
Advanced Studies in Pure Mathematics 53, 2009 
Advances in Discrete Dynamical Systems 
pp. 121-128 

Discrete potential theory for iterated maps of the 
interval 

C. Correia Ramos, N uno Martins, J. Sousa Ramos and 
Ricardo Severino 

Abstract. 

Using Markov partitions and algebraic graph theory we introduce, 
in the context of discrete dynamical systems, some laws which charac
terize the nonlinear dynamics of iterated maps of the interval. In the 
Markov digraphs we assume that each directed edge has a weight as
sociated to it, given by the Markov invariant measure. This system of 
weights produces a diffusion process determined by a transition matrix. 
In this setting, we define a current and a potential which are dynamical 
invariants. 

§1. Introduction and preliminaries 

Nonlinear dynamical systems can be effectively studied and mod
elled by difference equations. An important problem is to describe the 
behavior of the discrete dynamical system determined by the iteration 
of a map j, 

Our approach uses symbolic dynamics to obtain a digraph associated 
with the original discrete dynamical system, as in [3]. Several invariants 
for the discrete dynamical system can be obtained and interpreted in 
the digraph setting, see for example [7] and also [4], [5]. The notions of 
current, potential, conductance, have its origins in the electric circuits 
and have been generalized to graph theory. We extend some of this 
notions to discrete dynamical systems. 

Given an interval map f, and using the orbits of the critical points, 
we obtain a graph, the Markov digraph, directly from the transition 
matrix At and Markov partition for f. Using the Parry measure, we 
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obtain a weighted digraph, and by analogy with the electric circuits we 
introduce a current and a potential which satisfies the general Kirchoff 
laws, and are important dynamical invariants. These are very general 
laws that can be applied in many different contexts, see [2] (and also 
[1]). 

We define the (ergodic) potential as the Parry invariant measure p. 
The reason is that if we think the time evolution as an iteration, this 
is a stationary potential. It can be seen as the density of points in the 
vertices (which corresponds to the partition intervals). We define also 
the (ergodic) current q in a way that do not change under iteration. In 
a certain sense, it corresponds to the conditional probability of a vertex 
to have a transition defined by an edge. 

1.1. Interval maps 

Let f : I ~ I be a piecewise monotone map of the interval into 
itself. The singular points off are the points of I in which f' is zero, 
not defined or discontinuous and constitutes a finite set { c1 , ... , em}. 
Therefore, there is a finite partition 

so that I1 is a maximal interval of monotonicity for f (a lap) and C1 = 

{ c1 }. Every point in I has a unique symbolic expansion in the alphabet 

denoted by it(x) (itinerary of x), given as follows: the address of x, 
ad(x) E 21., is determined by x E ad(x). The itinerary is then defined by 

it(x) = (ad(x), ad(f(x)), ad(f2 (x), ... ) E 2tN. 

Consider the orbits of the singular points. The itineraries of the images 
of the singular points are called the kneading sequences of f, KcJ = 
it(f(c1)), (see [6]), and define the kneading invariant for f, 

Kj = (Kcu ... , Kcm). 

This is a very important invariant for the discrete dynamical system 
defined by f. 

We assume that f is such that the orbits of the singular points are 
finite, i.e., such that all the kneading sequences are eventually periodic. 
Let {x1 ,x2 , ... ,Xn'} be the union of the singular points orbits, ordered 
according to 
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Define the intervals Ji = [xi, xi+l] with i = 1, ... , n' - 1. The set 
{JI. ... , Jn}, with n = n'- 1, is a Markov partition for f. Then we 
define the transition matrix A f = ( aij) by 

a·.= { 1 if f(Int(Ji)) ::2 f(Int(Jj)) 
~1 0 otherwise. 

1.2. Digraphs 

Consider a graph g = (Go, G1. s, r) where Go is the set of vertices 
and G1 the set of edges. The maps s, r: G1 ---+ G0 , (source and range) 
assign to every edge its head and its tail, respectively. 

Let C0 = C0 (Q; lR?.) be the linear space of real functions on the set 
G0 , and C1 = C1 (Q; lR?.) be the linear space of real functions on the set 
G1. The canonical basis for C 0 is given by { Ov : v E Go}. The same for 
C\ with {De: e E GI}. 

Let us assume Go = {1, ... , n }. The adjacency matrix of g is the 
n x n matrix, A= (aij), with 

a··= { 1 if there is e E G1 : s(e) = i,r(e) =j 
' 1 0 otherwise. 

The incidence operator D : C 1 ---+ C 0 is defined by Doe = Or(e) -

Os(e)· It is represented by the incidence matrix D. The adjoint Dt : 
C 0 ---+ C1 is defined as follows: Given a E C0 we have (Dta)(e) = 
a(r(e))- a(s(e)). The linear space ker Dt is the space of constant func
tions on the connected components of g, see [2]. Therefore, if G is con
nected ker Dt is the one-dimensional space generated by the function 
l:~=l oi. The operator D also has an explicit formula 

(Dg)(v) = L g (e)- L g(e). 
e:r(e)=v e:s(e)=v 

The kernel of D is the set of functions g E C 1 so that 

L g(e) = L g(e) 
e:r(e)=v e:s(e)=v 

for every v E G0 . An element in ker D is usually called a flow, or a 
current. Let Z = ker D and let Z l.. be the orthogonal complement of Z, 
that is, 

C1 = Z EB zl.. = ker DEB (ker D)l... 

A path is a sequence of vertices (or edges) in the graph g. A path 
(v0 , •.• , vk) is called a closed path if vo = vk and is called a cycle if all 
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other vertices are distinct. To each cycle '"'( we associate the function 
z7 E C 1 

1, if the sequence s(e), r(e) occurs in'"'( 
-1, if the sequence r(e), s(e) occurs in'"'( 

0, otherwise. 

LetS be a non-empty subset of G0 . Define the function bs E C 1 by 

{ 
1, if {s(e), r(e)} n S = {r(e)} 

bs(e) = -1, if {s(e), r(e)} n s = {s(e)} 
0, otherwise. 

Therefore, givenS C G0 , the function bs determines which edges "go 
outside" or "go inside" the region determined by the vertices in S. The 
set of edges which have exactly one vertex in S is called a cut or a cocycle 
of G. 

We have that z7 E Z, for every cycle '"'( and bs E z.l., for every 
proper subset S c G 0 , see [2]. Therefore, Z is usually called the cycle 
space and Z .1. the cocycle space. 

LetT be a spanning tree for Q, that is, a connected subgraph con
taining every vertex of g and with no cycle. If we remove an edge from 
T we obtain two components, T+ andy~, one containing r(e) and the 
other containing s(e). The cocycle associated with the set of vertices 
in r+, denoted by S(e) = S(T, e), is called a fundamental cocycle de
termined by T and e. The importance of the fundamental cocycles is 
that for any spanning tree T the functions bs(e), with e being an edge 
in T, constitute a basis for the cocycle space z.l., see [2]. Now, given a 
spanning tree T for each edge e not in T there is a unique path in T 
with initial vertex s(e) and final vertex r(e). This path together with 
the edge e determines a cycle '"'!(e)= '"Y(T, e) called a fundamental cycle 
determined by T and e. Given a spanning tree T, the functions z7 (e), 

withe an edge not in T, determines a base for the cycle space Z. Then, 
we denote C = C(T) as the matrix of the fundamental cycles, formed 
by the vectors in the base of Z determined by T. In the same manner, 
we define B = B(T) as the matrix of the fundamental cocycles, formed 
by the vectors in the base of Z .1. determined by T. 

§2. Current and potential for interval maps 

Let f be a Markov map of the interval I into itself, with Markov par
tition {h, ... ,In}, and transition matrix At· There is a special measure 
associated with f, the Parry measure, which is an invariant measure and 
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the maximal entropy measure, see [8]. It can be given as follows: Let 
>.t be the Perron eigenvalue of At. Let u be the Perron left eigenvalue 
of At and v the Perron left eigenvalue of At. Let Pt = (Pij), where 

and p =(Pi) where Pi = "u~vV ,. We have p = pPt, that is, pis the left 
L., J J 

Perron eigenvalue of Pt, and L~=lPi = 1. Therefore, p represents an 
invariant probability measure, which is precisely the Parry measure. 

Let 9t = (G0 ,G1 ,r,s) be the digraph associated with the Markov 
partition off so that the transition matrix At is the adjacency matrix 
of 9t· Following the notation introduced in Section 1, let Dt be the 
incidence matrix of Qt. Note that G1 coincides with the set of admissible 
words of size 2. More precisely, there is a bijection 

ij admissible word +-----' ( ij) E G1 . 

Definition 1. The (ergodic} current is the function qt E C} defined 
by 

qt(e) = Ps(e)Ps(e)r(e) · 

The (ergodic} potential is the function Pt E CJ. 
We will see that q is in fact a function of Zt, therefore, is completely 

justified the name of current or flow. Next, we present our main result: 

Theorem 2. Let f be a Markov interval map. Then we have the 
following: 

Dtqt=O. 

For every bE Zf, (b, qt) = 0 (current Kirchoff law). 

For every z E Zt, (z, D} Pt) = 0 (voltage Kirchoff law). 

Proof. We have 

L qt(e)- L qt(e) 
e:r(e)=j e:s(e)=j 

L Ps(e)Ps(e)r(e) - L Ps(e)Ps(e)r(e) 
e:r(e)=j e:s(e)=j 

LPiPij- LPjPji = LPiPij- Pj L.:Pji· 

Since Li Pji = 1 (the vector (1, ... , 1) is a right eigenvector of Pt) and 
LiPiPij = Pj (Pt is a left eigenvector of Pt) we have Dtqt = 0. Since 
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( D N!) (j) = 0 corresponds to the equation (b, qf) = 0 for the co cycle 
b = (0, ... , 1, .. , 0) (1 in j position) we have by linearity that (b, qf) = 0, 
for every bE Zf. Now, since Im(Dj) ~ ker(DJ)J. is orthogonal to Z, 
therefore the result follows. Q.E.D. 

Example 3. Let us consider the unimodal map fb(x) = 4bx(1- x), 
with b = 0.9764266 ... , i.e., such that the orbit of the critical point is 
periodic of period 5 with kneading sequence RLLRC. Its topological 
entropy is equal to 

htop(fb) = log(l.72208 ... ). 

The transition matrix associated with the Markov partition (using the 
partition generated by the critical point orbit) is 

[~ 
1 1 1 

~) 0 0 0 
AJ = 0 0 1 

0 1 0 
1 0 0 

The spectral radius is Amax(AJ) = 1.72208 ... and the normalized Perron 
right eigenvector is (approximately) 

v = (0.277916, 0.141392,0.213326,0.123877, 0.243489). 

The normalized Perron left eigenvector is (approximately) 

u = (0.141392, 0.223497,0.195811,0.195811, 0.243489). 

The matrix Pf is (approximately) given by 

[ ~662797 
0.295431 0.445734 0.258834 

~662797). 0 0 0 
pi= 0 0 0.337203 

0 1 0 
0.337203 0 0 

and the vector p f, which corresponds to the Parry measure, is ( approx
imately) 

Pi = (0.20027, 0.161055,0.212892,0.123624, 0.302159). 
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The incidence matrix of the digraph is 

r-1 
-1 0 0 0 0 0 -1 

~) D)~ ~ 
0 0 0 1 -1 0 0 
1 -1 -1 0 0 1 0 
0 1 0 0 0 -1 1 
0 0 1 -1 1 0 0 -1 

The matrix of a basis of the fundamental cycles is given by 

r-1 
1 0 1 1 0 0 0 

~) Ct ~ ~ 
-1 0 -1 0 1 0 0 
0 1 0 0 0 1 0 
-1 -1 0 0 0 0 1 
1 0 1 0 0 0 0 

The matrix of a basis of the fundamental cocycles (cuts} is given by 

Bt ~ (~ 
0 0 0 1 -1 0 0 

~1) 1 0 0 -1 1 0 1 
0 1 0 0 0 -1 1 0 . 

0 0 1 -1 1 0 0 -1 

The current vector, qf = p f Pt, is (approximately} 

qf (0.059166, 0.0892672,0.0717877,0.141104, 

0.101889,0.161055,0.123624,0.0518367, 0.20027). 

The divergence D f q = 0 and B f qf = 0, the total current that crosses 
each cocycle is zero. Moreover the difference of potential along each cycle 
is zero, CtD} Pt = 0. 
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