3-dimensional i.i.d. binary random vectors governed by Jacobian elliptic space curve dynamics

Tohru Kohda

Abstract

. Sufficient conditions have been recently given for a classs of ergodic maps of an interval onto itself: $I=[0,1] \subset R \rightarrow I$ and its associated binary function to generate a sequence of independent and identically distributed (i.i.d.) binary random variables. Jacobian elliptic Chebyshev map, its derivative and second derivative induce Jacobian elliptic space curve. A mapping of the space curve with its coordinates, e.g., X, Y and Z, onto itself is introduced which defines 3 projective onto mappings, represented in the form of rational functions of $\left\{x_{n}, y_{n}, z_{n}\right\}_{n=0}^{\infty}$. Such mappings with their absolutely continuous invariant measures as functions of elliptic integrals and their associated binary function can generate a 3 -dimensional sequence of i.i.d. binary random vectors.

§1. Introduction

Bernoulli shift and its associated binary function can produce a sequence of independent and identically distributed (i.i.d.) binary random variables (BRVs) [1], [2]. Tent map [3], closely related to the Bernoulli map, and its associated binary function can also generate a sequence of i.i.d. BRVs. Ulam and von Neumann[4] showed that the logistic map is topologically conjugate to the tent map via the homeomorphism $h^{-1}(\omega)=\frac{2}{\pi} \sin ^{-1} \sqrt{\omega}$. They also pointed out that the logistic map is a strong candidate for pseudo-random number generation (PRNG) even though it has a non-uniform absolutely continuous invariant (ACI) measure. A number of analog chaos techniques, which use a chaotic realvalued trajectory itself, have also been proposed [5],[6]. Binary sequences

[^0]using chaos, however, play an important role in several applications such as spreading spectrum codes [7], [8], [9], [10], pseudo-random number generators [11] and cryptosystems [12], [13].

Motivated by this situation, we have shown that a class of ergodic maps with its unique ACI measure satisfying equi-distributivity property (EDP) can generate a sequence of i.i.d. binary random variables if its associated binary function satisfies constant summation property (CSP) [14]. Fortunately, many well-known 1-dimensional maps, which are topologically conjugate to the tent map via homeomorphism [3], satisfy EDP. The Bernoulli map, logistic map and Chebyshev polynomial are good examples [15]. These maps are governed by duplication formulae. In other words, a duplication formula gives chaotic dynamics. It is well known that elliptic functions satisfy an addition theorem [16]. We introduced a Jacobian elliptic Chebyshev rational map as a rational function version of Chebyshev polynomial [17]. This map as well as the other well known maps mentioned above are mappings from an interval onto itself.

Modern cryptosystems, however, need more and more pseudo-random numbers. In fact, to break DES of 64 bits, it takes 2^{43} steps and the success rate is 85% if 2^{43} pairs (plaintext, ciphertext) are known [18]. Furthermore, the size of new block ciphers such as AES becomes large, e.g., 512 bits.

This situation motivated us to discuss a closed smooth space curve defined by an algebraic relation between the Jacobian elliptic function, its derivative and second derivative. These duplication formulae give a real-valued sequence $\left\{x_{n}, y_{n}, z_{n}\right\}_{n=0}^{\infty}$ generated by 3 -dimensional dynamics with Cartesian coordinates, e.g., X, Y and Z. Such 3-dimensional dynamics forces us to define a mapping from such a space curve onto itself and three projection mappings from an interval onto itself associated with coordinates, i.e., $x_{n+1}=\tau_{x}\left(x_{n}\right), y_{n+1}=\tau_{y}\left(y_{n}\right)$ and $z_{n+1}=\tau_{z}\left(z_{n}\right)$, respectively. The former $\tau_{x}(\cdot)$, being single-valued, is the same as the Jacobian elliptic Chebyshev rational map. On the contrary, the latter two $\tau_{y}(\cdot)$ and $\tau_{z}(\cdot)$, being multi-valued, consist of single-valued mappings, each of which is a rational function of x_{n}, y_{n}, z_{n} and have their ACI measures with EDP. Hence, every bit of binary expansion of realvalued vector (x_{n}, y_{n}, z_{n}) satisfies CSP. This implies that the mapping from the space curve onto itself governed by duplication formulae gives a sequence of i.i.d. 3-dimensional binary random vectors.

§2. Related theories

We will begin by describing some of the related theories which play an important role in evaluating statistical properties of a sequence of binary random variables generated by a real-valued sequence.

2.1. EDP and CSP

Perhaps the simplest mathematical object that can display chaotic behavior is a class of one-dimensional maps $\omega_{n+1}=\tau\left(\omega_{n}\right)$, where $\omega_{n}=$ $\tau^{n}\left(\omega_{0}\right) \in I=[d, e], n=0,1,2, \ldots$ and $\tau(\cdot): I \rightarrow I$.
Consider a piecewise monotonic (PM) onto ergodic map $\tau(\cdot)$ that satisfies the following properties:
i): there is a (trvial) partitition $d=d_{0}<\cdots<d_{N_{\tau}}=e$ of I such that for each integer $i=1, \cdots, N_{\tau},\left(N_{\tau}>2\right)$ the restriction of $\tau(\cdot)$ to the interval $I_{i}=\left[d_{i-1}, d_{i}\right)$, denoted by $\tau_{i}(\omega)$, is a C^{2} function; as well as
ii): $\tau\left(I_{i}\right)=(d, e)$, that is, τ has N_{τ} monotonic onto maps τ_{i};
iii): τ has a unique ACI measure, denoted by $f^{*}(\omega) d \omega$.

The following four definitions are important to evaluate statistical properties of $\left\{\omega_{n}\right\}_{n=0}^{\infty}$.

Definition 1 (Perron-Frobenius operator [19]). The Perron-Frobenius operator P_{τ} acting on function of bounded variation $F(\omega) \in L^{\infty}$ for $\tau(\omega)$ is defined as

$$
P_{\tau} F(\omega)=\frac{d}{d \omega} \int_{\tau^{-1}([d, \omega])} F(y) d y=\sum_{i=0}^{N_{\tau}-1}\left|g_{i}^{\prime}(\omega)\right| F\left(g_{i}(\omega)\right)
$$

where $g_{i}(\omega)$ is the i-th preimage of ω and N_{τ} denotes the number of preimages.

The ACI measure $f^{*}(\omega) d \omega$ satisfies

$$
\begin{equation*}
P_{\tau} f^{*}(\omega)=f^{*}(\omega) \tag{1}
\end{equation*}
$$

Birchoff Individual Ergodic Theorem [19] tells us that for a stationary real-valued sequence $\left\{F\left(\omega_{n}\right)\right\}_{n=0}^{\infty}$, the time average of $\left\{F\left(\omega_{n}\right)\right\}_{n=0}^{\infty}$, defined by

$$
\begin{equation*}
\langle F\rangle=\lim _{T \rightarrow \infty}(1 / T) \sum_{n=0}^{T-1} F\left(\omega_{n}\right) \tag{2}
\end{equation*}
$$

is equal almost everywhere to the expectation of $F(\omega)$, defined by

$$
\begin{equation*}
\mathbf{E}_{\omega}\left[F\left(\tau^{n}\right)\right]=\int_{I} F\left(\tau^{n}(\omega)\right) f^{*}(\omega) d \omega \tag{3}
\end{equation*}
$$

From the stationarity of process, we denote $\mathbf{E}_{\omega}\left[F\left(\tau^{n}\right)\right]$ by $\mathbf{E}_{\omega}[F]$. Consider two sequences $\left\{G\left(\tau^{n}(\omega)\right)\right\}_{n=0}^{\infty}$ and $\left\{H\left(\tau^{n}(\omega)\right)\right\}_{n=0}^{\infty}$, where $G(\omega)$, $H(\omega) \in L^{\infty}$. The second-order cross-covariance function between these sequences from a seed $\omega=\omega_{0}$ is defined by

$$
\begin{equation*}
\rho(\ell, G, H)=\int_{I}\left(G(\omega)-\mathbf{E}_{\omega}[G]\right) \cdot\left(H\left(\tau^{\ell}(\omega)\right)-\mathbf{E}_{\omega}[H]\right) f^{*}(\omega) d \omega \tag{4}
\end{equation*}
$$

where $\ell=0,1,2, \cdots$. The operator P_{τ} is useful in evaluating correlation functions because it has the following important property:

$$
\begin{equation*}
\int_{I} G(\omega) P_{\tau}\{H(\omega)\} d \omega=\int_{I} G(\tau(\omega)) H(\omega) d \omega \tag{5}
\end{equation*}
$$

Using this property, we get

$$
\begin{equation*}
\rho(\ell, G, H)=\int_{I} P_{\tau}^{\ell}\left\{\left(G(\omega)-\mathbf{E}_{\omega}[G]\right) f^{*}(\omega)\right\}\left(H(\omega)-\mathbf{E}_{\omega}[H]\right) d \omega \tag{6}
\end{equation*}
$$

Bernoulli map with its uniform ACI measure $f^{*}(\omega) d \omega=d \omega$ is defined as

$$
\tau_{B}(\omega)=2 \omega(\bmod 1)=\left\{\begin{array}{cc}
2 \omega, & 0<\omega<\frac{1}{2} \tag{7}\\
2 \omega-1, & \frac{1}{2} \leqslant \omega<1
\end{array}\right.
$$

If ω is represented by its binary expansion as $\omega=0 . d_{1}(\omega) d_{2}(\omega) \cdots$, then the binary expansion of $\tau_{B}(\omega)$ is given by $\tau_{B}(\omega)=0 . d_{2}(\omega) d_{3}(\omega) \cdots$. This implies that $\tau_{B}(\cdot)$ shifts the digits one place to the left. The functions $d_{k}(\cdot)$, called Rademacher functions, furnish us with a model of independent tosses of a fair coin [2]. A sequence $\left\{d_{k}(\omega)\right\}_{k=0}^{\infty}$ can be regarded as a sequence of i.i.d. BRVs in the sense that for almost every $\omega, d_{k}(\omega)$ can imitate coin tossing.

Another map and its associated binary function are as follows. Consider piecewise linear map of p branches with $f^{*}(\omega) d \omega=d \omega$, given by [3] ($N_{\tau}=p$),

$$
\begin{equation*}
N_{p}(\omega)=(-1)^{\lfloor p \omega\rfloor} p \omega(\bmod p), \omega \in[0,1] . \tag{8}
\end{equation*}
$$

In particular, $N_{2}(\omega)$ is referred to as the tent map. Introduce its associated BRV defined as

$$
a_{k}= \begin{cases}0, & \text { for } N_{2}^{k}(\omega) \leqslant \frac{1}{2} \tag{9}\\ 1, & \text { for } N_{2}^{k}(\omega)>\frac{1}{2}\end{cases}
$$

Then for $\omega=0 . d_{1}(\omega) d_{2}(\omega) \cdots$, we get $a_{0}(\omega)=d_{1}(\omega), a_{k}(\omega)=d_{k}(\omega) \oplus$ $d_{k+1}(\omega), k \geqslant 1$, where \oplus denotes a modulo 2 addition (or exclusiveor) operation. Hence $N_{2}(\omega)$ and its associated binary functions $a_{k}(\cdot)$ can generate a sequence of i.i.d. BRVs.

Naturally, the important question arises, that can any other map and its associated binary function generate a sequence of i.i.d. BRVs? We have got an affirmative answer to this question [14], [15], which is firstly, the map should satisfy EDP and secondly, the binary function should satisfy CSP.

Definition 2 (EDP [14]). If a piecewise-monotonic onto map $\tau(\omega)$ satisfies

$$
\begin{equation*}
\left|g_{i}^{\prime}(\omega)\right| f^{*}\left(g_{i}(\omega)\right)=\frac{1}{N_{\tau}} f^{*}(\omega), \quad 0 \leq i \leq N_{\tau}-1 \tag{10}
\end{equation*}
$$

then the map is said to satisfy equi-distributivity property (EDP).
Definition 3 (CSP [14],[15]). For a class of maps with EDP, if its associated function $G(\cdot)$ satisfies

$$
\begin{equation*}
\frac{1}{N_{\tau}} \sum_{i=0}^{N_{\tau}-1} G\left(g_{i}(\omega)\right)=\mathbf{E}_{\omega}[G] \text { or } P_{\tau}\left\{G(\omega) f^{*}(\omega)\right\}=\mathbf{E}_{\omega}[G] f^{*}(\omega) \tag{11}
\end{equation*}
$$

then $G(\cdot)$ is said to satisfy constant summation property (CSP).
CSP guarantees no-correlation between two functions $G(\cdot)$ and ${ }^{\forall} H(\cdot)$, i.e., $\rho(\ell, G, H)=0, \ell>0[15]$. Fortunately, EDP is satisfied by many well-known maps and is invariant under topological conjugation.

Definition 4 (topological conjugation [19]). Two transformations $\bar{\tau}$: $\bar{I} \rightarrow \bar{I}$ and $\tau: I \rightarrow I$ on intervals \bar{I} and I are called topological conjugate if there is a homeomorphism $h: \bar{I} \xrightarrow{\text { onto }} I$ as $\tau(\omega)=h \circ \bar{\tau} \circ h^{-1}(\omega)$.

Suppose $\tau(\cdot)$ and $\bar{\tau}(\cdot)$ have their ACI measures $f^{*}(\omega) d \omega$ and $\bar{f}^{*}(\bar{\omega}) d \bar{\omega}$ respectively. Then, under the topological conjugation, these ACI measures have the relation

$$
\begin{equation*}
f^{*}(\omega)=\left|\frac{d h^{-1}(\omega)}{d \omega}\right| \bar{f}^{*}\left(h^{-1}(\omega)\right) \tag{12}
\end{equation*}
$$

The relation between $\tau(\cdot)$ and $\bar{\tau}(\cdot)$ via h is represented diagrammatically as follows :

Remark 1. If we take $N_{2}(\bar{\omega})$ as $\bar{\tau}(\bar{\omega})$, then $f^{*}(\omega)$ is simply represented by the derivative of $h^{-1}(\omega)$. Hence, if $h(\bar{\omega})$ can be given in an inverse function form, then its integrand gives an ACI measure within normalization factor. Most famous example of inverse functions is \sin function, i.e., $\omega=\int_{0}^{\sin \omega} \frac{d u}{\sqrt{1-u^{2}}}$.

This remark provides a starting point for discussion. In fact, Ulam and von Neumann [4] gave the logistic map

$$
\begin{equation*}
L_{2}(\omega)=4 \omega(1-\omega), \omega \in[0,1] \tag{14}
\end{equation*}
$$

with $f^{*}(\omega) d \omega=\frac{d \omega}{\pi \sqrt{\omega(1-\omega)}}$ which is topologically conjugate to $N_{2}(\bar{\omega})$ using $h^{-1}(\omega)=\frac{2}{\pi} \sin ^{-1} \sqrt{\omega}$.

2.2. Binary function

In our previous study [14], we proposed methods to obtain binary sequences from chaotic real-valued sequences $\left\{\tau^{n}(\omega)\right\}_{n=0}^{\infty}$. We define a (non-trivial) partition $d=t_{0}<t_{1}<\cdots<t_{2 M}=e$ of [$\left.d, e\right]$ and T denotes the set of thresholds $\left\{t_{r}\right\}_{r=0}^{2 M}$. Then the following binary function is obtained

$$
\begin{equation*}
C_{T}(\omega)=\sum_{r=0}^{2 M}(-1)^{r} \Theta_{t_{r}}(\omega) \tag{15}
\end{equation*}
$$

where $\Theta_{t}(\omega)$ is the threshold function such that

$$
\Theta_{t}(\omega)= \begin{cases}0, & \text { for } \omega<t \tag{16}\\ 1, & \text { for } \omega \geq t\end{cases}
$$

§3. Duplication formula gives chaos

The example mentioned above shows that duplication formula gives chaos. To observe it, several examples are listed as follows.
(1) logistic map: Transformation $x=\sin ^{2} \theta$ gives $\left(\frac{d x}{d \theta}\right)^{2}=4 x(1-x)$. Let $x_{n}=\sin ^{2} \theta_{n}, \theta_{n+1}=2 \theta_{n}$. Then we get 2 -dimensional sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$, given by

$$
\begin{gather*}
x_{n+1}=L_{2}\left(x_{n}\right)=4 x_{n}\left(1-x_{n}\right) \\
y_{n+1}^{2}=\left(\frac{1}{2} \cdot \frac{d L_{2}\left(x_{n}\right)}{d \theta_{n}}\right)^{2}=4 L_{2}\left(x_{n}\right)\left(1-L_{2}\left(x_{n}\right)\right) \tag{17}
\end{gather*}
$$

(2) Chebyshev map of degree 2: Grossmann and Thomae [3] observed that Chebyshev polynomial maps of degree $p(p=2,3, \cdots)$ [20] with its

ACI measure $f^{*}(\omega) d \omega=\frac{d \omega}{\pi \sqrt{1-\omega^{2}}}$, defined by

$$
\begin{equation*}
T_{p}(\omega)=\cos \left(p \cos ^{-1} \omega\right), \omega \in[-1,1] \tag{18}
\end{equation*}
$$

is topologically conjugate to $N_{p}(\omega)$ via $h(\bar{\omega})=\cos \pi \bar{\omega}$. Transformation $x=\cos \theta$ gives $\left(\frac{d x}{d \theta}\right)^{2}=1-x^{2}$. Let $x_{n}=\cos \theta_{n}, \theta_{n+1}=2 \theta_{n}$. Then we get 2-dimensional sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$, given by

$$
\begin{equation*}
x_{n+1}=T_{2}\left(x_{n}\right)=2 x_{n}^{2}-1, y_{n+1}^{2}=\left(\frac{1}{2} \cdot \frac{d T_{2}\left(x_{n}\right)}{d \theta_{n}}\right)^{2}=1-\left(T_{2}\left(x_{n}\right)\right)^{2} \tag{19}
\end{equation*}
$$

(3) Schröder and Böttcher map: ${ }^{1}$ Schröder [22] and Böttcher [23] gave a rational function version of $L_{2}(\cdot)$ with parameter k, defined as

$$
\begin{equation*}
R_{2}^{\mathrm{sn}^{2}}(\omega, k)=\frac{4 \omega(1-\omega)\left(1-k^{2} \omega\right)}{\left(1-k^{2} \omega^{2}\right)^{2}}, \omega \in[0,1] \tag{20}
\end{equation*}
$$

with its ACI measure

$$
\begin{equation*}
f^{*}(\omega, k) d \omega=\frac{d \omega}{2 K(k) \sqrt{\omega(1-\omega)\left(1-k^{2} \omega\right)}} \tag{21}
\end{equation*}
$$

via $h^{-1}(\omega)=\frac{1}{K(k)} \operatorname{sn}^{-1}(\sqrt{\omega}, k)$, where $\operatorname{sn}(\omega, k)$ is the inverse function of the elliptic integral with modulus $k(|k|<1)$ and $K(k)$ is the complete elliptic integral, each of which is given respectively as

$$
\begin{equation*}
u=\int_{0}^{\operatorname{sn}(u, k)} \frac{d v}{\sqrt{\left(1-v^{2}\right)\left(1-k^{2} v^{2}\right)}}, K(k)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \tag{22}
\end{equation*}
$$

Transformation $x=\operatorname{sn}^{2} u$ gives $\left(\frac{d x}{d u}\right)^{2}=4 x(1-x)\left(1-k^{2} x\right)$. Let $x_{n}=$ $\operatorname{sn}^{2} u_{n}, u_{n+1}=2 u_{n}$. Then we get 2-dimensional sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$, given by

$$
\begin{aligned}
y_{n+1}^{2} & =\left(\frac{1}{2} \cdot \frac{d R_{2}^{\mathrm{sn}^{2}}\left(x_{n}, k\right)}{d u_{n}}\right)^{2} \\
& =4 R_{2}^{\mathrm{sn}^{2}}\left(x_{n}, k\right)\left(1-R_{2}^{\mathrm{sn}^{2}}\left(x_{n}, k\right)\right)\left(1-k^{2} R_{2}^{\operatorname{sn}^{2}}\left(x_{n}, k\right)\right)
\end{aligned}
$$

[^1]
§4. Jacobian elliptic space curve and 3-dimensional dynamics

We know that the Jacobian elliptic function $\mathrm{cn}(u, k)^{2}$ is an inverse function of an elliptic integral of the first kind in the Legendre-Jacobi normal form [16]

$$
\begin{equation*}
u=\int_{\operatorname{cn}(u, k)}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2}+k^{2} t^{2}\right)}} \tag{25}
\end{equation*}
$$

Kohda and Fujisaki [17] introduced the Jacobian elliptic Chebyshev rational map with positive integer p

$$
\begin{equation*}
R_{p}^{\mathrm{cn}}(\omega, k)=\operatorname{cn}\left(p \mathrm{cn}^{-1}(\omega, k), k\right), \quad \omega \in[-1,1] \tag{26}
\end{equation*}
$$

which is topologically conjugate to the tent map $N_{p}(u)$ via homeomor$\operatorname{phism} h^{-1}(\omega, k)=\frac{\mathrm{cn}^{-1}(\omega, k)}{2 K(k)}$ and has its ACI measure

$$
\begin{equation*}
f^{*}(\omega, k) d \omega=\frac{d \omega}{2 K(k) \sqrt{\left(1-\omega^{2}\right)\left(1-k^{2}+k^{2} \omega^{2}\right)}} \tag{27}
\end{equation*}
$$

This map is a rational function version of the Chebyshev polynomial

$$
\begin{equation*}
T_{p}(\omega)=\cos \left(p \cos ^{-1} \omega\right), \quad \omega \in[-1,1] \tag{28}
\end{equation*}
$$

We know that $R_{p}^{\mathrm{cn}}(\omega, k)$ satisfies the semi-group property

$$
\begin{equation*}
R_{r}^{\mathrm{cn}}\left(R_{s}^{\mathrm{cn}}(\omega, k), k\right)=R_{r s}^{\mathrm{cn}}(\omega, k) \tag{29}
\end{equation*}
$$

for integers r, s and when $p=2$,

$$
\begin{equation*}
R_{2}^{\mathrm{cn}}(\omega, k)=\frac{1-2\left(1-\omega^{2}\right)+k^{2}\left(1-\omega^{2}\right)^{2}}{1-k^{2}\left(1-\omega^{2}\right)^{2}} \tag{30}
\end{equation*}
$$

Let us concentrate on the Jacobian real elliptic function with $p=2$ [16]. As shown in Fig. 1, the Jacobian elliptic function $X=\operatorname{cn}(u, k)$, its derivative $Y=\frac{d}{d u} \operatorname{cn} u=-\operatorname{sn} u \operatorname{dn} u$ and the second derivative $Z=$ $\frac{d^{2}}{d u^{2}} \mathrm{cn} u$ give the Jacobian elliptic space curve, given by

$$
\begin{equation*}
Y^{2}=\left(1-X^{2}\right)\left(1-k^{2}+k^{2} X^{2}\right), Z=X\left(-1+2 k^{2}\left(1-X^{2}\right)\right) \tag{31}
\end{equation*}
$$

[^2]

Fig. 1. Two Jacobian elliptic space curves (X, Y, Z).

Let $u_{n+1}=2 u_{n}, x_{n}=\operatorname{cn} u_{n}, y_{n}=\frac{d x_{n}}{d u_{n}}$ and $z_{n}=\frac{d^{2} x_{n}}{d u_{n}^{2}}$. Then we get a 3-dimensional dynamics, given by

$$
\left\{\begin{align*}
x_{n+1} & =R_{2}^{\mathrm{cn}}\left(x_{n}, k\right)=\tau_{x}\left(x_{n}, k\right) \tag{32}\\
y_{n+1}^{2} & =\left(\frac{1}{2} \frac{d x_{n+1}}{d u_{n}}\right)^{2}=\left(1-x_{n+1}^{2}\right)\left(1-k^{2}+k^{2} x_{n+1}^{2}\right)=\tau_{y}^{2}\left(y_{n}, k\right) \\
z_{n+1} & =\frac{1}{4} \frac{d^{2} x_{n+1}}{d u_{n}^{2}}=\tau_{z}\left(z_{n}\left(x_{n}\right), k\right)=\tau_{z}\left(x_{n}, k\right) \\
& =\frac{k^{2}-1+2\left(1-k^{2}\right) x_{n}^{2}+k^{2} x_{n}^{4}}{1-k^{2}\left(1-x_{n}^{2}\right)^{2}}\left\{1-2\left(\frac{1-k^{2}+k^{2} x_{n}^{4}}{1-k^{2}\left(1-x_{n}^{2}\right)^{2}}\right)^{2}\right\}
\end{align*}\right.
$$

This gives a mapping from such a space curve onto itself which induces three projective onto mappings associated with coordinates,e.g., X, Y, Z, denoted by $\tau_{x}(\cdot), \tau_{y}(\cdot), \tau_{z}(\cdot)$. The first one is shown in Fig.2(a), which has a symmetric ACI measure, defined by

$$
f_{X}^{*}(x, k) d x=\frac{d x}{2 K(k) \sqrt{\left(1-x^{2}\right)\left(1-k^{2}+k^{2} x^{2}\right)}}
$$

in Fig.3(a).
In addition, it has been shown [24] that the projective onto map τ_{y} is symmetric and has a symmetric ACI measure as shown in Figs.2(b) and $3(\mathrm{~b})$, respectively. (see Appendix A for theoretical expression of τ_{y}) Its associated symmetric binary function, e.g., binary expansion of real-valued orbit $\left\{x_{n}\right\}_{n=0}^{\infty}$ or $\left\{y_{n}\right\}_{n=0}^{\infty}$ can generate a sequence of i.i.d. binary random variables [24].

Here we consider the map τ_{z} and examine whether it has its symmetric ACI measure [25]. Squaring the second expression of Eq.(31) with $k \neq 0$ gives the relation

$$
\begin{equation*}
X^{6}-\frac{1}{k^{2}}\left(-1+2 k^{2}\right) X^{4}+\frac{1}{4 k^{4}}\left(-1+2 k^{2}\right)^{2} X^{2}-\frac{Z^{2}}{4 k^{4}}=0 \tag{33}
\end{equation*}
$$

which implies that for a given Z, X^{2} has the following three real-valued solutions at most.
(34) $\quad X^{2}(Z)=\left\{\begin{array}{l}\xi_{1}^{2}(Z), \quad \text { for } k \leq \sqrt{1 / 2}(R(Z, k)>0) \\ \xi_{1}^{2}(Z), \quad \text { for } k>\sqrt{1 / 2} \text { and } R(Z, k)>0 \\ \xi_{i}^{2}(Z), 2 \leq i \leq 4, \text { for } k>\sqrt{1 / 2} \text { and } R(Z, k)<0,\end{array}\right.$
where $R(Z, k)=\frac{b^{2}(Z, k)}{4}+\frac{a^{3}(k)}{27}, a(k)=-\frac{1}{12 k^{4}}\left(-1+2 k^{2}\right)^{2}, b(Z, k)=$ $\frac{1}{4 \cdot 27}\left\{\frac{\left(-1+2 k^{2}\right)^{3}}{k^{6}}-\frac{27}{k^{4}} Z^{2}\right\}$.

On the space curve, 3-dimensional dynamics has a unique ACI measure with respect to each coordinate. Fig. 3(c) shows comparison between the marginal distribution taken from experiments and theoretical calculations, where the theoretical distributions of τ_{z} is given as follows

$$
f_{Z}^{*}(z, k) d z= \begin{cases}\frac{1}{2 K(k)} f_{Z}\left(\xi_{1}(Z), k\right) d z, & \text { for } 0<k \leq \sqrt{1 / 2} \tag{35}\\ \frac{1}{2 K(k)} f_{Z}\left(\xi_{1}(Z), k\right) d z, & \text { for } k>\sqrt{1 / 2}, r(k) \leq|z|<1 \\ \frac{1}{2 K(k)} \sum_{\ell=2}^{4} f_{Z}\left(\xi_{\ell}(Z), k\right) d z \quad \text { for } k>\sqrt{1 / 2},|z| \leq r(k)\end{cases}
$$

where

$$
\begin{align*}
& r(k)=\sqrt{\frac{2}{27}\left(-1+2 k^{2}\right)^{3}}, \\
& f_{Z}\left(\xi_{\ell}(Z), k\right) d z \tag{36}\\
& =\frac{d z}{\sqrt{\left(1-\xi_{\ell}^{2}(Z)\right)\left(1-k^{2}+k^{2} \xi_{\ell}^{2}(Z)\right)}-6 k^{2} \xi_{\ell}^{2}(Z)+2 k^{2}-1}
\end{align*}
$$

Finally, we notice that theoretical distribution $f_{X}^{*} d x$ is also given by integrand of elliptic integral for inverse function $\mathrm{cn}^{-1}(u, k)$ (see Eq. (25)). The same is true for $f_{Y}^{*} d y$. In fact, inverse function $\left(\frac{d \operatorname{cn}(u, k)}{d u}\right)^{-1}=$ $(-\operatorname{sn}(u, k) \operatorname{dn}(u, k))^{-1}$ is defined by Eq.(45) and Eq.(46) (see Appen$\operatorname{dix} \mathrm{B})$. Similarly $f_{Z}^{*} d z$ is expressed in the inverse function form, as given by Eq.(49) and Eq.(50) (see Appendix C).

§5. I.I.D. binary random vectors

We shall now look into the relation between $\left(z_{n}, z_{n+1}\right)$. Eqs.(33) and (34) tell us that the relation $z_{n+1}=\tau_{z}\left(\xi_{1}\left(z_{n}\right)\right)$ is one-to-one when $k<\sqrt{1 / 2}$ but the graph of z_{n} versus z_{n+1} is one-to-many when $k>$

Fig. 2. Three projection mappings when $k=0.9$.

Fig. 3. Three marginal distributions when $k=0.9$
$\sqrt{1 / 2}$. Namely, the latter case gives a closed curve as shown in Fig. 2(c). Suppose that $k>\sqrt{1 / 2}$ and that $X_{1}(x)$ is the first bit of normalized x in binary representation, such as

$$
\frac{x+1}{2}=0 . X_{1}(x) X_{2}(x) \cdots X_{i}(x) \cdots, X_{i}(x) \in\{0,1\} .
$$

We denote $X_{1}(x)$ by X_{1} and $1-X_{1}(x)$ by $\overline{X_{1}}$. Similarly $Z_{1}(z)$ and $1-Z_{1}(z)$ are denoted by Z_{1} and $\overline{Z_{1}}$ respectively. In addition, $D\left(\frac{d z}{d x}\right)$ and $1-D\left(\frac{d z}{d x}\right)$ are represented by D_{z} and $\overline{D_{z}}$ respectively, where $D\left(\frac{d z}{d x}\right)=0$ (or 1) when $\frac{d z}{d x}<0$ (or when $\frac{d z}{d x} \geq 0$).

Then, we can obtain a piecewise-monotonic onto map τ_{z} defined by

$$
\begin{align*}
\tau_{z} & =X \bar{Z} \bar{D} \tau_{z}^{1-}+\bar{X} Z \bar{D} \tau_{z}^{1+}+X \bar{Z} \bar{D} \tau_{z}^{2-}+\bar{X} Z \bar{D} \tau_{z}^{2+} \tag{37}\\
& +\bar{X} \bar{Z} D \tau_{z}^{3-}+X Z D \tau_{z}^{3+}+\bar{X} \bar{Z} \bar{D} \tau_{z}^{4-}+X Z \bar{D} \tau_{z}^{4+}
\end{align*}
$$

where $\tau_{z}^{i-}=\tau_{z}\left(-\xi_{i}(z)\right), \tau_{z}^{i+}=\tau_{z}\left(\xi_{i}(z)\right), 1 \leq i \leq 4$ and where $\xi_{i}^{2}(z)$ is defined by Eq.(34).

It can be shown that for uniform ACI measure $f_{U}^{*}(u) d u=d u$,

$$
\left.\begin{array}{rll}
P_{\tau_{x}}\left\{C_{T_{x}}(x) f_{X}^{*}(x)\right\} & =\mathbf{E}_{u}\left[C_{T_{x}}\right] f_{X}^{*}(x), & x=\operatorname{cn} u \tag{38}\\
P_{\tau_{y}}\left\{C_{T_{y}}(y) f_{Y}^{*}(y)\right\} & =\mathbf{E}_{u}\left[C_{T_{y}}\right] f_{Y}^{*}(y), & y=-\operatorname{sn} u \operatorname{dn} u \\
P_{\tau_{z}}\left\{C_{T_{z}}(z) f_{Z}^{*}(z)\right\} & =\mathbf{E}_{u}\left[C_{T_{z}}\right] f_{Z}^{*}(z), & z=\frac{d(-\operatorname{sn} u \operatorname{dn} u)}{d u}
\end{array}\right\}
$$

holds, where $\left\{C_{T_{x}}\left(x_{n}\right)\right\}_{n=0}^{\infty},\left\{C_{T_{y}}\left(y_{n}\right)\right\}_{n=0}^{\infty}$ and $\left\{C_{T_{z}}\left(z_{n}\right)\right\}_{n=0}^{\infty}$ are symmetric binary sequences with their sets of symmetric thresholds T_{x}, T_{y} and T_{z} associated with real-valued sequences $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$.
This implies that $\rho\left(\ell, C_{T_{x}}, C_{T_{x}}\right)=\rho\left(\ell, C_{T_{y}}, C_{T_{y}}\right)=\rho\left(\ell, C_{T_{z}}, C_{T_{z}}\right)=$ 0 , for $\ell \geq 0$. [14]
It should be noted that $C_{T_{x}}(x), C_{T_{y}}\left(\tau_{y}^{\ell}(y)\right), C_{T_{z}}\left(\tau_{z}^{m}(z)\right)$ are not always independent each other for $\ell=m=0$, that is, e.g., $\mathbf{E}_{u}\left[C_{T_{x}} C_{T_{y}}\right] \neq$ $\mathbf{E}_{u}\left[C_{T_{x}}\right] \mathbf{E}_{u}\left[C_{T_{y}}\right]$ even if each of them is a sequence of i.i.d. BRVs. This is inevitable as long as these sequences are generated from a single seed $u=u_{0}$. However, we can design appropriate sets of thresholds T_{x}, T_{y}, T_{z} satisfying $\mathbf{E}_{u}\left[C_{T_{x}} C_{T_{y}}\right]=\mathbf{E}_{u}\left[C_{T_{x}}\right] \mathbf{E}_{u}\left[C_{T_{y}}\right]$ (see [14] for details).

§6. Conclusion

We discussed a real-valued dynamics on the Jacobian elliptic space curve between Jacobian elliptic function, its derivative and second derivative, governed by their duplication formulae. Furthermore, we showed that a mapping of the space curve onto itself: $R^{3} \rightarrow R^{3}$ which defines 3
projective onto mappings with their ACI measures satisfying EDP and can generate sequences of 3 -dimensional i.i.d. binary random vectors when using their associated symmetric binary functions, e.g., bits of binary expansions of these real-valued x_{n}, y_{n}, z_{n} as shown in Fig. 4.

Fig. 4. Method of generating multidimensional i.i.d. binary vectors

References

[1] P. Billingsley, Probability and Measure, 3rd ed., Wiley-Interscience, 1995.
[2] M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Mathematical Association of America, 1959.
[3] S. Grossmann and S. Thomae, Invariant distributions and stationary correlation functions of one-dimensional discrete processes, Z. Naturforsch., 32a (1977), 1353-1363.
[4] S. M. Ulam and J. Von Neumann, On combination of stochastic and deterministic processes, Bull. Amer. Math. Soc., 53 (1947), 1120.
[5] J. A. Gonzalez, L. I. Reyes, L. E. Guerrero and G. Gutierrez, From exactly solvable chaotic maps to stochastic dynamics, Phys. D, 178 (2003), 2650.
[6] L. Pecora and T. Caroll, Synchronization in Chaotic Systems, Phys. Rev. Lett., 64 (1990), 821-824.
[7] G. Heidari-Bateni and C. D. McGillem, A chaotic direct-sequence spreadspectrum communication system, IEEE Trans. Comm., 42 (1994), 15241527.
[8] T. Kohda and A. Tsuneda, Pseudonoise sequences by chaotic nonlinear maps and their correlation properties, IEICE Trans. Comm., E76-B (1993), 855-862.
[9] G. Mazzini, G. Setti and R. Rovatti, Chaotic complex spreading sequences for asynchronous DS-CDMA part I: system modeling and results, IEEE Trans. Circuit Syst., CAS-44 (1997), 937-947.
[10] D. S. Broomhead, J. P. Huke and M. R. Muldoon, Codes for spread spectrum applications generated using chaotic dynamical systems, Dynam. Stability Systems, 14 (1999), 95-105.
[11] L. Kocarev and G. Jakimoski, Pseudorandom bits generated by chaotic maps, IEEE Trans. Circuits Systems I Fund. Theory Appl., 50 (2003), 123-126.
[12] G. Jakimoski and L. Kocarev, Chaos and Cryptography: Block Encryption Ciphers Based on Chaotic Maps, IEEE Trans. Circuits Systems I Fund. Theory Appl., 48 (2001), 163-169.
[13] N. Masuda and K. Aihara, Cryptosystems with discretized chaotic maps, IEEE Trans. Circuits Systems I Fund. Theory Appl., 49 (2002), 28-40.
[14] T. Kohda and A. Tsuneda, Statistics of chaotic binary sequences, IEEE Trans. Inform. Theory, 43 (1997), 104-112.
[15] T. Kohda, Information Sources using chaotic dynamics, Proceedings of the IEEE, 90 (2002), 641-661.
[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., NewYork, 1972.
[17] T. Kohda and H. Fujisaki, Jacobian elliptic Chebyshev rational maps, Phys. D, 148 (2001), 242-254.
[18] J. Pieprzyk, T. Hardjono and J. Seberry, Fundamentals of Computer Security, Springer, 2003.
[19] A. Lasota, M. C. Mackey, Chaos, Fractals and Noise, Springer-Verlag, 1994.
[20] R. L. Adler and T. J. Rivlin, Ergodic and mixing properties of Chebyshev polynomials, Proc. Amer. Math. Soc., 15 (1964), 794-796.
[21] J. Milnor, On Lattés Maps, Stony Brook IMS Reprint, pp.1-29, \#2004/01, Feb. 2004, revised Sept. 2004.
[22] E. Schröder, Ueber iterirte Functionen, Math. Ann., 3 (1871), 296-322.
[23] L. E. Böttcher, The principal laws of convergence of iterates and their application to analysis (Russian), Izv. Kazan. Fiz.-Mat. Obsch., 14 (1904), 155-234.
[24] A. Kato and T. Kohda, 2-D i.i.d. Binary Random Vectors Generated by Jacobian Elliptic Rational Map, Proceedings of 2004 International Symposium on Nonlinear Theory and its Applications, 2004, pp. 613-616.
[25] A. Ono and T. Kohda, Solvable Three-dimensional Rational Chaotic Map Defined by Jacobian Elliptic Function, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3645-3650.
\S Appendix A. Derivation of the theoretical expression of τ_{y}
The first expression in Eq.(31) gives

$$
\begin{equation*}
y_{n}^{2}=\left(1-x_{n}^{2}\right)\left(1-k^{2}+k^{2} x_{n}^{2}\right) \tag{39}
\end{equation*}
$$

Solving Eq.(39), we get for $k \neq 0$

$$
\begin{equation*}
x_{n}^{2}=\frac{2 k^{2}-1 \pm \sqrt{1-4 k^{2} y_{n}^{2}}}{2 k^{2}} \tag{40}
\end{equation*}
$$

Eq.(30) and Eq.(32) give

$$
\begin{equation*}
R_{2}^{\mathrm{cn}}\left(x_{n}, k\right)=\frac{1-2\left(1-x_{n}^{2}\right)+k^{2}\left(1-x_{n}^{2}\right)^{2}}{1-k^{2}\left(1-x_{n}^{2}\right)^{2}} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n+1}=\sqrt{\left(1-\left(R_{2}^{\mathrm{cn}}\left(x_{n}, k\right)\right)^{2}\right)\left(1-k^{2}+k^{2}\left(R_{2}^{\mathrm{cn}}\left(x_{n}, k\right)\right)^{2}\right)} \tag{42}
\end{equation*}
$$

Substituting Eq.(40) and Eq.(41) into Eq.(42), we have

$$
\begin{align*}
y_{n+1} & =\frac{2 \sqrt{2} k y \sqrt{2 k^{2}-1 \pm \sqrt{1-4 k^{2} y^{2}}}}{\left(2 k^{2}-1+2 k^{2} y^{2} \pm \sqrt{1-4 k^{2} y^{2}}\right)^{2}} \tag{43}\\
& \times\left\{1-2 k^{2} y^{2} \pm\left(2 k^{2}-1\right) \sqrt{1-4 k^{2} y^{2}}\right\}
\end{align*}
$$

where three \pm signs on R.H.S. are either + or - . Denote two maps by $\tau_{y}^{P P}(y)$ and $\tau_{y}^{N N}(y)$ when + and - are chosen on the R.H.S. of Eq.(43), respectively. Then

$$
\begin{align*}
\tau_{y}(y) & =X_{1}\left(D \oplus Y_{1}\right) \tau_{y}^{P P}(y)+\overline{X_{1}} \overline{\left(D \oplus Y_{1}\right)}\left(-\tau_{y}^{P P}(y)\right) \tag{44}\\
& +X_{1} \overline{\left(D \oplus Y_{1}\right)} \tau_{y}^{N N}(y)+\overline{X_{1}}\left(D \oplus Y_{1}\right)\left(-\tau_{y}^{N N}(y)\right)
\end{align*}
$$

§Appendix B. Inverse function Y [24]

Fig. 5. $y=-\operatorname{sn} u \operatorname{dn} u\left(y_{1}=\sqrt{1-k^{2}}\right.$ and $\left.y_{2}=1 / 2 k, k \neq 0\right)$.

When $0<k \leq \sqrt{1 / 2}$,

$$
\begin{equation*}
u=\int_{-\operatorname{sn} u \operatorname{dn} u}^{0} f_{Y}^{+}(y) d y \tag{45}
\end{equation*}
$$

When $k>\sqrt{1 / 2}$,
(46) $\quad u=\left\{\begin{array}{l}\int_{-\operatorname{sn} u \operatorname{dn} u}^{0} f_{Y}^{+}(y) d y, \quad \text { for }|u| \leq \mathrm{cn}^{-1} \sqrt{\frac{2 k^{2}-1}{2 k^{2}}} \\ \int_{\frac{1}{2 k}}^{0} f_{Y}^{+}(y) d y-\int_{-\operatorname{sn} u \operatorname{dn} u}^{\frac{1}{2 k}} f_{Y}^{-}(y) d y, \\ \text { for }-K(k) \leq u<-\mathrm{cn}^{-1} \sqrt{\frac{2 k^{2}-1}{2 k^{2}}} \\ \int_{-\frac{1}{2 k}}^{0} f_{Y}^{+}(y) d y-\int_{-\operatorname{sn} u \operatorname{dn} u}^{-\frac{1}{2 k}} f_{Y}^{-}(y) d y, \\ \text { for } \mathrm{cn}^{-1} \sqrt{\frac{2 k^{2}-1}{2 k^{2}}}<u \leq K(k)\end{array}\right.$
where[24]

$$
f_{Y}^{ \pm}(y) d y=\frac{\sqrt{2} k}{\sqrt{\left(2 k^{2}-1 \pm \sqrt{1-4 k^{2} y^{2}}\right)\left(1-4 k^{2} y^{2}\right)}} d y
$$

where the \pm sign on R.H.S is either + or - and is to be decided on the basis whether there is f_{Y}^{+}or f_{Y}^{-}on the L.H.S.
§Appendix C. Inverse function Z [25]

$\begin{array}{ll}\text { (a) } k \leq \sqrt{1 / 2} & \text { (b) } k>\sqrt{1 / 2}\end{array}$

Fig. 6. $z=\operatorname{cn} u\left(-1+2 k^{2}-2 k^{2} \mathrm{cn}^{2} u\right),\left(z_{1}=r(k)\right)$

When $k \leq \sqrt{1 / 2}$ (see Fig.6(a)), simple differential calculation gives

$$
\begin{align*}
& \frac{d\left(\operatorname{cn} u\left(-1+2 k^{2}-2 k^{2} \mathrm{cn}^{2} u\right)\right)}{d u} \tag{47}\\
& =\sqrt{\left(1-\mathrm{cn}^{2} u\right)\left(1-k^{2}+k^{2} \mathrm{cn}^{2} u\right)} \times\left\{6 k^{2} \mathrm{cn}^{2} u-2 k^{2}+1\right\}
\end{align*}
$$

Integrating each side of Eq.(47) over u, we have

$$
\begin{equation*}
u=\int_{-1}^{\mathrm{cn} u\left(-1+2 k^{2}-2 k^{2} \mathrm{cn}^{2} u\right)} \frac{d Z}{\sqrt{\left(1-X^{2}(Z)\right)\left(1-k^{2}+k^{2} X^{2}(Z)\right)}\left\{6 k^{2} X^{2}(Z)-2 k^{2}+1\right\}}, \tag{48}
\end{equation*}
$$

where $X^{2}(Z)$ is given by Eq.(34). ACI measure of the map τ_{z} is defined in the form of inverse of elliptic functions, i.e., elliptic integral.

$$
\begin{equation*}
u(z)=\int_{-1}^{z} f_{Z}\left(\xi_{1}(Z)\right) d Z, \quad \text { for }-1 \leq z \leq 1, k \leq \sqrt{1 / 2} \tag{49}
\end{equation*}
$$

The same discussion applies to $k>\sqrt{1 / 2}$ case with care to constants of integration (see Fig.6(b)).
(50)

$$
\left\{\begin{array}{l}
u_{1}(z)=\int_{-1}^{z} f_{Z}\left(\xi_{1}(Z)\right) d Z, \quad \text { for }-1 \leq z<-r(k) \\
u_{2}(z)=u_{1}(-r(k))+\int_{-r(k)}^{z} f_{Z}\left(\xi_{2}(Z)\right) d Z, \quad \text { for }-r(k) \leq z<0 \\
u_{3}(z)=u_{2}(0)+\int_{0}^{z} f_{Z}\left(\xi_{4}(Z)\right) d Z, \quad \text { for } \quad 0 \leq z<r(k) \\
u_{4}(z)=u_{3}(r(k))-\int_{r(k)}^{z} f_{Z}\left(\xi_{3}(Z)\right) d Z, \quad \text { for } \quad r(k) \geq z>-r(k) \\
u_{5}(z)=u_{4}(-r(k))+\int_{-r(k)}^{z} f_{Z}\left(\xi_{4}(Z)\right) d Z, \quad \text { for }-r(k) \leq z<0 \\
u_{6}(z)=u_{5}(0)+\int_{0}^{z} f_{Z}\left(\xi_{2}(Z)\right) d Z, \quad \text { for } \quad 0 \leq z<r(k) \\
u_{7}(z)=u_{6}(r(k))+\int_{r(k)}^{z} f_{Z}\left(\xi_{1}(Z)\right) d Z, \quad r(k) \leq z \leq 1
\end{array}\right.
$$

where $f_{Z}\left(X_{i}(Z)\right)$ is given by Eq.(35) and

$$
r(k)=\sqrt{\frac{2}{27}\left(-1+2 k^{2}\right)^{3}}
$$

[^3]E-mail address: kohda@csce.kyushu-u.ac.jp

[^0]: Received October 12, 2007.
 Key words and phrases. chaos, duplication formula, pseudo-radom number, coin tossing, independence, Bernoulli shift, independent and identically distributed binary random variable, Jacobian elliptic function, ellpitic space curve, elliptic integral.

[^1]: ${ }^{1}$ see [21] for a historical review of rational maps.

[^2]: ${ }^{2} \operatorname{cn}(u, 0)$ simply reduces to $\cos u$.

[^3]: Department of Computer Science and Communication Engineering Kyushu University
 Fukuoka
 Japan

