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The appropriate analogues of Delaunay surfaces in our problem are Leg­
endrian surfaces in 5 5 invariant under the U(1)-action (z1 , z2 , z3 ) f--+ 

(eisz1,e-iszz,z3), for s E JR. 

In the notation of §5.1-§5.3, these have()= 0 and B = -1. When 
the remaining parameter C E [-1, 1] is nonzero and small, the corre­
sponding minimal Legendrian surfaces resemble chains of round Legen­
drian 5 2 's in 5 5 joined by small necks. 

§6. Interpretation using integrable systems 

In Theorem 5.4 we constructed families of conformal harmonic maps 
¢> : JR2 --+ 5 5 and '1/J : JR2 --+ CIP'2 • We shall now analyze these in the in­
tegrable systems framework described in §3 and §4. We will show that 
they are generically superconformal, and explicitly determine their har­
monic sequences, Toda and Tzitzeica solutions, loops of flat connections, 
polynomial Killing fields, and spectral curves. This goes some way to­
wards redressing the 'dearth of examples' of superconformal harmonic 
tori referred to by Bolton and Woodward [11, p. 76]. We shall use the 
notation of §5.1-§5.3 throughout. 

6.1. The harmonic sequence of '1/J 

In the situation of §3.1, take U to be JR2 with complex coordinate 
z = s +it. Then gz = ~ gs - ~ gt and gz = ~ gs + ~ gt. Thus by (24), 
(25), (28) and the definition cj>(s, t) = <I>(1, s, t) we have 

'!/f = 2!.n (/J1Y2Y3Z1 -i{'l Y1Z2Z3, f32Y3Y1Z2 -i{'2Y2Z3Z1, f33Y1Y2Z3 -i{'3y3Z1 Z2), 

~~ = 2!.n ((31 Y2Y3Zl +ill Y1Z2Z3' !32Y3Yl Z2 +ir2Y2Z3Zl' !33Yl Y2Z3 +ir3Y3Zl z2). 

Calculation using (26) and (27) shows that ( fJ/z, ¢>) = ( ~~, ¢>) = 0. Also, 

using (40) we find that lfJ/;1 2 = ~~~~ 2 =a+ bv(s) +cw(t). 

As ( ~~, ¢>) = 0, by definition ¢> is a holomorphic section of the 
holomorphic line bundle La over C associated to '1/Jo = '1/J : C --+ CIP'2 . 

Therefore, from §3.1, there exists a unique sequence of maps ¢>k : C--+ C3 

with c/>o =¢>,which satisfy (2), and the harmonic sequence (1/Jk) of '1/J is 
given by '1/Jk = [c!>k]· 
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From (2) we see that c/J-1 = -l¢oi21WI-2W and ¢1 = ~'since 
lc/Jol = 1. Thus the equations above give 

(45) 
1 

c/J-1 =- 2J3(a + bv + cw) (f31Y2Y3Z1 +i'Y1Y1Z2Z3, f32Y3Y1Z2+h2Y2Z3Z1, 

f33Y1Y2Z3 +i"}'3y3z1z2), 

(46) 

c/Jo = )3- (y1z1, Y2Z2, Y3Z3), 

(47) 

c/J1 = 2~(f31Y2Y3Z1 -i"}'1Y1Z2Z3, f32Y3Y1Z2-i'Y2Y2Z3Z1, 

f33Y1Y2Z3 -i"}'3y3z1z2). 

These satisfy 

From (2) and the equation l¢112 = a+ bv + cw we see that 

a¢1 a ( ) ¢2 = az - az log(a + bv + cw) ¢1· 

Substituting in for ¢1 from ( 4 7) gives a long and complicated expression 
for ¢2 • After much calculation using equations (24)-(27), (35)-(36), 
( 41 )-( 43) and other identities satisfied by !3i, 'Yi and a, b, c, one can prove 
that 

(49) ¢2 = ~¢-1, where ~ = cC + ibB. 

We can now identify the harmonic sequence of '1/J. 

Proposition 6.1. If bB and cC are not both zero then '1/J : ~2 --+ 

CJID2 is superconformal, and has harmonic sequence ('1/Jk) given by 

(50) 

(51) 

(52) 

'I/J3k-1 ( s, t) = [f31Y2Y3Z1 +i'Y1Y1Z2Z3, f32Y3Y1Z2 +i'Y2Y2Z3Z1, 

f33Y1Y2Z3 +i"}'3y3z1z2), 

'I/J3k(s, t) = [y1z1, Y2Z2, y3z3], 

'I/J3k+1(s, t) = [f31Y2Y3Z1-i'Y1Y1Z2Z3,f32Y3Y1Z2-i'Y2Y2Z3Z1, 

f33Y1Y2Z3 -i"}'3y3z1z2), 

for all k E /£. If bB = cC = 0 then '1/J is isotropic, with finite harmonic 
sequence 'lj;_1 ,'1j;0 ,'1j;1 given by equations (50)-(52) with k = 0. 
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Proof. Since ¢2 = ~¢-1 where~= cC + ibB by (49), if~=/:- 0 then 
the sequence (¢k) exists for all k and is given by 

Since '¢k = [¢k], equations (50)-(52) follow from (45)-(47). Thus 'lj; is 
nonisotropic, as '¢k exists for all k. But any conformal map 'lj; : S---+ ICIP'2 

is isotropic or superconforma1 from §3.1, so 'lj; is superconformal. 

If on the other hand ~ = 0 then c/>2 = 0, so '¢2 does not exist. 
Thus 'lj; is isotropic. By (45)-(47), 'l/J-1,'¢0 and '¢1 exist and are given 
by equations (50)-(52) with k = 0. But the harmonic sequence of an 
isotropic map 'lj; : S ---+ ICIP'm has length at most m + 1, so this is the 
whole of the harmonic sequence. Q.E.D. 

In the case when ~ = 0 and 'lj; is isotropic, 'lj;_ 1 is holomorphic and 
'¢1 antiholomorphic. This is not obvious, but may be proved directly. 
For instance, when B = C = 0 we may take the Yj and Zj to be real. 
Then 'lj; maps to IR.IP'2 in ICIP'2, and both '¢1 and 'lj;_1 map to the conic 
{[wo,w1,w2] E ICIP'2 : w5 +w~ +w~ = 0}, with 'l/J-1 = '¢1. 

6.2. Solutions of the Toda lattice and Tzitzeica equations 

In the rest of the section we assume that ~ = cC + ibB =/:- 0, so that 
'lj; is superconformal. Following §3.2, we shall construct a solution of the 
Toda lattice equations for SU(3) out of 'lj;. The first thing to do is to find 
a special holomorphic coordinate z' on IC, that is, one in which ~' = 1 
and the¢~ are periodic with period 3. By (5), z' = z'(z) is special if 

Thus we need ~: = e13 for some fixed complex cube root e13 of~· 
So define z' = e13 (s +it). Then z' is a special holomorphic coordinate 
on IC. 
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Working with respect to z' rather than z, we get a new sequence 
(¢U rather than (¢k), with¢~= -i~-k13¢k· Thus (45)-(48) yield 

ie/3 
(53) ¢;k-1 = 2v'3(a+bv+cw) (fJ1Y2Y3Z1 +ir'1Y1Z2Z3, 

(54) 

(55) 

(56) 

f32Y3Y1Z2 +h2Y2Z3Z1, f33Y1Y2Z3 +i'y3y3z1z2), 
-7 

rP~k = y'3(Y1Z1,Y2Z2,y3z3), 

I -i~-1/3 - . -
tP3k+1 = 2y'3 (f31Y2Y3Z1 -z11Y1Z2Z3, 

f32Y3Y1Z2- h2Y2Z3Z1' f33Y1 Y2Z3- h3Y3Z1 Z2)' 

with 1¢;k_1l2 = l~l 2 1 3 (a + bv + cw)-1, l¢;kl 2 = 1 

and l¢;k+112 = l~l- 213 (a + bv + cw) for all k E Z. 

Here we have multiplied by -i because then det(¢~¢~ ¢~) = 1, as in 
(6). Thus the¢~ satisfy all the conditions on the ¢k in §3.1-§3.2. So 
from §3.2 if we define Xk = 1¢~ 12, then the Xk satisfy the Toda lattice 
equations for SU(3) with respect to z'. Therefore by (56) we have proved: 

by 

(57) 

Proposition 6.2. In the situation above, define Xk : C -+ (0, oo) 

X3k-1 = l~l 213 (a + bv + cw)-1, X3k = 1 and 

X3k+1 = l~l- 213 (a + bv + cw) for all k E Z. 

Then the Xk satisfy the Toda lattice equations for SU(3) with respect 
to z' = e13(s +it). In terms of s, t, this means that XoX1X2 = 1, 
Xk+3 = Xk and 

&2 1 ( &2 &2 ) . Here (58) holds because &z'Eiz' = 41 ~ 1213 082 + &t2 . One can venfy 
(58) explicitly using equations (35)-(36), ( 41 )-( 43), (57) and various 
identities between the (3j, rj, B, C, a, b and c. The proposition defines a 
simple class of doubly-periodic solutions Xk of the Toda lattice equations 
for SU(3). From §4.1 we deduce: 

Corollary 6.3. Define f: C-+ (0, oo) by f =log( a+ bv + cw)­
~log 1~1- Then f satisfies the Tzitzeica equation (22) with respect to z' = 
el3 (s +it). 
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Note that the functions v(s), w(t) may be written in terms of Jacobi 
elliptic functions as in §5.2, and so the solutions in the last two results 
are entirely explicit. They have a 'separated variable' form, that is, they 
are written in terms of single-variable functions v(s) and w(t), rather 
than more general two-variable functions u(s, t). The author is not sure 
whether these solutions are already known. 

6.3. Loops of flat connections and polynomial Killing fields 

For the rest of §6 we will work with the special coordinate z = 

e13 (s +it), dropping the notation z'. From §3.3, the Toda frame F : 
JR2 ---+ SU(3) of '1/J is given by F = (fohh), where fk = 14>~1- 1 ¢~. Using 
equations (53)-(56) we may write F down explicitly, but we will not do 
so as the expression is complicated. Then a = F-1dF is a flat SU(3) 
connection matrix on JR2 . 

As in §3.4, we may extend d +a to a loop of flat SU(3)-connections 
d + a.x for A E C with I-AI = 1. We shall write a.x out explicitly. Decom­
pose a.x as 

(59) 

as in (11). Then from (9) and (57) we find that 

a', ~ ,.->/e 0~' 0 J'i') a'- 1(: () 0 ) (60) 0 0 , 0 - 2 ;z (l~g f) - ;z (~og f) , rf-1 0 0 

d',~ -r-'1' ( ~: 
jl/2 rf:;} a"- 1 (~ 0 () ) (61) 0 - ;z (log f) a 0 , 0- 2 

jl/2 0 0 0 az (log f) 

where f =a+ bv + cw and r = 1~1-

We shall now construct a polynomial Killing field T for 7/J, as in §3.5, 
which is in fact the nontrivial polynomial Killing field of lowest degree. 

Theorem 6.4. Write ~ = rei(} for r > 0 and e E JR. Define func­
tions f, h : JR2 ---+ JR. and g : JR2 ---+ C by 
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r, ~ ie200i' ( : 
rj-112 D, r, ~ ie;'l' ( 7 0 

~} (63) 0 0 
rj-112 0 0 

r,~{f 
0 

~h) ,_, ~ ie-;'13 G -g 

~} (64) -h 0 
0 0 

'-' ~ ie-2;en(rf~'i' 0 rf-'1') 
(65) and 0 0 . 

f 0 

Then r is a real polynomial Killing field. 

To prove the theorem one must show that the Tn satisfy (16) and 
(17). This is a long but straightforward calculation, using equations 
(35), (36), 

a 1 (a .a) a 1 (a .a) 
az = 2r113ei0/3 as - z at and az = 2r113e-i0/3 as + z at ' 

and identities satisfied by the f3j, 'Yj, B, C and ~, and we leave it to the 
reader. 

Both ll>. and r have an extra Z2-symmetry, which follows from the 
fact that xo == 1. Define K : g£(3, q ---+ g£(3, q by 

(66) 

Then K is a Lie algebra automorphism, and K 2 = 1. It is easy to show 
from (60)-(61) and (63)-(65) that 

(67) K(a>.) = ll->. and K(r(>.)) = -r(->.) for all>. E C*. 

The action of K on the algebra of polynomial Killing fields will induce 
the holomorphic involution p on the spectral curve discussed in §4.2. 

We can now determine the algebra of polynomial Killing fields A. 

Theorem 6.5. In the situation above, the algebra of polynomial 
Killing fields A is generated by r, >.3! and >.-3!. 
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Proof. Let A' be the subalgebra of A generated by T, .X3 I and 
.X - 3 I, and suppose for a contradiction that A' i= A. Let rt E A \ A', 
and take rt to be real, and of lowest degree d. That is, rt = L~=-d _xn"ln 
with "1-n = -ij'!:, for n = 0, ... , d, and every polynomial Killing field of 
degree less than d lies in A'. 

As "ld+l = 0, equations (16) with n = d + 1 and (17) with n = d 
show that "ld satisfies 

(68) [rtd, o:~] = 0 and ~~ = [rtd, o:~ ]. 

Divide into the three cases (a) d = 3k, (b) d = 3k+1, and (c) d = 3k+2 
for some k = 0, 1, 2, .... We will prove a contradiction in each case in 
turn. 

In case (a), equation (13) implies that "ld is diagonal, and then as f 
is nonzero, the first equations of (60) and (68) show that "ld is a multiple 
of the identity. So write "ld = El for some E : IR2 ....... C. Taking the trace 
of equations (16) and (17) for n = d gives g~ = g~ = 0, as the trace of 
any commutator is zero. Thus E is constant, and "ld = El, "1-d =-fl. 

For k > 0, consider rt' =,- E(A3 I)k + E'(.X - 3 n-k. This is a polyno­
mial Killing field of degree less than d, as we have cancelled the terms 
in _x±d. Therefore rt' E A'. But,= rt' + E(A3 I)k- E'(.X-3 n-k, so, E A', 
a contradiction. Also, when k = 0 we have rt = El E A'. This eliminates 
case (a). 

Similarly, in case (b), equation (13) and the first equations of (60) 
and (68) imply that 

jl/2) 
0 , 
0 

for some function E : IR2 ....... C. The second equation of (56) is equivalent 
to g~ = 0, so that E is holomorphic. Using the fact that F>.rtF>:1 is 
independent of z one can show that E must be constant. This determines 
"ld and rt-d· 

By ( 63), the leading term of T 2 is 

rjl/2) 
0 . 
0 
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Suppose for the moment that d?: 7, so that k?: 2. Consider 

We have cancelled the terms in >.±d, so r/ is a polynomial Killing field 
of degree less than d, and lies in A'. So rJ lies in A', a contradiction. 

The cases d = 1 and d = 4 must be dealt with separately. By 
explicit calculation we prove that rJ is a multiple of I when d = 1, and a 
linear combination of I, >.±3 I, 7 and 7 2 when d = 4. So 'f/ E A', ·finishing 
case (b). 

In the same way, in case (c) we find that 

r f-1/2 

0 
0 

for some constant E E IC. When d ?: 5 we define 

and deduce that ry' E A', so that rJ E A'. The case d = 2 we deal with 
separately, by showing that rJ is a linear combination of 7 and I, and so 
lies in A'. This completes the proof. Q.E.D. 

We can use similar ideas to show that '1/J is of finite type, as in §3.5. 
Define 

(69) 

Then 'f/ is a real polynomial Killing field of degree 7, and (60) and (63) 
imply that ry7 =a~ and ry6 = 2a~. So, by definition, '1/J is of finite type. 

Furthermore, the proof of the theorem actually implies that every 
polynomial Killing field is of the form P0 I + P 1 7 + P 27 2 , where Po, P 1 , P2 

are Laurent polynomials in .A ± 3 . Writing 7 3 in this way, and using the 
Z2-symmetry (67) to eliminate some of the terms, we find that 7 must 
satisfy a cubic equation 

(70) 

for some D, E E R Then A is the quotient of the free commutative 
algebra generated by >.±3 I and 7 by the ideal generated by this equation. 
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6.4. The spectral curve 

Now we can calculate the spectral curve of'¢, as in §3.6. Define 

Y' ={(A, fl) E C* x C: det(fll- r(A, z)) = 0}, 

as in (20). Since A is generated by rand A±3 I, this is biholomorphic to 
the curve Y of (18), and so the spectral curve Y as defined by Ferus et 
al. [10, §5] is the compactification Y of Y'. 

Calculating using (63)-(65), we find that 

(71) det(fll- r) = fl3 + Dfl + iE + ie A6 +if A - 6 , where 

(72) 

(73) 

D = / 2 + 2r2 f- 1 + 2lgl 2 + 3h2 and 

E =- fg2- f!J2- 2/2h + 2r2 f-lh + 2lgl2h + 2h3. 

As Y' is independent of z E C, the functions D, E are constant, which 
may be verified directly using (35)-(36), (62) and identities satisfied by 
the {31,,1 ,a,b, c,B,C and r. 

We can find explicit expressions for these constants by putting v = 
w = 0, which by (35)-(36) gives 

( ddvs)2 = 4(1- B2), (dw)2 4(1 C2) d d2v d2w 0 dt = - an ds2 = dt2 = . 

Equation (62) gives values for J, g and h, and substituting these into 
(72) and (73) yields 

(74) D = a2 + 2a-1(b2 + c2) and E = 2(b2(1- B 2)- c2(1- C2)). 

This proves that the spectral curve as defined by Ferus et al. [10, 
§5] is the compactification Y of 

where D and E are given by (74). It can be shown using elementary 
algebraic geometry that Y is nonsingular for generic D, E, with genus 
10. Note that the equation satisfied by fL in (75) is the same as that 
satisfied by r in (70). 

However, Mcintosh [26, 27, 28] uses a different definition of the 
spectral curve. To find it we replace A3 by A in (75), giving 
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and Mcintosh's spectral curve is the compactification X of X'. For 
generic D, E it is nonsingular with genus 4. The involutions a : X ---+ X 
and p : X ---+ X discussed in §3.6 and §4.2 act by 

(77) p: (A,f-L) f-.--* (-A,f-L) and a: (A,f-L) f-.--* (5.-I,-p). 

It "::ould be interesting to understand what properties of the spectral 
curve X correspond to the fact that '1/J is written in terms of single­
variable functions Yk(s) and zk(t), rather than more general two-variable 
functions of (s, t). Ian Mcintosh has an explanation of this, which may 
appear elsewhere. 

6.5. Interpretation using the ideas of §4 

Finally we relate the calculations above to the material of §4. From 
§6.4 the spectral curve X as defined by Mcintosh has genus 4. Thus 
in §4.3 we have p = 4 and d = 2. The parameter counts there show 
that the moduli space of all finite type genus 4 solutions of the Tzitzeica 
equation, up to translations in JR2 , should have dimension 4. All of 
them are expected to be doubly-periodic. For the corresponding maps 
¢ : JR2 ---+ S 5 and '1/J : JR2 ---+ ClP'2 to be doubly-periodic is 4 rationality 
conditions. 

Now the family of genus 4 solutions of the Tzitzeica equations con­
structed in Corollary 6.3 depends up to translations in JR2 on the 3 
parameters e, B, C of §5. Thus, we have not constructed all the genus 
4 Tzitzeica solutions, but only a codimension 1 subset of them. This 
agrees with the analysis of §5.4, where we were unable to solve the 
double-periodicity conditions in general, because they amounted to 4 
rationality conditions on 3 variables. 

Here are two ways of thinking about why the construction yields 
only a codimension 1 subset of the Tzitzeica solutions. Firstly, our 
solutions have a 'separated variable' form, being written in terms of 
functions v(s),w(t). It follows that the period vectors of the doubly­
periodic Tzitzeica solutions will point along the s and t axes, and so be 
perpendicular in JR2 • However, the general genus 4 Tzitzeica solution 
will have period vectors which are not orthogonal, and to require them 
to be orthogonal is a codimension 1 condition. 

Secondly, although the moduli space of quadruples (X, p, a, n) with 
X genus 4 is four-dimensional, the subset which can be defined by an 
equation of the form (76) is only 3-dimensional. In §6.3 we saw that our 
solutions admit a degree 2 polynomial Killing field T, which satisfies a 
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cubic equation over q >. 3 I, >. - 3 I]. It is this cubic equation which gives 
X' the simple form (76). 

So we conclude that although the family of genus 4 Tzitzeica solu­
tions has dimension 4, only a 3-dimensional subfamily of these admit a 
degree 2 polynomial Killing field T, and it is this which is responsible 
for the special form (76) of the spectral curve, and for the other nice 
behaviour of these examples. For generic genus 4 Tzitzeica solutions the 
first non-trivial polynomial Killing field will be of higher degree, and so 
the spectral curve will be given by a (singular) equation of higher-degree 
in >.±2 . 

§7. Extension to three variables 

Next we generalize Theorem 5.1 to a construction of special La­
grangian 3-folds in C3 in which all three variables r, s, t enter in a non­
trivial way. The proof is similar to that of Theorem 5.1, so we will be 
brief. 

Theorem 7.1. Let a 1, a2, a 3, /31,/32, !h and 11, 12,/3 be real num­
bers with not all a1, not all {31 and not all /j zero, such that 

0:1/1 + 0:2/2 + 0:3/3 = 0, 

and a1fJ1/1 + a2fJ212 + a3f33/3 = 0. 

Let I, J, K be open intervals in R Suppose that x1 , x2 , x 3 : I---> C and 
u : I ---> lR are functions of r, that Y1, Y2, Y3 : J ---> C and v : J ---> lR are 
functions of s, and z1, z2, Z3 : K---> C and w : K---> lR functions of t, 
satisfying 

(79) 
dx1 dx2 dx3 
dr = a1 x2x3, dr = 0:2 X3X1, dr = 0!3 X1X2, 

(80) 
dy1 -
ds = fJ1 Y2Y3, 

dy2 -
ds = fJ2 Y3Y1, 

dy3 -
ds = /33 Y1Y2, 

(81) 
dz1 dz2 dz3 dt = /1 Z2Z3, dt = /2 Z3Z1, dt = /3 Z1Z2, 

(82) lx1l 2 = a1u + 1, lx2l 2 = a2u + 1, lx31 2 = a3u + 1, 

(83) IY1I 2 = fJ1v + 1, IY2I 2 = fJ2v + 1, IY31 2 = f33v + 1, 

(84) lz1l 2 = 11w + 1, lz2l 2 = 12w + 1, lz31 2 = /3W + 1. 

If (79)-(81) hold for all r, s, t and (82)-(84) hold for some r, s, t, then 
(82)-(84) hold for all r, s, t, for some functions u, v, w. Define a map 
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<P : I X J x K ---+ C3 by 

Define a subset N of C3 by 

(86) N = { <P(r, s, t) : r E I, s E J, t E K}. 

Then N is a special Lagrangian 3-fold in C3 . 

Proof. The first part of the theorem, that if (79)-(81) hold for all 
r, s, t and (82)-(84) for some r, s, t, then (82)-(84) hold for all r, s, t, 
follows as in Theorem 5.1. For the second part, we must prove that N 
is special Lagrangian wherever <P is an immersion. As in Theorem 5.1, 
this holds if and only if 

(89) 

(90) 

(91) 

Using equations (79)-(81) and (85) we find that 

a<P ar = ( C¥1 X2X3Y1Z1, C¥2 X3X1Y2Z2, C¥3 X1X2Y3Z3), 

a<P as = (,Blxl Y2Y3Zl, ,82X2 Y3YlZ2, ,83X3 Y1Y2Z3)' 

a<P at = ( ')'1X1Y1 Z2Z3, ')'2X2Y2 Z3Z1, ')'3X3Y3 Z1Z2) · 

Equations (89) and (90) give 

w( ~~, ~!) = Im(x1x2XaY1Y2Ya) (a1,81lz1l2 + a2.82lz2l 2 + aa,Balzal 2) 

= Im(x1X2XaY1Y2Ya) ( a1,81 (1'1 w+ 1) +a2,82(1'2w+ 1)+aa,Ba(raw+ 1)) 

=lm(x1x2XaY1Y2Ya) (a1,81 +a2,82+aa.Ba +w(a1.8111 +a2,82/'2+aa.Ba'Ya)) =0, 

using (84) in the second line and (78) in the third. This proves the first 
equation of (87). The second and third follow in a similar way. 
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To prove (88), observe that 

( ail> aif> aif>) -I ail> aif> aif> 1- (ll X2X3Y1Zl (31xl Y2Y3Zl l'lXlYl Z2Z3 

n a , a , a - a a a - a2 x3x1y2z2 fJ2x2 y3y1z2 1'2X2Y2 z3z1 
r 8 t r 8 t -- (3 - -

(l3 X!X2Y3Z3 3X3 Y1Y2Z3 /'3X3Y3 Z1Z2 

= (allx2x3I2.82IY3YII21'3Iz1z212 + a2lx3xii 2.83IYIY2I21'IIz2z3l2 

+a3lx1x2l2 .81IY2Y3I21'2Iz3z1l2 - et1lx2x3l 2 ,B3IY1Y2I21'2Iz3z112 

-a2lx3x1l2 .8IIY2Y3I21'3Iz1z2l2 - et3lx1x2l 2 .82IY3YII21'IIz2z312) · 

Th n ( 8if> 8if> 8if>) · 1 d I n ( 8if> 8if> 8if>) _ 0 US H Br , Bs , at 1S rea , an SO m H Br , 7JS, at - . 

Here are a few comments on the theorem. 

Q.E.D. 

(a) In Theorem 5.1 we took the ranges of 8, t to be~' but here we take 
r, 8, t in intervals I, J, K in R This is because, by an argument in [19, 
Prop. 7.11], the conditions .81 + .82 + ,83 = 0 and 1'1 +1'2 +1'3 = 0 imply that 
solutions of (24) and (25) in some open interval extend automatically to 
all of~-

However, in Theorem 7.1 we do not assume that et1 + et2 + et3 = 0, 
and so it could happen that a1, a 2 , a 3 all have the same sign. In this 
case, solutions Xj to (79) will in general exist in some open interval I C ~ 
with lxj I ----t oo at the endpoints of I, so that they do not extend to ~­
The same applies to (80) and (81). 

(b) As in §5.2 we can write the Xk, Yk and Zk entirely explicitly in terms 
of integrals involving the Jacobi elliptic functions. 

(c) As in Theorem 5.4, in the situation of Theorem 7.1, ~~, ~~ and ~~ 
are always complex orthogonal. But in general they are not of the same 
length, so if> is not conformal. 

(d) We may recover Theorem 5.1 from Theorem 7.1 as follows. Put 
a1 = a 2 = a 3 = 1, so that (78) becomes equivalent to (23). Define 

I= (-oo,O), x1(r) = x2(r) = x3(r) = -r-1 and u(r) = r-2 -1, 

and J = K = ~- Then (79) and (82) hold, and Theorem 7.1 becomes 
equivalent to Theorem 5.1, but with a different parametrization for r. 

7.1. Description of the family of SL 3-folds 

We shall now describe the family of SL 3-folds resulting from The­
orem 7.1. We begin by studying the set of solutions Ctj,,Bj,')'j to (78). 
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Define vectors a= (a1,a2,a3), {3 = (f31,(h,fh), 1 = (11,/2,/3), 
and 

a{3 = (a1(31, a2(32, a3(33), 

a1 = (a111, 0:212, 0:3/3), 

!3r = (f3n1,f32/2,f33r3) 

in ~3 . Rescaling a, {3 and 1 has no effect on the SL 3-folds constructed 
in Theorem 7.1, so let us assume a, {3, 1 are unit vectors. We will show 
that a generic choice of a determines {3, 1, essentially uniquely. 

Proposition 7.2. Let a be a unit vector in ~3 , with a 1, a 2, a.3 
distinct and nonzero. Then there exist unit vectors {3, 1 satisfying (78), 
which are unique up to sign and exchanging {3, I· 

Proof. Equation (78) implies that a, {3 and a{3 are orthogonal to f. 
As 1 "I 0, it follows that a, {3 and a{3 are linearly dependent. Therefore 
det (a {3 af3) = 0. This may be rewritten in matrix form as 

(92) ( )T( ) ( ) fJ1 0 a3(a2-ai) a2(a1-a3) fJ1 
Q(f3)=~ fJ2 a3(a2-ai) 0 a1(a3-a2) (32 =0. 

(33 a2(a1-a3) a1(a3-a2) 0 (33 

Similar equations hold between the a1 and /j, and between the 
(31 and rj· Now the 3 x 3 matrix appearing in (92) has trace zero 
and determinant 2a1a 2a 3(a1-a3)(a2-ai)(a3-a2). As by assumption 
a 1, a 2, a 3 are distinct and nonzero, this determinant is nonzero. Hence 
Q is a trace-free, nondegenerate quadratic form on ~3 . 

Therefore, {3 must be a unit vector in the intersection of the plane 
a· {3 = 0 and the quadric cone (92) in ~3 . Let aj_ be the plane perpen­
dicular to a, and consider the restriction Qlaj_ of Q to aj_. As a is a 
unit vector, we have 

0 = Tr(Q) = Tr(Qiaj_) + Q(a). 

But Q(a) = 0 by (92), so Qlaj_ is trace-free. 

Thus, by the classification of quadratic forms on ~2 , there exists an 
orthonormal basis {3, 1 for a_l_ such that Q(x{3 + Y/) = cxy for some 
c and all x, y in R If c = 0 then Qlaj_ = 0, so Q is degenerate, a 
contradiction. So c "I 0, and therefore {3, 1 are unique up to sign and 
order, with Q(f3) = Q(r) = 0. 
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As a, /3, 1 are orthonormal they automatically satisfy the first three 
equations of (78). But by construction we have arranged that a, f3 and 
a/3 are linearly dependent, so a/3 = xa + y/3 for x, y E R The fourth 
equation of (78) then follows from the second and third. Q.E.D. 

The moral of the proposition is that a generic choice of a determines 
f3 and 1 up to obvious symmetries. However, for a nongeneric choice 
of a there can be more freedom in f3 and f. For instance, if we put 
a = 3-112 (1, 1, 1) then Q = 0, and /3,1 can be arbitrary orthonormal 
vectors in aj_. 

We can now do a parameter count for the family of SL 3-folds com­
ing from Theorem 7.1. The proposition shows that up to symmetries, 
the data 0'-j, (Jj, 'Yi has two interesting degrees of freedom. Also, as in 
Propositions 5.2 and 5.3 there exist constants A, B, C E JR. such that 

Together the aj, (Jj, 'Yi and A, B, C determine N up to automorphisms of 
C3 . Thus the construction of Theorem 7.1 yields a 5-dimensional family 
of SL 3-folds, up to automorphisms of C3 . 

We can also discuss the possible signs of the ak, fJk, 'Yk· Suppose 
for simplicity that ak, fJk, 'Yk are all nonzero. Then the four equations 
of (78) constrain the signs of ak, fJk, "fk, as in each equation the three 
terms cannot have the same sign, since their sum is zero. Now permuting 
a, /3, 1, and reversing any of their signs, does not change the set of SL 
3-folds constructed in Theorem 7 .1. 

Considering the constraints on the signs of the ak, fJk, "fk, it is not 
difficult to show that by permuting and changing signs of a, /3,1 we 
may can arrange that the ak are all positive, two of the fJk are positive 
and one negative, and two of the 'Yk positive and one negative. 

With this choice of signs, the argument in [19, Prop. 7.11] shows 
that solutions Yk, Zk to (80)-(81) and (83)-(84) automatically extend to 
JR., so we may take J = K =JR. However, solutions Xk to (79) and (82) 
generally exist only on a proper subinterval I of R Let us take I to be 
as large as possible. 

The discussion of §5.4 suggests that we should try to arrange that 
the Yk are periodic in s and the Zk periodic in t. When this happens, 
'ljJ pushes down to an immersion I x T 2 ---> C3 , whose image is a closed 
SL 3-fold in C3 . The double-periodicity conditions in s, t in this case 
turn out to be equivalent to those in §5.4, and there are analogues of 
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parts (a)-( c) of §5.4 in which one can prove they are soluble, which yield 
countably many families of closed, immersed SL 3-folds in e3 diffeomor­
phic to T 2 x R 

7.2. Conclusion: an open problem 

Theorems 5.1 and 7.1 are clearly very similar. But in §6 we saw 
that the special Lagrangian cones of Theorem 5.1 can be put into a 
much larger integrable systems framework. Is there also an 'integrable 
systems' explanation for the SL 3-folds of Theorem 7.1? Certainly the 
solutions of Theorem 7.1 have many of the hallmarks of integrable sys­
tems: commuting o.d.e.s, elliptic functions, conserved quantities. 

Also, there exist many interesting families of SL m-folds in em which 
can be written down explicitly (and so are 'integrable' in a trivial sense), 
or have some other nice properties. For examples, see papers by the au­
thor [17, 18, 19, 20, 21], and others such as Harvey and Lawson [13, 
III.3], Haskins [14] and Bryant [5]. When the special Lagrangian equa­
tions are reduced to an o.d.e., it often turns out to be a completely 
integrable Hamiltonian system, as in [19, §7.6]. 

At present, as the author understands it, integrable systems meth­
ods are only really effective for o.d.e.s, or p.d.e.s in two variables ( s, t), 
though perhaps for equations involving many unknowns h ( t), ... , fk ( t) 
or fi(s, t), ... , fk(s, t) in these variables. However, the SL 3-folds of 
Theorem 7.1 involve three variables (r, s, t) in a nontrivial way. 

It is probably much too optimistic to hope that the special La­
grangian equations themselves are integrable in any meaningful sense. 
Nonetheless, it seems plausible to the author that there may exist large 
families of examples of SL m-folds in em for m ~ 3 which admit some 
kind of m-variable 'integrable systems' type description, and that these 
would be an interesting thing to study. The author suggests this to the 
integrable systems community as a worthwhile problem. 
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