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A-integrability of geodesic flows and geodesic 
equivalence 

Peter Topalov 

§1. Introduction 

A common property of the metrics that admit non-trivial geodesic 
equivalence is that their geodesic flows admit families of pairwise com­
muting integrals of a special type (see [14, 7, 16, 17, 13]). The metrics 
studied in [1] and [20] have integrals with analogous properties. We con­
sider this property as a definition of a new class of (pseudo) Riemannian 
metrics that we call A-integrable metrics. We prove that these met­
rics inherit the main properties of the metrics that admits non-trivial 
geodesic equivalence (see [16]). 

Let Mn be a smooth n-dimensional manifold. By r(E) we denote 
the space of the smooth sections of the vector bundle 1r : E ---> Mn. Let 
P E r(Hom(T M, T M) ). We say that P is diagonalizable over lR on Mn 
if for every point x E Mn there exists a (real) basis in TxMn such that 
the operator P(x) has diagonal form P(x) = diag(-\1 , ... , An)· 

Definition 1. Let g be a (pseudo} Riemannian metric on the mani­
fold Mn and let A E r(Hom(T M, T M)) be a self-adjoint operator which 
is diagonalizable over lR on Mn with respect to g. The metric g is called 
A-integrable if the functions from the one-parameter family 

(1) Ic(~) ~f det(A + cl)g((A + cl)- 1 ~, ~) 

are in involution with respect to the symplectic structure w9 ~f FL~w. 
Here F L 9 : T M ---> T* M is the Legendre transformation corresponding 
to the metric g and w is the canonical symplectic structure on T* M. 
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Remark 1. It seems that the assumption that A is diagonalizable 
over ffi. is not essential and the theorems proved in the present paper 
are likely to be true without this restriction. We refer to [15] where the 
pseudo-Riemannian analogues of the results proved in [14, 7, 16, 17, 13] 
are given. The case of arbitrary A is extremely interesting because in 
this case we do not have orthogonal separation of the variables and the 
corresponding systems are not locally of Stiickel form. 

Remark 2. If the functions Ic are in involution, then they are in­
tegrals of the geodesic flow of the metric g. Indeed, it is easily seen that 
Ic(~) = Sn-l(~)cn-l + Sn-2(~)cn-2 · · · + So(O and Sn-d~) = g(~,~). 

Remark 3. It follows from the definition that every metric is !­
integrable, where 1 denotes the identity. Moreover, if g is A-integrable, 
then for any real constant a the metric g is (A+ al)-integrable . 

We assign to any operator A on the manifold Mn a decomposition 
of the manifold Mn = S(A) U7=1 Mi(A), where Mi(A) denotes the set 
of the stable points of type i, i.e., the set of the points x E Mn such that 
the operator A(y) E Hom(TyM, TyM) has exactly i distinct eigenvalues 
for every point y in an open neighborhood of the point x. Denote by 
M(A) the set of the stable points U7=1 Mi(A). The closed set S(M) 
is called set of the singular points. It is easily seen that S is nowhere 
dense. 

Definition 2. The (pseudo) Riemannian metrics g and g are called 
geodesically equivalent iff they have the same geodesics (considered as 
unparametrized curves). 

If g is not a constant multiple of g, then we say that the metrics 
are non-trivially geodesically equivalent. We say that the (pseudo) Rie­
mannian metric g admits non-trivial geodesical equivalence if there ex­
ists a (pseudo) Riemannian metric g such that g and g are non-trivially 
geodesically equivalent. If, in addition, the metrics g and g are simulta­
neously diagonalizable over ffi., then we say that the metric g admits a 
non-trivial geodesical equivalence of Levi-Civita type (LC-type). 

Theorem 1. The (pseudo) Riemannian metric g admits a non­
trivial geodesical equivalence of LC-type if and only if g is A-integrable, 
the operator A is non-degenerate on Mn, A ~ constant xl, and the 
eigenspaces of A are integrable on M (A). If the metric g is A -integrable 
and the eigenspaces of A are integrable, then the metrics given by the 
formula 

(2) 
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defined for every real parameter c such that the operator (A+ c1) is non­
degenerate on Mn, are geodesically eq'l)ivalent to g. Conversely, if there 
exists a metric g such that g and g are simultaneously diagonalizable 
over lR and geodesically equivalent, then the metric g is A -integrable, 
where the operator A is given by the formula 

(3) 
1 

Ai ( -) ~f I det·gl n+l -ia . 
j g,g - detg g gaJ· 

By definition, the operator A is non-degenerate on Mn iff det A i= 0 
onMn. 

Remark 4. Suppose that the operator A = A(g, g) is derived from 
a pair of geodesically equivalent metrics g and g (see formula (3}}; then 
the formula 

(4) Ia,f3(g; g)(~) ~f det(aA + jJl)g((aA + /31)- 1 ~, ~), 

gives a family of pairwise commuting integrals of the geodesic flow of the 
metric g. 

Remark 5. Suppose that g is a (pseudo} Riemannian metric and let 
A be a self-adjoint operator which is diagonalizable over lR with respect 
to g. If the metrics given by formula (2) are geodesically equivalent, then 
the functions given by formula (1} are pairwise commuting integrals of 
the geodesic flow of the metric g. It is easily checked that A(g, go) =A, 

where g0 d~f gclc=O and the operator A(g, go) is derived from formula {3}. 

The next theorem gives a description of the decomposition of the 
manifold corresponding to an A-integrable metric. 

Theorem 2. Suppose that the metric g is A-integrable. If the man­
ifold Mn is connected, then Mn = S(A) U Mm(A), where m is a natural 
number m :::; n. The set of singular points S(A) is nowhere dense and 
coincides with the set of points on Mn where the number of the dis­
tinct eigenvalues of the operator A is less than m. There exist quadratic 
forms B1 , ... , Bm on Mn such that any form from the family given by 
formula (1} is a linear combination (with constant coefficients) of the 
forms B1, ... , Bm. Considered as functions on the tangent bundle T Mn 
the forms B1, ... , Bm are functionally independent almost everywhere. 

The smooth functions F1 , ... , Fk given on the smooth manifold Vq 
are called functionally independent on Vq iff the set of the points X E Vq 
where the differentials dxF1 , ... , dxFk are linearly independent is dense 
in vq. 
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Definition 3. The natural number m that appears in Theorem 2 is 
called rank of the A-integrable metric g. 

It follows from Theorem 2 that if the operator A of some A-integrable 
metric g has n different eigenvalues at some point x0 E Mn, then the 
geodesic flow of the metric g is completely integrable. 

The theorems that follow allow us to produce new A-integrable met­
rics from a given one. 

Theorem 3. Suppose that the {pseudo) Riemannian metric g is 
A-integrable; then for every real-analytic function f(t) such that the 
operator f(A) is non-degenerate and well defined on Mn the metric 

g1 (~, ~) ~f g(J(A)~, ~) is also A-integrable. 

Theorem 4. Suppose that the (pseudo) Riemannian metric g is A­
integrable; then, provided the operator (A+ c1) is non- degenerate on Mn, 
the metric 9c given by formula {2} is (aA + ;Jl)(A + cl)- 1 -integrable, 
where a and ;3 are arbitrary real parameters. 

Therefore, from an A-integrable metric g we obtain a family (hier­
archy) of A-integrable metrics 

(5) S(g, A) ~f {gJif satisfies the conditions of Theorem 3}. 

Many classical examples of integrable geodesic flows and mechanical 
systems lie in hierarchies obtained from a fixed A-integrable metric (see 
[16] for details). Perhaps the most remarkable fact is that the Liouville 
integrability of the ellipsoid and the Poisson sphere follow from the Liou­
ville integrability of the standard sphere (all these metrics lie in a fixed 
hierarchy). Analogous results are true also in the cases of the hyper­
bolic and the Euclidean plane. Let us describe briefly the corresponding 
constructions (for details see [16, 13] and [6]). 

(a) The standard sphere and the free motion of a rigid body 
in Euclidean space. Let 

n+l 

sn ~f { 2:: xr = 1} 
i=l 

be the unit sphere embedded in the Euclidean space ~n+l supplied with 

the Euclidean metric go ~f dxi + · · · + dx;+I. Denote by g the restric­
tion of g0 to the sphere sn. Consider a non-degenerate linear transfor­
mation C of JRn+I. The transformation C induces in a natural way a 
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transformation /LC of the sphere sn (f.Lc(x) ~f llg~ll' where IIYII is the 
Euclidean norm of y E JR_n+l ). It is clear that /LC preserves the geodesics 

on the sphere. Therefore, the metrics g and g ~f f.L*g are geodesically 
equivalent. It follows from Theorem 1 that g is A-integrable where 

A ~f A(g, g). Theorem 3 shows that the metrics g(k)(~, ~) ~f g(Ak~, ~) 
(k = 1, 2, ... ) are also A-integrable. It is proved in [16] that gCll is iso­
metric to the metric of a suitable ellipsoid and the metric gC 2 ) is geodesi­
cally equivalent to the metric of a suitable Poisson sphere. Varying the 
matrix C we obtain all possible ellipsoids and Poisson spheres. 

(b) The hyperbolic plane and the free motion of a rigid body 
in Minkowski space. Denote by 

Hg ~f {-x6 + xi + · · · + x; = -1} 

and 
S? ~f {-x6 + xi + · · · + x; = 1} 

the hyperboloids of two sheets and one sheet respectively, embedded in 

the Minkowski space JR.1,n, g0 ~f -dx6+dxi+· · ·+dx~, and consider the 

submanifold Mn ~ H 0 US]'. Let g be the restriction of the metric go 
on Mn. Recall that the hyperbolic plane Hn is isometric to the positive 
part (x0 > 0) of the hyperboloid of two sheets. As in the previous case 
any non-degenerate linear transformation C of the plane JR_n+l induces a 
partially defined mapping f.Lc : Mn --+ J\1n that preserves the geodesics 

on J\1n. It is clear that the metrics g and g ~f f.Lcg are geodesically 
equivalent. The metric g is not smooth at the points of Mn where 
the mapping f.Lc is not defined. Nevertheless, the operator A = A(g, g) 
derived from formula (3) is smooth. As in the previous case we construct 
the metrics g(k) (k = 1, 2, ... ). It is proved in [13] that the metric gC 2) 

(restricted to the hyperbolic plane Hn) is geodesically equivalent to the 
metric of the analogue of the Poisson sphere corresponding to the free 
motion of the rigid body in Minkowski space. 

(c) The Euclidean space and the Clebsch case of motion of 
a rigid body. Let us consider the projective plane 

and fix the affine chart JR_n ~ { Xn+l = 1} <.......t JR.n+l_ Any non-degenerate 
linear transformation L of JR_n+l gives a projective transformation of 
JR.pn that acts on the affine chart JR_n as a linear-fractional transfor­
mation that we denote by ILL· It is clear that the partially defined 
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mapping /kL : ffi.n_ ---. ffi.n preserves the geodesics of the Euclidean met­

ric g ~ dxi + · · · + dx; on ffi.n. It allows us to construct a partially 

defined metric g d~f p£g that is geodesically equivalent to the Euclidean 
metric g. The corresponding operator A = A(g, g) given by formula 
(3) is smooth and the metric g is A-integrable. It is proved that the 
corresponding hierarchy S(g, A) (given by Theorem 3) contains a met­
ric that is geodesically equivalent to the analogue of the Poisson sphere 
corresponding to the Clebsch case of motion of the rigid body (see [13]). 
We consider item c) in more detail in Appendix 1. 

The next theorem allows us to construct A-integrable metrics on 
Cartesian products. 

Suppose that the (pseudo) Riemannian metric g1 given on the man­
ifold M1 (dim M1 = n 1) is A1-integrable and the (pseudo) Riemannian 
metric g2 given on the manifold M 2 (dim M 2 = n 2) is A2-integrable. 
Denote by M the Cartesian product M1 x M2 and let 7r; : M ---. M; 

(i = 1, 2) be the projections. Let us consider the operators A1 (0 ~f 
(du7riiK2)- 1 (AI(du7ri(~))), ~ E TuM, K2u ~[ kerdu1f2, and A2(0 ~f 
(du7r2IK,)- 1 (A2(du7r2(~))), ~ E TuM, K1u ~f kerdu7rl· Denote by 
CJ1 (A;), ... , CJn, (A;) the elementary symmetric polynomials of the op­
erator A; (i = 1, 2). Let L be a linear operator in the vector space V, 
dim V = n. The elementary symmetric polynomials of the operator L 
are defined by the equality det(L + cl) =en+ CJ1(L)cn-l + · · · + CJn(L). 
It is clear that CJk( A;) are smooth functions on M;. Let us consider the 
f . · def (A ) fi def A-n 2A-n -1 unctwns CJk = 1r;CJk i . De ne the operators G1 = 12 - CJ1 12 + 

( 1)n2 2 1 d G def A-n, lA-n,-1 ( 1)n 1 1 h · ··+ - CJn 2 1 an 2 = 2 -CJ1 2 +· · ·+ - 1 CJn 1 2, were 
11 is the projection on K2u with respect to K1u and 12 is the pro-

jection on K1u with respect to K2u· Define also the forms jj;(~, ry) ~f 
g;(duiri(~), du7r;(ry)) (i = 1, 2), ~' TJ E TuM. Let us consider the set 

A; ~f {AI .X E Spect A;(x), x EM;}, where Spect A denotes the spectrum 
of the linear operator A. 

Theorem 5. Suppose that A1 nA2 = 0; then the (pseudo) Riemann­
ian metric 

def - -
is A-integrable where A = A1 + A2 . 
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§2. Proof of Theorem 1. 

We follow the construction of the proof of Theorem 2 in [17]. Assume 
that the metric g is A-integrable. It follows from our assumption that 
any two functions from the 1-parameter family 

(7) Ic(~, ~) ~r det(A + cl)g( (A+ cl)- 1 ~, 0 

are in involution. Suppose that the point x 0 E Mn is stable of type m 
(0 :::; m :::; n), i.e., xo E Mm(A). Therefore, there is an open neighbor­
hood U(x0 ) of the point such that the operator A has exactly m :::; n 
distinct eigenvalues 0h ( x) < r/>2 ( x) < · · · < ¢m ( x). The corresponding 
eigenspaces give a natural splitting TU ~ W 1 E!:l· · · E!:l Wm, dim Wk = lk. 
Let Xka (k = 1, ... , m; a = 1, ... , lk) be an orthonormal frame on U 
such that A(Xka) = ¢kXka, Wk = Span(Xkl, ... , Xklk). Making the 
Legendre transformation corresponding to the Riemannian metric g we 
obtain 

(8) I = <P(c) {-1-A1 + .. · + - 1-A } 
c ¢1 + C ¢m + C m ' 

where <P(c) ~f (¢1 + c)h · · · (¢m + c)1=, Ak ~f 2:::~= 1 EkaV~a' Eka = ±1, 

and Vka ~f (p, Xka), p E T*U(xo). 

First of all, let us consider the case m = 1. We obtain A = ¢ 1. 
Hence, Ic = (¢ + c)n- 1g is a 1-parameter family of first integrals of the 
geodesic flow of the metric g. This gives 0 = {g, Ic} = (n- 1)(¢ + 
c)n- 2 {g,¢}g. Hence, {g,¢} = 0. This yields¢= constant and A= 
constant x 1. This contradicts the assumption that A =/= constant x 1. 

We will suppose further that m ~ 2. Let us take m distinct real 
numbers c1 , ... ,em such that Ci =/= -¢J (i,j = 1, ... ,m) on U(x0 ). Note 
that such constants exist if U(x0 ) is sufficiently small. If necessary, we 

shrink the neighborhood U(x0 ). We obtain m integrals H ~f Ick in 
involution such that 

- 1-A1 + ··· + - 1-A </>l+c1 ¢,+c1 m, 

-;:;::---+1 A 1 + ... + -::;:----+1 Am. 
'+'1 Cm 'Prn Cm 
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As in section 2 in [17], we prove that 

= "'( _ 1)l+k ~ _2_ ( c/Jz + cl) · · · (cpz + ck_I)(cpz + ck+I) · · · (cpz +em) Fko 
~ IIz ck (¢1 + Ck)h-1(¢2 + Ck)l2 - 1 ... (¢m + Ck)lm-1 

where IIz ~f (¢m- cpz) · · · (¢Z+1- cpz)(cpz- c/Jz-d · · · (cpz- ¢1) and Ck ~f 
(em- ck) · · · (ck+1 - ck)(ck- Ck-d · · · (ck- cl). Hence, 

A ~f Ap II C [(A- )z1-1 (A- )zm-1] p - (A. ) (A. ) p m 'f'1 + Cm · · · <ym + Cm 
'f'p + C1 · · · 'f'p + Cm-1 

= L( _1)P+k Cm (c/J1 + Cm) Z, ~ 1 .. (c/Jp + Cm) ~~ .. (c/Jm + Cm) lm-~k, 
k Ck c/J1 + Ck c/Jp + Ck c/Jm + Ck 

and we write this as 

(9) 

We are going to prove that 

1) c/Jk =constant, if dim wk > 1; 
2) Lxpacpq = 0 (p-=/:- q), if dim Wq = 1. 

It follows from (9) and the Stackel-Painleve theorem proved in [17] (see 
Proposition 1 in [17]) that LxqaaPk = 0 (q -=1- p). Without loss of 
generality we can suppose that z1 2 lz 2 ... 2 lm. If h = 1, then 
aqk = ( -1)q+k ~",; ~::~. Hence, Lxp1 c/Jq = 0 (p -=1- q). Suppose that 
/1 > 1. Denote by s the largest natural number m 2: s 2: 1 such that 

ls > 1. Observing that f'++Ck = (ck- em)(~+ ~+1 ) and ap-
'f't Cm Ck Crn 'f't Cm 

plying Lemma 3 in [17] to the coefficients apk ( k = 1, ... , s) of the first 
two equations of (9) we obtain ¢k =constant (k = 1, ... , s). Therefore, 

a(s+l)1 = constant x ( ~ss:11:~7) (Z = 1, ... , m- s ). It follows that the 

functions c/Js+l (l = 1, ... , m- s) satisfy condition 2). 

Assume in addition that the eigenspaces of the operator A are inte­
grable on M(A). It follows from (9) and the Stackel-Painleve theorem 

that there is a chart {(x1, ... ,xm)}, Xk ~f (xk 1, ... ,xkzk), given in a 
neighborhood of the point x0, such that Ak = Ak ( x;, Pk), where Pka are 
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the conjugate impulses. Therefore, Ak = rL Qk(xk,ih). By definition, 
g = A1 +···+Am. Hence, 

(10) g = Q1(x1,jh) + ... + Qm(Xm,Pm). 
II1 IIm 

Therefore, 

where Gk are quadratic forms. Let us consider the metric g ~f de~ AgA-1 . 

We have 

(12) g = p1II1G1(x1,dxl) + · · · + pmiimGm(xm,dxm), 

where pi ~f </J1 .. 1</>rn Ji. Now, it is easily checked (using the local co­
ordinates) that the metrics g and g given by formulae (11) and (12) 
are geodesically equivalent. The same fact also follows from the Levi­
Civita's theorem (see [5, 3, 11, 16]). Note that Levi-Civita proved his 
theorem when the metrics g and g are positive definite. Nevertheless, 
it is easily seen that his proof works also in the case of simultaneously 
diagonalizable pseudo-Riemannian metrics. Finally, the first statement 
of Theorem 1 follows from the fact that the metric g is globally defined 
on Mn and the set of stable points M is everywhere dense in Mn (see 
[7]). Formula (2) follows from Proposition 1 in [16]. 

Conversely, suppose that the (pseudo) Riemannian metric g admits 
non-trivial geodesical equivalence of LC-type, i.e., there exists a metric 
g such that the metrics g and g are non-trivially geodesically equivalent 
and simultaneously diagonalizable over R Let us consider the operator 
A = A(g, g) given by formula (3). A is a self-adjoint operator with 
respect to the both metrics and g(~,O = de~Ag(A- 1~,0. We prove 
the involutivity of the functions Ic given by formula (1) in Appendix 2. 
Theorem 1 is proved. 

§3. Properties of the A-integrable metrics. 

In this section we prove theorems 2, 3, 4 and 5 that give some of the 
main properties of the A-integrable metrics. 

3.1. Proof of Theorem 2. 

Denote by N ( x) the number of distinct eigenvalues of the operator 
A at the point x E Mn. Suppose that m = maxxEMn N(x). It is clear 
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that if N(x) = k, then N(x) ~ k in a neighborhood of the point x. 
Therefore, if N(x) = m, then x is stable point of type m. It is easily 
seen that the set of stable points is dense in Mn. 

Consider the case when the geodesic flow of the metric g is complete. 
The general case is easily reduced to this one. Suppose that Mm' (A) -::/=- 0 
where m1 < m. Let us take Xo E Vo c Mm(A) and X1 E v1 c Mm1 (A) 
where V0 and V1 are open sets. Taking V0 and V1 sufficiently small we 
can find real constants c1, ... , em that are not eigenvalues of the operator 

(-Ax) if X belongs to Vo u v1. Let us consider the forms Bi ~f I Ci 

( i = 1, ... , m). It is easily shown that for any real number c there exist 
constants a1, ... , am such that Ic = 2::::1 aiBi on Vo. Indeed, it follows 
from formula (8) and Lemma 2 in [17] that there are smooth functions 
a1, ... , am defined in Vo such that Ic = 2::::1 aiBi. Differentiating the 
last equality with respect to the Hamiltonian vector field corresponding 
to the metric g we obtain 0 = {g, Ic} = l:i{g, ai}Bi. Hence, {g, ai} = 0. 
This gives ai = constant. 

Let us take a geodesic line 'Y(t) that connects the points xo and X1 
(1'(0) = x0 and 'Y(t0 ) =xi). Without loss of generality we can suppose 
that the points x0 and x1 are not conjugate. It follows from formula (8) 
and Lemma 2 in [17] that the set Zx0 of points v E Tx 0 Mn where the 
differentials dvB1, ... , dvBm are linearly independent is dense in Tx0 Mn. 
Hence, there exists a point Vo E Zxo such that exp Vo E v1. The geodesic 
flow of the metric g preserves the functions B 1, ... , Bm. Therefore, the 

differentials dv,B1, ... , dv,Bm, where v1 ~f ftlt=1 exptvo, are also lin­
early independent. On the other hand, on V1 we have Bm = 2:::;"~1 AjBj, 
Aj = constant. This is a contradiction. Therefore, m 1 = m. This 
proves that all stable points on Mn are of type m. Therefore, Mn = 

S(A) U Mm(A). It is clear that if N(x) = m, then x E Mm(A). Hence, 
S(A) = {x E MniN(x) < m}. Let us prove the last statement of the the­
orem. Suppose that there is an open set U E Mm such that for any x E U 
the forms B1 (x), ... , Bm(x) (defined above) are linearly dependent (as 
quadratic forms in the tangent space TxU). Taking U sufficiently small 
we can choose constants a 1, ... , am such that Bk = I:'J:1 f3kji01i, where 
f3kj are constants and the forms I 011 (x), ... , I 01 rn (x) are linearly indepen­
dent for any fixed x E U. It is clear that the matrix (f3kj) is degen­
erate. Hence, the differentials dvB1, ... , dvBm are linearly dependent 
on TU. But the arguments used above show that we can find a point 
vo E TU where the differentials dv0 B1, ... ,dv0 Bm are linearly indepen­
dent. This contradiction shows that the set K of points x E Mn where 
the forms B1 ( x), ... , Bm ( x) form a basis of the linear space generated 
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by the forms {Ic(x)lc E IR} is dense in Mn. Therefore, for any real 
constant c we have Ic = 2:::_7'=1 fL)Bj where flj are functions on K that 
are locally constants. Let us prove that these functions are constant 
on K. Suppose that Ic = I::j JLj Bj in some open set Ua C K and 

Ic = I::j 11!] Bj in some open set U(3 C K. Let us take Xa E Ua. It is eas­
ily seen that the set of the points~ E Tx"'Mn where the differentials dt:,Bj 
(j = 1, ... , m) are linearly independent is dense in Tx"' Mn. Therefore, 
we can find ~a E Tx"'Mn such that exp~a = Xf3 E u(3 and the differ­
entials dt:,"' Bj are linearly independent. Denote by (t : T Mn --+ T Mn 

the geodesic flow of the metric g and let ~(3 ~f ftlt=1 exp(t~a)· We have 
that dt:,Jc = I::j JLjdt;"'Bj. On the other hand 

dt:,"' fc dt:, 13 fc 0 (! 
Lfl!Jdt;(3BJ 0 ,; 

j 

Lfl!Jdt;"'Bj· 
j 

Hence, JLj = 11!] ~f flj (j = 1, ... , m). This gives Ic = 2:::1 fljBj on 
K. Therefore, Ic = 2:::1 fljBj on Mn. It is clear that the functions 
B 1 , .... , Bm are functionally independent almost everywhere on T Mn. 
This proves the theorem. 

3.2. Proof of Theorem 3. 

Suppose that the metric g is A-integrable. It is sufficient to prove 
the theorem in a neighborhood of an arbitrary stable point. Suppose 
that x 0 E Mn is a stable point of type m and let the smooth functions 
¢1(x) < ¢2(x) < · · · < 1>m(x) be the eigenvalues of the operator A(x) 
in a neighborhood U(x0 ) of the point x0 . As in the proof of Theorem 
1 we see that the condition m = 1 implies that A = constant x 1. In 
this case the statement of Theorem 3 is obvious. Consider the case 
m 2 2. Let us consider the functions Fk ~f Ick, where c1, ... , em are 
different real constants such that Ci =/= -t/>j i,j = 1, ... ,m on U(xo). 
As in the proof of Theorem 1 we see that equality (9) holds and the 
functions ¢ 1 , ... , 1>m satisfy conditions 1) and 2) of section 2 (following 
formula ( 3)). We have to prove that the 1-parameter family of functions 

If ~f det(A + cl)g1((A + cl)- 1 ~, ~) are in involution. Let us consider 
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the functions Ff ~f IL. As in the proof of Theorem 1 we see that 

Af ~f j(cf;p)-1 Ap IlpCm[(cP1 + Cm) 1'-1 · · · (cPm + Cm) 1"'- 1] 
P (cf;p + ci) · · · (cf;p + Cm-d 

= :~:) _ 1 )P+k Cm ( cP1 + Cm ) l,- .
1 
.. ( cPp + Cm ) ~~ .. ( cPm + Cm ) l,.-~f 

k Ck cP1 + Ck cf;p + Ck cPm + Ck 

= LapkFf. 
k 

It is clear that the coefficients apk satisfy the Stackel condition (see 
Proposition 1 in [17]). Moreover, A~ = f(cf;p)- 1 Ap, where the functions 

A1, ... , Am are in involution. Hence, the functions A{, ... , Afn are in 
involution. Finally, a variant of the Stackel-Painleve theorem shows that 
the functions F{, ... , Ffn are in involution. Note that gf = lim c1-n If. 

C->CXl 

Therefore, the functions F/, ... , F/n are integrals of the geodesic flow of 
the metric gf. Let us fix an arbitrary real constant o:. It follows from the 

definition of the function I£ that I£ = I:j: 1 O:jFJ, where O:j are smooth 
functions on U ( x 0 ). The arguments used in the proof of Theorem 2 show 
that O:j are constants. Therefore, the functions from the family If are 
in involution on M(A). Finally, the statement of the theorem follows 
from the fact that the set of stable points M(A) is everywhere dense in 
M. Theorem 3 is proved. 

3.3. Proof of Theorem 4. 

It is sufficient to prove that the functions 

clef (o:A+;31 ) ((o:A+/31 )-1 ) (13) Is(O = det A+ c1 + sl gc A+ c1 + sl ~' ~ 

are in involution with respect to the symplectic structure w9c ~f F LZcw, 
where F L 9 c is the Legendre transformation corresponding to the metric 
gc and w is the canonical symplectic structure on T* Mn. Applying the 
Legendre transformation and using matrix representation we obtain 

I = det((c+o:)A+(cs+;3)E)(( )A ( r.~)E)-1(A E) -1 
s det (A + cE) c + o: + cs + fJ + c g c 

= det((c + o:)A + (s + c;3)E)((c + o:)A + (s + c;3)E)-1(A + cE)2g- 1, 

where E is the unit matrix. It follows from Theorem 3 that the metric 
g((A + cl)-2~, ~) is A-integrable. This proves Theorem 4. 
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3.4. Proof of Theorem 5. 

Suppose that the conditions of Theorem 5 are satisfied. Let us 
fix two points xo E M1 and Yo E M2 and suppose that xo is stable 
of type m 1 ::::; n1 and y0 is stable of type m 2 ::::; n 2. Consider the 
point uo = (xo, Yo) E M. It is clear that the point u0 is stable of 

def - -
type m1 + m 2 with respect to the operator A = A1 + A2. There 
is an open neighborhood U(xo) C M1 where the operator A1 has ex­
actly m 1 distinct eigenvalues r/JI < · · · < ¢m1 and an open neigh­
borhood V(y0 ) C M2 where the operator A2 has exactly m 2 distinct 
eigenvalues ¢m1 +1 < · · · < ¢m1 +m2. Denote by cPk the functions 1ri cPk 
(k = 1, ... , ml) and 7r2r/Jk (k = m1 + 1, ... , m1 + m2) on U(xo) x V(yo). 
There exist an orthonormal (with respect to the metric g1) frame Xkak 
(k = 1, ... , m1, ak = 1, ... , lk, 2::;;'=':1 lk = nl) on U(xo), such that 
A1 (Xkak) = ¢kXkak, and an orthonormal (with respect to the metric g2) 
frame Xkak (k = m1 +1, ... , m1 +m2, ak = 1, ... , lk, 2::;;'=':!7"~ 1 lk = n2) 
on V(yo), such that A2(Xkak) = ¢kXkak· Using the natural identifica­
tion T(x,y)M = K2 EB K1 ~ TxMl EB TyM2 we obtain a frame Xkak (k = 
1, ... , m 1 +m2, ak = 1, ... , lk) on U(x0) x V(y0). We have to prove that 

the one-parameter family offunctions Ic(~) ~f det(A+c)g((A+c)- 1 ~, ~), 
~ E T M are in involution with respect to the symplectic structure w9 . 

Making the Legendre transformation corresponding to the metric g we 
obtain 

(14) 

jjk ~f { (¢k- ¢m,+dml+l ... (¢k- ¢m,+m2)lm,+m2, 1::::; k::::; ml, 
(¢k- ¢l)h · · · (¢k- ¢m,)1m1 , m1 + 1::::; k::::; m1 + m2. 

As in the proof of Theorem 1 we take m = m 1 + m 2 2: 2 real constants 
c1, ... ,cm such that C; + ¢j-=/= 0 (i,j = 1, ... ,m) on U(xo) x V(yo). 
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Denoting by Fk the functions Ick we obtain (see formula (9)) 

(15) 

m 

~ def - - - - ~ def 
where Ih = (¢m - cPk) ... (¢k - ¢1) and ck = (em - ek) ... (ek- el) 
(k = 1, ... ,m). By assumption, the metric g1 is A1-integrable and the 

metric g2 is A2-integrable. Hence, the functions Qc(~) ~f det(A1 + 
e)g1 ((A1 + e)- 1 ~,~), ~ E TM1 are in involution with respect to the 

symplectic structure w9 , on TM1 and the functions Rc(~) ~f det(A2 + 
e)g2 ((A2 + e)-1ry,ry), ry E TM2 are in involution with respect to the 
symplectic structure w92 on TM2 . Using the constants e1 , ... , em, and 
formula (9) we obtain 

which we write as 

m, 
(16) ppl = L askQk, Qk ~f Qck· 

k=l 

H P (l) def "'ls p2 p def 1 ) * ere s = L...a=l Esa SO!) Esa = ±1, sa = ,p,Xsa' p E T Ml, 

and If~l) ~f (c/Jm 1 -cPs)··· (cPs - c/JI), dl) ~f (em, - es) · · · (es - el), 
s = 1, ... , m 1 . Analogously, 
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which we write as 
m 

(17) P (2) = """ b R R clef R s ~ sk k, k = ck • 

k=m1+l 

H P (2) def "'ls p2 p def (p ) * ere s = L..,a=l Esa sal Esa = ±1, sa = 'X sa ' p E T M2, and 
(2) def ( ) (2) def lis = ¢m- c/Js · · · (¢s- ¢m1 +1), Cs = (em- Cs) · · · (cs- Cm1 +t), 

s = m1 + 1, ... , m. It follows from the Stackel-Painleve theorem that 
the functions pp), s = 1, ... , m 1 are in involution with respect to the 
canonical symplectic structure on T* M1 and the functions pp), s = 
m1 + 1, ... , mare in involution with respect to the canonical symplectic 
structure on T* M2. As in the proof of Theorem 1 we see that if lk > 1, 
then ¢k = constant, and if k i=- q, then Lxka¢q = 0. It follows from 
formula (15), (16) and (17) that 

1 :=:; p :=:; m~, 

, m1 + 1 :=:; p :=:; m, 

where Bp are smooth functions on U(x0 ) x V(y0 ) such that Lx- Bp, 
ka 

if k #- p, and J5Ji) ~ Pi(PJi)) E c=(T* M), where Pi : T* M ~ 
(T* Mt) x (T* M2)---+ T* Mi is the natural projection on T* Mi (i = 1, 2). 
Therefore, the functions Pv (p = 1, ... , m) are in involution with respect 
to the canonical symplectic structure on T* M. Finally, applying a vari­
ant of the Stackel-Painleve theorem to equation (15) we obtain that the 
functions Fk are in involution. Theorem 5 is proved. 

§4. Appendix 1 

In this appendix we apply the theorems proved in the previous sec­
tions to the A-integrable metric described in item c) of section 1. 

Let us consider the projective transformation of the plane JRn given 
by the formula 

Xt ~ (>.txt)fxn 

p·{ (>-n-lXn-d/xn Xn-1 ~ 

Xn ~ An- An/Xn 

where >.i (i = 1, ... , n) are non-zero constants. Consider the Euclidean 

metric g ~f dxt+ · ·+dx~ in JRn (see (15], where the pseudo-Riemannian 
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analogue of the present construction is given). The geodesics of the 
metric g are straight lines. Denote by g the pull-back p,*g. Note that 

the metric g is not defined over the hyperplane Z ~f { Xn = 0}. It is clear 

that the metrics g and g are geodesically equivalent on D ~ ffi.n \ Z. 
We have 

Let us compute the operator A ~f A(g, g). We need the following simple 
lemmas. 

Lemma 1. Consider the matrix 

(19) 

where b ~ diag(b1, ... , bn), bi ;f. 0 (i = 1, ... , n), a ~f (a1, ... , an)' {the 
symbol' denotes the transposition of a matrix) and a 0 a stands for the 
matrix aa'. Then the inverse matrix c-1 is given by the formula 

(20) 

h D def;b-1--)+ 1 d(--)def"'n M dtC w ere = \ a, a an x, y = L...i= 1 XiYi· oreover, e = 
(Jl~=1 bk)D. 

Proof of Lemma 1. The proof is by direct calculation. We have 
(aa' +b)(b- 1-(1/ D)(b- 1a)(b- 1a)') = a(a'b- 1 )+E-(a, b- 1a)a(b- 1a)' 1 D 
-(1/ D)a(b-1a)' = E where E denotes the unit matrix. Lemma 1 is 
proved. 

Lemma 2. Consider the matrix Co ~fa® a +diag(b1 , ... , bn-b 0), 
where bi ;f. 0 ( i = 1, ... , n - 1). Then the inverse matrix C0 1 is given 
by the formula C01 = 

where the matrix Eij has elements ekz ~f 8ki8lj (k, l = 1, ... , n). We 

have det Co= (Jl~;:i bk)a;. 
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Lemma 2 easily follows from Lemma 1 and the formula C01 = 
lima_,+o(Co + a)- 1 . 

Denote by G the matrix corresponding to the metric g, i.e. the 

Gramian of the metric g. Taking a = x ~f (x1 , ... , xn), bi = >.;,; >.7 
(i = 1, ... , n- 1), and applying Lemma 2 we see that 

(21) c-1 = ~; (x®x+diag(~~, ... , >.;;, ,o)). 
n 1 n-1 

As a corollary we obtain that det G = ([J~=l >.;) / x;,n+2 . Finally, com­
bining (3) and (21) we obtain (up to multiplication by a constant) that 

(22) (
)..2 )..2 ) 

A(g,g) =x®x+diag )..~, ... , )..2 n ,0 . 
1 n-1 

It follows from Theorem 1 formula (22) and Lemma 1 that the quadratic 
forms 

(23) 

where dk ~f >.;,; )..~ (k = 1, ... , n- 1), are pairwise commuting integrals 
of the geodesic flow of the metric g on all half-planes { Xn > 0} and 
{ Xn < 0}. The quadratic forms Ic are smoothly defined on the whole 
of JRn. Therefore, they are pairwise commuting integrals of the geodesic 
flow the metric g on JRn. 

Suppose that di -1- dj ( i -1- j) and di -1- 0 ( i = 1, ... , n- 1 ). Consider 

the characteristic polynomial of the matrix A ~f A(g, g) 

XA(c) 
def 

det(A + cE) 

n { 2 2 2 } xl Xn 1 xn IT (dk +c) -- + · · · + - +- + 1 , 
d1 + C dn-1 + C C k=l 

where we put dn = 0. It is clear that if X1 ... Xn -1- 0, then the polynomial 
XA(c) has n different roots. We have proved the next theorem. 

Theorem 6. The metric g ~f 2::~= 1 dxr is A-integrable. If di -1- dj 
( i -1- j) and di -1- 0 ( i = 1, ... , n - 1), then the rank of the A -integrable 
metric g is n. 
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It follows from Theorem 1 that the one-parameter family of metrics 

9c(g,g) ~f detcl+cl)g(A + cl)- 1 are geodesically equivalent to g. We 
have 

(24) def 1 (A )-1 
Gc = det(A + cE) + cE 

where Gc denotes the Gramian of the metric 9c· It follows from Lemma 
1 that up to a multiplication on a constant 

9c { D ( dxi dx7,_ 1 dx7, ) --+···+ +-
c d1 + C dn-1 + C C 

(25) ( 
X1 dx1 Xn-1 dxn-1 XndXn) 2 } /D2 --+···+ +--- Cl 

d1 + C dn-1 + C C 

where 

x2 x2 x2 
De ~f __ 1_ + ... + n-1 + __!!:. + 1. 

d1 + C dn-1 + C C 
(26) 

Remark 6. The metric 9c is not defined on the quadric Zc ~f 
{De= 0}. Nevertheless, from now on when we say that two metrics are 
geodesically equivalent we mean they are geodesically equivalent in the 
domain where both of them are defined. 

The metrics 9c given by formula (25) have the very special property 
given by the next theorem. 

Theorem 7. Let us assume that di -=f. dj (i -=f. j) and di -=f. 0 (i = 
1, ... , n - 1). Then the restrictions of the metrics 9c given by formula 

( 25} on every quadric Q a (a -=f. c) from the confocal family Q a ~f { D a = 
0} are geodesically equivalent to the restriction of the standard Euclidean 
metric g on Q a. 

As a corollary we obtain the theorem proved in [14] and indepen­
dently in [12] that the standard ellipsoid admits a non-trivial geodesic 
equivalence. Theorem 7 shows that the same result is true for the hy­
perboloids. 

Proof of Theorem 7. Suppose that g = 2::7= 1 dxT. Let us fix a point 
xo = (x~, ... , x~) E !Rn such that x~ ... x~ -=f. 0. It is easily seen that 
there exist n different real constants a 1 , ... , CYn such that Q a, ( x0 ) 

0, ... , Qan (xo) = 0. It follows from formula (23) that 

(27) 
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The forms dx 0 Qa1 are linearly independent. It follows from Remark 
2 and the non-degeneracy of the corresponding Vandermonde determi­
nant that the forms So lxo, ... , Sn-llxo are simultaneously diagonalizable 
in the frame which is dual to the forms dx 0 Qa1 (l = 1, ... , n). The form 
Sn-1 is conformally equivalent to the metric g and the form So is confor­
mally equivalent to g. Hence, the gradients (with respect to the metric g) 
'\lx0 Qau ... , '\lx0 Qan coincide with the principal directions of the met­
rics gJxo and 9lxo· Finally, the statement of the theorem follows from 
Levi-Civita's theorem about the local form of the Riemannian metrics 
that permit geodesic equivalence (see [5, 16, 17]). Theorem 7 is proved. 

Let (xt, .. . , Xn) be the coordinates in IR.n, and (xi, ... , Xn; PI, ... , Pn) 
the corresponding coordinates in T*IR.n. Applying Theorem 3 we obtain 
the next theorem. 

Theorem 8. For every fixed real "' and every fixed integer l, con­
sider the one-parameter family of functions on T*IR.n given by the for-

l I (!) f "') def (I(!) __ ) h _ def ( ) 1 E _) def "n (: mu a a \Y = a p,p, w ere p = PI, ... ,Pn , ,..,,1] = Lii=l'>i1Ji, 

Jill def det(A + o:E)(A + o:E)-I(A + K-E)-1 

s~~I(K.)o:n-I + s~l~2(K.)an-2 + ... + s~l)(K-) 
and the matrix A is given by the formula 

(28) 

These functions are in involution with respect to the canonical symplectic 
structure on T*IR.n. If di =/= dj ( i =/= j) and di =/= 0 ( i = 1, ... , n- 1), then 

the functions s~ll, ... , S~1~I are functionally independent on T*IR.n. 

Remark 7. Taking l = 0 we derive the integrals obtained by K. 
Uhlenbeck in [19]. Another way of obtaining these integrals was proposed 
by J. Moser in [8] and K. Kiyohara in [4]. The families of functions in 
involution given by Theorem 8 generalize all these results. 

Remark 8. The case l = -1, "' = 0, gives a family of pairwise 
commuting functions S~-I)(O), ... ,s~-:::_~)(0) on T*Mn. The function 

st~) (0) coincides with the Hamiltonian of the metric 

(29) 
n 

def 1 '""" 2 ghyp = 2 ~dxi. 
Xni=I 

Therefore, the functions S~ -I) (0), ... , s~-:::_~l (0) on T* Mn are a complete 
family of integrals of the geodesic flow of the hyperbolic plane. 
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§5. Appendix 2 

Suppose that the (pseudo) Riemannian metrics 9 and g, given on the 
smooth manifold Mn, are geodesically equivalent. In this appendix we 

prove that the functions given by the formulaIc(~) ~f det(A+cl)9((A + 
c1) - 1 ~, ~), ~ E T Mn, where c is real parameter and the operator A = 
A(9, g) is given by formula (3), are in involution with respect to the 
symplectic structure w9 on T Mn (see [15]). 

Let us fix a point x0 E Mn. It is clear that there exists an open 
neighborhood U(x0 ) of the point x0 and an interval ( -E, E), E > 0, such 
that the operator (A+ cl)lx is invertible if x E U(x0 ) and c E ( -E, E). 
Consider the one-parameter family of geodesically equivalent metrics on 
U(xo) 

where c E ( -E, E) (see Proposition 1 in [16]). Let us fix some Ko E ( -E, E). 
The metrics 9 and 9~< are geodesically equivalent on U(x0 ). Consider 
the following subsequence of geodesically equivalent metrics 

l l 
9 

g.e. 
+----+ 9~< 

l l 
9(1) g.e. (1) 

+----+ 9~< 

l l 
9(2) g.e. 

+----+ 
(2) 

9~< 

l l 

where 9(1) ~f 9A(9, 9,,y and 9~l) ~f 9"A(9, 9~<) 1 (see [10, 16]). The 

metrics 9(2) and 9~2 ) are geodesically equivalent. It is easily seen that 

A(9, 9~<) =A+ td. Hence, 9~2) ~f 9~<A(9, 9~<) 2 = det(1+1<1)9(A + ti:l). 

Let us consider the one-parameter family of integrals I a (9~2), 9(2)) of 

the geodesic flow of the metric 9~2 ). A direct computation show that 
A(9F), 9(2)) = (A+ d)- 1 . Applying the Legendre transformation cor­

responding to the metric 9Fl we see that the functions 

(31) 
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(32) det((A + d)-1 + al)((A + ,..)-1 + al)- 1g~2l- 1 

(33) =det(aA + (fi:a + 1)1)(aA + (fi:a + 1)1)-1g-1 

are in involution with respect to the canonical symplectic structure on 
T* Mn. Note that after applying the Legendre transformation corre­
sponding to the metric g the family of integrals (1) takes the form 
Ic(g, g) = det(A + c)(A + c)- 1g-I, where c is an arbitrary real pa­
rameter. Hence, the Poisson brackets {I",I"+-d vanish for all a #- 0 
and"' E ( -E, E). Fixing n different real numbers" l'i:i E (E, E), i = 1, ... , n, 
l'i:i #- l'i:j (i #- j), we obtain that {I~<" Ic} = 0 for all real values of the pa­
rameter c. Finally, recall that I'"'= Sn-1/-Ln- 1+Sn-2/-Ln-2+· ··+So. The 
last equality and the non-degeneracy of the corresponding Vandermonde 
determinant show that the functions sl ( l = 1' ... ' n) are linear combina­
tions with constant coefficients of the functions I"i (i = 1, ... , n). There­
fore, the integrals given by formula (1) are in involution on T*U(x0 ). 

The point x 0 was arbitrary. This proves the statement. 
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