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Generalized WeierstraB representations of surfaces 

Josef Dorfmeister 

§1. Introduction 

The classical Weierstrafi representation 

has been a very useful tool for the construction and the investigation of 
minimal surfaces in ~3 . While· the differential equation describing these 
surfaces is highly nonlinear, the Weierstrafi data, a pair consisting of a 
holomorphic function f and a meromorphic function g, is completely un
constrained. Moreover, the relation between the Weierstrafi data (!,g) 
and ¢J is sufficiently direct that it is possible to relate geometric proper
ties of the surface to the properties of the Weierstrafi data. 

In recent years a generalized Weierstrafi representation was found, 
which applies to the construction of all surfaces of constant mean curva
ture in ~3 . If the mean curvature H vanishes, i.e. if the surface actually is 
a minimal surface, then the new procedure leads to the classical Weier
strafi representation in a straightforward fashion. If H =/= 0, then the 
generalized Weierstrafi representation is a new tool for the construction 
of conformal immersions of these surfaces. The Weierstrafi data con
sists again of a pair of functions ( Q, f), where Q is holomorphic and f is 
meromorphic. More precisely, Qdz2 is the Hopf differential of the surface 
to be constructed and f is closely related with the conformal factor of 
the induced metric. In spite of this, the relation between the Weierstrafi 
data and the geometry of the conformally immersed surface is much less 
direct than in the classical case. However, it turns out that at least some 
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features of surfaces, such as the number of umbilical points and also the 
number of embedded ends, are well reflected in the WeierstraB data. 

In this paper we will attempt to give a survey of the use of the 
generalized WeierstraB representation for the construction of constant 
mean curvature surfaces in JR3 . Since the original paper [26] introducing 
this method actually discussed harmonic maps into arbitrary compact 
symmetric spaces and since the notion of harmonic maps also exists for 
pseudo-Riemannian spaces, it is not surprising that there are generalized 
WeierstraB representations also for other classes of surfaces, such as the 
surfaces in JR3 of constant GauB curvature K = -1, timelike surfaces 
of constant mean curvature in three dimensional Minkowski space, and 
affine spheres in JR3 . 

While the number of papers using methods similar to the one used 
in [26] is still reasonably small, we have still been unable to present 
all results in sufficient detail. We would like to apologize sincerely to 
everyone whose work we failed to represent adequately. 

Acknowledgements: Over the years I have profited greatly from 
communication with many people. In particular I would like to mention 
Franz Pedit, Fran Burstall, Ivan Sterling, Martin Guest, and Junichi 
Inoguchi. I would also like to thank Martin Guest, Junichi Inoguchi, 
Magdalena Toda, and the referee for thoughtful and pertinent questions 
and comments on a preliminary version of this article. Finally, I would 
like to thank Professors M. Guest, R. Miyaoka andY. Ohnita for their 
generous invitation to participate in the 9th MSJ-IRI in Tokyo and for 
the opportunity to publish this survey in these conference proceedings. 

§2. Constructing potentials from surfaces 

2.1 Let M be a connected, smooth, orientable surface and ¢ 
M ----+ JR3 an immersion of constant mean curvature. We can assume 
that ¢ o 1r is conformal, where 1r : lDl ----+ M realizes the universal cover 
of M. In this article we will always assume that lDl is noncompact. For 
the case lDl ~ 8 2 we refer to [56],[9],[36]. 

By a result of Ruh and Vilms [48] we know that ¢ has constant mean 
curvature if and only if the GauB map N : M ----+ 8 2 is harmonic. Ken
motsu [41] has shown how one can construct¢ from N. In the method 
discussed below we will construct both N and ¢ from an "extended 
moving frame". To this end we write 8 2 = 8U(2)/U(1), where U(1) is 
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represented as the subgroup U(l) ~ { diag(a, a- 1 ) I Jal = 1} of diago
nal matrices in SU(2). Then there exists some frame F: lill--+ SU(2), 
such that the diagram 

SU(2) 

/ 
(2.1.1) 1 

commutes, i.e. N = FmodU(l). 

One can characterize the harmonicity of N by differential equations 
for the Maurer-Cartan form of F. More precisely, let g = p + e denote 
the Cartan decomposition of g = su(2, q = Lie(SU(2)) associated with 
the symmetric space S 2 ~ SU(2)/U(1). In particular, e = Lie(U(1)). 
Then the Maurer-Cartan form 

(2.1.2) 

of F decomposes as a ap + a 2• Decomposing ap further into the 
(1,0)-part a~ and the (0,1)-part a~, where ap =a~ +a~, one introduces 
a "loop" parameter A E S 1 as in [56] by 

(2.1.3) 

For later reference we state the explicit form of a>-. as it is used in this 
article (see e.g. the Appendix of [17]): Let z be a conformal coordinate 
and denote by ds 2 = eudzdz the metric, by H the mean curvature and 
by Q(z)dz2 the Hopf differential, so that a>-. is given by a>-.= 

Then one has the easy but crucial 

Theorem 2.1.1. ([26]) The map N: lill--+ S 2 is harmonic if and 
only if a is integrable for all A E S1 , i.e. 

(2.1.5) 

It is well known that the integrability of a is equivalent to the ex
istence of some map F : lill x S 1 --+ SU(2) such that P- 1dF = a>-. 
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and F ( z, 1) = F ( z). Such a map F is called an extended framing for N. 
From now on we will simply write F for the extended framing. 

As an immediate consequence of the theorem above we obtain 

Corollary 2.1.2. Let F be the extended framing associated with 
some harmonic map N : ][)) ---+ S2 . Then the map, denoted by N again, 
N: j[J) X S 1 ---+ S 2 , defined by N = FmodU(1), forms an S 1 -family of 
harmonic maps. 

2.2 At this point one needs to observe that by the introduction 
of the loop parameter A the extended framing F(·, A) is, for fixed A, 
actually a framing for the harmonic map N ( ·, A). From a more technical 
point of view, F can be considered as a map from][)) into the group of 
loops in Sl(2, q, i.e. the "loop group" ASl(2, q. Actually, from the 
definition of a_x we see that odd powers of A have coefficient matrices in 
p and even powers of A have coefficient matrices in t (for the Lie algebra 
generated by a_x (z, z), z E ][))). Therefore, a_x is an element of the twisted 
loop algebra 

(2.2.1) Asl(2, C)a = {;J(A) E sl(2, C) I ;3( -A) = o-3;J(A)o-3}, 

where o-3 = diag(1, -1) denotes the third Pauli matrix. And F is in the 
twisted loop group 

(2.2.2) ASl(2, C)a = {g(A) E Sl(2, C) I g( -A)= o-3g(A)o-3}. 

In this case the twisting amounts to having even functions of A on the 
diagonal and odd functions of A off the diagonal. Since topological ques
tions are not completely irrelevant for the splitting theorems mentioned 
below, we will tacitly assume that all the functions of A are elements of 
the Wiener algebra 

(2.2.3) A= {!(A)= L fnAn I L I fn I< 00 }. 

nEZ nEZ 

To get the loop group technicalities out of the way we note that for our 
purposes there are three subgroups of special importance: 

(2.2.4) A+ Sl(2, C)a = {J(A) = L fnAn E ASl(2, C)a} 
O:Sn<oo 

(2.2.5) A- Sl(2, C)a = {f(A) = L fnAn E ASl(2, C)a} 
-oo<n$0 

(2.2.6) ASU(2)a = {! E ASl(2, C)a I f(A) E SU(2) VA E S 1 }. 



Generalized Weierstrajl representations 59 

Since we have assumed that all coefficient functions are in the· Wiener 
algebra, all the groups mentioned so far are Banach Lie groups (and 
Banach subgroups, where applicable). The corresponding Banach Lie 
algebras will be denoted by lower case letters, as in Asl(2, C),.. Crucial 
ingredients for the generalized WeierstraB representation are the follow
ing two group splitting results. 

To ensure uniqueness in the first of these results we need to use 
the group A; Sl(2, C),., which is defined by the requirement that the 
coefficient of >.0 is the identity matrix I. 

Theorem 2.2.1. {Birkhoff Splitting) 

00 

(2.2.7) ASl(2, C),.= U A- Sl(2, C),.· diag(>.n, >. -n). A+ Sl(2, C),. 
n=O 

Moreover, the group multiplication map 

(2.2.8) A; Sl(2, C),. x A+ Sl(2, C),. ----+A-; Sl(2, C),.· A+ Sl(2, C),. 

is a complex analytic diffeomorphism onto an open and dense subset of 
ASl(2, C),.. For+ and - interchanged the analogous statements hold. 

For a proof of this theorem see [47],[26],[16]. Note that if one ignores 
the subscript * above, then, in the case n = 0, the two representations 
a_ · b+ = (L · b+ are equivalent to a_ = iL · c, b+ = c-1 · b+, where c 
does not depend on >., i.e. cis a >.-independent diagonal matrix. 

For the second basic splitting result we need the group A~Sl(2, C),., 
which is defined by the requirement that the (diagonal) coefficient matrix 
of >.0 has only real, non-negative entries. 

Theorem 2.2.2. (Iwasawa Splitting) 

(2.2.9) ASl(2, C),. = ASU(2),. ·A+ Sl(2, C),. 

Moreover, the group multiplication map 

(2.2.10) ASU(2),. x A~Sl(2, C),. ----+ ASl(2, C),. 

is a real analytic diffeomorphism. For + replaced by - the analogous 
statement holds. 

For a proof of this theorem see [47],[26],[16]. If one ignores there
striction "P" above, then two representations a·b+ = a·b+ are equivalent 
to a = a· k and b+ = k- 1 · b+, where k does not depend on >. and is 
unitary, i.e. k = diag( eit, e-it), for t E R 
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Remark 2.2.3. 1. Usually we call any decomposition of the form 
g = u · v+ with u E ASU(2)u and v+ E A+ Sl(2, C)u an Iwasawa splitting 
of g. The freedom just explained will then be referred to as the freedom 
in the Iwasawa splitting. 

2. We would like to point out that the prototype of most splitting 
theorems used at present in geometric contexts seems to be Theorem 4.1 
of [3]. Notwithstanding, of course, Birkhoff's original contribution. 

3. The two theorems above work so well in the generalized Weier
straB representation because they are in some sense "complementary" , 
namely, a relation of the form V_ = F · V+ can be interpreted as an 
(almost) 1-1 correspondence between V_ and F : 

a) Given V_, one obtains F (almost uniquely) via the Iwasawa split
ting. 

b) Given F, one obtains V_ (almost uniquely) via the Birkhoff split
ting. 

4. The splitting theorems have been stated for the full (twisted) loop 
group over the Wiener algebra. It will be important for applications, like 
the ones involving dressing (see section 5), to have these theorems in this 
generality. However, the actually geometrically relevant quantities are 
all holomorphic in >. E C* arid are thus contained in a much smaller loop 
group. The extended frames, for example, are defined and holomorphic 
for >. E C*, since O:>. is holomorphic in >. E C* 

2.3 Returning to the geometry under consideration we want to 
replace the extended frame F, whose Maurer-Cartan form O:>. satis
fies some nonlinear differential equation, by some holomorphic extended 
frame 0 = O(z, >.),which contains the same information as F. However, 
while the integrability condition for O:>. is nonlinear and nontrivial, the 
integrability condition for the Maurer-Cartan form of 0 will be trivial ! 

To achieve this, we will introduce a gauge V+ : IDl ___, A+ Sl(2, C)u 
such that 

(2.3.1) O=F·V+ 

is holomorphic in z and in .A. For our setting it is also useful to require 

(2.3.2) O(zo, >.) =I, 

where z0 is a base point chosen once and for all. 
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It is straightforward to see that C is holomorphic in z if and only 
if the (0, 1)-part of the Maurer-Cartan form ofF· V+ vanishes. This is 
equivalent to 

(2.3.3) 

where a~ and a~ denote the (0, 1)- parts of ae and ap respectively. As 
shown in the Appendix of [26], this equation admits a global solution V+ : 
][]) ---... A+ Sl(2, C)u· Moreover, we can assume that V+ is holomorphic in 
>. E C* and also that C(z0 , >.) =I. This result uses the local solvability 
of the 8-problem and the fact that every holomorphic cocycle on ][]) is 
a boundary cycle [7]. Note that the holomorphic extended frame C in 
2.3.1 is not uniquely determined. Any holomorphic gauge W+ : ][]) ---... 
A+ Sl(2, C)u satisfying W+(z0 , >.) = I produces another holomorphic 
extended frame 

(2.3.4) 

We will see later (e.g. section 2.4) that for certain purposes one or the 
other holomorphic extended frame is preferable. 

2.4 It certainly seems to be useful to look for some holomorphic 
extended frame C which is uniquely determined by F and which, in 
turn, determines F essentially uniquely. Such a curve would be F _, if 
F splits as F = F _ · F + for all z E ][]). In general, this is not possible. 
However, one can prove: 

Theorem 2.4.1. {[26]) IfF is an extended framing of a harmonic 
map N : ][]) ---... S2 , then there exists some discrete set S c ][]) such that 
the extended framing F can be split in the form 

(2.4.1) F = F _ · F + for all z E ][]) \ S 

with F_ E A; Sl(2, C)u. Then F_ is uniquely determined by F and, 
considered as a function on all of][]), meromorphic. Moreover, we have 
F- ( zo, A) = I. 

Remark 2.4.2. 1. Since F(z0 , >.) = I, we know that F_ is not 
singular at z = zo. 

2. To verify that F_ is meromorphic, one observes first that the 
Maurer-Cartan form~ ofF_ is integrable and that by 2.4.1 it is obtained 
from the Maurer-Cartan form ofF by some gauge transformation which 
does not contain any negative powers of >.. It follows from this that ~ 
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is a (1, 0)-form. More precisely, it is obtained from a~ by conjugation 
with some matrix independent of A. Therefore the z-derivative ofF_ 
vanishes and F _ is holomorphic where defined. 

3. It is easy to see that the argument just given cannot be applied 
to F+. 

The Maurer-Cartan form 

(2.4.2) 

is called the normalized potential for N (or for F). This ~ is uniquely 
determined by the harmonic map N. In contrast, the Maurer-Cartan 
forms associated with the holomorphic extended frames C associated 
with N are called holomorphic potentials for N. Holomorphic potentials 
are not uniquely determined by N. 

Theorem 2.4.3. {[26]) a) The normalized potential ~ for some 
harmonic map N : [)) ---> S2 is of the form 

(2.4.3) 

where ~- 1 : [)) ---> sl(2, C) is meromorphic. 

b) The holomorphic potentials 

(2.4.4) 

are of the form 

(2.4.5) 

where all7]j: [))---> sl(2,C), j = -1,0, 1, ... are holomorphic. 

c) If 7] is a holomorphic potential for the harmonic map N : [)) ---> 

G/K and ifW+: [))---> A+sz(2,C)a is a holomorphic map satisfying 
W+(z0 , A)= I, then the gauged potential 

(2.4.6) 

is also a holomorphic potential for N. 

Recall that the coefficient matrices at even powers of A are diagonal 
and the coefficient matrices at odd powers of A are off-diagonal. 

Remark 2.4.4. 1. The coefficient matrix of normalized potentials 
and the coefficient matrix at A - 1 of holomorphic potentials is in all 
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cases of the form ( ~ ~ ) . A comparison with 2.1.4 shows that the 

corresponding immersion of constant mean curvature is minimal if and 
only if a = 0, and it is totally umbilical if and only if b = 0. For the 
first case see section 3;5. The second case we have excluded from our 
discussion. 

2. By the theorem above, every normalized potential has a mero
morphic coefficient function. More generally, potentials for which the 
coefficient functions at all powers of >. are meromorphic will be called 
meromorphic potentials in this article. In particular, normalized poten
tials are meromorphic potentials. In many articles (including previous 
articles of the author) the notion of a meromorphic potential is used syn
onymously with what we call normalized potential. In this article the 
notion of a meromorphic potential will not be so restricted (see section 
6.6). 

§3. Constructing surfaces from potentials 

3.1 In this section we will reverse the steps carried out in the pre
vious section and construct constant mean curvature surfaces from po
tentials. 

We start from some holoinorphic potential ry, i.e. some holomorphic 
( 1, 0) -form on lDl of the following type 

(3.1.1) 

where the coefficient matrices at even powers of >. are diagonal and the 
coefficient matrices at odd powers of >. are off-diagonal. 

In view of 2.4.4, to pass from the level of potentials to the level of 
"holomorphic extended frames" we solve the complex ordinary differen
tial equation 

(3.1.2) dC = C · ry, C(zo, >.) =I. 

In view of 2.3.1, the transition from the holomorphic extended frame to 
the extended frame is established by the Iwasawa splitting 

(3.1.3) C=F·V+ 

where we can assume F(z0 , >.)=I. Using Lemma 4.5 of [26] and Theo
rem 3.1 of [22] we have 
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Theorem 3.1.1. Let ry be a holomorphic potential and let F be 
constructed as above. If b_ 1 denotes the (1, 2)-entry of 'TJ-1, and if 
b_ 1 =/= 0, then N = FmodU(1) is a harmonic map from IDl \ S to S 2 

with extended framing F, where S = {z E IDl I b-1(z) = 0}. 

The case b_ 1 = 0 will be treated in section 3.5. 

If the mean curvature H of the associated immersion is different 
from 0, then the final step, constructing the surface of constant mean 
curvature associated with N, can be carried out via Kenmotsu's work 
[41]. But using the associated family, one can construct the immersion 
associated with N directly using the extended framing ([4], Theorem 
1.2): 

Theorem 3.1.2. (Sym-Bobenko Formula) IfF is the extended fram
ing of some harmonic map N : IDl -----+ S 2 , associated with an immersion 
¢ of constant mean curvature H i= 0, then 

(3.1.4) 
1 i 

¢ =- 2H { 8tF · F-1 + F · "2 diag(1, -1) · F-1 }, 

where A= exp(it). 

Here we have realized IR.3 as su(2). A natural isomorphism of IR.3 

with su(2) is given by the spin representation (see e.g. the Appendix of 
[17]). 

Remark 3.1.3. It is important to note that this formula yields the 
same immersion¢ for the extended frames F and F · k, where k E SU(2) 
is diagonal and independent of A. In particular, the freedom in the 
Iwasawa splitting (see Remark 2.2.3) has no effect on the final immersion, 
if H =/= 0. 

3.2 Starting, conversely, from some normalized potential~' one can 
proceed as above. However, due to possible monodromy in the solutions 
of the ODE involved, one may have to introduce "cuts" into !Dl. On the 
other hand, if one wants to construct immersions without singularities 
on !Dl, then some conditions need to be satisfied at the poles of~· First 
of all we note that smooth immersions on IDl have holomorphic Hopf 
differentials on !Dl. In addition, for the smoothness on all of IDl of the 
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immersion produced from ~, two more conditions need to be satisfied: 

(3.2.1) 

(3.2.2) 

The solution F_ to dF _ = F_ · ~' F_(zo, >.)=I 

is meromorphic on ][)) 

The extended framing F obtained from F _ 

via F_ = F · V+ is smooth on IDl. 

Condition 3.2.1 is necessary by Theorem 2.4.1 and condition 3.2.2 is 
obviously necessary. For the case H = 0 see section 3.5. Assume now 
H =f. 0. Converting the matrix differential equation dF _ = F_ ·~'with 

into a scalar second order ordinary differential equation, one obtains 

(3.2.3) 

One observes that only regular singular points occur. Thus for every 
point of ][)) one of the two solutions, say Yl, can already be assumed 
to be meromorphic. For the second solution, y2 , to be meromorphic a 
simple residue condition needs to be satisfied 

Theorem 3.2.1. ([17], Theorem 2.8.2} The equation 

dF_ = F_ · ~' F_(zo, >.)=I 

has a global meromorphic solution in A- Sl(2, q,. if and only if 

(3.2.4) f ~dz = resv ~ = 0 
Y1 Y1 

for any zero or pole p off. 

Condition 3.2.4 can be expressed in terms of the orders of the roots 
and poles of the coefficient functions of ~. 

Theorem 3.2.2. ([17]) Let 

(3.2.5) ~ = r 1 ( Q~f ~ ) dz, 

be a normalized potential for which the solution to the differential equa
tion dC = C · C C(O, >.) = I, is meromorphic. Then for~ to yield a 
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constant mean curvature surface without branch points under the gen
eralized WeierstrajJ representation it is necessary and sufficient that for 
every z0 E IDl, where f has a pole or zero, the following conditions are 
satisfied: Let m denote the order of z0 as a zero of the Hopf differential 
Q. Iff has a pole of order n at z0 , then n = 2 or for some integer r 2:: 1 

(3.2.6) n = r(2m + 4) or n = r(2m + 4) + 2. 

Iff has a zero of order n at zo, then for some integer r 2:: 1 

(3.2. 7) n = r(2m + 4) or n = r(2m + 4) - 2. 

Remark 3.2.3. 1. The conditions for the smoothness of the im
mersion are expressed for holomorphic potentials and for normalized 
potentials in quite different ways. If a normalized potential ~ as above 
is actually holomorphic, then for the vanishing orders n and m of f and 
Q at some point z0 E IDl we have n =/= m. But then 3.2. 7 does not make 
sense for positive n. Therefore only n = 0 is possible, if the associated 
immersion is supposed to have no branch points at z0 . In other words, 
if~ is holomorphic, then the immersion does not have any branch points 
if and only if f never vanishes. 

2. When considering non-umbilical points, one deals with the case 
m = 0. In this case the theorem simply states that n is even. 

3. Constructing a constant mean curvature immersion ¢> from a 
holomorphic potential T] or a normalized potential~ is called a generalized 
WeierstrajJ representation of ¢. The potentials TJ or ~ are called the 
Weierstrai3 data for ¢>. 

4. The first, still fairly slow, computer implementation of the gener
alized Weierstrai3 representation was carried out by Lerner and Sterling 
[44]. Inspired by their work, Pinkall and Gunn improved the algorithm 
considerably, leading to a fast visualization method for surfaces of con
stant mean curvature. Recently, Schmitt has produced further improve
ments [43]. 

3.3 Examples 1. Consider the holomorphic potential 

(3.3.1) 

The associated family of surfaces corresponding to TJ contains (for >. = 1) 
the round cylinder. In this case the Weierstrai3 representation can be 
computed explicitly by hand. 
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2. Consider the holomorphic potential 

(3.3.2) ~ = A - 1 ( 1 ~ ) dz, 

where X = aA - 1 + Ab, a, b E R If a = b = 0, then the map ¢ defined 
in 3.1.4 is constant, and thus degenerate. If a = 0, b =/= 0, then the 
map ¢ describes a minimal surface [24]. If a =/= 0, b = 0, then the map 
¢ describes (part of) a sphere. This follows from the fact that in this 
case the Hopf differential vanishes identically and thus every point of the 
surface is an umbilical point. Assume now ab =/= 0. Since the associated 
family does not change, if we replace A by -A, or by A - 1 , we can assume 
a> 0 and a;::: b. If ab > 0 and a+b = ~'then¢ describes the associated 
family of an unduloid (the unduloid is the surface obtained for A= 1). 
In particular, this is a Delaunay surface, i.e. a surface of revolution of 
constant mean curvature. For more information about Delaunay surfaces 
we refer to [42],[29],[30]. 

3. Consider the potential 

(3.3.3) 

where n is a non-negative integer. The associated family of surfaces 
contains (for A= 1) a Smyth surface [51]. Its metric is invariant under 
a one-parameter group of self-isometries. All such surfaces of constant 
mean curvature have been determined by Smyth [51]. The associated 
family of such a surface contains either a Delaunay surface or a Smyth 
surface. 

4. Consider the potential 

(3.3.4) 

where a and (3 are holomorphic 1-forms on C* of the form 

(3.3.5) 

and 

(3.3.6) 

where h, bn E ffi. and h =/= 0. 

dz 
a= -h-, 

z 



68 J. Dorfmeister 

Theorem 3.3.1. ([42], Theorem 7.1.1) Let a and {3 be as above 
and assume that the coefficients of {3 satisfy 

(3.3.7) {27r ( 00 b ) 
Jo cos 4 ~ ~ sin(nt) dt = 0. 

Then the potential .; generates, for ,\ = 1, an immersion of a cylin
der which has constant mean curvature and two planar symmetries. By 
choosing a and {3 appropriately one can obtain any number of umbilical 
points. 

By different methods more examples, such as immersions of cylinders 
and tori, will be given in the following sections. 

3.4 Wu's Formula In general, interest in the loop group method 
is concentrated on the construction of CMC surfaces with specific pre
assigned properties. Thus the goal is to choose potentials in order to 
obtain surfaces with such properties. For this purpose it is useful to com
pute the potentials for some known examples, and this can be achieved 
by a remarkably simple formula. The crucial observation behind this 
formula-as explained in more detail in section 7.7.6-is that the theory 
presented so far is in fact a "real form" of a complex theory, in which 
z and z become independent variables. A thorough investigation of this 
complex theory has not yet been carried out. 

Theorem 3.4.1. ([58]) Let¢ : IDl ___, ffi.3 be an associated family 
of immersions of constant mean curvature H # 0. If ds2 = ((z, z)dzdz 
denotes the metric and >.- 2 Q(z)dz2 the Hopf differential, then the con
formal factor ( is the restriction of a meromorphic map ( : IDl x ]j)) ---> C 
to the subset {(z, z) I z E !Dl} of IDl x ]j)), and the normalized potential, 
uniquely associated with ¢, is of the form 

(3.4.1) 

where 

(3.4.2) f(z) = ((z, 0) . 
yi((O,O) 

3.5 Minimal Surfaces The concrete expression 2.1.4 for the Maurer
Cartan form of the extended frames shows: 
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a) A holomorphic potential TJ = >..- 1 r7_ 1 + A.0 ry0 + A. 1ry1 + ... corre

sponds to a minimal surface iff TJ- 1 = ( ~ ~ ) dz, 

b) A normalized potential ~ = A. - 1 ~- 1 corresponds to a minimal 

surface iff ~- 1 = ( ~ ~ ) dz. 

Let ~ be the normalized potential of some minimal surface. Then 

(3.5.1) 

We put 

(3.5.2) q(z) = jz p(w)dw. 
zo 

Because of the very simple form ofF_ one can find an Iwasawa splitting 
explicitly. We have F _ = F · V+, where 

(3.5.3) 

and 

(3.5.4) 

Interpreting F as the coordinate frame of some minimal surface we ob
tain (e.g. by comparing the Maurer-Cartan forms) 

(3.5.5) 

(3.5.6) Q = qz = p. 

In contrast with the case H -1 0, the freedom in the Iwasawa splitting 
(see Remark 2.2.3) does affect the associated minimal immersions. Let 
F and F = F · k be coordinate frames obtained via Iwasawa splitting: 

(3.5.7) 

Then, setting k = diag( eia, e-ia), we obtain for the associated conformal 
factor and the Hopf differential 

(3.5.8) 
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(3.5.9) 

where h is an antiholomorphic map satisfying 

(3.5.10) Im(h) = -4a. 

Since F and P yield the same Gauf3 map, and since the relation between 
Gauf3 maps and meromorphic potentials is one-to-one, the freedom in 
the Iwasawa splitting describes the family of minimal surfaces possessing 
the same Gauf3 map. The splitting 3.5.3 and 3.5.4 given above represents 
one natural choice of minimal surface associated with a fixed Gauf3 map. 

Before making a precise connection with the classical Weierstraf3 
representation we note that the normalized potential for minimal sur
faces contains exactly one meromorphic function, which defines - via 
the freedom in the Iwasawa splitting - many minimal surfaces and one 
Gauf3 map, which is the same for all these minimal surfaces. The second 
function that appears in the classical Weierstraf3 representation enters as 
the function h above, representing the freedom in the Iwasawa splitting. 

Let F be the extended coordinate framing of some minimal surface 
and denote the entries ofF by a, band -b, a as usual. Then from 2.1.4 
we derive, since H = 0, 

(3.5.11) 

(3.5.12) 

whence, since u is real, 

(3.5.13) 

(3.5.14) 

where s and r are holomorphic functions. In view of 3.5.3 and the rela
tion F = P · k for the general frame, we see that r and s are independent 
of>.. If¢ : ][]) ----> ffi.3 is the minimal immersion which corresponds to F, 
then (A.5.6) and (A.6.3) of [17] show that 

(3.5.15) 
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where 

(3.5.16) G= i ( 
0 .A-112 

) and~+= ( 
0 1 ), .A1/2 0 0 0 

while 

(3.5.17) J(x,y,z) = -~ ( z X- iy ) . 
x+iy -z 

As a consequence 

(3.5.18) 

If we give up the requirement that F is I at zo, we can consider the 
frame 

(3.5.19) F=DF, where D=diag(Jir1,Ji-1.A). 

Then for the corresponding minimal immersion¢ we obtain 

(3.5.20) 

which is a version of the classical WeierstraB representation. One obtains 
the usual formula for 1-l = r 2 and v = sjr. Note that the special splitting 
3.5.3 corresponds to s = 1 and r = -q, equivalently 1-l = q2 and v = 
-q- 1 . Note that v corresponds to the stereographically projected GauB 
map. For q = -z-1 one obtains v =·z and 1-l = z-2 , which describes the 
catenoid. More examples are contained in [25]. 

From now on we will assume, unless stated otherwise, that "constant 
mean curvature" means that H is constant and nonzero. 

§4. Surfaces of finite type 

4.1 The generalized WeierstraB representation constructs all con
stant mean curvature surfaces. However, as it is not easy to trace proper
ties from the input for the Iwasawa splitting to its output, the procedure 
is difficult to use in most concrete cases. We will see in section 5 that 
geometric features can be controlled in some cases via dressing. Still, 
the construction of the associated surfaces is not very explicit, at least 
from a non-numerical point of view. It is therefbre very fortunate that 
for a large and important class of constant mean curvature surfaces an 
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independent geometric construction procedure is known, which, in addi
tion, is relatively explicit. We follow in essence the exposition of [10),[12] 
and [8]. 

For d E 2N + 1 we set 

d 

(4.1.1) .;* =Ad= { L .;_nAn E Asu(2)a, .;d =J 0}. 
n=-d 

Then the basic results are Theorem 3.2 and Theorem 2.5 of [10), which 
we shall summarize. Note that if.; E Ad, then .;d-1 is diagonal, since 
dis odd. Therefore .;d-1 E ec. Specializing the general procedure (see 
(2.5) in [10]) we set for any T E ec 

(4.1.2) 
1 

r(T) = 2T 

Using this notation we can state 

Theorem 4.1.1. ([10]) For each dE 2N + 1 and.;* E Ad, there is 
a unique solution .; : ~2 ---+ Ad, to the differential equation 

(4.1.3) 

Moreover, in this case, the Asu(2)a-valued 1-form a: given by 

( 4.1.4) a:= (r1.;d + r(.;d_I))dz + (A.;-d + r(.;d_I))dz 

satisfies the Maurer-Cartan equations. In addition, the extended framing 
F defined by 

(4.1.5) dF = F ·a:, F(zo, A)= I 

induces a harmonic map N : ][)) ---+ 8 2 and a surface of constant mean 
curvature¢:][))---+ ~3 via the Sym-Bobenko formula. 

Constant mean curvature surfaces defined this way are said to be 
of finite type. A crucial observation is that from the theorem above one 
can construct naturally a very special holomorphic potential for surfaces 
of finite type (see Theorem 4.2.1 below). 

4.2 Consider the potential 

(4.2.1) 
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where ~* E Ad is, as in the previous section, independent of z and 
z. Then the holomorphic extended frame C defined by the differential 
equation 3.1.2 is of the form 

( 4.2.2) C(z, >.) = ez.xd-'~ •. 

Consider the Iwasawa splitting 

(4.2.3) 

The trivial, but important, consequence of this is that 

(4.2.4) 

which is easy to verify, since C commutes with~* and~= P-1 · ~* · P 
is skew-hermitian. 

It is straightforward to verify that 

(4.2.5) 
a~ , ,_1 aP , 
oz = [~, F oz], where ~(0, >.) = ~*· 

Since ~ E Ad, one can derive from 4.2.3 and 4.2.4 that P- 1 ~~ 
(>.- 1€d + r(~d-d) and thus has exactly the form of the (1,0)-part of 
a in 4.1.4. Since P-1 ~~ is skew-hermitian, P- 1dF has the form 4.1.4. 
Therefore, the surface derived from a potential of the form 4.2.1 is of fi
nite type. Conversely, if we start from a surface of finite type, then with 
the notation of Theorem 4.1.1, ~satisfies the differential equation 4.1.3 
with initial condition ~*. If the potential TJ in 4.2.1 is formed with the 
same ~*, then the argument above shows that ~ satisfies the same dif
ferential equation with the same initial condition as~- Therefore~= { 
From this it is easy to verify that the Maurer-Cartan forms of F and P 
also coincide, whence F =F. Thus we obtain 

Theorem 4.2.1. ([10]) If~ satisfies 4.1.3 and ¢ is the constant 
mean curvature immersion of finite type defined from F, which is given 
by 4.1.4 and 4.1.5, then ¢ coincides with the constant mean curvature 
immersion induced from the constant potential TJ = )..d-l~*dz via the 
generalized Weierstrafi representation. Conversely, if~* E Ad and TJ = 
)..d-l~*dz, then the associated constant mean curvature immersion is of 
finite type. 

Remark 4.2.2. 1. We would like to emphasize that equation 4.2.4 
implies that ~ only involves finitely many powers of >.. 
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2. Surfaces of finite type have been investigated by many authors. 
We have followed closely the work of Burstall and Pedit [10],[12]. A 
starting point for many investigations has been the work of Pinkall and 
Sterling [46]. 

3. A beautiful and also very explicit description of all constant mean 
curvature surfaces of finite type has been given by algebro-geometric 
methods. This includes a discussion of periodicity conditions. The con
nection with~* is given by the algebraic curve det(~* (.>.) - p1) = 0. For 
details see [4],[5]. 

Example 4.2.3. (1) d = 1. In this case the potentials have the 
form TJ = ~* = p.-1A-1 + A0 + .AA1 )dz. From 3.3.2 one sees that the 
potentials of the Delaunay surfaces are of this type. 

(2) d = 3. In this case a special choice of~* leads to the Wente 
torus. 

4.3 In the last section we have obtained a very explicit and sim
ple definition of surfaces of finite type in terms of certain holomorphic 
potentials. Since the Hopf differential can be obtained as the determi
nant of the coefficient matrix at .>. - 1 in any potential of the surface, it is 
clear that surfaces of finite type do not have any umbilics. In particular, 
compact constant mean curvature surfaces of genus > 1 are not of finite 
type. On the other hand, not every surface without umbilics is of finite 
type. As an example we mention the potentials 

= .>,-1 ( 0 1 ) 
TJ c 0 

which do not yield surfaces of finite type, if c E JR, c =f 0, ±1 [44]. 
Despite the somewhat obscure definition of "finite type", we know 

Theorem 4.3.1. ([46]) Every constant mean curvature surface 
with doubly periodic metric is of finite type. In particular, every constant 
mean curvature torus is of finite type. 

For immersions of cylinders the situation is quite different: some 
constant mean curvature cylinders are of finite type, while others have 
umbilics [22],[42] and are therefore not of finite type. 

Remark 4.3.2. The notion of "finite type" as spelled out in Theo
rem 4.1.1 is quite roundabout. One of its consequences is that F·~* .p-1 

is polynomial in .>. (see the remark above). It would seem to be more 
natural to define "finite type" by this condition, namely that F · ~* · p-1 
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is polynomial in >.., without assuming the reality of ~* [36]. It would be 
interesting to understand when this condition implies "finite type" in 
the sense of this article. 

§5. Dressing 

5.1 Dressing is a deformation technique which, applied to constant 
mean curvature surfaces, produces new surfaces from old ones. Since 
its invention by Zakharov and Shabat [59], dressing methods have been 
applied in many situations. For example, constructing solutions to the 
KdV equation via flows on infinite dimensional Grassmannians is in 
essence dressing, producing nontrivial solutions from the trivial one. 
For the situation discussed in this paper the basic result is 

Theorem 5.1.1. Let F be the extended frame of some constant 
mean curvature surface. Let h+ E A+ Sl(2, C) a and consider the Iwa
sawa splitting 

(5.1.1) 

Then F is the extended frame of some constant mean curvature surface. 

In 5.1.1 we can assume that the coefficient matrix at >..0 of h+ has 
only non-negative entries. Therefore we can assume that h+ is in the 
identity component of A+ Sl(2, C) a- Hence we can connect h+ with I 
by a continuous curve h+, 0 ::; s ::; 1, h~ = I, h~ = h+. Then the 
family of immersions q;s associated with frs, h+ s · F = frs · V s, represents 
a continuous deformation within the class of constant mean curvature 
immersions, starting from ¢ = ¢0 and ending at ¢ = ¢1 . 

Remark 5.1.2. This already shows that dressing as defined above 
is an important procedure. It turns out, however, that for the most 
interesting applications the theorem above needs to be generalized. 

For this one observes that the Maurer-Cartan form ofF depends on 
>..in a holomorphic fashion, with>.. varying inC*. Therefore, the solution 
F to the equation dF =F-a, F(O, >..) =I, also depends holomorphically 
on >.. E C*. This leads to the introduction of the group ArSl(2, C) a of 
matrices defined on the circle 1>..1 = r, for 0 < r ::; 1. We also say 
h+ E At Sl(2, C) a if h+ E ArSl(2, C)a is holomorphic in the interior of 
the disk of radius r. Note that for h+ E At Sl(2, C)a the expression 
h+ · F does make sense on the circle 1>..1 = r. In this situation we have 
the following 
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Theorem 5.1.3. (r-Iwasawa Splitting) Let h E ArSl(2, C)u. Then 
there exist U, V+ E ArSl(2, C)u such that h = U · V+ and 

(5.1.2) V+ E A~ Sl(2, C)"" 
(5.1.3) U extends holomorphically to Ar={>. E Clr < I.AI < 1/r} 

(5.1.4) U is unitary when restricted to the unit circle. 

For a proof of this theorem, see [45]. The result follows easily from 
[3]. The group of matrices in ArSl(2, C) 17 satisfying the last two condi
tions will be denoted by ArSU(2)17 • 

Corollary 5.1.4. Theorem 5.1.1 remains true if h is chosen in 
A~ Sl(2, C)u. 

IfF is defined as in Theorem 5.1.1 by some hE A~ Sl(2, C) 17 we will 
say that the frame F and the corresponding immersion ¢ is obtained by 
r-dressing from F and ¢ respectively. If r = 1, then we will generally 
use "dressing" instead of "1-dressing". 

Since a group splitting is involved in the r-dressing procedure, com
putations by hand are possible only in very special cases. For example 
one can prove 

Theorem 5.1.5. ([17], section 3.3) a) If~= .x-1 ( Q~f ~) dz 

is the normalized potential of some constant mean curvature immersion 
¢, then dressing with h+ E A+ Sl(2, C) 17 yields a constant mean curvature 

immersion¢ with normalized potential € = .>.- 1 ( Q~ j ~ ) dz. 

0 ) A s_ 1 dz, then f = s2 ·f. 

( 1 0 ) A -2 c) If h+ = t>. 1 dz, then f = (1 + tb1) ·f. 

( 1 t.>. ) A d) If h+ = 0 1 dz, then f = (1 + tc1) 2 ·f. 

Here b1(z) =I~ f(w)dw and c1(z) =I~ ~g;;j dw. 

Clearly, Q is invariant under the dressing operation. The transfor
mation f f-----+ J is quite explicit for the three simple dressing matrices 
listed above. Moreover, these three matrices generate A~ Sl(2, C) 17 as a 
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Banach Lie group. Nevertheless, since f 1-----7 j is non-linear and involves 
integration, it is difficult to find an explicit formula for more general h+. 
It would be helpful to understand the dressing transformation f ----+ j 
analytically in a way which reflects the group structure of dressing. 

From a geometric point of view, work of Inoguchi-Toda and also 
Mahler seems to show that the Backlund transformations defined by 
Bianchi (see e.g. [52]) can be obtained by special dressing matrices (dif
ferent from the ones listed above). One hopes that eventually this will 
lead to a better understanding of more general dressing matrices. 

Another geometric result related to dressing is 

Theorem 5.1.6. ([22], Theorem 5.3) If¢:]]))----+ ~3 is a constant 
mean curvature surface, which induces a complete metric on ]])) , then all 
surfaces in the dressing orbit of¢ are complete. 

5.2 In general, the dressing orbits of the group At Sl(2, C) 17 ate 
quite large: 

Theorem 5.2.1. a) ([21]) If the surface ¢0 has umbilics, then the 
isotropy group under the dressing action is trivial. 

b) If the surface <Po is generated by the constant holomorphic poten
tial ry, then the isotropy group Iso(¢o) under the dressing action is 

(5.2.1) Iso(¢o) = {g E A;!" Sl(2, tC)17 I [g, 'T/-1] = 0}. 

Proof. Only b) needs some argument. Assume h+ · Fa = Fa · V+, 
then for the holomorphic extended frame Co associated with rJ we have 
h+ · Co = Co · W +. Since Co = exp( Z'TJ), this is equivalent to the formula 
exp(z · ad(ry)) · h+ = W+, which, in turn, is equivalent to the condition 

(ad(ry))mh+ only contains >..k for k?: 0. 

Writing rJ = ).. - 1ry_ 1 + 'TJ+, it is easy to see that this statement is equiv
alent to the condition 

(ad(>.- 1 • ry_ 1))mh+ only contains )..k for k?: 0. 

Recall that both coefficients of the off-diagonal matrix ry_ 1 do not vanish, 
asH -=1- 0, since we do not consider totally umbilical surfaces. Now the 
claim follows by a straightforward induction. D 

Parts a) and b) of the theorem above do not cover the case of a 
general, never vanishing Hopf differential. It would be interesting to 
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investigate this case. 

5.3 Dressing and r-dressing can be defined not only on the level of 
frames, but also on the level of holomorphic extended frames: 

(5.3.1) 

Here we require that C and 6 are defined for 1>-1 = 1. 

There is considerable freedom in the choice of h+· Given 6 as 
above, one can also choose C = 6 · U +, where U + is holomorphic in z 
and holomorphic in >. in the disk of radius 1. On the other hand, one 
can consider 6 = h+ · C · h+ -l. If 11 is the Maurer-Cartan form of C, 
then the Maurer-Cartan form of 6 is h+ · 11 · h+ -l. If this is defined 
on the unit circle, then we would call this latter one-form a potential 
dress~;Jd from "7· 

Let C, 6 and ry, fJ be as above. Then one obtains for the Maurer
Cartan forms 11 and fJ and W + the equation 

(5.3.2) 

Thus, in order to relate 11 and ry, one needs only to solve a linear ODE. 
However, we are interested in solutions involving only non-negative pow
ers of >., while 11 and fJ also involve some negative powers of>.. Thus the 
existence of such a solution W + is a delicate and difficult problem. 

The existence of a solution to 5.3.2 implies that C and 6 · W + solve 
the same linear ODE, whence A· C = 6 · W+ with some A(>.) inde
pendent of z. An evaluation at z = z0 yields A(>.) = W+(z0 , >.), and 
hence a dressing equation 5.3.1. Thus dressing with some h+ is equiva
lent to solving the gauge equation 5.3.2 with some w+ (not necessarily 
normalized as to satisfy W+(z0 , >.) =I). 

One could perhaps hope that all potentials with the same Hopf 
differential Q(z)dz2 can be dressed onto each other. This is not true. 
It turns out that it is not even possible in general to solve the gauge 
equation 5.3.2 with a formal power series W + = L~=O W n >. n. The formal 
solvability has been characterized by Wu [57]. (There are two misprints 
in [57]: in 5.12 there should be a+ sign between p' fp and q' fq and bin 
5.14 should be a q.) It would be desirable to find an analytic connection 
between "convergent solutions" and "formal solutions". 
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5.4 There have been several applications of the dressing transforma
tion. One of the first results in the context of constant mean curvature 
surfaces related round cylinders to constant mean curvature tori: 

Theorem 5.4.1. {[27], 5.3) Let¢ be an associated family of con
stant mean curvature surfaces, which contains a torus. Then there exists 
some 0 < r < 1 such that ¢ can be obtained by r-dressing from the as
sociated family ¢0 of the round cylinder. 

This result was generalized by Burstall and Pedit [12]. Note that 
for the description of tori r = 1 does not work. This stems from the 
fact that the points defining the hyperelliptic curve, which is used to de
scribe constant mean curvature tori in the algebro-geometric approach, 
lie between the r-circle and the 1/r-circle. To make this more precise 
we quote two results from [19], which refer to 1-dressing. 

Theorem 5.4.2. Other than round cylinders there are no surfaces 
with translational symmetry in the dressing orbit of the round cylinder. 

Corollary 5.4.3. The !-dressing action does not act transitively on 
the set of all constant mean curvature surfaces without umbilics. 

The following result is in the same spirit and context as the results 
above, but admits r-dressing. 

Theorem 5.4.4. ([20], Theorem 4.9) Every constant mean curva
ture surface, for which the metric is invariant under a discrete group of 
translations, and which is in the r-dressing orbit of the round cylinder, 
is of finite type. 

5.5 Recently, dressing was used to construct surfaces which are not 
of finite type and have nontrivial topology: 

Theorem 5.5.1. ([22], Theorem 5.4 and Theorem 5.5) Consider 
the holomorphic potential 

(5.5.1) - ~(-'+-'-1) ( 0 
7]- 2 Bcos(21rz) ~) dz, 

with associated constant mean curvature immersion ¢0 . Then for all 
sufficiently small A, B =/= 0 there exists some h+ E A+ Sl (2, q,. such 
that the constant mean curvature immersions ¢ obtained from ¢0 by 
dressing with h+ are complete and for ,\ = ±i one obtains constant 
mean curvature immersions of a cylinder with umbilics at z = 1/4 and 
z = 3/4. 
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Starting from [22], Kilian [42] has found many more cylinders with 
umbilics. See Example 4 in section 3.3. 

5.6 We have seen in section 3.5 that also for minimal surfaces there 
is a 1-1-relation between normalized potentials and Gauf3 maps. How
ever, there are many minimal surfaces with the same Gauf3 map. And 
these surfaces are all generated from the same potential via the free
dom in the Iwasawa splitting (which becomes irrelevant in the case 
of mean curvature H # 0). Thus the primary interest is to under
stand how dressing affects the Gauf3 map. This is equivalent to asking 
how dressing affects the normalized potential of a minimal surface. Let 

~ = >. -l ( ~ ~ ) dz be the normalized potential of a minimal surface, 

and 

c_ = ( ~ ) 
its associated holomorphic extended frame, where q = J:a p( w )dw. Then 

the dressing equation h+ . c_ = (;_ . v+ yields after a straightforward 
computation that 6_ is of the form 

A ( 1 0 ) c_ = >.-l{j 1 , 

where {j is given by the explicit linear fractional formula {j = qj(a + bq), 
for certain complex numbers a and b. In particular, dressing preserves 
the class of minimal surfaces and the dressing orbit has complex dimen
sion 2. Recall from section 3.5 that q describes the Gauf3 map of the 
associated surfaces. Thus {j belongs to a surface with a Gauf3 map which 
is different from the one of the undressed surfaces. It was, of course, 
classically known that this fractional linear formula transforms Gauf3 
maps of minimal surfaces to Gauf3 maps of minimal surfaces [25], [56], [3]. 

§6. Symmetries 

6.1 In the previous sections we have discussed the main features of 
the generalized Weierstraf3 representation of surfaces. For the construc
tion of specific examples fundamental groups need to be incorporated as 
well. First we present the general framework [18],[19]. 

Let ¢ : ][}) --+ JR3 be an immersion of constant mean curvature, 
which induces a complete metric on ][}). As always in this article ][}) 
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denotes an open and simply connected subset of C. Assume now that R 
is an orientation-preserving rigid motion of IR.3 such that 

(6.1.1) RcP(J[))) = cP(Illl). 

Then it is well known that there exists a holomorphic map 1 : ][]) ---. ][]) 
such that for all z E ][]) 

(6.1.2) RcP(z) = cP(iz) 

Therefore we define symmetries for cP to be pairs (1, R), where 1 is 
biholomorphic on ][]) and R is a rigid motion as above, such that 6.1.2 
holds. Each symmetry induces a transformation formula for the frame 
F associated with cP, 

(6.1.3) F(!z) = R 0 · F(z) · k(z), 

where R0 is the (orientation preserving, orthogonal) linear part of the 
affine transformation R and k is a unitary diagonal matrix. As a conse
quence one obtains 

(6.1.4) 1*a = k- 1 ·a· k + k- 1 · dk. 

From this it is easy to see that, after introducing the parameter ). E S1 , 

(6.1.5) 

This implies that for the extended frame, which by abuse of notation 
we will also denote by F, there exists some x E ASU(2) such that 
xl>-.=1 = Ro and 

(6.1.6) F(!z, >.) = x(>.) · F(z, >.) · k(z), 

where k is the unitary diagonal matrix of 6.1.3, hence independent of A. 

6.2 Equation 6.1.6 can be evaluated in two "directions". On the 
one hand, since H # 0, we can apply the Sym-Bobenko formula, and 
obtain 

(6.2.1) 

On the other hand, from 6.1.6, one obtains for all holomorphic extended 
frames associated with F the transformation formula 

(6.2.2) C(!z, >.) = x(>.) · C(z, >.) · W+(z, >.). 
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The holomorphic potential fJ = c-1 · dC then satisfies 

(6.2.3) 

6.3 Since we are interested in constructing constant mean curva
ture immersions from potentials, it is natural to start with potentials fJ 
satisfying 6.2.3. Then the corresponding holomorphic extended frame C 
satisfies 

(6.3.1) C(!'z, A)= p(A) · C(z, A)· W+(z, A) 

with some p E ASZ(2, q". If p E ASU(2)", then the extended frame F 
obtained from C via lwasawa splitting satisfies 6.1.6 for x = p and the 
Sym-Bobenko formula produces a constant mean curvature immersion 
satisfying 6.2.1 with x = p. Unfortunately, in general, p will not be 
unitary for all A E 8 1 . As a consequence, the transition from C to 
F does not result in a formula like 6.1.1. And therefore we do not 
know anything about the transformation behaviour of the immersion 
constructed from C via F and the Sym-Bobenko formula. 

There seem to be at least three avenues to overcome this complica
tion: 

1. One needs to find some criterion for 77 which ensures that p will 
be unitary for all A E 8 1 . While this seems to be the most desirable 
solution, no general criterion seems to be known. However, in some 
special cases such criteria have been found [42]. 

2. Assume now that 77 satisfies 6.2.3, and therefore 

(6.3.2) C(!'z, A)= p(A) · C(z, A)· W+(z, A) 

for some p E ASZ(2, C)". We carry out the lwasawa splitting p = Pu · P+ 
for p and dress the holomorphic extended frame C with P+: P+ · C = 
6 · V+. Then we obtain 

(6.3.3) C(!'z, A)= Pu(A) · 6 · S+. 

This leads to 

(6.3.4) 

with k independent of A. Applying the Sym-Bobenko formula to this 
equation one finally obtains 

(6.3.5) ¢(!'z, A) = Pu · (/J(z, A)· Pu -l + iAO>.Pu(A) · Pu(A)- 1 . 
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Since ¢ and ¢ are different surfaces, this approach does not seem to be 
useful for the construction of surfaces admitting specific fundamental 
groups. 

3. Assume again that 7] satisfies 6.2.3, whence C satisfies 6.3.2. 
This third approach assumes that pis of the form p = P+ · Pu · pf- 1 with 
P+ E At Sl(2, q,. and Pu E ASUr(2),.. Then dressing C with P+ - 1 

yields P+ - 1 · C = 6 · V+ and 6.3.2 translates into 

(6.3.6) 6(rz, A)= Pu · 6 · S+. 

Note that this equation is, in contrast to 6.3.3, an equation involving 
only one surface. Similarly, for the new frame F one obtains the trans
formation formula 

(6.3. 7) F(rz, A) = Pu · F(z, A)· k(z) 

and for the associated immersion 

(6.3.8) 

Clearly, for the new immersion ¢ the pair ( 1, Pu) is a symmetry. 

6.4 From 6.3.8 one can show that the invariance of¢ under the 
operation of 1, ¢(1z, Ao) = (/;(z, Ao), is equivalent to the so called closing 
conditions 

(6.4.1) 

(6.4.2) 

Pu(Ao) =±I, 
8>-. 1>-.=>-.o Pu = 0. 

As a consequence, if for fixed Ao E S1 the immersion ¢ factors through 
a Riemann surface M, then the closing conditions need to be satisfied 
for all1 E 1r1 (M). 

More precisely, if Ker ¢ denotes the biholomorphic maps 1 of liJJ 
which fix ¢ for A = Ao, then 1 E Ker ¢ if and only if the associated Pu 
satisfies the closing conditions. In particular 

(6.4.3) 1r1 ( M) C Ker ¢ if ¢ factors through M at A = Ao. 

In this case, one can factor ¢ through the Riemann surface M' 
l!JJ/ Ker ¢ [19]. In most cases, factoring through a given Riemann surface 
is only possible for a few values of A. In general, Ker ¢ = {id} for all but 
finitely many A's. It would be interesting to determine the "degenerate 
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cases", i.e. those where Pu =I for all A E 8 1 . In particular, it is an open 
question whether there exist complete immersions with this property. 

6.5 If one starts with some biholomorphic map 1 of][]) and a rigid 
motion R satisfying ¢(rz) = R¢(z), then 1 is uniquely determined mod
ulo Ker¢. Conversely, given some 1 E Aut][]) and a symmetry (r,R), 
then R is uniquely determined by 1 as a rigid motion of R3 ~ su(2) [18]. 
Thus the map 1----+ x(!, A) is a homomorphism up to sign: 

(6.5.1) x(rJL, A)= ±x(!, A)· x(JL, A). 

The map 1----+ W+(r, z, A) of 6.3.1 is a cocycle up to sign: 

(6.5.2) 

6.6 From 6.4.1 it is clear that for the construction of constant mean 
curvature surfaces one needs to find good potentials to start with. In 
addition one needs to find the cocyles W+. However, these can be chosen 
to be trivial if M is non-compact. 

Theorem 6.6.1. ([22]) If M is a non-compact Riemann surface 
and ¢ : M ----+ JR3 a constant mean curvature immersion with universal 
cover 7r : ][]) ----+ M, then the associated family of ¢ can be generated 
from a holomorphic potential 'I]= I;j:_ 1 'IJJAJ on][]), which is invariant 
under 1r1 (M) C Aut][]) : 

(6.6.1) 'I] is a holomorphic (1, 0)-form on][]) and /*'I]= 'I] ':!r E 1r1 (M). 

For compact M one can show 

Theorem 6.6.2. If M is a compact Riemann surface and¢: M----+ 
JR3 a constant mean curvature immersion with universal cover 7r : ][]) ----+ 
M, then the associated family of¢ can be generated from a meromorphic 
potential 'I] = I;j:_1 '/]j Aj on ][]), which is invariant under 1r1 (M) C 
Aut][]): 

(6.6.2) 'I] is a meromorphic (1,0)-form on][]) andr*'IJ ='I] ':!r E 1r1 (M). 

We emphasize (see also section 2.4) that the notion of a "normalized 
potential" involves only one power of A, namely A -l, and a meromorphic 
coefficient function, while the meromorphic potentials occurring in the 
theorem above involve more than one power of A by the results of section 
2.3 of [21]. The proofs of the two theorems above are almost identical. 
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The first one uses the fact that holomorphic cocycles on a non-compact 
Riemann surface with values in a Banach Lie group are holomorphic 
boundaries. The second theorem uses the fact that meromorphic cocy
cles on compact Riemann surfaces are meromorphic boundaries (see [7] 
for both cases). 

Remark 6.6.3. As mentioned in the previous section, an impor
tant goal is to construct surfaces with a given fundamental group r. For 
the non-compact case one can start, due to Theorem 6.6.1, from a holo
morphic potential 'TJ satisfying 6.6.1. This implies for the holomorphic 
extended frame C the equation C('y.z, .X) = p('y, .X) · C(z, .X) for 1 E r, 
z E [}, .X E S1 . If p is unitary for all{ E r and all .X E S 1, then one ob
tains for the extended frame F associated to C, C = F · V+, the equation 
F('y.z, .X)= p('y, .X)· F(z, .X)· k(z) and the Sym-Bobenko formula implies 
formula 6.3.8 for ¢ = ¢ derived from F = F. So it only remains to 
satisfy the closing conditions 6.4.1 and 6.4.2, which is not too hard. The 
crucial problem is that it is quite difficult to choose 'TJ so that pis unitary 
for all 1 E r. An instance where this task has been carried out success
fully is the work of Kilian [42]. A more general situation occurs when p 
is not unitary, but can be represented in the form p = h+ · Pu · h++ -l 
with h+ E A"j: Sl(2, C)" and Pu E ArSU(2)"". In this case the third ap
proach outlined in section 6.3 can be applied, producing an immersion 
¢of constant mean curvature. If in addition the closing conditions 6.4.1 
and 6.4.2 are satisfied for¢, then¢ factors through f\JI} = M. This way 
one can produce surfaces with fundamental group r from f-invariant 
potentials after some dressing. This has been carried out successfully 
(see Theorem 5.5.1) in [22] for the construction of cylinders of constant 
mean curvature, initiating the study [42]. In [28] the same approach is 
used for the construction of trinoids and more generally N-noids. Based 
on the dressing idea [22] outlined above and a special representation of 
the holomorphic extended frame [28], Schmitt has developed a numeri
cal algorithm which produces pictures of cylinders, trinoids and N-noids 
[43],[49], available at www.gang.umass.edu. The fact that the pictures 
of trinoids and N-noids actually do represent surfaces of the indicated 
topological type is not proved in [43], or [49]. In some cases, however, 
this follows from [42] or [22]. We expect that the other cases will follow 
from [28]. 

It should be noted also that by completely different methods ( al
most) embedded trinoids and planar N-noids have been investigated (see 
e.g. [34],[35], and the references listed there). Some pictures have been 
produced following this approach. 
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6. 7 There are various groups associated with a constant mean cur
vature immersion ¢ : M -----+ JR3 , its lift 1/J : []) -----+ lR and the canonical 
projection 1r : lill -----+ M. Let 

(6.7.1) Aut ¢(M) = {orientation preserving rigid motions R of JR3 

such that R¢( M) = ¢( M)}. 

Recall that in this article []) always denotes a simply connected open 
subset of C. 

Theorem 6. 7.1. {[19]) Let¢ : M -----+ JR3 be a complete immersion 
of constant mean curvature with simply connected cover 1r : lill -----+ M. 
Then Aut ¢(M) contains a one-parameter group if and only if the map 

1/J : []) -----+ JR3 is in the associated family of a Delaunay surface. 

As mentioned earlier, for complete surfaces every R E Aut ¢(M) 
induces an automorphism "Y = '/R of[]) satisfying ¢("Yz) = R¢(z). Thus 
the theorem above has the 

Corollary 6. 7.2. A complete constant mean curvature surface dif
ferent from the sphere, possesses a one-parameter group of symmetries 
if and only if lill = C and the surface 1/J : lill -----+ JR3 is in the associated 
family of a Delaunay surface. 

A very similar result holds if one only considers self-isometries: 

Theorem 6. 7.3. {[51]) Let¢: M -----+ JR3 be a complete immersion 
of constant mean curvature with simply connected cover 1r : []) -----+ M. 
Then []) admits a one-parameter group of self-isometries for the induced 
metric if and only if[]) = C and, with the induced metric, lill is isomet
rically isomorphic to the simply connected cover of a Delaunay surface 
or of a Smyth surface. More precisely, 

a) if lill admits a one-parameter group of translations, then []) is 
isometric to the simply connected cover of a Delaunay surface, 

b) if lill admits a one-parameter group of rotations around a fixed 
point, then lill is isometric to the simply connected cover of a Smyth 
surface. 

Note that the existence of a one-parameter group of self-isometries 
implies that the corresponding metric only depends on one variable or 
is constant. Very little is known about surfaces with large but dis
crete groups of symmetries or self-isometries. Constant mean curvature 
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cylinders have been investigated by Kilian [42] and constant mean cur
vature surfaces with doubly periodic frames, and in particular tori, have 
been investigated in [46],[20],[4],[5]. Recently, work on trinoids and more 
generally N-noids of genus zero has been started [28],[43],[49] (see also 
Remark 6.6.3). 

§7. WeierstraB representations for other classes of surfaces 

7.1 For the discussion of constant mean curvature surfaces we have 
used the loop group ASZ(2, C)a and some of its subgroups. For other 
classes one needs to choose different groups H and subgroups H+, H_ 
and U. But certain features will remain the same. In particular, for the 
surfaces in a given class under consideration: 

1. For every surface there is a "frame" F in U 

2. There is a "Birkhoff splitting" F = F_ · F+ with F± E H±· 

Using these features one can - in the language of the previous 
sections- construct immersions and normalized potentials F~ 1 · dF_. 
It is, of course, crucial that one can also construct frames from potentials. 

3. There is an "Iwasawa splitting" F_ = F · F+ such that 

a) in this equation the Birkhoff splitting and the Iwasawa splitting 
are essentially inverse to each other: starting from F the Birkhoff split
ting produces F _, starting from F _ the I wasawa splitting produces F. 

b) the frames obtained via Iwasawa splitting from normalized po-
tentials are frames of surfaces in the class considered. 

In most cases there is a "Sym-Bobenko formula" which produces the 
immersion from the extended frame F. However, there are some cases 
(e.g. see section 7.4) where such a formula does not seem to be known. 
We would like to point out that in the examples listed in the next few 
sections, the relevant Iwasawa splitting is no longer globally defined. 
Also, the "loops" are no longer maps from S 1 , but from other curves, 
like the real line. This requires generalized splitting theorems. The 
basic results in this direction can be found in [1] and [40]. The splittings 
actually used in the examples below can easily be derived from these 
results. 

7.2 Pseudospherical Surfaces In this section we discuss the class 
of surfaces of constant GauB curvature K = -1 following [55]. We will 
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always use asymptotic line coordinates. Frequently we will even assume 
that these coordinates form a Chebyshev net. The starting point for this 
approach is the fact that a pseudospherical surface M, endowed with 
the second fundamental form, is a Lorentz manifold, and the GauB map 
N : M ----. 8 2 of a Lorentz manifold M is (Lorentz) harmonic if and only 
if M is pseudospherical. One needs to note that "harmonic" is defined 
here by the vanishing of the tension field, where the "metric coefficients" 
involved are for M the ones of the pseudo-Riemannian structure and 
for 8 2 the ones of the usual Riemannian structure. Viewing 8 2 as a 
quotient of 80(3), 8 2 = 80(3)/ 80(2), we can lift the GauB map N to 
a map into 80(3). Among these lifts there is a "normalized" one, for 
which the Maurer-Cartan form looks particularly simple. Expressing the 
coordinate frame in terms of the angle ¢ between the asymptotic lines, 
one obtains the normalized frame U by rotating the coordinate frame 
by the angle 8 = ¢/2 and then taking its transpose. (The latter step is 
only to obtain the form of the moving frame equations as in the constant 
mean curvature case.) 

With these conventions the moving frame equations then read (for 
the coefficient matrices in asymptotic line coordinates): 

(7.2.1) a,u~u- ( ~ -</Jx D· 0 
-1 

a,u~ u ( ~ 0 _,m¢) 
0 -cos¢ . 

sin¢ cos¢ 0 
(7.2.2) 

Introducing the real, positive parameter A. one obtains the extended 
frame equations 

(7.2.3) a,u~u ( ~ -</Jx n 0 
-A. 

a,u ~ u .r' ( ~ 0 -e;n¢ ) 
0 -cos¢ . 

sin¢ cos¢ 0 
(7.2.4) 

Proposition 7.2.1. The extended frame equations can be solved 
simultaneously for all A. if and only if the corresponding surface is pseu
dospherical. 
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The family of surfaces, parametrized by >., is called the associated 
family. Since>. is (for geometric applications) a real parameter, we need 
to be careful when defining the loop groups for pseudospherical surfaces. 
However, the crucial observation is that all geometrically relevant quan
tities actually are analytic in >. E <C*. Therefore we can carry out all 
loop group operations in a standard loop group, remembering that for 
geometric evaluations >. needs to be chosen real and positive. With this 
in mind we consider the group AS0(3)p whose elements g(>.) are defined 
by the following four conditions: 

(7.2.5) 

(7.2.6) 

(7.2.7) 

(7.2.8) 

g E ASZ(3, <C) 
g(>.)T =g(.A)-1 

g(X) = g(>.) 
g( ->.) = p. g(>.). p-1 

where P = diag(1, 1, -1) and the subscript P will denote in this section 
"twisting by P", which differs from the use of the subscript P in section 
2.2. Thus the elements of AS0(3)p are loops in ASZ(3, <C), which have 
real coefficients at all powers of>., are in S0(3) for every real >., and are 
twisted by P. We set A+ S0(3)p = A+ Sl(3, <C) n AS0(3)p, and define 
A- S0(3)p analogously. 

Now we are ready to define the "loop group" used for pseudospher
ical surfaces: 

(7.2.9) H = AS0(3)p x AS0(3)p, 

and the relevant subgroups 

(7.2.10) 

(7.2.11) 

(7.2.12) 

u = {(g, g) I g E AS0(3)p} 
H+ =A+ S0(3)p x A- S0(3)p 

H- =A- S0(3)p x A+ S0(3)p. 

As with previous conventions we write for example (g, h) E H"};, if 
g and h have I as the coefficient of >. 0 . We will write (g, h) E Ht, if we 
require only I for the coefficient of g of >. 0 . Then the "Bir khoff splitting" 
means to write an element of H as a product of elements in 1-f+ and H;. 
It is not difficult to see that H; · 1-f+ is open and dense in H, and the 
group splitting is an analytic operation on this set [55]. Similarly, U · Ht 
is open and dense and the group splitting is an analytic operation on 
this set. (To verify this one considers (g, h) E H and forms the element 
h-1g E AS0(3)p. By the previous result, in any neighbourhood of g 
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there is some g' E AS0(3)p such that h- 1g' = v_ · v:;: 1 with v+ E 
A:t S0(3)p and v_ E A- S0(3)p. As a consequence, setting u = hv_ = 
g'v+ we obtain (g', h) = (u, u)(v+, v_) and the first part of the claim 
follows. The second part is a consequence of the analyticity of the map 
A- S0(3)p · A:t S0(3)p ---+ A- S0(3)p x A:t S0(3)p.) The "Birkhoff 
splitting" here is actually a pair of two standard Birkhoff splittings, while 
the "Iwasawa splitting" here for a pair (g, h) means writing g = u · v+ 
and h = u · v_, which is equivalent to h-1 · g = v_ - 1 · v+. 

Following the outline at the beginning of this section we want to 
produce "normalized potentials" by splitting the "frame". For a pseu
dospherical surface we consider its normalized frame U and form the 
element F = (U, U) E U. This is the "frame", which will work for our 
purposes. We perform the Birkhoff splitting in H: 

(7.2.13) 

In this case it turns out that 

(7.2.14) 

is such that u_ only depends on the variable y, while u+ only depends 
on x. The normalized potential is 

(7.2.15) 

where 

(7.2.16) 

(7.2.17) 

and 

(7.2.18) 

(7.2.19) 

~- = u~ 1dU_ = >..- 1 ~-1(y)dy, 

~+ = U+1 dU+ = >..6(x)dx, 

( 0 
0 

~-1(y)= 0 0 
- sin¢(0, y) - cos¢(0, y) 

sin¢(0,y) 
cos¢(0,y) 

0 

6(x)~ ( ~ 0 - sin¢(x) 

)dx 0 -cos¢(x) 
sin¢(x) cos¢(x) 0 

where ¢(x) = ¢(0, 0)- ¢(x, 0). 

) dy, 
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Remark 7.2.2. We have constructed a "normalized potential" for 
each pseudospherical surface. Since the group splittings used in this 
case are not globally defined, the normalized potentials may acquire 
singularities. At this point it has not yet been investigated what type of 
singularities can occur. At any rate, locally around a given base point, 
the potential can be assumed to be smooth. It would be interesting to 
investigate whether there are analogues of the "holomorphic potentials" 
of the constant mean curvature case. These would need to be defined 
on simply connected Lorentz surfaces and would perhaps be globally 
smooth. 

For the converse construction, producing surfaces from potentials we 
start from two matrices of the form 7.2.18 and 7.2.19, where we replace 
the functions ¢(x, 0) and ¢(0, y) by some arbitrary smooth functions a(x) 
and b(y). Next we solve the two ODE's 7.2.15 for U_ and U+ with trivial 
initial condition. Next we perform an Iwasawa splitting of (U_, U+)· As 
pointed out above, this is equivalent to performing the classical Birkhoff 
splitting U~ 1 · U+ = W+ · W~1 . Then one sets U = U_ · W+ = U+ · W_ 
and shows that U is a frame associated with a pseudospherical surface, 
which is obtained by the Sym formula 

(7.2.20) 
au 

'lj;(x, y, A) = at· u-1 , where A= et. 

For details, examples, and proofs we refer to (55]. 

7.3 Timelike Surfaces in Minkowski Space lE~ of Constant 
Mean Curvature This case has similarities with both the theory of sur
faces of constant mean curvature and the theory of surfaces of constant 
negative GauB curvature. For details see (23]. Consider the Minkowski 
space lE~ defined by the metric (., .) = -dui + du~ + du~. The starting 
point for this approach is the fact that the. GauB map N : M ~ S? = 
Sl(2,IR)jK, where K = {diag(a,a-1 ) I a =f. 0}, of a timelike surface in 
lE~, is harmonic if and only if the (Lorentzian) mean curvature is con
stant. As in the previous cases, "harmonic" is defined by the vanishing 
of the tension field. In the case under consideration both the timelike 
surface M and the Lorentz sphere S? carry a Lorentz metric. Lifting 
the Lorentzian frame, which defines an element of the Lorentz group, to 
the double cover Sl(2, IF..), one obtains the moving frame equations (we 
will always use null coordinates): 

(7.3.1) 8yU = U . ( R iw( v 1 ) exp - 2w 
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(7.3.2) 
-Qexp(-!w) ) 

!w ' 4 X 

where Q = (¢xx,N), R = (¢;yy,N), H = 2exp(-w)(¢xy,N) and the 
metric is ds2 = ewdxdy. Note that we have two Hopf differentials this 
time. 

Introducing the real, positive parameter .X one obtains the extended 
frame equations 

(7.3.3) au= u. 4wy ( 
1 

Y .x- 1 Rexp( -!w) 

(7.3.4) 
-.XQexp( _!w) ) 

1 2 . 
4Wx 

For our loop group approach the following result is basic: 

Proposition 7.3.1. The extended frame equations can be solved 
simultaneously for all .X if and only if the corresponding timelike surface 
in lE~ has constant mean curvature. 

The family of surfaces parametrized by .X, is called the associated 
family. 

As in the case of pseudospherical surfaces the parameter A is real, 
but all geometrically relevant quantities are actually analytic for A E C*. 
Therefore we can carry out all loop group operations in a standard loop 
group, remembering that for geometric evaluations .X needs to be chosen 
real and positive. 

With this in mind we consider the group ASl(2, IR)a, whose elements 
g(.X) are defined by the following three conditions: 

(7.3.5) 

(7.3.6) 

(7.3.7) 

g E ASl(2,C) 

g(:X) = g(.X) 

g( -.X) = 0"3. g(.X) . a31' 

where a3 = diag(l, -1). Thus the elements of ASl(2,1R)a are loops in 
Sl(2, q, which have real coefficients at all powers of .X, are in Sl(2, JR) 
for real .X, and are twisted by a3 . We set A+ Sl(2, ~R)a =A+ Sl(2, C) an 
ASl(2, JR) and define A- Sl(2, ~R)a similarly. 

Now we define the "loop group" used for timelike surfaces of constant 
mean curvature in lE~ : 

(7.3.8) H = ASl(2, IR)a x ASl(2, IR)a 
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and the relevant subgroups 

(7.3.9) 

(7.3.10) 

(7.3.11) 

U = {(g,g) I g E ASl(2,~)a} 

1i- =A+ Sl(2, ~)a x A- Sl(2, ~)a 

Ji+ =A-Sl(2, ~)a X A+ Sl(2, ~)a· 
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As usual we add a subscript *to indicate that the coefficient of ..\0 is the 
identity matrix. The comments concerning the Birkhoff and lwasawa 
splittings in the previous section also apply here. 

To produce a normalized potential from a surface we consider its ex
tended frame U E ASl(2, C)a and form the element F = (U, U). Again, 
this is the "frame" which will work for our purposes. We perform the 
Birkhoff splitting in 1i : 

(7.3.12) 

In this case it turns out that 

(7.3.13) 

is such that u_ only depends on the variable y, while u+ only depends 
on the variable x. Thus the normalized potential is 

(7.3.14) 

where 

(7.3.15) 

(7.3.16) ~Hg(y) ) d 
0 y, 

where f(x) = exp(w(x, 0)- ~w(O, 0)) and g(y) = exp(w(O, y)- ~w(O, 0)). 
These are the "normalized potentials" for the case under consideration. 
Remark 7.2.2 applies here as well. 

For the converse construction, producing surfaces from potentials, 
we start from two matrices of the form 7.3.15 and 7.3.16, where were
place the functions w(x, 0) and w(O, y) by some arbitrary smooth func
tions a(x) and b(y). Next we solve the two ODE's BxU+ = U+ · e 
and 8yU- = u_ · e' for U_ and U+ with trivial initial condition. 
Then we perform an lwasawa splitting of (U_, U+)· As pointed out 
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before, this is equivalent to performing the classical Birkhoff splitting 
U~ 1 · U+ = W+ · W~ 1 . Finally we set U = U_ · W+ = U+ · W_ and show 
that U is a frame associated with a timelike surface in JEr of constant 
mean curvature, which is obtained by the Generalized Sym formula 

(7.3.17) 

For details, examples, and proofs we refer to [23]. 

7.4 Affine Spheres By definition, affine spheres are Blaschke sur
faces and therefore the Gaul3 curvature K never vanishes. According to 
whether K > 0 or K < 0 different coordinates are natural and different 
loop groups are needed. The case K > 0 is very similar to the case 
of constant mean curvature surfaces in IR.3 . Therefore we will restrict 
here to the case K < 0 and use asymptotic line coordinates u and v. 
Since we consider proper affine spheres, the affine mean curvature H 
is constant and different from 0. We will assume without loss of gen
erality that H = -1. Then the moving frame equations for the frame 
U = (fu, fv, f) of an affine sphere are 

(7.4.1) a.u ~ t1 ( 
Wu 0 n Ae-w 0 
0 ew 

Bub~ b ( ~ 
Be-w n Wv 

ew 0 
(7.4.2) 

Gauging the moving frame U by D = diag(_A-le-~w, _Ae-~w, 1), with .A 
real and positive, we obtain for the modified (extended) frame U = U D 
the equations 

(7.4.3) u-1 . Uu = Wu ( ~ 
2 0 

0 
-1 
0 

For the loop group approach the following result is basic: 

) 
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Proposition 7.4.1. The modified frame equations 7.4.3 and 7.4.4 
can be solved simultaneously for all A if and only if the corresponding 
affine surface is a proper affine sphere. 

The family parametrized by A is called the associated family. 

As in the previous two sections the parameter A is real, but all ge
ometrically relevant quantities are actually analytic for A E C*. There
fore, in this case also, we can carry out all loop group operations in 
a standard loop group, remembering that for geometric evaluations A 
needs to be chosen real and positive. With this in mind we consider the 
group G[A], whose elements are defined by the following four conditions 

(7.4.5) 

(7.4.6) 

(7.4.7) 

(7.4.8) 

(7.4.9) 

g E ASl(3,C) 

g("X) = g( A) 
Q. g(r:A). Q-1 = g(A) 

T. [g( -A)-l]t. T = g(A) 

where E = exp(27ri/3), Q = diag(r:, r:2 , 1), and 

T=(~ ~ ~)· 
0 0 1 

Thus the elements of G[A] are loops in Sl(3, q, which have real coef
ficients at all powers of A and satisfy two twisting conditions. It turns 
out that the Lie algebra g[A] of G[A] is the loop part of a Kac-Moody 

algebra of type A~2). Keeping with the notation of this article we set 
c±[A] = G[A] nA±Sl(2,C) and we will add a subscript* if we want to 
indicate that the coefficient at A0 is I. (Note that [14] uses the opposite 
convention.) 

Next we introduce the "loop group" used for affine spheres 

(7.4.10) 1i = G[A] x G[A], 

and the relevant subgroups 

(7.4.11) 

(7.4.12) 

(7.4.13) 

u = {(g, g) I g E G[A]} 

rt- = c-[A] x c+[A] 

rt+ = c+[A] x c-[A]. 
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The comments made in section 7.2 about the Birkhoff and Iwasawa 
splittings also apply here. 

To produce a normalized potential from a surface we consider its 
modified frame U E G[.X] and form the element F = (U, U) E U. Again, 
this is the "frame", which will work for our purposes. We perform the 
Birkhoff splitting in 1{ : 

(7.4.14) 

It turns out that 

(7.4.15) 

is such that v_ only depends on the variable u, while v+ only depends 
on the variable v. Thus the normalized potential is 

(7.4.16) 

where 
(7.4.17) 

( )/, Be-w 0 
) D_dv ~ >.-'T_, ~- = v_:- 1dV_ = .x-1 D= 1 0 ew/2 

0 0 

(7.4.18) 

( 0 0 ewf' ) 
~+ = V.t 1dV+ = .XD+. 1 Ae-w 0 ~ D+du = .XT+, 

0 ew/2 

and where D_ and D+ are independent of .X and of the form diag(a, a- 1 , 1). 

This way we have constructed a "normalized potential" for each 
proper affine sphere. The comments made in section 7.2 concerning 
singularities and "holomorphic potentials" apply here as well. 

For the converse construction we start from an arbitrary normalized 
potential~= (.X- 1T_, .XT+), where 

(7.4.19) T_(v) ~ ( ~ f3_(v) 0 

) dv 0 cc(v) 
cc(v) 0 0 

T+(u) ~ ( (J+Ju) 
0 a+(u) 

) du 0 0 
a+(u) 0 

(7.4.20) 
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and a+ and a_ never vanish. (One can show that after changing u to 
-u and/or v to -v, if necessary, one can assume a+(O) = a_(O) > 0. 
Such potentials are called "normalized" in [14].) 

Next we solve the ODE's 7.4.17 and 7.4.18 with initial condition I, 
producing some V+ and V_. Then we perform an Iwasawa splitting 

(7.4.21) 

In the previous examples a Sym-type formula was applied at this point, 
producing the required immersion. Such a formula does not seem to be 
available for affine spheres. However, one can show that (after changing 
u into -u and/or v into -v, if necessary) there is a >.-independent gauge 
Co E G[>.] such that U = C0 (0, o)- 1 · U ·Cis the frame of a proper affine 
sphere. For details, examples, and proofs we refer to [14]. 

7.5 Willmore Surfaces in JR3 . Part I. In the next two sections 
we will discuss Willmore surfaces. For details we refer to [37]. There are 
actually two approaches to describe Willmore surfaces via loop groups. 
The first one is parallel to the previous sections. 

An immersion 

(7.5.1) 

is called a Willmore surface if it is a critical point of the Willmore 
functional 

(7:5.2) 

Equivalently, an immersion is a Willmore surface if the mean curvature 
H satisfies the non-linear elliptic equation 

(7.5.3) D.M H + 2H(H2 - K) = 0 

In this part we assume that M has no umbilical points and that ¢ is 
conformal. Under these assumptions Bryant [6] has defined a conformal 
GaujJ map 

(7.5.4) 

where E4 •1 is the five-dimensional Minkowski space with metric 

(7.5.5) 
3 

(x, y) = -XoY4 - X4Yo + L XJYJ 
j=l 
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and 

(7.5.6) s3,1 = {y E JE4,1 I (y, y) = 1}. 

We note that S 3 •1 carries naturally a pseudo-Riemannian metric induced 
from lE4 •1 . 

As in the previous sections one has 

Theorem 7.5.1. ([6]) The immersion¢: M----> JR3 is a Willmore 
immersion if and only if the conformal GaujJ map Nq:, : M ----> S3 •1 is 
harmonic. Moreover, ¢ can be retrieved from Nq:, by a projection and 
every harmonic map N : M ----> S3 •1 induces naturally a Willmore 
immersion. 

In this theorem harmonicity is defined as usual by the vanishing of 
the tension field. The metrics entering into this stress tensor are the 
Riemannian metric on M induced by the immersion ¢ and the pseudo
Riemannian metric on S 3 •1 induced from JE4 •1 . As a consequence, the 
discussion of Willmore immersions is equivalent to the discussion of har
monic maps from M to S 3 •1 . At this point the theory becomes parallel 
to [26]. We observe that 

(7.5.7) S 3 •1 = 800 (4, 1)/SOa(3, 1), 

where 

(7.5.8) 80(4, 1) ={A E Mat(5,1R) f(Au,Av) = (u,v) V u,v E JE4•1 }. 

It is easy to see that the isotropy subgroup of e3 = (0, 0, 1, o)t is nat
urally isomorphic with S0(3, 1). The subscript o denotes the identity 
component. Moreover, 80 0 (3, 1) is the fixed point set of the involutive 
automorphism g r-+ TgT, T = diag(l, 1, 1, -1, 1) in 800 (3, 1). In particu
lar, S 3 •1 is the semisimple symmetric space defined by T. Thus we can 
follow the general procedure of [26], which for such symmetric spaces 
can be found in [10]. 

Let M = ][)) be a simply connected subset of C We consider the 
(generalized) Cartan decomposition 

(7.5.9) so(4, 1) = so(3, 1) EB m = [J EB m, 

where so( 4, 1) and so(3, 1) = [J are the Lie algebras of the corresponding 
Lie groups defined above, and m is the (-I)-eigenspace of (the differential 
of) T. We consider the extended lift 

(7.5.10) F: ][))----> 800 (4, 1) 
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and its Maurer-Cartan form 

(7.5.11) 

We decompose o: in conformal coordinates z and z as 

(7.5.12) 

where o: = O:m + o:~ is the decomposition of o: relative to 7.5.12 and o::U 
is the (1,0)-part of o:, while o:~ is the (0,1 )-part of o:. 

Introducing the loop parameter A E 8 1 we set 

(7.5.13) 

We then have 

Proposition 7.5.2. ([10]) The extended Maurer-Cartan form O:.>. 
is integrable for all A E 8 1 , i.e. 

(7.5.14) 

if and only if N¢ is harmonic, i.e. if and only if¢> is a Willmore immer
sion. 

Next we introduce the loop groups 

(7.5.15) 

(7.5.16) 

(7.5.17) 

(7.5.18) 

ASOo(4, 1)c = {81 --t 800 (4, 1)1C} 

A+ SOo(4, 1)c = ASOo(4, 1)1C n A+ Sl(5, C) 

A- SOo(4, 1)1C = AS0o(4, 1)c nA-Sl(5, C) 

ASOo(4, 1) = {81 --t SOo(4, 1)} 

and the corresponding twisted loop groups twisted by T. From 7.5.14 
we know that 

(7.5.19) 

is solvable and 

(7.5.20) FE ASOo(4, 1). 

Applying the classical Birkhoff splitting we obtain 

(7.5.21) 

(7.5.22) 

F=F_ ·F+, 

~=F~1 ·dF_. 
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As in the case of surfaces of constant mean curvature in ~3 one 
verifies that F _ only depends on z and that ~ is of the form 

(7.5.23) ~ = >.- 1 ~_ 1 dz, ~-1 Em. 

This way we have obtained normalized potentials for Willmore surfaces 
without umbilics. 

Conversely, starting from some ~ of the form 7.5.23 we solve the 
ODE 7.5.22 for some F_ with initial condition F_(O, >.) = I. Then we 
apply a generalized Iwasawa splitting 

(7.5.24) 

where FE AS00 (4, 1)~ and F+ E A+ 800 (4, 1)c. 

We note that this is possible near z = 0, since there F _ = I and the 
splitting ofF_ near z = 0 is a consequence of the Lie algebra decompo
sition 

(7.5.25) Aso(4, 1)~ = Aso(4, 1)r +A +so(4, 1)r· 

For a more general statement we refer to [40],[1]. 

It is easy to verify that p- 1dF is of the form 

(7.5.26) 

But this implies (see e.g. [10]) that F is the frame of a harmonic map 
N : IDl ----+ 8 3 •1 . Thus we obtain a Willmore immersion from IDl to ~3 by 
the theorem above. 

7.6 Willmore Surfaces in ~3 . Part II. We have seen in the last 
section that Willmore surfaces in ~3 without umbilics have a Weierstrass 
type representation in the spirit of [26]. We have pointed out that in 
the normalized potentials, and even in the frames and the immersions, 
singularities may occur due to the fact that the group splittings are not 
global. In the presentation of the last section, in addition umbilics show 
up as singularities of the harmonic maps involved. Interestingly, it turns 
out that in the case of Willmore surfaces there is a (somewhat) different 
loop group procedure, which manages to handle the umbilical points as 
non-singular points. Of course, the singularities which are caused by the 
non-global group splittings remain. 

Let¢: IDl----+ ~3 be a Willmore immersion and F: IDl----+ AS00 (4, 1)1C 
an extended lift. Then decomposing the Maurer-Cartan form a = 
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F- 1dF according to the involution induced by T yields the description 
of section 7.5. Part I which is associated with the symmetric space 
5 3 •1 = 50 0 (4, 1)/500 (3, 1). However, there is another natural involu
tion on A500(4, l)IC, induced by cr = diag( -1, 1, 1, 1-1). This involution 
has the fixed point group 50(3) x 50(1, 1) and yields the symmetric 
space 

(7.6.1) Gr~ 0 = 50a(4, 1)/(50(3) x 50(1, 1)), 

the Grassmannian of three-dimensional spacelike subspaces of E4 •1 . 

Decomposing a relative to the involution CJ yields 

(7.6.2) 

where e and p are the eigenspaces of the involution (J for the eigenvalues 
1 and -1 respectively. Decomposing further (in conformal coordinates) 
we obtain 

(7.6.3) 

where 6~ is a (1,0)-form and 8~ is a (0,1)-form. Now one can introduce 
a parameter f..L E 5 1 producing 

(7.6.4) 

It is crucial for this part of the discussion that the Willmore property 
can be rephrased not only relative to the extended Maurer-Cartan frame 
a>. defined in 7.5.13, but also relative to a(M). 

Theorem 7.6.1. ([37], Theorem 2) The map ¢ : IDl ---+ !Ft3 is a 
Willmore immersion if and only if a(M) is integrable for all f..L E 5 1 : 

(7.6.5) 

So far in this article the parameter A was always used in relation with 
harmonic Gauf3 maps. Therefore the roles of A and f..L are interchanged 
compared to [37]. 

Just as in the previous section, the integrability condition 7.6.5 al
lows us to solve the differential equation p- 1dF = a(M), F(O, f..L) = I. 
The classical Birkhoff splitting then yields 

(7.6.6) 
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where F, F _ and F + are in the twisted loop groups which are defined 
relative to a. To indicate our use of the parameter ft in constrast to .\ we 
will use Min place of A, as in MSOa(4, 1)~. Then the Maurer-Cartan 
form ofF_ is of the form ([37], section 4.1): 

(7.6.7) F~'dF_ ~ ,,-' 0 ; n 
Here a and bare 1-forms with values in ffi.3 satisfying 

(7.6.8) 

Moreover, a and b are closed 1-forms of the type 

(7.6.9) b = (3dz and a= 'fdz + (dz. 

These are the normalized potentials ~(M) used in this part. 

So far things are "as usual". The converse construction, however, 
will involve some "unusual" steps. Starting from some normalized po
tential ~(M), which is of the form 7.6.7 and satisfies 7.6.8 and 7.6.9, 
the right side of 7.6.7 defines an integrable 1-form. Solving the ODE 
p-1dF = ~(M) with trivial initial condition we obtain some matrix func
tion F5!') : IDl-----> M- 80 0 (4, 1)a-· The generalized Iwasawa splitting [40] 
yields 

(7.6.10) p(M) = p(M) . p(M) 
- + ' 

with pC11-l E MS00 (4, 1)a- and Ff) E MS00 (4, 1)~. 

The crucial point is whether one is able to construct a Willmore 
immersion from the map p(M). It is shown in [37] that the freedom in 
the splitting 7.6.10 can used so that the resulting extended lift produces 
a harmonic map via projection onto 8 3 •1 . 

Remark 7.6.2. The case of Willmore immersions has some inter
esting aspects: 

1. The property of being a Willmore immersion is rephrased equiv
alently by the harmonicity of a map which is not the usual GauB map. 
A similar situation was encountered by Inoguchi [39] in his investigation 
of surfaces of constant mean curvature in hyperbolic space JHI3 , and most 
recently in [11]. It would be interesting to look for surface classes which 
are defined by the harmonicity of some "natural map" and to investigate 
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to what extent such classes can be treated by some loop group approach 
akin to the ones presented in this article. 

2. The transition from the frame to the harmonic map or the im
mersion is not given by a "Sym-type formula". However, as in the case 
of affine spheres the freedom in the generalized Iwasawa splitting per
mits one to choose the splitting so that the transition can be made. It 
would be interesting to understand for which surface classes a Sym-type 
formula does exist. 

7.7 Remarks 7.7.1. Other surface classes: There are several 
other classes of surfaces which are natural candidates for a "loop group 
approach" . Among these are surfaces of constant mean curvature in the 
sphere 5 3 and the hyperbolic space IHI3 , as well as surfaces of positive 
constant GauB curvature in Ilt3 and surfaces of constant GauB curvature 
in JEr. Spacelike surfaces of constant mean curvature in lEI fall into this 
class as well [54]. 

There are several types of "loop group involvement". On the one 
hand, surfaces like the ones of constant positive GauB curvature in Ilt3 

are parallel to surfaces of constant mean curvature, and thus admit a 
"loop group approach". Next, surfaces like the surfaces of constant 
mean curvature in hyperbolic space IHI3 have been investigated quite 
successfully by introducing "loop parameters" and "extended frames" 
[33],[32],[54]. From the point of view of this article, however, it would 
be most interesting to see whether the surfaces of the classes listed above 
(and possibly others) can be characterized directly by the harmonicity 
of some "generalized GauB map" into some symmetric (?) space and 
whether it is possible to construct all these GauB maps (and thus all the 
surfaces in the class considered) from unconstrained "potentials". Work 
in this direction is presently being conducted by several mathematicians 
(Inoguchi, Inoguchi-Toda [39], Rossman and others). 

7. 7.2. More powers of.\: Hamiltonian stationary Lagrangian sur
faces in C 2 have been investigated via a loop group approach in [38]. 
An interesting feature of this paper is the use of potentials in which not 
only,\ - 1 occurs, but also,\ - 2 . On the other hand, the integration of the 
relevant differential equations can be carried out by hand. In this sense 
the loop group approach is only a guide and not essential for the the
ory. In contrast, in the investigation of harmonic maps into k-symmetric 
spaces [10], potentials involving negative powers ,\ -k, ... , ,\- 1 occur. In 
this case, however, only special harmonic maps ("primitive harmonic 
maps") can be treated. 
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7. 7.3. More features of the theory of constant mean curvature in IR.3 

can be carried over to the surface classes discussed in the last few sec
tions. This certainly applies to dressing. Wu 's Formula seems to work in 
all cases. Backlund transformations also appear. These transformations 
usually represent very specific geometric constructions of new surfaces 
from known ones (such as using line congruences). In all cases known 
to the author they can be interpreted as dressing transformations, and 
are usually associated with very simple dressing matrices. This is well 
known for the pseudospherical case [53], but seems to apply also to the 
Tzitzeica transformation of affine spheres and to "Date's direct method" 
[13]. It would be interesting to see this made explicit. 

7.7.4. A general theory providing a framework for all known loop 
group approaches to the description of surfaces (and other geometric 
quantities) is still missing. At this point the method seems to work 
best for maps ¢ : M --+ M' for which there exists a "GauB map" 
N: M--+ S from Minto some (not necessarily Riemannian) symmetric 
spaceS, such that N is "harmonic" if and only if the map ¢is in the 
class considered. The paper [11] may be of particular influence in this 
context. 

7.7.5. Higher Dimensions: The presentation so far has addressed 
exclusively maps from surfaces. In view of the fact that the theories 
presented so far all relate to "harmonic" maps, one should expect that 
one can extend the theory to include "pluriharmonic" maps. This seems 
to be the case [15]. There does exist, however, one paper which uses a 
loop group approach for maps defined on higher dimensional manifolds 
[31] in a substantially different way. In this case isometric immersions 
of space forms are discussed. The paper concentrates on immersions of 
"finite type". It seems that also "potentials" could have been considered. 
It would be interesting to clarify this and to relate these potentials to 
the parameter space of the Cartan-Kii.hler theory. In general it would 
be very interesting to find loop group approaches to higher dimensional 
"completely integrable soliton" equations in a direct geometric context. 

7.7.6 Complex Theory: While a general theory of classes of surfaces 
which can be treated by some unified loop group approach seems to be 
out of reach at this point, it seems to be at least feasible to expect that 
some "complexified" theory should be able to provide a "higher point 
of view", at least for some cases. Most of the surface classes discussed 
in the previous sections are treated in a double-loop-group setting and 
their potentials consist of pairs of Lie algebra valued differential forms. 
The only exception is the class of surfaces of constant mean curvature 
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in ffi.3 . It is easy to see that also this case has naturally a double
loop-group setting. For g E ASl(2, C)u we put fj = (g, (_qt)- 1 ). Thus 
ASl(2, C)u is identified with a subgroup of the double loop group H = 
ASl(2, C)u x ASl(2, C)u. IfF is the frame of a constant mean curvature 
surface, then P = (F, F) E U, the diagonal subgroup in H. As in 
the previous cases we set 71- =A-Sl(2, C)u x A+ Sl(2, C)u and 71+ = 
A+ Sl(2, C)u x A- Sl(2, C)u . Then 71- · 1-(+ is open and dense in H. 
The Birkhoff splitting P = P _ · P +, which is F = F _ · F + and F = 
(F_ t)- 1 · (F+ t)_ 1 , yields the pair of potentials € = (~,-e) E Lie 7-{_, the 
Lie algebra of 7-{_ [24]. Here the first factor depends only on z, while the 
second factor depends only on z. Conversely, starting from €, one solves 
the pair of ODE's dF = P · € with initial condition F(zo) = (I, I), and 
splits P = ( F, F)· (V+, V_) in U · H+. It is easy to see that, because of the 
special form of €, the matrix F is unitary. Clearly, the latter splitting is a 
double-loop-group version of the classical lwasawa splitting. It is natural 
to generalize the procedure above. Let 0 = (~(z),ry(w)) be a differential 
form in two independent variables z and w which takes values in the Lie 
algebra of 7-{_. Then, solving the pair of ODE's dF = F · 0 with initial 
condition I, one obtains a pair of functions P_ = (U_(z), U+(w)). The 
generalized I wasawa splitting H ~ U · H+ then produces some U ( z, w), 
such that (U_(z), U+(w)) = (U, U) · (V+, V_), where U, V+, V_ depend 
on z and on w. Thus we obtain the familiar formula 

(7.7.1) 

It is tempting to predict that U plays the role of some (perhaps mod
ified) frame of some complex surface. This surface should have many 
interesting features. In particular, it should contain the surfaces of con
stant mean curvature in ffi.3 , the pseudospherical surfaces in ffi.3 , and the 
timelike surfaces of constant mean curvature in JEr as "real forms". 

Update added, December 2007: Since this article was written, progress 
has been made on several fronts. A list of additional references ([60]
[108]) is provided below concerning matters closely related to the ques
tions discussed in this article and in particular to the remarks above. 
This list is by no means complete and we apologize to everyone whose 
work is not mentioned. 
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