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3-dimensional i.i.d. binary random vectors governed 
by Jacobian elliptic space curve dynamics 

Tohru Kohda 

Abstract. 

Sufficient conditions have been recently given for a classs of ergodic 
maps of an interval onto itself: I= [0, 1] c R---+ I and its associated bi
nary function to generate a sequence of independent and identically dis
tributed (i.i.d.) binary random variables. Jacobian elliptic Chebyshev 
map, its derivative and second derivative induce Jacobian elliptic space 
curve. A mapping of the space curve with its coordinates, e.g., X, Y 
and Z, onto itself is introduced which defines 3 projective onto map
pings, represented in the form of rational functions of {xn, Yn, Zn}~=O· 
Such mappings with their absolutely continuous invariant measures as 
functions of elliptic integrals and their associated binary function can 
generate a 3-dimensional sequence of i.i.d. binary random vectors. 

§1. Introduction 

Bernoulli shift and its associated binary function can produce a se
quence of independent and identically distributed (i.i.d.) binary random 
variables (BRVs) [1], [2]. Tent map [3], closely related to the Bernoulli 
map, and its associated binary function can also generate a sequence 
of i.i.d. BRVs. Ulam and von Neumann[4] showed that the logistic 
map is topologically conjugate to the tent map via the homeomorphism 

2 
h-1 (w) = - sin-1 y'W. They also pointed out that the logistic map 

1f 
is a strong candidate for pseudo-random number generation (PRNG) 
even though it has a non-uniform absolutely continuous invariant (ACI) 
measure. A number of analog chaos techniques, which use a chaotic real
valued trajectory itself, have also been proposed [5],[6]. Binary sequences 
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using chaos, however, play an important role in several applications such 
as spreading spectrum codes [7], [8], [9] , [10], pseudo-random number 
generators [11] and cryptosystems [12], [13]. 

Motivated by this situation, we have shown that a class of ergodic 
maps with its unique ACI measure satisfying equi-distributivity prop
erty (EDP) can generate a sequence of i.i.d. binary random variables 
if its associated binary function satisfies constant summation property 
(CSP) [14]. Fortunately, many well-known !-dimensional maps, which 
are topologically conjugate to the tent map via homeomorphism [3], sat
isfy EDP. The Bernoulli map, logistic map and Chebyshev polynomial 
are good examples [15]. These maps are governed by duplication for
mulae. In other words, a duplication formula gives chaotic dynamics. 
It is well known that elliptic functions satisfy an addition theorem [16]. 
We introduced a Jacobian elliptic Chebyshev rational map as a rational 
function version of Chebyshev polynomial [17]. This map as well as the 
other well known maps mentioned above are mappings from an interval 
onto itself. 

Modern cryptosystems, however, need more and more pseudo-random 
numbers. In fact, to break DES of 64 bits, it takes 243 steps and the 
success rate is 85% if 243 pairs (plaintext, ciphertext) are known [18]. 
Furthermore, the size of new block ciphers such as AES becomes large, 
e.g., 512 bits. 

This situation motivated us to discuss a closed smooth space curve 
defined by an algebraic relation between the Jacobian elliptic function, 
its derivative and second derivative. These duplication formulae give a 
real-valued sequence { Xn, Yn, Zn}~=O generated by 3-dimensional dynam
ics with Cartesian coordinates, e.g., X, Y and Z. Such 3-dimensional 
dynamics forces us to define a mapping from such a space curve onto it
self and three projection mappings from an interval onto itself associated 
with coordinates, i.e., Xn+l = rx(xn), Yn+l = ry(Yn) and Zn+l = rz(zn), 
respectively. The former rx(·), being single-valued, is the same as the 
Jacobian elliptic Chebyshev rational map. On the contrary, the latter 
two ry(·) and rz(·), being multi-valued, consist of single-valued map
pings, each of which is a rational function of Xn, Yn, Zn and have their 
ACI measures with EDP. Hence, every bit of binary expansion of real
valued vector (xn, Yn, Zn) satisfies CSP. This implies that the mapping 
from the space curve onto itself governed by duplication formulae gives 
a sequence of i.i.d. 3-dimensional binary random vectors. 
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§2. Related theories 

We will begin by describing some of the related theories which play 
an important role in evaluating statistical properties of a sequence of 
binary random variables generated by a real-valued sequence. 

2.1. EDP and CSP 

Perhaps the simplest mathematical object that can display chaotic 
behavior is a class of one-dimensional maps Wn+I = T(wn), where Wn = 
Tn(w0 ) E I= [d, e], n = 0, 1, 2, ... and T(·) :I-+ I. 
Consider a piecewise monotonic (PM) onto ergodic map T(·) that satis
fies the following properties: 

i): there is a (trvial) partitition d =do < · · · < dN..- = e of I such 
that for each integer i = 1, · · · , Nn (Nr > 2) the restriction 
ofT(·) to the interval Ii = [di-1, di), denoted by Ti(w), is a C2 

function; as well as 
ii): T(Ii) = (d, e), that is, T has Nr monotonic onto maps Ti; 
iii): T has a unique ACI measure, denoted by f*(w)dw. 

The following four definitions are important to evaluate statistical prop
erties of {wn}~=o· 

Definition 1 (Perron-Frobenius operator [19]). The Perron-Frobenius 
operator Pr acting on function of bounded variation F(w) E L 00 for T(w) 
is defined as 

d 1 N..--1 
PrF(w) = dw _

1 
F(y)dy = L lg~(w)IF(gi(w)), 

r ([d,w]) i=O 

where 9i(w) is the i-th preimage of w and Nr denotes the number of 
preimages. 

The ACI measure f*(w)dw satisfies 

(1) Prf*(w) = f*(w). 

Birchoff Individual Ergodic Theorem [19] tells us that for a stationary 
real-valued sequence {F(wn)}~=0 , the time average of {F(wn)}~=0 , de
fined by 

T-1 

(2) (F) = lim (1/T) "F(wn) 
T--->oo L....J 

n=O 
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is equal almost everywhere to the expectation of F(w), defined by 

(3) 

From the stationarity of process, we denote Ew[F(Tn)] by Ew[F]. Con
sider two sequences {G(Tn(w))};;,"=o and {H(Tn(w))};;_"=0 , where G(w), 
H ( w) E L =. The second-order cross-covariance function between these 
sequences from a seed w = w0 is defined by 

(4) p(f, G, H)= t (G(w)- Ew[G]) · (H(Tl(w))- Ew[H])f*(w)dw, 

where f = 0, 1, 2, · · ·. The operator Pr is useful in evaluating correlation 
functions because it has the following important property: 

(5) t G(w)Pr{H(w)}dw = t G(T(w))H(w)dw. 

Using this property, we get 

(6) p(f, G, H)= t P;{(G(w)- Ew[G])f*(w)}(H(w)- Ew[H])dw. 

Bernoulli map with its uniform ACI measure f*(w)dw = dw is defined 
as 

(7) { 
2w 

TB(w) = 2w(mod 1) = 2w _' 1, 
0 < w < ~, 
~~w<l. 

If w is represented by its binary expansion as w = O.d1 (w)d2(w) · · · , then 
the binary expansion of TB(w) is given by TB(w) = O.d2(w)d3(w) · · · . 
This implies that TB(·) shifts the digits one place to the left. The func
tions dk ( ·), called Rademacher functions, furnish us with a model of 
independent tosses of a fair coin [2]. A sequence {dk(w)}~0 can be re
garded as a sequence of i.i.d. BRVs in the sense that for almost every 
w, dk(w) can imitate coin tossing. 

Another map and its associated binary function are as follows. Con
sider piecewise linear map ofp branches with f*(w)dw = dw, given by [3] 
(Nr =p), 

(8) Nv(w) = ( -1)lPwJpw(mod p), wE [0, 1]. 

In particular, N2(w) is referred to as the tent map. Introduce its asso
ciated BRV defined as 

(9) ak = { 
0, 
1, 

for N~(w) ~ t, 
for N~(w) > 2. 
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Then for w = O.d1(w)d2(w) · · · , we get ao(w) = d1(w), ak(w) = dk(w) EB 
dk+l(w), k ~ 1, where EB denotes a modulo 2 addition (or exclusiveor) 
operation. Hence N2 ( w) and its associated binary functions ak ( ·) can 
generate a sequence of i.i.d. BRVs. 

Naturally, the important question arises, that can any other map 
and its associated binary function generate a sequence of i.i.d. BRVs? 
We have got an affirmative answer to this question [14], [15], which is 
firstly, the map should satisfy EDP and secondly, the binary function 
should satisfy CSP. 

Definition 2 (EDP [14]). If a piecewise-monotonic onto map T(w) 
satisfies 

(10) 
1 

Jg~(w)Jj*(gi(w)) = NT j*(w), 0:::; i:::; NT- 1, 

then the map is said to satisfy equi-distributivity property (EDP). 

Definition 3 (CSP [14],[15]). For a class of maps with EDP, if its 
associated function G(-) satisfies 

1 NT-1 

N L G(gi(w)) = Ew[G] or PT{G(w)j*(w)} = Ew[G]j*(w) 
T i=O 

(11) 

then G(·) is said to satisfy constant summation property (CSP). 

CSP guarantees no-correlation between two functions G(·) and v H(·), 
i.e., p(£, G, H) = 0, £ > 0 [15]. Fortunately, EDP is satisfied by many 
well-known maps and is invariant under topological conjugation. 

Definition 4 (topological conjugation [19]). Two transformations f : 

I ---+ I and T : I ---+ I on intervals I and I are called topological conjugate 

if there is a homeomorphism h: I 0~0 I as T(w) = h of o h-1 (w). 

Suppose T(·) and f(-) have their ACI measures f*(w)dw and f*(w)dw 
respectively. Then, under the topological conjugation, these ACI mea
sures have the relation 

(12) 

The relation between T( ·) and f( ·) via h is represented diagrammatically 
as follows : 

(13) 
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Remark 1. If we take N2 (w) as 'f(w), then f*(w) is simply represented 
by the derivative of h- 1(w). Hence, if h(w) can be given in an inverse 
function form, then its integrand gives an ACI measure within normal
ization factor. Most famous example of inverse functions is sin function, 
. rsinw du 
z.e., w = Jo v'l-u2. 

This remark provides a starting point for discussion. In fact, Ulam and 
von Neumann [4] gave the logistic map 

(14) L2 (w) = 4w(1- w), wE [0, 1] 
with f*(w)dw = ~ which is topologically conjugate to N 2 (w) 

1r w(l-w) 

using h-1 (w) = ~ sin-1 ..jW. 
1f 

2.2. Binary function 

In our previous study [14], we proposed methods to obtain binary 
sequences from chaotic real-valued sequences {Tn(w)};;::'=o· We define 
a (non-trivial) partition d = t0 < t 1 < · · · < t2M = e of [d, e] and T 
denotes the set of thresholds { tr };~0 . Then the following binary function 
is obtained 

2M 

(15) Cr(w) = 2:) -1Y8dw), 
r=O 

where 8t(w) is the threshold function such that 

(16) 8t(w) = { 0' 
1, 

for w < t 
for w;:::: t. 

§3. Duplication formula gives chaos 

The example mentioned above shows that duplication formula gives 
chaos. To observe it, several examples are listed as follows. 
( 1) logistic map: Transformation x = sin2 0 gives ( ~~) 2 = 4x( 1 - x). 
Let Xn = sin2 On, Bn+l = 2Bn. Then we get 2-dimensional sequences 
{(xn, Yn)};;::'=0 , given by 

Xn+l = L2(xn) = 4xn(1- Xn), 
(17) 

Y~+l = ( ~ . d Llo~n) r = 4L2(xn)(l - L2(Xn)). 

(2) Chebyshev map of degree 2: Grossmann and Thomae [3] observed 
that Chebyshev polynomial maps of degree p (p = 2, 3, · · ·) [20] with its 
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di.JJ 
ACI measure f*(w)di.JJ = ~'defined by 

1r 1- w2 

(18) Tp(w) = cos(pcos- 1 w), wE [-1, 1] 

101 

is topologically conjugate to Np(w) via h(w) = cos1rw. Transformation 

x =cos(} gives (~~) 2 = 1- x2 . Let Xn = cosBn, Bn+1 = 2Bn. Then we 
get 2-dimensional sequences {(xn, Yn)};;"=0 , given by 
(19) 

() 2 2 (1 dT2(xn)) 2 ( )2 Xn+I = T2 Xn = 2xn- 1, Yn+1 = 2 · d(}n = 1- (T2 Xn ) . 

(3) Schroder and Bottcher map: 1 Schroder [22] and Bottcher [23] gave 
a rational function version of L2(·) with parameter k, defined as 

(20) Rsn2( k) = 4w(1- w)(1- k2w) [O 1] 
2 w, (1 - k2w2)2 ' w E ' 

with its ACI measure 

(21) ! * (w k)dw = -=:-::-::-~t=;=di.JJ=~====~ 
' 2K(k)Jw(1- w)(1- k2w) 

1 
via h-1 (w) = K(k) sn-1(y'W, k), where sn(w, k) is the inverse function of 

the elliptic integral with modulus k (lkl < 1) and K(k) is the complete 
elliptic integral, each of which is given respectively as 

(22) 1sn(u,k) dv 1-;: d(} 
u = , K ( k) = --;===::::;::= 

o J(1 - v2)(1- k2v2) o ,/1- k2 sin2 (} 

Transformation x = sn2 u·gives (~~) 2 = 4x(1- x)(1- k 2x). Let Xn = 
sn2 Un, Un+I = 2un. Then we get 2-dimensional sequences { (xn, Yn) };;::'=0 , 

given by 

(23) 

(~. dR~n2 (Xn,k)) 2 

2 dun 

4R~n2 (xn, k)(1- R~n2 (xn, k))(1- k2 R~n\xn, k)). 

1see [21] for a historical review of rational maps. 
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§4. Jacobian elliptic space curve and 3-dimensional dynamics 

We know that the Jacobian elliptic function cn(u,k) 2 is an inverse 
function of an elliptic integral of the first kind in the Legendre-Jacobi 
normal form [16] 

(25) 

Kohda and Fujisaki [17] introduced the Jacobian elliptic Chebyshev ra
tional map with positive integer p 

(26) R~n(w, k) = cn(pcn-1 (w, k), k), wE [-1, 1] 

which is topologically conjugate to the tent map Np( u) via homeomor

phism h-1 (w, k) = cn2-~~~)k) and has its ACI measure 

(27) j*(w k)dw- dw 
' - 2K(k)J(1- w2)(1- k2 + k2w2) 

This map is a rational function version of the Chebyshev polynomial 

(28) Tp(w) = cos(pcos- 1 w), wE [-1, 1]. 

We know that R~n(w, k) satisfies the semi-group property 

(29) 

for integers r, sand when p = 2, 

(30) 

Let us concentrate on the Jacobian real elliptic function withp = 2 [16]. 
As shown in Fig. 1, the Jacobian elliptic function X = cn(u, k), its 
derivative Y = d: en u = - sn u dn u and the second derivative Z = 
d2 

du2 en u give the Jacobian elliptic space curve, given by 

2cn( u, 0) simply reduces to cos u. 
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z z 

0 
0 ~ -1 

-1 
1 

1 -1 0 y 
1 -1 Oy xo 1 -1 

(a) k = 0.1 (b) k = 0.9 

Fig. 1. Two Jacobian elliptic space curves (X, Y, Z). 

L t - 2 - C - dxn and Z - d2Xn e Un+l - Un, Xn - nUn, Yn - -d n - d 2 • Un un 
Then we get 

a 3-dimensional dynamics, given by 
(32) 

Yn+l 

Zn+l 
!X;+l 

This gives a mapping from such a space curve onto itself which induces 
three projective onto mappings associated with coordinates,e.g.,X, Y, Z, 
denoted by Tx(·),Ty(·),Tz(·). The first one is shown in Fig.2(a), which 
has a symmetric ACI measure, defined by 

f* ( k)d dx 
X x, x = 2K(k)J(1- x2)(1- k 2 + k 2x 2 ) 

in Fig.3(a). 
In addition, it has been shown [24] that the projective onto map Ty 

is symmetric and has a symmetric ACI measure as shown in Figs.2(b) 
and 3(b ), respectively. (see Appendix A for theoretical expression of 
Ty) Its associated symmetric binary function, e.g., binary expansion of 
real-valued orbit {xn}~=O or {Yn}~=O can generate a sequence of i.i.d. 
binary random variables [24]. 

Here we consider the map Tz and examine whether it has its sym
metric ACI measure [25]. Squaring the second expression of Eq.(31) 
with k -=1- 0 gives the relation 

(33) 6 1 2 4 1 2 2 2 z2 
X - k 2 ( -1 + 2k )X + 4k4 ( -1 + 2k ) X - 4k4 = 0 
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which implies that for a given Z, X 2 has the following three real-valued 
solutions at most. 

(31) X'(Z) ~ { 

~i(Z), fork::::; Vlfi (R(Z, k) > 0) 
~i(Z), fork> Vlfi and R(Z, k) > 0 

~T(Z), 2::::; i::::; 4, fork> Vlfi and R(Z, k) < 0, 

where R(Z,k) = b2 (~,k) +a~~), a(k) = - 1A4 (-1 + 2k2 ) 2 ,b(Z,k) = 
_1_{(-I+2k2 ) 3 _ 27 z2} 
4·27 k6 k4 ° 

On the space curve, 3-dimensional dynamics has a unique ACI mea-
sure with respect to each coordinate. Fig. 3( c) shows comparison be
tween the marginal distribution taken from experiments and theoretical 
calculations, where the theoretical distributions of Tz is given as follows 

(35) 

{ 
z1(k) fz(6(Z), k)dz, for 0 < k::::; Vlfi 

f~(z, k)dz = z1(k) fz(6(Z), k)dz, fork> Vlfi, r(k)::::; lzl < 1 

where 

(36) 

zK\k) :Li=z fz(~c(Z), k)dz fork> Vlfi, lzl ::::; r(k) 

r(k) = ~ ;7 (-1 + 2k2)3, 

fz(~c(Z), k)dz 
dz 

Finally, we notice that theoretical distribution f~dx is also given by 
integrand of elliptic integral for inverse function cn- 1 ( u, k) (see Eq.(25) ). 

The same is true for jydy. In fact, inverse function ( dc~<;:,k)) -1 = 

(- sn( u, k) dn( u, k))- 1 is defined by Eq.( 45) and Eq.(46) (see Appen
dix B). Similarly f~dz is expressed in the inverse function form, as given 
by Eq.(49) and Eq.(50) (see Appendix C). 

§5. I.I.D. binary random vectors 

We shall now look into the relation between (zn, Zn+d· Eqs.(33) 
and (34) tell us that the relation Zn+1 = Tz(6(zn)) is one-to-one when 
k < Vlfi but the graph of Zn versus Zn+l is one-to-many when k > 
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Fig. 2. Three projection mappings when k = 0.9. 
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Fig. 3. Three marginal distributions when k = 0.9 
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Vlf2. Namely, the latter case gives a closed curve as shown in Fig. 2(c). 
Suppose that k > Vlf2 and that X 1 (x) is the first bit of normalized x 
in binary representation, such as 

x+1 
- 2- =O.X1(x)X2(x)···Xi(x)··· ,Xi(x) E {0,1}. 

We denote X1(x) by X1 and 1- X1(x) by X1. Similarly Z1(z) 
and 1 - Z 1(z) are denoted by Z1 and Z1 respectively. In addition, 
D(~~) and 1- D(~~) are represented by Dz and Dz respectively, where 
D(~~) = O(or 1) when~~ < 0 (or when~~ ~ 0). 

Then, we can obtain a piecewise-monotonic onto map Tz defined by 

(37) Tz 

where T~- = Tz(-~i(z)),r~+ = Tz(~i(z)), 1:::; i:::; 4 and where ~f(z) is 
defined by Eq.(34). 

It can be shown that for uniform ACI measure ff](u)du = du, 

(38) 

P,..,{Cr.,(x)f.X(x)} = Eu[Cr.,]f.X(x), 
P,.Y {Cry (y)f.Y(y)} = Eu[Crvlf.Y(y), 

P,.z{Crz(z)fZ(z)} = Eu[Cr.]f.Z(z), 

x = cnu } 
y = -snudnu 

d(-snudnu) z= .......:.... ___ _..:.. 
du 

holds, where {Cr.,(xn)}~=0 , {Crv(Yn)}~=O and {Cr.(zn)}~=O are sym
metric binary sequences with their sets of symmetric thresholds Tx, Ty 
and Tz associated with real-valued sequences {xn}~=O' {Yn}~=D and 
{zn}~=O· 
This implies that p(£,Cr.,,Cr.,) = p(£,Crv,CTy) = p(£,Crz,Cr.) 
0, for£ ~ 0. [14] 
It should be noted that Cr.,(x), Crv(r;(y)), Cr.(r;'(z)) are not always 
independent each other for £ = m = 0, that is, e.g., Eu[Cr.,Cry] i= 
Eu[Cr.,lEu[Cry] even if each of them is a sequence ofi.i.d. BRVs. This 
is inevitable as long as these sequences are generated from a single seed 
u = uo. However, we can design appropriate sets of thresholds Tx, Ty, Tz 
satisfying Eu[Cr.,Cry] == Eu[Cr.,]Eu[Cry] (see [14] for details). 

§6. Conclusion 

We discussed a real-valued dynamics on the Jacobian elliptic space 
curve between Jacobian elliptic function, its derivative and second deriv
ative, governed by their duplication formulae. Furthermore, we showed 
that a mapping of the space curve onto itself: R 3 --+ R 3 which defines 3 
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projective onto mappings with their ACI measures satisfying EDP and 
can generate sequences of 3-dimensional i.i.d. binary random vectors 
when using their associated symmetric binary functions, e.g., bits of 
binary expansions of these real-valued Xn, Yn, Zn as shown in Fig. 4. 

X y z 

xo Yo zo 0~1 I 0~0 0 I 0~ 0 X1 Y1 Zl 1 0 0 ... 1 1 0 1::: 1 1 0 1::: 1 
X2 Y2 Z2 ¢>1o1:::o 1 0 1 ... 0 1 0 0 ... 0 
X3 Y3 Z3 1 1 1 ... 0 1 1 1 ... 0 1 1 0 ... 1 

. . . . . ..... 0 •••• 

Fig. 4. Method of generating multidimensional i.i.d. binary 
vectors 
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§Appendix A. Derivation of the theoretical expression of Ty 

The first expression in Eq.(31) gives 

(39) 

Solving Eq.(39), we get for k -=f. 0 

(40) 
2 2k2 - 1 ± J1 - 4k2y~ 

Xn = 2k2 . 

Eq.(30) and Eq.(32) give 

(41) Rcn( k) = 1 - 2(1- x;;J + k2(1 - x;,? 
2 Xn, 1- k2(1 - x~)2 

and 

(42) Yn+l = v(l- (R~n(xn, k)) 2 ) (1- k2 + k2 (R~n(xn, k))2). 

Substituting Eq.(40) and Eq.(41) into Eq.(42), we have 

(43) Yn+l 

X 

2vf2kyJ2k2 - 1 ± v1 _ 4k2y2 

(2k2 - 1 + 2k2y2 ± J1- 4k2y2)2 

{ 1- 2k2y2 ± (2k2 - 1)yl1- 4k2y2}. 
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where three± signs on R.H.S. are either+ or -. Denote two maps by 
Tt'P(y) and T{;fN(y) when+ and- are chosen on the R.H.S. ofEq.(43), 
respectively. Then 

(44) Ty(Y) X1(D EB YI)T:P (y) + X1(D EB Y1)( -T:P (y)) 

+ X1(D EB Y1)T/)1N (y) + X1(D EB YI)( -T:N (y)) 



110 T. Kohda 

§Appendix B. Inverse function Y [24] 

(45) 

(46) 

y 1.--~--,---.---.--.-----.----r-----, 

-y1 -K(k) 0 

u 

(a) when k :":: Vlf2 

K(k) 

(b) when k > Vlf2 

Fig. 5. y = - sn u dn u (y1 = v'f=k2 and y2 = 1/2k, k =f 0). 

When 0 < k :s; Jl72, 

u = 1° f~(y)dy. 
- snudnu 

When k > Jl72, 

j_osnudnu J~(y)dy, for lui :s; cn-1 N 

U= 

~~ J~(y)dy- j_~nudnu J;;(y)dy, 
2k 

for -K(k) < u < -cn-1 ~ - V2k2 

where[24] 

where the ± sign on R.H.S is either + or - and is to be decided on the 
basis whether there is f~ or J;; on the L.H.S. 
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§Appendix C. Inverse function Z [25] 

N 

2 3 4 

u u 

(a) k :S ..jlf2 (b) k > ..jlf2 

When k ::S: JI72 (see Fig.6(a)), simple differential calculation gives 

(47) 
d(cn u( -1 + 2k2 - 2k2cn2u)) 

du 

Integrating each side of Eq. ( 4 7) over u, we have 

(48) 

where X 2 (Z) is given by Eq.(34). ACI measure of the map Tz is defined 

in the form of inverse of elliptic functions, i.e., elliptic integral. 

(49) u(z) = [z
1 
fz(6(Z))dZ, for - 1 ::S: z::::; 1, k ::S: Ji72. 

The same discussion applies to k > JI72 case with care to constants 
of integration (see Fig.6(b)). 
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(50) 

u1(z) = j_z
1 

fz(6(Z))dZ, for -1::; z < -r(k) 

u2(z) = u1(-r(k)) + Jz fz(6(Z))dZ, for- r(k)::; z < 0 
-r(k) 

u3(z) = u2(0) + t fz(~4(Z))dZ, for 0::; z < r(k) 
lo z 

u4(z) = u3(r(k)) -1 fz(6(Z))dZ, for r(k) ~ z > -r(k) 
r(k) 

u5(z) = u4( -r(k)) + Jz fz(~4(Z))dZ, for - r(k) ::; z < 0 
-r(k) 

u6(z) = U5(0) + r fz(6(Z))dZ, for 0::; z < r(k) 
lo z 

u7(z) = u5(r(k)) + 1 fz(6(Z))dZ, r(k)::; z::; 1 
r(k) 

where fz(Xi(Z)) is given by Eq.(35) and 

r(k) = V 227(-1 + 2k2)3. 
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