Advanced Studies in Pure Mathematics 53, 2009 Advances in Discrete Dynamical Systems pp. 215–223

Some oscillation results for second order linear delay dynamic equations

Lynn Erbe and Allan Peterson

Abstract.

We obtain some oscillation theorems for linear delay dynamic equations on a time scale. We illustrate the results by a number of examples.

§1. Preliminary results

Consider the second order linear delay dynamic equation

(1)
$$L[x](t) := (r(t)x^{\Delta}(t))^{\Delta} + \sum_{i=1}^{n} q_i(t)x(\tau_i(t)) = 0.$$

We will be interested in obtaining oscillation theorems for (1) by comparing the solutions to a related equation without delay of the form

(2)
$$(r(t)x^{\Delta})^{\Delta} + \sum_{i=1}^{n} Q_i(t)x^{\sigma} = 0,$$

for which many oscillation results are known. We recall that a solution of (1) or (2) is nonoscillatory if it is eventually of one sign. If a solution changes sign infinitely often it is said to be oscillatory.

Let \mathbb{T} be a time scale (nonempty closed subset of the reals \mathbb{R}) which is unbounded above. We assume that the coefficient functions $q_i(t) \geq 0$, $i = 1, 2, \dots, n$, and r(t) > 0 are rd-continuous on the time scale interval $[a, \infty)_{\mathbb{T}} := [a, \infty) \cap \mathbb{T}$, (i.e., $r, q_i \in C_{rd}([a, \infty)_{\mathbb{T}})$. Furthermore, we will assume that $\sum_{i=1}^{n} q_i(t) \neq 0$ (for all large t). We will also assume that the delay functions $\tau_i : [a, \infty)_{\mathbb{T}} \to \mathbb{T}$ are rd-continuous, $\tau_i(t) \leq t$, and $\tau_i(t) \to \infty$ as $t \to \infty$, $i = 1, 2, \dots, n$. For details concerning calculus on

Received October 12, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 39A10.

Key words and phrases. comparison theorems, linear oscillation, delay equations, time scale.

time scales and other pertinent definitions, we refer to the books [3], [4], and [11]. Stability and oscillation questions for certain first order delay dynamic equations have been considered in [1] for example.

We start with several auxiliary lemmas which are crucial in the proof of the main results. The first lemma is usually referred to as the Riccati technique. Denote

$$S[z] = \frac{z^2}{r(t) + \mu(t)z}.$$

Lemma 1 ([12], [6]). The equation

(3)
$$L_{rq}[x] := (r(t)x^{\Delta})^{\Delta} + q(t)x^{\sigma} = 0$$

is nonoscillatory if and only if there is a function z satisfying the Riccati dynamic inequality

(4)
$$z^{\Delta}(t) + q(t) + S[z](t) \le 0$$

with $r(t) + \mu(t)z(t) > 0$ for large t.

That is, if x(t) is a solution of (3) that is of one sign for all large $t \in [a, \infty)_{\mathbb{T}}$, then $z(t) := \frac{r(t)x^{\Delta}(t)}{x(t)}$ satisfies (4) with $r(t) + \mu(t)z(t) > 0$ for large t. Conversely, if z(t) solves (4) with $r(t) + \mu(t)z(t) > 0$ for large t, then (3) has a solution x(t) which is of one sign for all large t.

We will use this lemma to show that a nonoscillatory solution of (1) leads to a solution of the Riccati dynamic inequality (4). In order to do this, we introduce the auxiliary functions $H(t, t_1)$ and $\eta_i(t, t_1)$ defined by

$$H(t,t_1):=\int_{t_1}^t \frac{1}{r(s)}\;\Delta s,\quad \text{and}\quad \eta_i(t,t_1):=\frac{H(\tau_i(t),t_1)}{H(\sigma(t),t_1)},\quad l\leq i\leq n.$$

We may then establish the following result.

Lemma 2. Let x(t) be a solution of (1) which satisfies

 $x(t)>0, \quad x^{\Delta}(t)>0, \quad (r(t)x^{\Delta}(t))^{\Delta}\leq 0$

for all $t \ge \tau_i(t) \ge T \ge a$. Then for each $1 \le i \le n$ we have

$$x(\tau_i(t)) > \eta_i(t,T)x^{\sigma}(t), \quad t \ge \tau_i(t) > T.$$

216

Proof. For $t \ge \tau_i(t) > T \ge a$ we have

$$\begin{aligned} x(\sigma(t)) - x(\tau_i(t)) &= \int_{\tau_i(t)}^{\sigma(t)} x^{\Delta}(s) \Delta s \\ &= \int_{\tau_i(t)}^{\sigma(t)} \frac{1}{r(s)} r(s) x^{\Delta}(s) \Delta s \\ &\leq r(\tau_i(t)) x^{\Delta}(\tau_i(t)) \int_{\tau_i(t)}^{\sigma(t)} \frac{\Delta s}{r(s)} \end{aligned}$$

which yields

$$x^{\sigma}(t) \le x(\tau_i(t)) + r(\tau_i(t))x^{\Delta}(\tau_i(t))H(\sigma(t),\tau_i(t)).$$

Dividing both sides of this inequality by $x(\tau_i(t))$ we get

(5)
$$\frac{x^{\sigma}(t)}{x(\tau_i(t))} \leq 1 + \frac{r(\tau_i(t))x^{\Delta}(\tau_i(t))}{x(\tau_i(t))}H(\sigma(t),\tau_i(t)).$$

Also, we have

$$\begin{aligned} x(\tau_i(t)) - x(T) &= \int_T^{\tau_i(t)} x^{\Delta}(s) \Delta s \\ &\geq r(\tau_i(t)) x^{\Delta}(\tau_i(t)) \int_T^{\tau_i(t)} \frac{\Delta s}{r(s)} \end{aligned}$$

and so

$$\begin{aligned} x(\tau_i(t)) &\geq x(T) + r(\tau_i(t))x^{\Delta}(\tau_i(t))H(\tau_i(t),T) \\ &> r(\tau_i(t))x^{\Delta}(\tau_i(t))H(\tau_i(t),T). \end{aligned}$$

Therefore, we have

(6)
$$\frac{r(\tau_i(t))x^{\Delta}(\tau_i(t))}{x(\tau_i(t))} < \frac{1}{H(\tau_i(t),T)}.$$

Hence, from (5) and (6) we have

$$\begin{aligned} \frac{x^{\sigma}(t)}{x(\tau_i(t))} &< 1 + \frac{H(\sigma(t), \tau_i(t))}{H(\tau_i(t), T)} \\ &= \frac{H(\sigma(t), T)}{H(\tau_i(t), T)} = \frac{1}{\eta_i(t, T)}. \end{aligned}$$

This gives us the desired result

$$x(\tau_i(t)) > x^{\sigma}(t)\eta_i(t,T).$$

Q.E.D.

Lemma 3. Assume $q_i(t) \ge 0$, $1 \le i \le n$, and $\sum_{i=1}^n q_i(t) \ne 0$ for large t. Let x be a solution of (1) with x(t) > 0, $t \in [t_0, \infty)_{\mathbb{T}}$ and assume further that

$$\int_{t_0}^{\infty} \frac{\Delta t}{r(t)} = \infty.$$

Then there exists a $T \in [t_0, \infty)_{\mathbb{T}}$ such that

$$x(t) > 0, \quad x^{\Delta}(t) > 0, \quad and \quad (r(t)x^{\Delta}(t))^{\Delta} \le 0$$

for $t \in [T, \infty)_{\mathbb{T}}$.

Proof. We can suppose that $t_1 \ge t_0$ is such that x(t) > 0, $x(\tau_i(t)) > 0$, $t \ge t_1$, for all $1 \le i \le n$. Then we have

$$(r(t)x^{\Delta}(t))^{\Delta} = -\sum_{i=1}^n q_i(t)x(\tau_i(t)) \le 0, \quad t \in [t_1,\infty)_{\mathbb{T}},$$

and so $r(t)x^{\Delta}(t)$ is decreasing for $t \in [t_1, \infty)_{\mathbb{T}}$. Therefore, if $x^{\Delta}(t_2) \leq 0$ for some $t_2 \in [t_1, \infty)_{\mathbb{T}}$, then it follows that

$$r(t)x^{\Delta}(t) \leq 0, \quad t \in [t_2, \infty)_{\mathbb{T}}.$$

If $x^{\Delta}(t_3) < 0$ for some $t_3 \geq t_2$, then an integration gives

$$\int_{t_3}^t x^{\Delta}(s) \Delta s = x(t) - x(t_3)$$

$$\leq r(t_3) x^{\Delta}(t_3) \int_{t_3}^t \frac{\Delta s}{r(s)}$$

$$\rightarrow -\infty, \quad \text{as} \quad t \rightarrow \infty,$$

which gives us a contradiction. Hence, $x^{\Delta}(t) \equiv 0$ for $t \in [t_2, \infty)_{\mathbb{T}}$ and this means $x(t) \equiv constant$ for $t \in [t_2, \infty)_{\mathbb{T}}$. But, then

$$(r(t)x^{\Delta}(t))^{\Delta} \equiv 0 \equiv -\sum_{i=1}^{n} q_i(t)x(\tau_i(t)) \neq 0,$$

which is a contradiction. Hence, it follows that

$$x^{\Delta}(t) > 0, \quad t \in [t_1, \infty)_{\mathbb{T}}, \quad \text{and} \quad (r(t)x^{\Delta}(t))^{\Delta} \le 0, \quad t \in [t_1, \infty)_{\mathbb{T}}.$$

Q.E.D.

$\S 2.$ Main results

We may now apply the previous lemmas to obtain our first oscillation result.

Theorem 4. Assume r(t) > 0 with $\int_a^{\infty} 1/r(t) \Delta t = \infty$ and assume that $q_i(t) \ge 0$, $1 \le i \le n$, and $\sum_{i=1}^n q_i(t) \ne 0$, for all sufficiently large t. If

(7)
$$(r(t)x^{\Delta})^{\Delta} + Q(t,T)x^{\sigma} = 0,$$

where, for $t \in (T, \infty)_{\mathbb{T}}$,

$$Q(t,T) := \sum_{i=1}^{n} \eta_i(t,T) q_i(t),$$

is oscillatory on $(T, \infty)_{\mathbb{T}}$ for all sufficiently large T, then all solutions of (1) are oscillatory.

Proof. If not, assume that x(t) is a solution of (1) of one sign for $t \ge t_1 \ge a$ and without loss of generality let us suppose that $x(t) > 0, t \in [t_1, \infty)_{\mathbb{T}}$. Then by Lemma 2 and Lemma 3, there exists a $T \in [t_1, \infty)_{\mathbb{T}}$, sufficiently large, such that

$$egin{aligned} &x(t)>0,\quad x^{\Delta}(t)>0,\quad t\in[T,\infty)_{\mathbb{T}},\ &x(au_i(t))\geq\eta_i(t,T)x^{\sigma}(t),\quad au_i(t)\in(T,\infty)_{\mathbb{T}},\quad ext{for all}\quad 1\leq i\leq n, \end{aligned}$$

and (7) is oscillatory on $[a, \infty)_{\mathbb{T}}$. Consequently, we have that x(t) > 0satisfies $x^{\Delta}(t) > 0$ and $(r(t)x^{\Delta})^{\Delta} + Q(t,T)x^{\sigma} \le 0$, $t \in (T,\infty)_{\mathbb{T}}$. If we set $z(t) := \frac{r(t)x^{\Delta}(t)}{x(t)}$, then z(t) > 0 and

$$\begin{aligned} z^{\Delta}(t) &= \frac{x(t)(r(t)x^{\Delta}(t))^{\Delta} - r(t)(x^{\Delta}(t))^{2}}{x(t)x^{\sigma}(t)} \\ &\leq -Q(t,T) - \frac{1}{r(t)}z^{2}(t)\frac{x(t)}{x^{\sigma}(t)} \\ &= -Q(t,T) - \frac{z^{2}(t)}{r(t)}\frac{x(t)}{x(t) + \mu(t)x^{\Delta}(t)} \\ &= -Q(t,T) - \frac{z^{2}(t)}{r(t) + \mu(t)z(t)}. \end{aligned}$$

Therefore, since $r(t) + \mu(t)z(t) > 0$ and z is a solution of

$$z^{\Delta} + Q(t,T) + S[z](t) \le 0$$

for large t, we get by Lemma 1 that the linear equation

(8)
$$(r(t)x^{\Delta})^{\Delta} + Q(t,T)x^{\sigma} = 0$$

is nonoscillatory on $(T, \infty)_{\mathbb{T}}$. This contradiction proves the result.

Q.E.D.

We may establish a number of corollaries by using Theorem 4 and known criteria for linear second order dynamic equations (cf. [2], [5-8], [10] and [12-15]). For example, we have the following result.

Corollary 5. Assume

$$\int_T^\infty \frac{\Delta s}{r(s)} = \infty = \int_T^\infty Q(s,T) \Delta s.$$

Then all solutions of (1) are oscillatory.

Proof. Corollary 5 follows from the Fite–Wintner–Leighton criterion which says that all solutions of (3) are oscillatory (cf. [2]) if

$$\int_{a}^{\infty} \frac{1}{r(t)} \Delta t = \infty = \int_{a}^{\infty} q(t) \Delta t.$$
 Q.E.D.

For the case $r(t) \equiv 1$ and a single delay, (1) becomes

(9)
$$x^{\Delta\Delta} + q(t)x(\tau(t)) = 0.$$

In this case, $\eta(t,T) = \frac{\tau(t)-T}{\sigma(t)-T}$, so that

$$Q(t,T) = rac{ au(t) - T}{\sigma(t) - T} q(t) \sim rac{ au(t)}{\sigma(t)} q(t) \quad ext{as} \quad t o \infty.$$

Therefore, if

$$\int_{a}^{\infty} \frac{\tau(t)}{\sigma(t)} q(t) \Delta t = \infty,$$

then all solutions of (9) are oscillatory.

We next consider the dynamic equation

(10)
$$x^{\Delta\Delta} + \frac{\gamma}{t\tau(t)}x(\tau(t)) = 0.$$

We have the following.

Corollary 6. All solutions of (10) are oscillatory if $\gamma > \frac{1}{4}$ and $\lim_{t\to\infty} \frac{\mu(t)}{t} = 0.$

220

Proof. We use the fact that all solutions of

(11)
$$x^{\Delta\Delta} + \frac{\gamma}{t\sigma(t)}x^{\sigma} = 0$$

are oscillatory if $\gamma > \frac{1}{4}$ and $\lim_{t\to\infty} \frac{\mu(t)}{t} = 0$ (cf. [12]) along with Theorem 4. Q.E.D.

§3. Examples

In this section we give examples of our main results.

Example 7. If \mathbb{T} is any time scale with $\lim_{t\to\infty} \frac{\mu(t)}{t} = 0$ (e.g., $\mathbb{T} = \mathbb{R}$ or $\mathbb{T} = \mathbb{Z}$), then all solutions of (11), or more generally

$$x^{\Delta\Delta} + \sum_{i=1}^{n} rac{\gamma_i}{t au_i(t)} x(au_i(t)) = 0$$

are oscillatory provided

$$\bar{\gamma} := \sum_{i=1}^n \gamma_i > \frac{1}{4}.$$

To see this, we observe that in this case

$$Q(t,T) = \sum_{i=1}^{n} \eta_i(t,T) q_i(t)$$
$$= \sum_{i=1}^{n} \frac{\gamma_i}{t\tau_i(t)} \left(\frac{\tau_i(t) - T}{\sigma(t) - T}\right)$$

and

$$\sum_{i=1}^{n} \frac{\gamma_i}{t\tau_i(t)} \left(\frac{\tau_i(t) - T}{\sigma(t) - T} \right) \sim \frac{\bar{\gamma}}{t\sigma(t)} \quad as \quad t \to \infty.$$

Therefore, since (11) with γ replaced by $\overline{\gamma}$ is oscillatory, the result now follows from Theorem 4.

Example 8. If $\mathbb{T} = q^{\mathbb{N}_0}$, q > 1, then the q-difference equation

$$x^{\Delta\Delta} + \frac{\gamma}{t\sigma(t)}x^{\sigma} = 0$$

is oscillatory iff $\gamma > \frac{1}{(\sqrt{q}+1)^2}$ (cf. [5], [12]). Therefore, the delay q-difference equation (where $\tau_i : \mathbb{T} = q^{\mathbb{N}_0} \to \mathbb{T}$)

$$x^{\Delta\Delta} + \sum_{i=1}^{n} \frac{\gamma_i}{t\tau_i(t)} x(\tau_i(t)) = 0$$

is oscillatory provided

$$\bar{\gamma} = \sum_{i=1}^{n} \gamma_i > \frac{1}{(\sqrt{q}+1)^2}.$$

Additional examples may be readily given. We leave this to the interested reader.

References

- D. Anderson, R. Krueger and A. Peterson, Delay dynamic equations with stability, Adv. Difference Equ., 2006 (2006), 1–19.
- [2] M. Bohner, L. Erbe and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale, J. Math. Anal. Appl., 301 (2005), 491–507.
- [3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
- [4] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Editors, Birkhäuser, Boston, 2003.
- [5] M. Bohner and M. Ünal, Kneser's theorem in q-calculus, J. Phys. A, 38 (2005), 6729–6739.
- [6] L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart., 9 (2001), 1–31.
- [7] L. Erbe and A. Peterson, Comparison theorems of Hille–Wintner type for dynamic equations on time scales, Proc. Amer. Math. Soc., 133 (2005), 3243–3253.
- [8] L. Erbe, A. Peterson and P. Řehák, Comparison theorems for linear dynamic equations on time scales, J. Math. Anal. Appl., 275 (2002), 418– 438.
- [9] S. Hilger, Analysis on measure chains A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56.
- [10] E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234–252.
- [11] B. Kaymakçalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
- [12] P. Rehák, Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear Funct. Anal. Appl., 7 (2002), 361–404.
- [13] P. Rehák, Function sequence technique for half-linear dynamic equations on time scales, Panamer. Math. J., 16 (2006), 31–56.
- [14] C.-T. Taam, Nonoscillatory differential equations, Duke Math. J., 19 (1952), 493–497.
- [15] A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand., 5 (1957), 255–260.

Department of Mathematics University of Nebraska-Lincoln Lincoln, NE 68588-0130 USA

E-mail address: lerbe@math.unl.edu apeterso@math.unl.edu