bgl,dz—l(zlaqz2) =(1- q_dlzl_ 253 ) (—wiwd) Ja, 4, (w1, w2),

Bgl,d2~l(zl7qz2) = (1 - qdz)']_d1,d2(wl7w2)7

where w; = 216?37 %, wy = 29¢?%~ %1 and
fo(wl,wz) =1, fl(wl,wz) =-—w1»f2(w1,w2) = w%wz,
Fiwr,ws) = —wiwd, f4 (w1, w2) = wiw}, f* (w1, ws) = —ws.

In this section we prove the following theorem.

Theorem 7.3. We have

2 2

d1,d2>0
—lidi—12d l1(d1—d2)—l2d2 g1
x (q 1d1—l2 2Ad1,d2(21,zz)+z 1(d1—d2)—12 24} L dz(zlvz2)
L+l 2 li(d1—d2)+l2d1 42
+le 2222(] 1(d1 2)+l2 lAd17d2(zlaz2)
Li+le lida+lad 3
+ (2122) 1+ 2gh 2+12 1Ad1’d2(zl’z2)

L i+l la(da—d l1d 4
4 211Z21+ 2q 2(d2—d1)+11 zAdl,dz(ZhZ?)

lo —lidi1—1l2(d1—d 5
+ 2qhd 2(dy Z)Adl,d2(zl,z2))

and

(7.3) ot k(L) = Y g —dida)

dy,d2>0

x (q_lldl_lzdngl,dz (21,22) + zilqll(dl_d"’)”l’dzB}lhdz(zl, 22)
4 Zil*széz qll(dl—d2)+l2d1 Bgl,dz (Zl, 22)

+ (z129)01 2 l1d2+l2d1331 4, (21, 22)

+ Z l1+l2 l2(d2 d1)+l1dzB41 d2 (zl’ Z2)

lo —lidi—l2(d1—d 5
+z22q 1d1—12(dy Z)Bdl,dz(zlv'z?))’
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The strategy of the proof is as follows. We show that the right hand
sides of (7.2) and (7.3) satisfy the recursion relations provided certain
relations for A7 , and By ,, are satisfied. We prove that these relations
hold for A3 , , By 4, of the form given in Definition 7.2. This proves
Theorem 7.3 because of the uniqueness of the solution of the recursion
relations (Proposition 5.6).

Substituting (7.2) and (7.3} into the recursion relations, one can
easily verify the following three Lemmas.

Lemma 7.4. The relations

(1 q ) di1, dg(zla z2) = 321,42—1(217qz2)7

(1 q )Ad1 dz(21732) B31~1,d2—1(21’qz2)7
(1-q~ 23 )Adl,d2(21722) =Bél,d2(zlaq22)7
(1-q dlz 23 AY 4o (21, 22) = Bél,dg—l(zlvq22)7
(1- qdl dzz—l)Adl d2(21722) 331—1,d2—1(z1aq22)7
(

L 1) A g 1052) = B 1,052

imply the recursion

(7.4)
ke _ kK la kK
Vi o a1 (P10 22) = U0, 10, 10,1 (200 22) + 227004, ki, 1, (215, 422)-

Lemma 7.5. The relations

(1- qdl)Agl,dz(Zl’@) = Bél—mz(qzla 22),

(1— g2 AY, 4, (21, 22) = BY, 4,(q21, 22),
(1—qB M2 AG, 4, (21,22) = BS _ 4,_1(g21, 22),
(1—q %2712 1AL, 4,(21,22) = BY, 1 4,(q21, 22),
(1 —q 227251 AG, 4, (21, 22) = BY, 4, (g1, 22),

(1—q™)A, 4,(21,22) = Bl _1.4,_1(q21,22)

imply the recursion
(7.5)

Kk kk L kk
Vo412 (P10 22) = W00 0,1 (215 22) + 2700 1, 0, (021, 22).
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Lemma 7.6. The relations

(1- qdz)Bgl,dg(Zh@) =225 1q_d1+1Ad1 1,ds—1(21,22)

+ Adl,dg-l(q 121,922),

(1= q®)BY, 4,(21,22) = 25 g 24 AL 41 (21, 22)
+ A% 41007 21, 422),

(1—q %27 2 ")BS, dp (21, 22) = 25 . d2+1Ad1+1 (21, 22)
+ Al 1,0, (07 21, 922),

(1—q 2725 Y)BY, 4, (21, 22) = ¢2 V1 AY 41 gp41(21, 22)
+Ad1+1,dg(q 121, q22),

(1= g" %271 )BY, 4,(21,22) = ¢2 1 AL 4y 41 (21, 22)
+ Agl,dg(q—lthzz)’

(1— g% %22 B], 4,(21,22) = zi_lz2_1q—dl+1A§1—1,d2(zlv 22)

+Ad1 d2( Zla qZQ)

imply the 3-term relation

(7.6) 90;6152 Litlg— k(zlaZZ):‘PZ’,kzz Lo —k—1(21, 22)+
¢11+12 kok—lp,t (4 21, q22)+
(¢ 2122 )th k'/’k lo,k— 11—1,2k—11—12—1(zl’z2)-
Proposition 7.7. The series Aj ,,, B, 4, satisfy all relations
from Lemmas 7.4, 7.5, 7.6.
Proof. The proposition is proved by a direct calculation. Q.E.D.

Proof of Theorem 7.3. Theorem 7.3 follows from Lemmas 7.4-7.6,
Proposition 7.7 and Proposition 5.6. Q.E.D.

Recall that ¢§;§,0(z1,z2) is equal to the character of the principal
subspace V¥ of the level k vacuum 5/[; module. In this case, one can
further sum the six terms in (7.3) to obtain the following corollary:

Corollary 7.8.
(7.7)
2
chV* = Z z{cdlZécdzqk(df+d2—d1d2)(]dhd2(z1q2d1—d2’22q2d2—d1)’

dy,d2>0

where Ja, d,(21, 22) = Jay 45 (21, 22)(1 — 21)(1 — 22)(1 — 2122).
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Corollary 7.9. The functions 14, 4,(z1, 22) satisfy the following re-
lations:

‘nl nz n1+n2—n1n2

di  d2

z
7.8 14, 4,(71, 2 E E 1 Iny o (21, 22)-
( ) ddz it 2) Q)dl—nl(q)d'z*nz 1”2( )

nl—O nz“O
Proof. We recall the fermionic formula for the character of V*:

Ezn1 Ezml Z” 1 min(i,j)(nsn;—msn;+m;m;)

k _
chV™ = Z > (Q)n1 ce (Q)”k (Q)ml s (q)mk

Summing up all terms with the fixed values of nx and mj we obtain the
relation

knzécmqk('n,2+m2 —mn)

k_ a1
(9) aVi= 2, ==

Chvk—l (q2n—7n2:17 q2m—n22).

Substituting (7.7) into (7.9) we obtain (7.8). Q.E.D.

Corollary 7.10. The function Iq, 4,(21,22) is given by the fermionic
formula

—Xis0™i _~ Xiso miq2i>0(nf+mf—nimi)

z .z
14, ,4,(21, 22) = > ! 2
{mi}iso{ni}iso (q)dr—nl (q)nl —ng (q)dZ—ml (q)ml_mZ s

b

where the sum is over all sequences {m;}iso, {ni}i>o0 satisfying m;,n; €
Zyo anddy >mny 2ng >+, do>my >mg >+, and m; =n; =0
for almost all i.

Proposition 7.11. We have

min(dy,d2)
Lija(z1,22) = Y laydpn(21,22),

where
(7.10)
1, (21, 22) 1
d ,dz,’n 1,22) = —_
' (q)dl—n(q)dz—n(q)n(qzl l)dl—’n
(g22) 0

X — — — — .
(27 25 Dn (g8 =2 1 20) 00 (g 42001 257y (g22)dy—n (925
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Proof. Using the equality wg:g’o(zl,zz) = chV* and formula(6.4)
we obtain

ik, i’k

25kq —i i
(7.11) chV* = ; T (q_%_'_lzé—l).(XB)g,O(q 21,7 22)
i>0 V2% o0 ¢

i k (gt —2i -1
+ E . 1
£ (@i )00 (07223 i (XB)&o(d" 2122, 47 %25 ")

Recall formula (6.2). Because of the equalities
km _kn

p('io(m, n,8,21,22) =27 25", a{:’o(m, n, 8) = k(m? +n? — mn),

the right hand side of (7.11) can be rewritten as

min(d;,d2)
kd kd k(d3+d3—d1d 2d,—d 2dy—d
> Ahaphgiitdamdd) N (21T, 20T,
d1,d2>0 n=0

where Ju,,dy,n(21,22) = s == ldden(#1,22). Now the
proposition follows from Corollary 7.8. Q.E.D.

§8. Whittaker vector and the character of the vacuum module

8.1. The quantum group U,(sl3)

Let U,(s!l3) be the quantum group associated to sl3. The quantum
group U, (sl3) is an associative algebra over the field of rational functions
C(v) in formal variable v with generators K*!, E;, F;, i = 1,2, satisfying
the standard commutation relations:

K,K;'=1,K;K; = K;K;, K;E; = v E; K,
K,F, =v?FK;, K,E; = v 'E;K;, K;F; = vF;K;,

E,F; — F,E; = &EF = F,E;,

E?E; — (v+v Y)E,E;E; + E;E? =0,
FEFj ~(w+v YEFF + FF =0
foralli,j =1,2,41%j.

We extend the algebra U, (sl3) by the operators K 1/3 in the obvious
way and use the same notation U, (sl3) for the resultmg algebra.
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Let Z € U,(sl3) be the quadratic Casimir operator given by:
7= U_2K1—4/3K2—2/3 " K12/3K2—2/3 N U2K12/3K;1/3
+ (v —v )2 (v R E KRR
+oRE KKy + v Fia Bk K,
where Fi3 = FoFy —vF1Fs and E13 = F1E; —vESEq.
Lemma 8.1. The element Z is in the center of U,(sl3).
Proof. The lemma is proved by a direct calculation. Q.E.D.

We have an anti-isomorphism of C(v)-algebras T given by:
T: UU(5[3) - U’U(s[3)? El — E? FL = Eia K’i = Kl
We have an isomorphism of C(v)-algebras v given by:

v: Uy(sls) = Uy(sls), E;j— Es_;, Fi—F3_;, K;— Ks_;.

We also consider the quantum group U,,-1(sl3) with parameter v—!.

Denote the generators of U,-1(sl3) by E;, F;, K;.
We have an isomorphism of C(v)-algebras o given by:

o: Uy(sly) = Uy-1(sls), E;— E;, Fy—F, K;— K

Clearly, all these maps commute: Too0 = goT, Tov = VoOT,
voo=o0oov.

8.2. Verma modules

Let A1, A2 be formal variables. Set A3 = —A; — Aq.

Let C(v, v, v*2) be the field of rational functions in formal variables
v,v™M,v*2. Let R be the ring spanned by all elements of the form V9,
where g € C(v,v*1,v*2) , with the obvious operations of addition and
multiplication. In what follows, we consider the quantum groups with
the extended coefficient ring: U, (sl3) ®c(v) R, Uy-1(s13) Qcv) R. We
use the same notation U,(sl3), U,-1(sl3) for the extended algebras.

Let V, be the U, (sl3)-module generated by the highest weight vector
w with the defining relations:

Kiw = ovM A2y, Kyw = v*2 ey, Eiw =0, Eow = 0.

Similarly, let V,-1 be the U,-1(sl3)-module generated by the highest
weight vector @ with the defining relations:

I_{lu_) = ’UA2_)\1’II), I_(QTI) = 'U)\3_)‘2’lf), Elw =0, Ez'w =0.
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We call V,, and V-1 the Verma modules over U, (sl3) and U,-1(sl3),
respectively.

We denote by V, (d1,d2) C V, and by V,-1(d1, dz) C V,-1 the weight
subspaces:

Voldy, da) = {wy € Vy | Kywy = v 7227 2dkdzy,)
Kowy = U)‘Z—)‘3_2d2+d1w1},
Vv—l(dl,dQ) = {@2 € Vy-1 | Kﬂf)g = v/\g-)\1+2d1—d2u—)2’
}'—(2,“—}2 — ,U)\s—)\2+2d2—d1u~)2}_
We have V,, = @iydz:OVv(dl, dz), Vy-1 = @sidzzovvﬂl(dl,dz).
Lemma 8.2. There exists a unique non-degenerate R-bilinear pair-
ing (,): Voy®Vy—1 = R such that (w,w) =1 and
(gwlv U_)2) = (w17 (0 © T)(g)“_J?)’
for any wy € V,,, W3 € V-1, g € Uy(slz).
Proof. The proof is standard. Q.E.D.

In what follows, we use the following notation:

a _ e a b—1
=" lt=TI6.  lah=]]la+i

i=0
The Verma module V, has the Gelfand-Tsetlin basis
{ma,,dyn | d1,d2,n € Z>9,n < min(dy,d2)}

(see [J]). In this basis the action of the U,(sl3) is given by:

o A1—A2—2d1+d.
Klmdlydz,n =vHT7 T Mg, dyns

: Aa—A3—2da+d
Koma,,dyn = 07277 2T M, dg )

Eimg, dyn = Vb1(d1,d2,n)Ma,—1,dy n—1
+1/ba(d1, d2, )M, —1,dy ns
Fima, gy = Vb1(d1 + 1,d2,n + 1)ma, 41,45 ,n+1
+1/ba(dy + 1,d2,n)Md, 11,ds s
Eomg, 4, n = v a(d1,d2,n)Ma; dy—1,ns
Foma, 4, = Va(d1,d2 + 1,n)Mq,; dyt1,n,
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where

a(dl,dg,n) = [dz — TL][/\Q - )\3 + dl - d2 -n+ 1],
by (dy, da, m) = [do —n+1][n]A2 —As —n+ 1]\ — A3 —n+ 2]
1AL 82 [)\2~/\3+d1—2n+1][)\2—)\3+d1—-2n+2] ’
b(d d n)z[dl-n][x\z—)\3+d1—dg—n][/\g—/\;a-l‘dl—TL+1]
AT Ma2—Xs+di—2n][Az — As + d1 — 2n+ 1]
x 1 .
M —A2—di+n+1]

Remark 8.3. Our formulas are identified with the formulas in [J] as
follows. Let the vector m{di,d2,n) correspond to the Gelfand-Tsetlin
pattern in [J] given by:

—)\3 —)\2 —)\1
——)\3—71 ~/\2——d1+n
—A3 —d

Then the action of g € U,(sl3) in our paper is given by formulas for the
action of v(g) in [J].

Similarly, we have a Gelfand-Tsetlin basis of the Verma module
Vy-1,
{Md, dyn | di,d2,n € Zzo,n < min(dy,d2)}.

Lemma 8.4. We have
(Mayda,ns Mg dyn7) = Ody d Ody ity On -

Proof. The Shapovalov form on V, is the unique non-degenerate
 symmetric bilinear form such that the length of the highest weight vector
w is 1 and every g € U,(sl3) is dual to 7(g). According to [J], the
Gelfand—Tsetlin basis is orthonormal with respect to the Shapovalov
form in V,. The lemma follows. Q.E.D.

8.3. Whittaker vectors
We call a series w = >°0° | _( Wdy,dp» Wdy,dy € Vo(d1,dz2), the Whit-
taker vector if wp o is a highest weight vector and

1 1
I_—vgwdl—l,dg, Fawd, 4, = mwdl,dz—l-
We call a series @ = )" ; _( @d, dy» @dy a5 € Vp-1(d1,d2), the dual
Whittaker vector if wg ¢ is a highest weight vector and

EiKiwg, 4, =

v

1= g2 Wdnda—1-

_ ;2_ v _ e
ErK{@d, 4, = T =g 2¥di-1da) E>Kowa,,d, =
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Remark 8.5. Because of the quantum Serre relations, there are no
non-zero vectors invariant under the action of F; and Es (except for the
multiples of the highest weight vector w). The operators e; = E1K;
and e; = E5 satisfy

6%62 —(1+ ’U_2)61€2€1 + U_ZEQE% =0,
e2e; — (14 v%)ezeren + UQeleg =0,
which does not prohibit the existence of non-trivial Whittaker vectors.

Let r(d1,d2,n) and s(dy,dz) be given by the formulas:

r(dy,dg,n) = (As—Az—di—Dn+n?+ Ay — M\ + 1)dy + d2,
S(dl,dQ) = —d% — d% + dido + ()\1 — )\Q)d]_ + ()\2 — /\3)d2.

Let ¢(d1, d2,n) be given by the formula:

1
d =

e(dy, dam) = T o T
o« [)\2 — A3 + 2]00

M —Ae—di+n+1ag-nr—As—n+2[2— A3+ 2]g,—-n

1

X

[)\2 —M+dy —dy—n+ 1]d2—n[)\2 —A3+dy —2n+ 2]00

1

[)\2—)\3—77,-1-'1]"'

Note that ¢(ds, d2,n) is a rational function in v, v**,v*2, which is invari-
ant under the change v — v™1, v vy=21 pP2 s A2,
Set

1
— r(d1,dz2,n)
Wdy.da,n (1 ,U2)d1 +d2 c(dlv d27 n) md,,ds,n»

1 T
~ _ —r(dy,d2,n)+s(d1,dz) -
R I A (e v\ e(dy, d2,n) Mg, dg -

Theorem 8.6. The Whittaker vector w and the dual Whittaker vec-
tor @ exist, are unique and are given by the formula:

min(dl,dg) min(dl,dz)
Wdy,dy = E Wdy,d2,n Wdy,dy = E Wdy,da,n-
n=0 n=0

Proof. The theorem is proved by a direct calculation. Q.E.D.
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8.4. Toda recursion

In this section we describe a relation between the Whittaker vectors,
the Toda recursion and the characters of fi-modules. Such relations hold
with the following identification:

A1 —A2+1 A2 —Az+1
b b

g=1v*  z=q z=q

which we always assume in this section.

The following lemma can be extracted from [E].

Lemma 8.7. The functions (w4, d,,@d,,d,) Satisfy the Toda recur-
ston given in Proposition 7.1.

Proof. The Casimir operator Z € U,(sl3) acts in the cyclic module
V, by a constant which is readily computed on the highest weight vector.
Therefore, we have

(Zway gy @dy;) = (¢ 7+ 47 + 07 Wy dps Day 2)-
On the other hand,
(Zway iy @ar ay) = (V2K YK + K2R3
+ szlz/BKg/S)wdhdz, Wdy ds)
+(v—v)? (v_l(Elel/?’Kz_Q/dehdz, E1@4, 4,)

+ (B KPP Ky Pwa, gy, Ezwdl,dz))

—A1+di—1 —Az2—d1+d2 —Az—da+1
+q +4q )

:(q (wdl ,dz b u—)dl ,dz )

__—A2—di1+d2

q (Wdy—1,d2> @y —1,d5) — €721 (wy,,

da—1,Wdy ,dy—1)-

In this computation we used Elgazdl,dz =0.
The lemma follows. , Q.E.D.

Corollary 8.8. We have 1y, 4,(21, 22) = (Wdy dy» Dy dp ) where
I, 4,(21, 22) is given by (7.1).

Proof. The corollary follows from the uniqueness of the solution of
the Toda recursion, Lemma 8.7 and (7.1). Q.E.D.

Recall the functions 14, g4, (21, 22) given by (7.10). The following
theorem explains the meaning of these functions from the point of view
of Whittaker vectors.

Theorem 8.9. We have

Lay,d5,n(21, 22) = (Wdy,dzns Py dzn)-
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Proof. 1t is easy to see from the explicit formulas that there exist
integers r(dy, d2,n) such that

dy,d2,n _
UT( pe )\/ Idi,dz,n(zl’zz) Md,,dy,n = Wdy,dz,n-

Let Iy, 4,1 (21, 22) be obtained from Iy, 4, (21, 22) by the change v —
vl oM ™M p*2 5 22, Then we have

—r(dy,d2,n)+s(dr,d2) |7 _ e
v r(d1,dz.n)+s(d1,dz) Id17d27"(217z2) Md,,d2,n = Wd,,dan-

It is also easy to check explicitly that

Us(dl’dz)\/f_dl,dg,n(zl, z2) = \/Idl,dz,n(zh 22).
The theorem follows. Q.E.D.

Remark 8.10. In fact, we guessed the formulas for the Whittaker
vectors in Theorem 8.6 expecting that Theorem 8.9 is true.

We recover the result of Proposition 7.11.

Corollary 8.11. We have Iy, 4,(z1, 25) = Y min(did2) I, 4, n(21, 22).

n=0

Remark 8.12. In [IS] the classical limit (corresponding to v — 1) of
the function Iy, 4,(21,22) is written as a sum of min(dy, d2) factorized
terms. The classical limits of our terms differ from the terms in [IS].

Acknowledgments. Research of BF is partially supported by RFBR
Grants 04-01-00303 and 05-01-01007, INTAS 03-51-3350, NSh-2044.2003.
2 and RFBR-JSPS Grant 05-01-02934YaFa. Research of EF is partially
supported by the RFBR Grants 06-01-00037, 07-02-00799. Research of
MJ is supported by the Grant-in-Aid for Scientific Research B-18340035.
Research of TM is supported by the Grant-in-Aid for Scientific Research
B-17340038. Research of EM is supported by NSF grant DMS-0601005.

Most of the present work has been carried out during the visits of
BF, EF and EM to Kyoto University, they wish to thank the University
for hospitality. MJ is grateful to J. Shiraishi and T. Oda for discussions
and information concerning Whittaker functions. We are also grateful to
the referee for the careful reading and valuable comments on the earlier
version of the paper. Last but not least, the authors are indebted to
Tambara Institute for Mathematical Sciences, the University of Tokyo,
for offering an excellent opportunity for concentration in a beautiful
environment.



164 B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin

References

[AKS] E. Ardonne, R. Kedem and M. Stone, Fermionic characters and arbi-
trary highest-weight integrable ;[H.]—modules, Comm. Math. Phys., 264
(2006), 427—464.

[BF] A. Braverman and M. Finkelberg, Finite-difference quantum Toda lattice
via equivariant K-theory, Transform. Groups, 10 (2005), 363-386.

[C] C. Calinescu, Principal subspaces of higher-level deformed gg‘modules,
math.0611534.

[CLM] C. Calinescu, J. Lepowsky and A. Millas, Vertex-algebraic structure
of the principal subspaces of certain Agl)-modules7 I: level one case,
math.07041759.

[D] C. Dong, Vertex algebras associated with even lattices, J. Algebra, 161
(1993), 245-265.

[E] P. Etingof, Whittaker functions on quantum groups and g-deformed Toda
operators, In: Differential Topology, Infinite-dimensional Lie Algebras
and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math.
Soc., Providence, RI, 1999, pp. 9-25.

[FJLMM1] B. Feigin, M. Jimbo, S. Loktev, T. Miwa and E. Mukhin, Bosonic
formulas for (k,!)-admissible partitions, Ramanujan J., 7 (2003), 485—
517.

[FILMM2] B. Feigin, M. Jimbo, S. Loktev, T. Miwa and E. Mukhin, Addendum
to ”Bosonic formulas for (k,!)-admissible partitions”, Ramanujan J., 7
(2003), 519-530.

[FIMMT] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama,
Fermionic formulas for (k,3)-admissible configurations, Publ. Res. Inst.
Math. Sci., 40 (2004), 125-162.

[FKLMM] B. Feigin, R. Kedem, S. Loktev, T. Miwa and E. Mukhin, Com-
binatorics of 5/1\2 spaces of coinvariants: dual functional realization and
recursion, Compositio Math., 134 (2002), 193-241.

[FL] B. Feigin and S. Loktev, On finitization of the Gordon identities,
math.QA /0006221, Funct. Anal. Appl.

[FS] B. Feigin and A. Stoyanovsky, Quasi-particle models for the representations
of Lie algebras and geometry of flag manifold, hep-th/9308079, RIMS
preprint, 942; Functional models for the representations of current alge-
bras and the semi-infinite Schubert cells, Funct. Anal. Appl., 28 (1994),
55-72.

[FS1] B. Feigin and A. Stoyanovsky, unpublished.

[FK] I. Frenkel and V. Kac, Basic representations of affine Lie algebras and dual
resonance models, Invent. Math., 62 (1980), 23-66.

[G] G. Georgiev, Combinatorial construction of modules for infinite-
dimensional Lie algebras. I. Principal subspace, J. Pure Appl. Algebra,
112 (1996), 247-286.



Principal subspaces and quantum Toda Hamiltonian 165

[GKLO] A. Gerasimov, S. Kharchev, D. Lebedev and S. Oblezin, On a
Gauss—Givental representation of quantum Toda chain wave function,
math/0608152.

[GL] A. Givental and Y.-P. Lee, Quantum K-theory on flag manifolds, finite-
difference Toda lattice and quantum groups, Invent. Math., 151 (2003),
193-219.

[IS] T. Ishii and E. Stade, New formulas for Whittaker functions on GL,,(R),
J. Funct. Anal., 244 (2007), 289-314.

[J] M. Jimbo, Quantum R matrix related to the generalized Toda system :an
algebraic approach, Lecture Notes in Phys., 246 (1986), 335-361.

[K1] V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press,
Cambridge, 1990.

[K2] V. Kac, Vertex algebras for beginners, 2nd ed., Univ. Lecture Ser., 10,
Amer. Math. Soc., Providence, RI, 1998.

[Kos] B. Kostant, On Whittaker vectors and representation theory, Invent.
Math., 48 (1978), 101-184.

[Kum| S. Kumar, Kac-Moody groups, their flag varieties and representation
theory, Progr. Math., 204, Birkhduser Boston, Boston, MA, 2002.

[LP] J. Lepowsky and M. Primc, Structure of the standard modules for the affine
Lie algebra Agl), Contemp. Math., 46, Amer. Math. Soc., Providence, RI,
1985.

[P] M. Prime, Vertex operator construction of standard modules for AP, Pa-
cific J. Math., 162 (1994), 143-187.

[S] A. Sevostyanov, Quantum deformation of Whittaker modules and Toda
lattice, Duke Math. J., 105 (2000), 211-238.

Boris Feigin

Landau institute for Theoretical Physics
Chernogolovka, 142432

Russia

and

Independent University of Moscow
Russia, Moscow, 119002

Bol’shoi Vlas’evski per., 11

Evgeny Feigin

Tamm Theory Division

Lebedev Physics Institute

Russia, Moscow, 119991

Leninski pr., 53

and

Independent University of Moscow
Russia, Moscow, 119002

Bol’shoi Vlas’evski per., 11

E-mail address: feigin@mccme.ru



166 B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin

Michio Jimbo

Graduate School of Mathematical Sciences
The University of Tokyo

Tokyo 153-8914

Japan

E-mail address: jimbomic@ms.u-tokyoe.ac.jp

Tetsuji Miwa

Department of Mathematics
Graduate School of Science
Kyoto University

Kyoto 606-8502

Japan

E-mail address: tetsuji@math.kyoto~u.ac.jp

Evgeny Mukhin

Department of Mathematics

Indiana University-Purdue University-Indianapolis
402 N.Blackford St., LD 270

Indianapolis, IN 46202

USA

E-mail address: mukhin@math.iupui.edu





