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:m;n+l, and Nn(-1) = lH!n = {x E :m;n, 1 I (x,x) = -1} C rr:tn• 1 . The Gauss 
map¢ of a k-dimensional submanifold Min Nn(c) is the map from M 
to the symmetric space Y ( k, c), where 

Y(n, 0) = Gr(k, lftn), Y(n, 1) = Gr(k, rr:tn+ 1 ), Y(n, -1) = Gr(k, :m;n· 1 ). 

A theorem of Ruh and Vilms states that the Gauss map of a k-submanifold 
with parallel mean curvature vector in Nn(c) is harmonic. Moreover, the 
Gauss-Codazzi equation for constant mean curvature (CMC) surfaces in 
N 3 (c) is the first ( G, T, a-)-system, where T, a- are the involutions that de­
fine the symmetric space Y(3, c). Since the equation for harmonic maps 
from C to Y(3, c) defined by T, a- is the first (G, T, a-)-system, techniques 
developed for the first ( G, T, a-)-system (or harmonic maps) can be used 
to study CMC surfaces in N 3 (c) (cf. [56, 6]). 

There are natural definitions of Gauss maps for surfaces and La­
grangian surfaces in CP2 , for Legendrian surfaces in S 5 , and Lagrangian 
cones in rr:t6 = C3 . The target manifolds of these Gauss maps are now 
k-symmetric spaces. The minimality of surfaces is equivalent to their 
Gauss maps being primitive. Hence equations of these surfaces are the 
corresponding first ( G, T, a-)-system. 

Example 7.2.1. Minimal surfaces in CP2 

Let f : M __.,. CP2 be an immersed surface, L __... CP2 the tautolog­
ical complex line bundle, z a local conformal coordinate on M, and fo 
a local cross section of f*(L). Choose /1, h so that (!0 , /1, h) E SU(3) 
and 

8fo 
Cfo + Ch = Cfo + Caz. 

The Gauss map of M is the map¢ from M to the flag manifold Fl(C3 ) of 
C3 defined by¢(!)= the flag (C/0 , Cfo +Ch, C3 ). Note that Fl(C3 ) = 
SU(3)/T2 is a 3-symmetric space given by T(g) = (gt)- 1 and o-(g) = 
CgC- 1 , where C = diag(1, e 2 ~i, e 4~' ). It is proved in [11, 9] that M 
is minimal in CP2 if and only if the Gauss map ¢ : C __.,. SU(3)/T2 is 
primitive. 

Example 7.2.2. Minimal Legendrian surfaces in S 5 
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Let v1 = (l,O,o)t, and ffi.3 the real part of C3. Let Fh denote the 
SU(3)-orbit of (v1,ffi.3), i.e., 

Fl1 = {(gv1,g(ffi.3) I g E SU(3)} 

= {(v, V) I v E S5 ,v E v, vis Lagrangian linear subspace of C3 } 

SU(3) 
1 X S0(2) 

Note that Fh is a 6-symmetric space corresponding to automorphisms 
T, e> of S£(3, q defined by T(g) = (gt)-1 and e>(g) = R(gt)- 1 R- 1 , where 
R is the rotation that fixes the x-axis and rotate ~ in the yz-plane. 

Let o: be the standard contact form on S 5 . A surface M in S 5 is 
Legendrian if the restriction of o: to M is zero. It is easy to see that M 
is Legendrian if and only if the cone 

C(M) = {tx It> O,x EM} 

is Lagrangian in C3 . If M c S 5 is Legendrian, then there is a natural 
map </> from M to Fh defined by <f>(x) = (x, V(x)), where V(x) is the 
real linear subspace ffi.x + T Mx. It is known that ( cf. [42, 52, 50, 64]) 
that the following statements are equivalent: 

(i) M is minimal Legendrian in S 5 , 

(ii) the cone C(M) is minimal Lagrangian in ffi.6 = C5, 

(iii) the Gauss map </>: M----> Fh is primitive. 

Let 1r : S 5 ----> CP2 be the Hopf fibration, N a surface in CP2 , and N 
a horizontal lift of N in S 5 with respect to the connection o: (the contact 
form). Then N is minimal Lagrangian in CP2 if and only N is minimal 
Legendrian in S 5 . Hence there are three surface geometries associated 
to the first (G,T,e>)-system associated to the 6-symmetric space Fh: 
minimal Lagrangian surfaces in CP2 , minimal Legendrian surfaces in 
8 5 , and minimal Lagrangian cones in ffi.6. 

Example 7.2.3. Hamiltonian stationary surfaces in CP2 

Let N be a Kahler manifold. Given a smooth function f on N, let 
X f denote the Hamiltonian vector field associated to f. A Lagrangian 
submanifold M is called Hamiltonian stationary if it is a critical point 
of the area functional A with respect to any Hamiltonian deformation, 
i.e., 

aa J A(<f>t(M)) = o 
t t=O 
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for all J, where 4>t is the one-parameter subgroup generated by Xt. 
This class of submanifolds was studied by Schoen and Wolfson in [61]. 
When N is a four dimensional Hermitian symmetric space U I H, Helein 
and Romon proved that the Gauss-Codazzi equation for Hamiltonian 
stationary surfaces is the 2nd ( G, r, O" )-system, where r is the involution 
that gives U and O" is an order four automorphism such that 0"2 gives 
rise to the natural complex structure of U I H. In particular, they proved 
that if M is a Hamiltonian stationary Lagrangian surface of CP2 , then 
locally the Gauss-Codazzi equation for M is the 2nd ( G, r, O" )-system 
(6.2.4) given by Example 6.2.4. Conversely, if (u0 , u 1 , u 2 ) is a solution of 
(6.2.4), then for each non-zero r E IR, ErE=]:. is a Hamiltonian stationary 
Lagrangian surface of CP2 , where E;.. is the frame of the Lax pair (6.2.2) 
corresponding to ( uo, u1, u2). 

§8. Symmetries of the ( G, r )-systems 

There have been extensive studies on harmonic maps from a Rie­
mann surface to a compact Lie group U. For example, there are loop 
group actions, finite unitons, finite type solutions, and a method of con­
structing all local harmonic maps from meromorphic data. The equation 
for harmonic maps from C. to U is the first ( G, r )-system. Most results 
for the first (G,r)-system hold for the m-th (G,r)-system as well. We 
will give a brief review here. For more details, see [27, 38, 39, 72]. 

8.1. The action of D:':.(G) 

Let u = (uo, ... 'Um): c.~ rr:o g be a solution of the m-th (G, r)­
system (6.1.1), 8;.. the corresponding Lax pair (6.1.2), and E the frame 
of 8;.., i.e., 

Let E(z, z)(>-.) = E(z, z, >-.). Since 8;.. satisfies the (G, r)-reality condi­
tion, 

r(E(z, z)(11;\)) = E(z, z)(>-.), 

i.e., E(z, z) E D?j.(G). Given g E D:':.(G), we can use Theorem 4.2.3 
to factor gE(z, z) = E(z, z)g(z, z) with E(z, z) E D?j.(G) and g(z, z) E 

D:':.(G) for z in an open subset of the origin, i.e., E(z, z) = g * E(z, z) 
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the dressing action. A direct computation gives 

jj;-ljj;z = -gz[;-l+g (fujA-j) g-1. 
]=0 

(8.1.1) 

Since g(z, z)(A.) is holomorphic at A.= 0, the right hand side of (8.1.1) has 
a pole of order at most mat A.= 0. Hence there exist some uo, · · · , Um 
such that 

m 

jj;-ljj;z = LUjA-j. 
j=O 

Since E satisfies the (G, 7)-reality condition 7(E(l/.5.)) = E(A.), jj;- 1dE 
satisfies the (G,7)-reality condition (4.2.2). Hence 

m 

E;- 1dE= I:rjujdz+A.j7(uj) dz. 
j=O 

In other words, u = (u0 , · · · , um) is a solution of the m-th (G, 7)-system. 
Moreover, g * u = u defines an action of n::. (G) on the space of solutions 
of the m-th ( G, 7)-system. This gives the following theorem ofUhlenbeck 
[72] (see also [38, 40]). 

Theorem 8.1.1. ({38, 72]). Let E be the frame of a solution u 
of the m-th (G,7)-system (6.1.1), and g E O~(G). Then the dressing 

action E(z, z) = g * E(z, z) is the frame of another solution u = g * u. 
Moreover, (g, u) f--7 g * u defines an action of 0~ (G) on the space of 
solutions of the m-th (G, 7)-system. 

If g E 0~ (G) is a rational map with only simple poles, then the 
factorization of gE(z,z) = E(z,z)g(z,z) with E(z,z) E O+(G) and 
g( z, z) E 0~ (G) can be computed by an explicit formula in terms of g 

and E. In fact, if g has only one simple pole at a E C \ 8 1 , then the 
factorization can be done by one of the following methods: 

(i) Equate the residues of both sides of 

g(A.)E(z, z, A.)= E(z, z, A.)g(z, z, A.) 

at the pole A. = a to get an algebraic formula for g * u in terms of g and 
E. 

(ii) Let iJ>. = jj;- 1dE. Equate the coefficient of A.J in iJ>.g = dg + g(l).. 
for each j to get a system of compatible ordinary differential equations. 
Then g * u can be obtained from the solution of this system of compatible 
ODEs. 
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Example 8.1.2. ([72]). Let G = GL(n, <C), and T(g) = (gt)- 1 . The 
fixed point set U ofT is U(n). Let V be a complex linear subspace of 
en, 1r the Hermitian projection of en onto V, 1r.1. = I- 1r, a E e \ Sl, 
and 

where (a(A.) 
condition: 

Ja,tr(A.) = 7f + (a(A)7rJ., 

(.\-a)(a- 1) N t h J · fi h (G ) 1· (a.\- 1)( 1-a). o e t at a,1r satls es t e , T -rea 1ty 

___,.___,..,~t 

f(l/A.)) f(A.) =I. 

If E is the frame of a solution u of the m-th (G, T)-system (6.1.1), then 
for each (z, z) the factorization f a,1rE(z, z) must be of the form 

(8.1.2) !a,trE(z, z) = E(z, z)la,fr(z,z) 

for some E(z, z) E fl'f.(G) and projection 1T(z, z). Method (i) leads to 
the conclusion that the image V(z, z) of 1T(z, z) is 

(8.1.3) 
- t 
V(z, z) = (E(z, z)(a)) (V). 

Moreover, 

is the frame of !a,tr * u. For example, if a E U is a constant, then a is a 
constant solution of the 1st normalized (G,T)-system (6.1.1) with Lax 
pair e.\ = a(A.- 1dz + A.dz) and frame E.\(z) = exp(aA.- 1z + aA.z). The 
corresponding harmonic map is 

s = E_ 1 (z)E1 1 (z) = exp( -2a(z + z)) = exp( -4ax), z = x + iy, 

which is a geodesic. Since E is given explicitly for the constant solution, 
f a,1r * a is given explicitly and so is the harmonic map f a,1r * s. 

8.2. The DPW method and harmonic maps with finite 
uniton number 

It is well-known that minimal surfaces in JR3 have Weierstrass rep­
resentations, i.e., they can be constructed from meromorphic functions. 
Dorfmeister, Pedit, and Wu gave a construction (the DPW method) of 
harmonic maps using meromorphic maps and the Iwasawa loop group 
factorization (Theorem 4.2.5). They call this construction of harmonic 
maps the Weierstrass representation of harmonic maps. The equation 
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for harmonic maps from rc to u is the first normalized ( G, T )-system. 
The DPW method works for the m-th normalized (G, T)-system (6.3.1) 
as well. To explain the DPW method, we need the Iwasawa loop group 
factorization L(G) = Le(U) x L+(G), i.e., every g E L(G) can be fac­
tored uniquely as g = g1g2 with g1 E Le(U) and g2 E L+(G). Let U 
denote the fixed point set ofT. Recall that Le(U) is the subgroup of 
g E L(U) such that g(1) = e and L+(G) the space of smooth loops 
g : S 1 ~ G that are boundary value of holomorphic maps defined in 
I A I < 1. The following Theorem was proved in [ 27] for the first ( G, T )­

system (the harmonic map equation), but their proof works for the m-th 
( G, T )-system as well. 

Theorem 8.2.1. ({27]). Let 0 be a simply connected, open subset 
of C, and J.l(z, A) = Lj~-m hj(z)A1 holomorphic in z E 0 and smooth 
in A E S1 . Let H : 0 x S1 ~ G be a solution of 

Then: 

{
H- 1 Hz = Lj~-m hj(z)Aj, 

H- 1H 2 = 0. 

(i) H can be factored as H(z, A)= F(z, z, A)c(J(z, z, A) such that F(z, z, ·) 
E Le(U) and ¢(z, z, ·) E L+(G). 

(ii) p- 1 Fz is of the form 2:::::1 (A-i- 1)fi and fM = (h, · · · , fm) is a 
solution of the normalized m-th ( G, T)-system. 

(iii) Every solution of the m-th ( G, T)-system can be constructed from 
some /-1· 

Proof. We give a sketch of the proof (for more details see [27]). 
Statement (i) follows from the Iwasawa loop group factorization 4.2.5. 
The Iwasawa loop group factorization L( G) = Le(U)L+( G) implies that 
there is a Lie algebra factorization 

(8.2.1) 

In fact, we can use Fourier series to write down the Lie algebra factor­
ization easily: Given~= LjEZ ~jAj, then~= TJ +(,where 

00 

TJ = 2)~-j(A-j -1) +T(~-J)(Aj -1)) E Le(U), 
j=1 

00 

( = bo + l::)~j- T(~-j))Aj E £+(9). 
j=1 
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Since F = H¢-1 , we have p-1dF = ¢H-1dH¢- 1 - (d¢)¢-1 . Let P1.P2 

denote the projection of .C(g) onto Ce(U) and C+(g) with respect to 
(8.2.1). Since (d¢)¢- 1 E C+(g) and p- 1dF E C(U), we have p- 1dF = 
p1 (¢(H-1dH)¢- 1 ). It follows from the fact that ¢-1d¢ E C+(g) and 
H- 1dH = 2:1~-m h1(z)>.-1dz that we have p-1dF = I::;:o IJ(>.-1-

l)dz + T(/j )(>.1 - l)dz for some f 0 , • • · , fm· This proves (ii). 

Let u = (u1. · · · , um) be a solution of the m-th (G, T)-system, and E 
a trivialization of the corresponding Lax pair. To prove (iii), it suffices 
to find h(z, >.)so that g = Eh-1 is holomorphic in z E 0. Since we want 

g-1dg = h (f)r1- l)u1dz + (>.1- l)T(u1)dz) h-1 - dhh- 1 

J=1 

has no dz term, we must solve for h from h-1hz. = l:j=1 (>.1 -l)T(u1). 
Since the right hand side lies in C+(g), h(z, ·) lies in L+(G). Hence 
g- 1dg = I::j=1 (>.-1 - l)hu1h-1dz. Hence g is holomorphic in z and 
g-1gz is of the form 2:1~-m h1(z)>.j. Q.E.D. 

It is proved in [27] that finite type solutions arise from constant 
normalized potentials. We give a brief explanation next. Let € E L(g), 
and H = exp(z€(>.)). SoH- 1Hz = €(>.), H-1 Hz.= 0, and H(O, >.) =e. 
Factor 

(8.2.2) exp(z€) = F(x, y)¢(x, y), 

with F(x, y) E Le(U), ¢(x, y) E L(G), where z = x + iy. Then 

H€H- 1 = exp(z€)€ exp( -z€) = € = F¢€¢-1 p-1 . 

This implies that 

(8.2.3) 

Differentiate (8.2.2) to get €dz = ¢-1 p-1dF¢ + ¢-1d¢. We obtain 
¢€¢-1dz = p-1dF + d¢¢- 1 . Hence p-1dF = p1 (¢€¢-1(dx + i dy)), 
where p1 is the projection of C(g) to Ce(U). By (8.2.3), we get p- 1dF = 
p1(F- 1€F(dx + i dy)). But d(F- 1€F) = [F-1€F, p- 1dF]. So we have 

Equivalently, 

(8.2.4) 

d(F- 1€F) = [F- 1€F,p1(F- 1€F(dx + i dy))]. 

{
(F-1€F)x = [F-1€F,p1(F-1€F)], 

(F-1€F)y = [F-1€F,p1(H p-1€F)]. 
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Let ~(A) = Ad-mV(A). Then (8.2.4) becomes 

(8.2.5) {
(F-1VF)x = [F-1VF,p1(Ad-mp-1VF)], 

(F- 1vF)y = [F- 1VF,p1(A Ad-mp-1VF)]. 

Let ry = p-1 V F. Then 8.2.5 becomes 

(8.2.6) 

Note that this equation leaves the following finite dimensional subman­
ifold of .C(Q) invariant: 

Hence given V in Vd, we can solve the ODE system ((8.2.6)) to get 
ry(x, y) such that ry(O, 0) = V. System (8.2.6) is solvable if p1(Ad-mrydz) 
is flat. So there exists F(x, y) E Le(U) such that 

i.e., F is a trivialization of the Lax pair of a solution of the normalized m­
th (G, T)-system. This is the method of constructing finite type solutions 
developed by Pinkall and Sterling in [56] and Burstall, Ferus, Pedit and 
Pinkall in [13]. 

All local solutions can also be constructed from meromorphic data 
f-L that are polynomial in A - 1 . To explain this, we need 

Theorem 8.2.2. {{27]). With the same notation as in Theorem 
8.2.1, then there exists a discrete setS C 0 such that for z E 0\ S, H 
can be factored as 

H(z, A)= 9-(z, A)9+(z, A) 

with 9-(z, ·) E F_(G) and 9+(z, ·) E Lf.(G) via the Gauss loop group 
factorization. Moreover, 

(i) 9-(z, A) is holomorphic in z E 0\ S and has poles at z E S, 

(ii) 9=1d9- = L,'j=1 A-jrJj(z)dz for some Q-valued meromorphic map 
rJi on 0. 
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Note that if we factor 9- via the lwasawa loop group factorization 
(Theorem 4.2.5), then the Le(U) factor of 9- is the same E constructed 
in Theorem 8.2.1. This follows from 9- = H9+. 1 = E¢>9+. 1 = E(¢>9+. 1 ). 

The converse is also true. In fact, we have 

Corollary 8.2.3. Let p,().., z) = I:;:1 )..-irlj(z) such that 'T/j are 
meromorphic. If there exists h(z, )..) satisfying h-1dh/dz = p,, then the 
Le(U)-factor E(z, ·) of h(z, ·) is a trivialization of some solution fJ.L = 

(h, · · · , fm) of the m-th (G, r)-system, i.e., 

m 

E- 1dE = ~)ri ~ 1)1J(z)dz + ()..i- 1)r(f1)dz. 
j=l 

Moreover, every local solution of the m-th (G, r)-system can be con­
structed this way. 

The 1-form p,(z, )..) = I:;"=1 ry1(z))..-i is called the meromorphic po­
tential or the normalized potential. However, for a general normalized 
potential p, the solution f J.L might have singularities. An important prob­
lem is to identify meromorphic potentials p, so that the corresponding 
solution fJ.L of the m-th (G, r)-system can be extended to a complete 
surface. Burstall and Guest [14] have identified p,'s that give rise to har­
monic maps with finite uniton number. We explain some of their results 
next. 

Burstall and Guest noted that if p, = )..-1h(z) is nilpotent and h(z) 
has no simple poles, then the equation 

(8.2. 7) 

can be solved by integrations. We use G = SL(n, q to explain this. 
Let N denote the strictly upper triangular matrices in sl(n, C), and 
h: 0 ~ N meromorphic. To solve (8.2.7), we may assume 

with meromorphic b1 's. Equate coefficients of )..i to get 

SinceNn = 0, if we assume thath(z) has no simple poles and the initial 
data bj(O) = 0 then b1, · · · , bn-l can be solved by integration, b1 = 0 
for all j ~ n, and H(z, )..) is a polynomial of degree :::; n - 1 in ).. -l. 
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Motivated by this computation and Uhlenbeck's finite uniton solutions, 
they make the following definition: 

Definition 8.2.4. A harmonic map s from a Riemann surface M 
to U is said to have finite uniton number if there is a meromorphic h : 
M --t g such that (8.2.7) has a solution H(z, >.)satisfying the following 
conditions: 

( i) H ( z, >.) is meromorphic in z E M and a polynomial in >. and >. -1, 

(ii) s = E(·, -1), where E(z, ·)is the Le(U)-component of the Iwasawa 
factorization of H(z, ·). 

In other words, s is the harmonic map constructed from the normalized 
potential f..L = >.- 1 h(z). 

Theorem 8.2.5. {[14, 39]). If M is a Riemann surface and s : 
M --t U is harmonic map with finite uniton number, then there exists a 
complex extended solution H (associated to s) of the form 

H(z, >.) = exp(>.- 1b1(z) + · · · + >.-rbr(z)), 

where b1 , · · · , br are meromorphic maps from M to the nilpotent subal­
gebra N of the Iwasawa decomposition g = K +A+ N. Moreover, 

(i) integer r can be computed in terms of root system of G, 

(ii) the maps b2 , · · · , br satisfies a meromorphic ordinary differential 
equation, which can be solved by quadrature for any choice of b1. 

In fact, the normalized potential f..L corresponding to the harmonic 
map constructed by Theorem 8.2.5 is f..L = >.- 1 (bl)z. 

8.3. Some comparisons 

Let G be a complex, semi-simple Lie group, and U the maximal 
compact subgroup of G, and T the corresponding involution with fixed 
point U. We have discussed the constructions of solutions of soliton 
equations in the U -hierarchy in Chapter 5 and of equations in the ( G, T )­

hierarchy in section 8.2. Loop group factorizations are used in both 
cases. In this section, we give a summary and some comparisons of 
these constructions of solutions for the two hierarchies. To make the 
exposition easier to follow, we will not give references in this section (for 
references see the previous sections). 

Let A be a maximal abelian subalgebra of U, and a E A a regular 
element. For the U-hierarchy defined by a, the data we use to construct 
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solutions for the (b, j)-flow in the U-hierarchy of soliton equations is one 
of the following types of maps: 

(i) f is a holomorphic map from a neighborhood of>. = oo in S 2 = 
C U { oo} to G that satisfies the U-reality condition, T(f (5.)) = f ( >.), and 
f(oo) =I, 

(ii) f : lR---. G is smooth, has an asymptotic expansion at oo, f( oo) =I, 
f is the boundary value of a holomorphic map on the upper half plane, 
and !b is rapidly decaying at infinity, where f = fu!b is the pointwise 
Iwasawa factorization of G = UB, i.e., fu E U and !bE B, 

(iii) f = l1h, where 11 : 8 2 = C U { oo} ---. G is a rational map of type 
(i) and h is of type (ii), 

(iv) f = 11h, where 11 is of type (i) and h is of type (ii). 

To construct solutions, we start with an f of type (i), (ii), (iii), or (iv), 
then factor f- 1ea,1 (x )eb,j (t) as E(x, t)m(x, t)- 1 with E(x, t) E A:f- (G) 

and m(x, t) of type (i), (ii), (iii) or (iv) accordingly, where ee,j(t) = ee>Jt. 
Then 

uf (x, t) = [a, m1 (x, t)] 

is a solution of the (b,j)-flow in the U-hierarchy, where m 1 (x, t) is the 
coefficient of >.- 1 in the expansion of m(x, t)(>.) at).= oo: 

m(x,t,>.) "'I+m1 (x,t)>.- 1 +···. 

Moreover, we know: 

(1) uf = u9 if and only iff= hg for some A-valued map h. 

(2) uf is a local real analytic solution iff is of type (i). 

(3) Iff is of type (iii), then uf(x, t) is a solution defined for all (x, t) E JR2 

and is rapidly decaying in x for each fixed t. The space of such solutions 
uf is open and dense in the space of all rapidly decaying solutions. 

( 4) If u is a finite gap solution (an algebraic geometric solution described 
by theta functions), then there exists an f of type (i) such that f- 1af 
is a polynomial in >.-I and u = uf. 

(5) Iff is of type (i) and is a rational map from S 2 to G, then uf is a 
pure soliton solution. 

For the normalized m-th (G, T)-system, we start with meromorphic 
potential J..L(z, >.) = L:j:1 1Jj(z)>.-i dz. There are two steps to construct 
a solution: 
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Step 1. Find a solution H(z, .A) of H- 1dH = J.L that is smooth for all 
.A E 8 1 and meromorphic in z E CJ C C. 

Step 2. Factor Has F¢ with FE Le(U) and¢ E L+(G). Then p-l Fz 
is of the form I:;"=1 (_A-j- 1)vi for some Vt, · · · , Vm· Hence 

8t-t = F(·, -1) 

are a solution of the normalized m-th (G, r)-system and a harmonic map 
from 0 to U respectively. 

For the first normalized ( G, r )-system, to go beyond solutions with 
finite uniton numbers we note that: 

-There is no simple condition on J.L to guarantee that Step 1 can 
be done. 

-Every local smooth solution can be constructed from some J.L. 
However, in general, there is no canonical choice of J.L. 

-One of the main open problems is to identify the set of J.L so that 
81-' can be extended to a harmonic map on a closed surface. 
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