
















































































216 D. Joyce

The appropriate analogues of Delaunay surfaces in our problem are Leg-
endrian surfaces in S invariant under the U(1)-action (21, 22,23) —
(e*zy,67 " 29, 23), for s € R.

In the notation of §5.1-§5.3, these have # = 0 and B = —1. When
the remaining parameter C' € [—1,1] is nonzero and small, the corre-
sponding minimal Legendrian surfaces resemble chains of round Legen-
drian $?’s in S° joined by small necks.

§6. Interpretation using integrable systems

In Theorem 5.4 we constructed families of conformal harmonic maps
¢ : R?2 — S5 and 9 : R? — CP?. We shall now analyze these in the in-
tegrable systems framework described in §3 and §4. We will show that
they are generically superconformal, and explicitly determine their har-
monic sequences, Toda and Tzitzéica solutions, loops of flat connections,
polynomial Killing fields, and spectral curves. This goes some way to-
wards redressing the ‘dearth of examples’ of superconformal harmonic
tori referred to by Bolton and Woodward [11, p. 76]. We shall use the
notation of §5.1-§5.3 throughout.

6.1. The harmonic sequence of 1)

In the situation of §3.1, take U to be R? with complex coordinate

z=s+it. Then £ =12 —£8 and 2 =12 4 12 Thus by (24),

29
(25), (28) and the definition ¢(s,t) = ®(1, s,t) we have

% = ﬁ(ﬁlyzyﬂl—i%ylzﬂs,ﬁzysyle—i’Yzyzz?,Zhﬂ3y1y223—i73y32122),
% = ﬁ(ﬁlyzy:zzl +iv1Y1%223, B2Y3Y1 22 +i72Y22321, P31 Y223 +1V3YsZ122)-

Calculation using (26) and (27) shows that (42,¢) = (22,4) = 0. Also,
using (40) we find that [az = |§ = a + bu(s) + cw(?).

As <%,¢> = 0, by definition ¢ is a holomorphic section of the
holomorphic line bundle Ly over C associated to ¢ = ¢ : C — CP%
Therefore, from §3.1, there exists a unique sequence of maps ¢, : C — C?
with ¢g = ¢, which satisfy (2), and the harmonic sequence (1) of ¢ is
given by ¥ = [¢x].
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From (2) we see that ¢_1 = _1¢0|2|%¢’2_0|—2%¢2_0 and ¢ = %@7 since
|¢po| = 1. Thus the equations above give

(45)
1 X . _ . I
¢1=— 2\/§(a F oo+ cw) (8172321 +1711Y12223, B2Y3Y1 22 +17Y2Y2 2321,
BsTil223+1Y3Y3Z122),

(46)

$o = = (y121,y222,y323),
(47)

¢ = ﬁ(ﬁlyzyzam—i%ylzzz:a,ﬂzysylzz—i’myz?g_zh

B3Y1Y223 —iY3Y3Z122)-
These satisfy
(48) |p_1]> = (a+bv+cw)™t, |po|> =1 and |p1]?> =a+bv+cw.

From (2) and the equation |¢;|? = a + bv + cw we see that

¢ = %ﬁ;i - %(log(a + bv + cw)) ¢1.

Substituting in for ¢; from (47) gives a long and complicated expression
for ¢2. After much calculation using equations (24)—(27), (35)-(36),
(41)—(43) and other identities satisfied by g;,v; and a, b, ¢, one can prove
that :

(49) ¢ =EP_y, where & =cC+ibB.

We can now identify the harmonic sequence of .

Proposition 6.1. If bB and cC are not both zero then v : R? —
CP? is superconformal, and has harmonic sequence (1) given by

Ysk—1(5,1) = [B1720321 +iMY17223, Bolj3Y1 22+ 172Y2 7371,

(50) L
B3Y1Y223 +173y32122] )
(51) Y3k(s,t) = [y121,Y222,y323],
(52) V3kt1(5, 1) = [B1T20321 —iM1Y17273, B2¥3Y1 22 — 17227321,

BaY11223 —iV3Y3Z123 ) »

forall k € Z. If bB = cC = 0 then v is isotropic, with finite harmonic
sequence ¥_1, 0,1 given by equations (50)—(52) with k = 0.
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Proof. Since ¢o = £¢_1 where £ = ¢C + ibB by (49), if £ # 0 then
the sequence (¢x) exists for all k and is given by

bar—1 =P 1, ¢z =B and  dare1 = .

Since ¢y = [¢x], equations (50)—(52) follow from (45)—(47). Thus ¢ is
nonisotropic, as 1, exists for all k. But any conformal map 1 : § — CP?
is isotropic or superconformal from §3.1, so ¢ is superconformal.

If on the other hand £ = 0 then ¢2 = 0, so 2 does not exist.
Thus v is isotropic. By (45)—(47), ¥_1, %0 and 1 exist and are given
by equations (50)—(52) with k& = 0. But the harmonic sequence of an
isotropic map ¥ : § — CP™ has length at most m + 1, so this is the
whole of the harmonic sequence. Q.E.D.

In the case when £ = 0 and % is isotropic, ¥_; is holomorphic and
11 antiholomorphic. This is not obvious, but may be proved directly.
For instance, when B = C = 0 we may take the y; and z; to be real.
Then ¥ maps to RP? in CP?, and both 1/; and _; map to the conic
{[wo, w1, ws] € CP?: w? + w? + w? = 0}, with 1 = ;.

6.2. Solutions of the Toda lattice and Tzitzéica equations

In the rest of the section we assume that € = ¢C + ibB # 0, so that
1 is superconformal. Following §3.2, we shall construct a solution of the
Toda lattice equations for SU(3) out of ¢. The first thing to do is to find
a special holomorphic coordinate 2z’ on C, that is, one in which £ =1
and the ¢}, are periodic with period 3. By (5), 2’ = 2/(2) is special if

Thus we need %iz, = ¢1/3 for some fixed complex cube root £1/3 of £.
So define 2’ = £1/3(s +it). Then 2’ is a special holomorphic coordinate
on C.
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Working with respect to z’ rather than 2z, we get a new sequence
(¢,) rather than (¢), with ¢} = —i&é~*/3¢;. Thus (45)—(48) yield

Zgl/'i

= —— (BTaa i T,
(53) B3k 2v3(atbuten) (61720321 +iny17223
Bal3Y1 22 +iv2Y273%1, BsYTY223+17V3Y3%122),
—i
(54) ¢§k = ﬁ(y1217y222,y323)7
/ | _i£—1/3 RN . R
(55) ¢3k+1 = T(ﬂly2y3zl“z'}’lylz2237
Ba¥3Y1 22 —1V2Y2 2371, B3Y1l223 —1V3Y3%123),
56 n |G| =163 (a+ bo+ cw) ™!, [ghil? =1

and |¢§,k+1l2 = |§|_2/3(a +bv+cw) forall k € Z.

Here we have multiplied by —i because then det(dpdi¢s) =1, as in
(6). Thus the ¢}, satisfy all the conditions on the ¢, in §3.1-§3.2. So
from §3.2 if we define xx = |#}|?, then the xx satisfy the Toda lattice
equations for SU(3) with respect to z’. Therefore by (56) we have proved:

Proposition 6.2. In the situation above, define xx : C — (0,00)
by
Xak-1 = [{[**(@+bv+cw)™", xsk=1 and

57
57 Xake1 = [€]723(a + bv + cw)  for all k € Z.

Then the xx satisfy the Toda lattice equations for SU(3) with respect
to 2/ = £Y3(s 4+ it). In terms of s,t, this means that xoxiXx2 = 1,
Xk+3 = Xk and

1 [0 o2 B _
58) eprm (552' + ?9?) (log xk) = Xk+1Xx = XkXiy for all k € Z.

Here (58) holds because —81%2—, = W (—6—;2— +2). One can verify
(58) explicitly using equations (35)-(36), (41)—(43), (57) and various
identities between the 8;,v;, B,C,a,b and c. The proposition defines a
simple class of doubly-periodic solutions xx of the Toda lattice equations

for SU(3). From §4.1 we deduce:

Corollary 6.3. Define f : C — (0,00) by f = log(a + bv + cw) —
%log |€]. Then f satisfies the Tzitzéica equation (22) with respect to 2’ =

EV/3(s +it).
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Note that the functions v(s), w(t) may be written in terms of Jacobi
elliptic functions as in §5.2, and so the solutions in the last two results
are entirely explicit. They have a ‘separated variable’ form, that is, they
are written in terms of single-variable functions v(s) and w(t), rather
than more general two-variable functions (s, t). The author is not sure
whether these solutions are already known.

6.3. Loops of flat connections and polynomial Killing fields

For the rest of §6 we will work with the special coordinate z =
£'/3(s + it), dropping the notation z’. From §3.3, the Toda frame F :
R? — SU(3) of ¢ is given by F = (fof1f2), where fx = |¢}| ¢}. Using
equations (53)—(56) we may write F' down explicitly, but we will not do
so as the expression is complicated. Then o = F~!dF is a flat SU(3)
connection matrix on R?.

As in §3.4, we may extend d + « to a loop of flat SU(3)-connections
d+ ay for X € C with |A| = 1. We shall write «, out explicitly. Decom-
pose ay as

(59) ax = (4 A+ af)dz + (& 271 + af)dz,

as in (11). Then from (9) and (57) we find that

0 o Y2 0 0 0
(60) oy =r7'3{f2 0 0 |, op=34[0 L@egf) 0 |,
0 rf~' o0 0 0 —Z(logf)

0 fY2 0 0 0 0
61) ofi= -3 0 0 rf ), ag=23{0 —Z@gs) 0o |,
Y2 0 o0 0

where f =a+bv + cw and r = [€].
We shall now construct a polynomial Killing field 7 for ¢, as in §3.5,
which is in fact the nontrivial polynomial Killing field of lowest degree.

Theorem 6.4. Write £ = re’® for r > 0 and 6 € R. Define func-
tions f,h:R? - R and g : R? — C by

1 dv . dw 1 d?v  d*w
62 = v = | —p—4geo—— = (_p—g
(62) f=atbutew, g 2f1/2( bdsﬂcdt>’ h 12f( bdsz—mdt?)’
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and let 7 = Zi:_2 A", where

. 0 rf~l2 0 A 0 0 g
(63) 1 = ie?/3 0 0 fl, mn=i%3{—¢g 0 0],
rf1/2 0 0 0 00
2h 0 0 A 0 —g 0
64) m=i|l 0 —-h 0 =i B30 0 0],
0 0 -—h g 0 0
, 0 0 rf7/2
(65) and T_o=ie 0B [pf-1/2 o g
0o f 0

Then T is a real polynomial Killing field.

To prove the theorem one must show that the 7, satisfy (16) and
(17). This is a long but straightforward calculation, using equations
(35), (36),

9 _ _i_(ﬁ _iﬁ) and 2 — __1__(£+i_8_>
0z~ 2rl/3ei9/3\9s Ot 0z  2rl/3e-1#/3\9s " ot)’
and identities satisfied by the 8;,7v;, B,C and &, and we leave it to the

reader.

Both «y and 7 have an extra Zs-symmetry, which follows from the
fact that xo = 1. Define & : gl(3,C) — gl(3,C) by

Al A A A Az Axn
(66) K:|Agn Aay Ass | — — | Ais Asz  Ass
As1 Aszx Asg Aip Az Ao

Then « is a Lie algebra automorphism, and x? = 1. It is easy to show
from (60)—(61) and (63)—(65) that

(67) klan) =a—x and &(1(X)) = —7(=A) forall A e C".

The action of k on the algebra of polynomial Killing fields will induce
the holomorphic involution p on the spectral curve discussed in §4.2.

We can now determine the algebra of polynomial Killing fields \A.

Theorem 6.5. In the situation above, the algebra of polynomial
Killing fields A is generated by 7, X3I and \~31.
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Proof. Let A’ be the subalgebra of A generated by 7, A3I and
A~3I, and suppose for a contradiction that A’ # A. Let n € A\ A,
and take 1 to be real, and of lowest degree d. That is, n = Ei:—d A",
with n_, = -7 for n = 0,...,d, and every polynomial Killing field of
degree less than d lies in A’

As 1441 = 0, equations (16) with n = d + 1 and (17) with n = d
show that 74 satisfies

0
(68) [a,04] =0 and S = [ns,af]

0z
Divide into the three cases (a) d = 3k, (b) d =3k+1, and (¢) d = 3k+2
for some k£ = 0,1,2,.... We will prove a contradiction in each case in
turn.

In case (a), equation (13) implies that 1, is diagonal, and then as f
is nonzero, the first equations of (60) and (68) show that 74 is a multiple
of the identity. So write g = €I for some € : R? — C. Taking the trace

of equations (16) and (17) for n = d gives ¢ = g—;: = 0, as the trace of
any commutator is zero. Thus € is constant, and 7y = €I, 14 = —€l.

For k > 0, consider 7/ = 1 — e(A31)* + & A~3I)~*. This is a polyno-
mial Killing field of degree less than d, as we have cancelled the terms
in A*<. Therefore n’ € A’. But = 7/ +e(XN31)* —e(A\=3I)"*,son € A,
a contradiction. Also, when k£ = 0 we have 1 = e/ € A’. This eliminates
case (a).

Similarly, in case (b), equation (13) and the first equations of (60)
and (68) imply that

0 0 f1/2
ng=er~2 2 0 U I
0 rf7* 0

for some function € : R? — C. The second equation of (56) is equivalent
to % = 0, so that e is holomorphic. Using the fact that FynF, Lis
independent of z one can show that ¢ must be constant. This determines

Nd and N—d-
By (63), the leading term of 72 is
0 0 rfi?

_)\4e4i0/3 Tf1/2 0 0
0 r2ft 0



‘ Special Lagrangian 3-folds 223

Suppose for the moment that d > 7, so that k£ > 2. Consider
0 =1+ (Asj)k—1§—4/367_2 _ ()\—SI)k—IE—4/3€T2.

We have cancelled the terms in A*?, so 1’ is a polynomial Killing field
of degree less than d, and lies in A’. So 7 lies in A’, a contradiction.

The cases d = 1 and d = 4 must be dealt with separately. By
explicit calculation we prove that n is a multiple of I when d =1, and a
linear combination of I, A*3I, 7 and 72 when d = 4. So n € A’, finishing
case (b).

In the same way, in case (c¢) we find that
0 rfY2 o0

na = er—2/3 0 0 f
rfY2 00

for some constant € € C. When d > 5 we define
N =n+ W3DFie2Ber + (A31)*iE?3er,

and deduce that ' € A’, so that n € A’. The case d = 2 we deal with
separately, by showing that 7 is a linear combination of 7 and I, and so
lies in .A’. This completes the proof. Q.E.D.

We can use similar ideas to show that ¥ is of finite type, as in §3.5.
Define

(69) n= (45N — £,

Then 7 is a real polynomial Killing field of degree 7, and (60) and (63)
imply that 77 = o and 1 = 2ay. So, by definition, ¢ is of finite type.

Furthermore, the proof of the theorem actually implies that every
polynomial Killing field is of the form Pyl + P17+ P72, where Py, P, Ps
are Laurent polynomials in A*3. Writing 7% in this way, and using the
Zo-symmetry (67) to eliminate some of the terms, we find that 7 must
satisfy a cubic equation

(70) P Dr+i(EN L E+ENI =0

for some D, E € R. Then A is the quotient of the free commutative
algebra generated by A*3T and 7 by the ideal generated by this equation.
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6.4. The spectral curve

Now we can calculate the spectral curve of ¢, as in §3.6. Define
V' = {(\p) € C* x C:det(ul — () z2)) =0},

as in (20). Since A is generated by 7 and A1 , this is biholomorphic to
the curve Y of (18), and so the spe~ctra1 curve Y as defined by Ferus et
al. [10, §5] is the compactification Y of Y.

Calculating using (63)—(65), we find that

(71)  det(ul —7) = p + Du +iE +i€2)® +i€2X7%  where

(72) D=f2+2r%f 1 42|g* +3r* and

(73) E=—fg¢° - fg* — 2f%h + 2r2 f'h 4 2|g*h + 2R3.
As Y’ is independent of z € C, the functions D, F are constant, which

may be verified directly using (35)—(36), (62) and identities satisfied by
the 3;,7v;,a,b, ¢, B,C and 7.

We can find explicit expressions for these constants by putting v =
w = 0, which by (35)—(36) gives

(&)’ =4(1-B%), (2)°=41-0% and L¥=dr -0

Equation (62) gives values for f,g and h, and substituting these into
(72) and (73) yields

(74) D=a*>+2a"*(b*+¢*) and E =2(b(1— B%) —c*(1-C?).

This proves that the sgectral curve as defined by Ferus et al. [10,
§5] is the compactification Y of

(75) Y'={(\p) €C* xC:p®+ Du+iE +i2X° + €21 = 0},

where D and E are given by (74). It can be shown using elementary
algebraic geometry that Y is nonsingular for generic D, E, with genus
10. Note that the equation satisfied by p in (75) is the same as that
satisfied by 7 in (70).

However, Mclntosh [26, 27, 28] uses a different definition of the
spectral curve. To find it we replace A3 by X in (75), giving

(76) X'={(A\p) €C*xC:p®+ Du+iE +i€\ +i€A? =0},
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and McIntosh’s spectral curve is the compactification X of X ~’ . For
generic D, E it is nonsingular with genus 4. The involutions 0 : X — X
and p: X — X discussed in §3.6 and §4.2 act by

(77) p:(Ap)— (=A\pu) and o:(\p)— (A7 —[0).

It would be interesting to understand what properties of the spectral
curve X correspond to the fact that ¢ is written in terms of single-
variable functions yg(s) and zx(t), rather than more general two-variable
functions of (s,t). Tan McIntosh has an explanation of this, which may
appear elsewhere.

6.5. Interpretation using the ideas of §4

Finally we relate the calculations above to the material of §4. From
§6.4 the spectral curve X as defined by MclIntosh has genus 4. Thus
in §4.3 we have p = 4 and d = 2. The parameter counts there show
that the moduli space of all finite type genus 4 solutions of the Tzitzéica
equation, up to translations in R?, should have dimension 4. All of
them are expected to be doubly-periodic. For the corresponding maps
¢ :R? — 85 and ¢ : R2 — CP? to be doubly-periodic is 4 rationality
conditions.

Now the family of genus 4 solutions of the Tzitzéica equations con-
structed in Corollary 6.3 depends up to translations in R? on the 3
parameters 8, B, C of §5. Thus, we have not constructed all the genus
4 Tzitzéica solutions, but only a codimension 1 subset of them. This
agrees with the analysis of §5.4, where we were unable to solve the
double-periodicity conditions in general, because they amounted to 4
rationality conditions on 3 variables.

Here are two ways of thinking about why the construction yields
only a codimension 1 subset of the Tzitzéica solutions. Firstly, our
solutions have a ‘separated variable’ form, being written in terms of
functions v(s),w(t). It follows that the period vectors of the doubly-
periodic Tzitzéica solutions will point along the s and t axes, and so be
perpendicular in R?. However, the general genus 4 Tzitzéica solution
will have period vectors which are not orthogonal, and to require them
to be orthogonal is a codimension 1 condition.

Secondly, although the moduli space of quadruples (X' , 0,0, ) with
X genus 4 is four-dimensional, the subset which can be defined by an
equation of the form (76) is only 3-dimensional. In §6.3 we saw that our
solutions admit a degree 2 polynomial Killing field 7, which satisfies a
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cubic equation over C[A*I, \73I]. It is this cubic equation which gives
X' the simple form (76).

So we conclude that although the family of genus 4 Tzitzéica solu-
tions has dimension 4, only a 3-dimensional subfamily of these admit a
degree 2 polynomial Killing field 7, and it is this which is responsible
for the special form (76) of the spectral curve, and for the other nice
behaviour of these examples. For generic genus 4 Tzitzéica solutions the
first non-trivial polynomial Killing field will be of higher degree, and so
the spectral curve will be given by a (singular) equation of higher-degree
in A2,

§7. Extension to three variables

Next we generalize Theorem 5.1 to a construction of special La-
grangian 3-folds in C* in which all three variables r, s, ¢ enter in a non-
trivial way. The proof is similar to that of Theorem 5.1, so we will be
brief.

Theorem 7.1. Let a1, a9, a3, B1, B2, B3 and v1,7v2,vs be real num-
bers with not all «;, not all B; and not all v; zero, such that

o1y + oy + aszys =0,
and a3 B1v1 + aef2y2 + azfsys = 0.

a1 + azf + azf3 =0,

(78) Biv1 + Bova + B3yz3 =0

Let I,J, K be open intervals in R. Supposé that x1,x2,23 : I — C and
u: I — R are functions of r, that y1,y2,ys:J > Cand v:J — R are
functions of s, and z1,29,23 : K — C and w : K — R functions of t,

satisfying

(79) % = (1 T2I3 d_l‘g_ = Q2 T3T d_$§ = Q3T1T2
dr ’ dr ’ dr ’
dy; dys dys

80 —_ = Yol — = Uzl e 1Yo

(80) . = s, s B2 9371, 1s B3 717z,

(81) dzy = Y1 2223 dzz = Y2 7321 das _ Z1%2
dt 12223, dz Y2 2371, dt Y3 2122,

(82 |.731|2 =aju+1, l$2’2 = agu + 1, |563|2 =azu+1,

(83) |yl =06 +1, ly2|® = B2v + 1, lys|® = Bsv + 1,

( l22]* = 2w + 1, |23]? = ysw + 1.

—(81) hold for all r,s,t and (82)—(84) hold for some r,s,t, then

)
)
84) |z =mw+1,
f (79)
82)—(84) hold for all r,s,t, for some functions u,v,w. Define a map

79
~
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b:IxJxK—C3 by

(85) @:(r,s,t) = (z1(r)y1(s)21(t), z2(r)y2(s)22(t), 23 (r)ys(s)2a(t)).
Define a subset N of C3 by

(86) N ={®(r,s,t):rel, seJ, te K}

Then N is a special Lagrangian 3-fold in C3.

Proof. The first part of the theorem, that if (79)—(81) hold for all
r,s,t and (82)—(84) for some r,s,t, then (82)—(84) hold for all r,s,t,
follows as in Theorem 5.1. For the second part, we must prove that N
is special Lagrangian wherever @ is an immersion. As in Theorem 5.1,
this holds if and only if

(88) and ImQ(%;f,%%,%—f)sO.

Using equations (79)—(81) and (85) we find that

0o . . -

(89) or = (al T2T3Y121, 2 T3L1Y222, A3 $1$2y3Z3),
0o

(90) 95 = (Bre1 T2Ua21, Pa2 TaTi 22, B33 U1T223),
0o _ _ -

(91) Bt = (’)’11’11/1 2223, Y2X2Y2 2321, Y3L3Y3 2122)-

Equations (89) and (90) give

w(%, %?) = Im(xlfcszsylyzys)(a1ﬁ1|21|2 + azfa|z2* + 01353|23f2)

= Im(T1Z2T3y1¥293) (21 B1 (nw+1) + 02 2 (aw+1) +as s (ysw+1))
=Im(ZT1Z2Z3y192y3) (@151 + a2 B2 + a3 B3 +w (o f1y1 + 2 82724+ a3 8373)) =0,

using (84) in the second line and (78) in the third. This proves the first
equation of {87). The second and third follow in a similar way.
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To prove (88), observe that

(8@ o @) OB 9P Hd 01 T3T3y121 Pim1 20321 Y1T1Y1 2223

— 7| = |2 T3T1y222  PaT2TaYize  Y2T2Y2 2321
Or Os Ot — ittt -
a3 T1T2Y323 B3T3V1Yaza  Y3TalYs 2122

= (ca|zazs?Balysyr [ yslz122)? + aolzsas [* Bsly1yel*vil 2223/
+as|T1xa|* Brly2yslyal sz [ — anlzaws|? Bslyryal*velzaz |

—az|zsz1[* B ly2ysl*ysl 2122]% — auslzy el Belysyr [P n |2225]%).

Thus (42, 42, 22) is real, and so Im Q(Z2, g 9) — . Q.E.D.

Here are a few comments on the theorem.

(a) In Theorem 5.1 we took the ranges of s,t to be R, but here we take
r,5,t in intervals I, J, K in R. This is because, by an argument in [19,
Prop. 7.11], the conditions 1 +082+0s = 0 and y1+72+73 = 0 imply that
solutions of (24) and (25) in some open interval extend automatically to
all of R.

However, in Theorem 7.1 we do not assume that a; + as + az =0,
and so it could happen that a1, ag, a3 all have the same sign. In this
case, solutions z; to (79) will in general exist in some open interval I C R
with |z;| — oo at the endpoints of I, so that they do not extend to R.
The same applies to (80) and (81).

(b) As in §5.2 we can write the xy, yx and z entirely explicitly in terms
of integrals involving the Jacobi elliptic functions.

(c) As in Theorem 5.4, in the situation of Theorem 7.1, ‘g‘f, %‘f and a‘t'
are always complex orthogonal. But in general they are not of the bame
length, so ® is not conformal.

(d) We may recover Theorem 5.1 from Theorem 7.1 as follows. Put
o = ag = a3 = 1, so that (78) becomes equivalent to (23). Define

I=(-00,0), a1(r)=a2(r)=23(r)=~r"" and u(r)=r"2-1,

and J = K = R. Then (79) and (82) hold, and Theorem 7.1 becomes
equivalent to Theorem 5.1, but with a different parametrization for r.

7.1. Description of the family of SI. 3-folds

We shall now describe the family of SL 3-folds resulting from The-
orem 7.1. We begin by studying the set of solutions «;, 8;,v; to (78).
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Define vectors @ = (a1, 02, a3), B = (81, 82,03), ¥ = (71,72,73);
and

af = (a1, a2, a303),
ay = (0117170272701373)7

By = (B1v1, B2y, B373)

in R3. Rescaling o, 3 and v has no effect on the SL 3-folds constructed
in Theorem 7.1, so let us assume «, 3, are unit vectors. We will show
that a generic choice of a determines 3, +, essentially uniquely.

Proposition 7.2. Let o be a unit vector in R3, with oq, 00,03
distinct and nonzero. Then there exist unit vectors (3,7 satisfying (78),
which are unique up to sign and exchanging 3,~y.

Proof. Equation (78) implies that «; 3 and a3 are orthogonal to ~.
As v # 0, it follows that a, 3 and a3 are linearly dependent. Therefore
det (a Jé] aﬁ) = 0. This may be rewritten in matrix form as
(92)

B1 T 0 ag(az—aq) oag(ar—ag)\ /B
QB)=3|0B| |es(az—a1) 0 ai(az—az) || B2 |=0.
\ B3 az(a;—a3) ai(az—az) 0 B3

Similar equations hold between the a; and 7;, and between the
B; and ;. Now the 3 x 3 matrix appearing in (92) has trace zero
and determinant 2a;jazas(a —ag)(az—aq)(az—ag). As by assumption
a1, g, ag are distinct and nonzero, this determinant is nonzero. Hence
Q is a trace-free, nondegenerate quadratic form on R3.

Therefore, 3 must be a unit vector in the intersection of the plane
o -3 = 0 and the quadric cone (92) in R3. Let a* be the plane perpen-
dicular to «, and consider the restriction Q|,. of @ to at. As a is a
unit vector, we have

0=TrQ) = Tr(Qlax) + Qa).

But Q(a) =0 by (92), so Q. is trace-free.

Thus, by the classification of quadratic forms on R?, there exists an
orthonormal basis 3, for at such that Q(z3 + yv) = czy for some
cand all z,y in R. If ¢ = 0 then Q|o1 = 0, so Q is degenerate, a
contradiction. So ¢ # 0, and therefore 3,~ are unique up to sign and

order, with Q(8) = Q(v) = 0.
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As a, B, are orthonormal they automatically satisty the first three
equations of (78). But by construction we have arranged that o, 3 and
af3 are linearly dependent, so a8 = za + y3 for z,y € R. The fourth
equation of (78) then follows from the second and third. Q.E.D.

The moral of the proposition is that a generic choice of o determines
B and ~ up to obvious symmetries. However, for a nongeneric choice
of a there can be more freedom in B and -. For instance, if we put
o = 37Y2(1,1,1) then Q = 0, and 3, can be arbitrary orthonormal

vectors in at.

We can now do a parameter count for the family of SL 3-folds com-
ing from Theorem 7.1. The proposition shows that up to symmetries,
the data a;j, 5;,7v; has two interesting degrees of freedom. Also, as in
Propositions 5.2 and 5.3 there exist constants A, B, C € R such that

Im(l’lxzﬂ?;:,) = A, Im(ylygyg) =B and Im(zlzgzg) =C.

Together the o, 3;,7; and A, B, C' determine N up to automorphisms of
C3. Thus the construction of Theorem 7.1 yields a 5-dimensional family
of SL 3-folds, up to automorphisms of C3.

We can also discuss the possible signs of the ay, Bk, v%. Suppose
for simplicity that ok, Ok, V% are all nonzero. Then the four equations
of (78) constrain the signs of ay, Bk, vk, as in each equation the three
terms cannot have the same sign, since their sum is zero. Now permuting
a, 3,7, and reversing any of their signs, does not change the set of SL
3-folds constructed in Theorem 7.1.

Considering the constraints on the signs of the ax, 8Bk, vk, it is not
difficult to show that by permuting and changing signs of o, 3,y we
may can arrange that the ay are all positive, two of the § are positive
and one negative, and two of the ~; positive and one negative.

With this choice of signs, the argument in [19, Prop. 7.11] shows
that solutions y, zx to (80)—(81) and (83)—(84) automatically extend to
R, so we may take J = K = R. However, solutions zj to (79) and (82)
generally exist only on a proper subinterval I of R. Let us take I to be
as large as possible.

The discussion of §5.4 suggests that we should try to arrange that
the yi are periodic in s and the z; periodic in £. When this happens,
1 pushes down to an immersion I x T? — C3, whose image is a closed
SL 3-fold in C3. The double-periodicity conditions in s,¢ in this case
turn out to be equivalent to those in §5.4, and there are analogues of
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parts (a)—(c) of §5.4 in which one can prove they are soluble, which yield
countably many families of closed, immersed SL 3-folds in C? diffeomor-
phic to 7% x R.

7.2. Conclusion: an open problem

Theorems 5.1 and 7.1 are clearly very similar. But in §6 we saw
that the special Lagrangian cones of Theorem 5.1 can be put into a
much larger integrable systems framework. Is there also an ‘integrable
systems’ explanation for the SL 3-folds of Theorem 7.17 Certainly the
solutions of Theorem 7.1 have many of the hallmarks of integrable sys-
tems: commuting o.d.e.s, elliptic functions, conserved quantities.

Also, there exist many interesting families of SL m-folds in C™ which
can be written down explicitly (and so are ‘integrable’ in a trivial sense),
or have some other nice properties. For examples, see papers by the au-
thor [17, 18, 19, 20, 21], and others such as Harvey and Lawson [13,
I11.3], Haskins [14] and Bryant [5]. When the special Lagrangian equa-
tions are reduced to an o.d.e., it often turns out to be a completely
integrable Hamiltonian system, as in [19, §7.6].

At present, as the author understands it, integrable systems meth-
ods are only really effective for o.d.e.s, or p.d.e.s in two variables (s, ),
though perhaps for equations involving many unknowns fi(t), ..., fu(t)
or fi(s,t),..., fe(s,t) in these variables. However, the SL 3-folds of
Theorem 7.1 involve three variables (r, s,t) in a nontrivial way.

It is probably much too optimistic to hope that the special La-
grangian equations themselves are integrable in any meaningful sense.
Nonetheless, it seems plausible to the author that there may exist large
families of examples of SL m-folds in C™ for m > 3 which admit some
kind of m-variable ‘integrable systems’ type description, and that these
would be an interesting thing to study. The author suggests this to the
integrable systems community as a worthwhile problem.
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