
Advanced Studies in Pure Mathematics 50, 2008 
Algebraic Geometry in East Asia - Hanoi 2005 
pp. 269~287 

On the Castelnuovo-Severi inequality for a double 
covenng 

Changho Keem1 and Akira Ohbuchi2 

§0. Introduction, motivation and the results 

Let C be a smooth projective irreducible complex algebraic curve 
of genus g ::;:: 2. We denote g~ by a 1-dimensional possibly incomplete 
linear system of degree d on C. For any d ::;:: g + 1, every curve C of 
genus g has a base point free g~ which may be taken as a general pencil 
of a general element in wf~9 (C) = J(C). If Cis a hyperelliptic curve 
with the hyperelliptic pencil g~, it is well-known that any base point free 
pencil of degree d :S: g is a subsystem of the complete rg~ where r = ~; 
cf. [1, p.109]. In particular, the only base point free and complete pencil 
on a hyperelliptic curve is the g~. On the other hand, a non-hyperelliptic 
curve C has a base point free and complete pencil of degree g, by taking 
off g - 2 general points from the very ample canonical linear system 

IKci-
Furthermore, a theorem of Harris asserts that any non-hyperelliptic 

curve of genus g has a base point free and complete pencil of degree 
g -1; cf. [1, p.372]. However, this seemingly simple fact requires a proof 
which is somewhat involved. Especially, in case C is a hi-elliptic curve, 
one needs to show that the variety WJ~ 1 (C) consisting of special pencils 
of degree g - 1 is reducible by using enumerative methods; see also [3, 
Proposition 3.3],[6, Proposition 2.5] for the other proofs concerning the 
existence of a base point free and complete pencil 9~~ 1 on a hi-elliptic 
curve. At this point, it is worthwhile to recall the following classical 
result known as Castelnuovo-Severi inequality. 
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Proposition 0.1 (Castelnuovo-Severi inequality, [1, p.366]). Let 
C, B 1 , B 2 be curves of respective genera g, gb 92 . Assume that 

is a di -sheeted mapping such that 

is birational to its image. Then 

As an easy application of Proposition 0.1, we make a note of the 
following remarks. 

Remark 0.2. (i) Let C be a hyperelliptic curve with the 2-sheeted cover
ing n 1 : C ---+ IF'1 induced by the unique hyperelliptic pencil 9~. Let g"j be 
a base point free pencil not composed with the 9~. In other words, 9~ in
duces a covering 1r2 : C ---+ IF'1 of degree d such that ( 1r1, 1r2) : C ---+ IF'1 x IF'1 

is birational to its image. By the Castelnuovo-Severi inequality, we have 
9 :::; d- 1. This recovers the fact that any base point free pencil of degree 
d :::; 9 is a subsystem of a multiple of the hyperelliptic pencil, which was 
mentioned earlier. 
(ii) More generally, let 1r : C---+ E be a double covering of a smooth curve 
E of genus h. Let g~ be a base point free pencil of degree d not composed 
with the involution determined by 1r (composed with 1r for short). Again 
by the Castelnuovo-Severi inequality, we have 

(0.1) d:::: 9- 2h + 1. 

Therefore it follows that any base point free pencil of degree d :::; 9 - 2h 
is of the the form n* 9~ for some g~ on E. 

In case h = 1, the theorem of Harris quoted earlier indicates that 
the inequality (0.1) is indeed sharp on a hi-elliptic curve. For the case 
h = 2, it only has been known that there exists a base point free and 
complete pencil of degree 9 - 2 not composed with the double covering 
under somewhat unsatisfactory genus assumption 9 ::=: 11, whereas the 
existence of a base point free and complete 9~-3 has remained open; 
cf. [2, Proposition 2.6]. Therefore, we would like to raise the following 
questions regarding the sharpness of the inequality (0.1). 



On the Castelnuovo-Severi inequality 271 

Question 0.3. (i) Let 1f : C ___, E be double covering of a smooth curve 
E of genus h. Does there exist a base point free pencil of degree g- 2h + 1 
not composed with 1r ? 
(ii) Let 1f : C ___, E be double covering of a smooth curve E of genus h. 
Does there exists a base point free pencil of degree d not composed with 
1f for every d:::: g- 2h + 1 ? 
(iii) What is the optimal range for the genus g of the double covering with 
respect to the genus h of the base curve E ensuring affirmative answers 
to the questions above ? Or, find examples of double coverings for which 
questions (i) or (ii) fail. 

We may even pose a more naive question: Given a smooth curve E 
of genus h, 9oes there exist a smooth double covering C ~ E of genus 
g possessing a base point free pencil of degree g - 2h + 1 not composed 
with 1f ? However this turns out to be relatively easy to answer. 

Example 0.4. Given a smooth curve E of genus h :::: 0 and an integer 
g :::: 4h, let C C ]p>l x E be a general divisor linearly equivalent to D := 

2p x E + JPl1 x N with degN = g - 2h + 1 and p E JPl1 . By the condition 
g :::: 4h, D is very ample and hence C is a smooth curve of genus g by the 
adjunction formula. Furthermore, the two projection maps of E x JPl1 to 
E and IF1 restricted to C correspond to a degree two morphism C ~ E 
and a base point free and complete pencil g~_ 2h+l not composed with 1r. 

Motivated by Example 0.4, the main result of this paper is the fol
lowing theorem which provides an affirmative answer to the Question 
0.3 (i). 

Theorem A. Let C be a curve of genus g which admits a double covering 
1r : C _____.. E with g(E) = h :::: 0 and g :::: 4h. Then C has a base point 
free and complete g~_ 2h+l not composed with 1f. 

By using Theorem A, we are also able to answer the Question 0.3 
(ii) in the affirmative. 

Theorem B. Let C be a curve of genus g which admits a double covering 
1f : C _____.. E with g(E) = h and g :::: 8h - 4. Then there exists a base 
point free pencil of degree d not composed with 1f for any degree d with 
d:::: g- 2h + 1. 

The organization of this paper is as follows. In §1, after giving a 
general theory between a double covering 1f : C ___, E and an embedding 
of C into a ruled surface (see Proposition 1.5), we prove necessary and 
sufficient conditions for the existence of base point free and complete 
g~_ 2h+l (see Theorem 1.1). This can be done by observing the relation
ship between the above associated embedding of C into a ruled surface 
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and the embedding ('rr,g~_ 2h+l) : C '-+ Ex lP'1 by using elementary 
transformations. In §2, we prove that the necessary and sufficient condi
tion in §1 for the existence of such g~_2h+l holds for any smooth double 
covering under the numerical assumption g ~ 4h by using Theorem 2.1, 
thereby proving Theorem A. This will be carried out by using an ele
mentary theory of determinantal varieties. We then proceed to prove 
Theorem B by the excess linear series argument. In §3, we mainly deal 
with the Question 0.3 (iii). Specifically, we show that the numerical as
sumption g ~ 4h in Theorem A is the best possible one by constructing 
an example of a double covering of g = 4h - 1 without a base point free 
and complete g~_ 2h+l· We also exhibit an example of a double covering 
with a base point free and complete g~_2h+l under the same numeri
cal condition g = 4h - 1. Throughout we use the same notations and 
conventions as in [1]. 

§ 1. Curves on ruled surfaces 

In this section we study double coverings on a ruled surface. In par
ticular we collect and develop some methods realizing a double covering 
with a base point free pencil of particular degree as a smooth divisor on 
a ruled surface. The goal of this section is to prove the following result: 

Theorem 1.1. Let C = Spec( 0 E EB 0 E (-N)) ~ E be a smooth double 
covering and let ~ : C ---> lP'( 0 E EB 0 E (-N)) be an embedding associ
ated with 1r such that PN~ = 1r. Then the following four conditions are 
equivalent: 

1) C has a base point free and complete g~_ 2h+I which is not composed 

with n, and 1r*D E INI forD E g~_ 2h+I· 

2) There is a section H E ITN + p/v(N)I such that Hl,(c) = D1 + D2 
with n*D1, 1r*D2 E INI and D1 "'O"* D2. 

3) There is a divisor HE ITN + p/vNI such that H n TN = 0 satisfying 
Hl,cc) = D1 + D2 with n*D1, 1r*D2 E INt. 

4) There is a divisor A E In* Nl \ {n* L I L E INI} such that n*A = 
N1 + N2 and N1,N2 E INt. 

Let M be an effective divisor on a smooth projective curve E of genus 
hand let Oe(M) be the line bundle associated with M. Throughout this 
paper, we denote the structure morphism of the ruled surface lP'(Oe EB 
OE(-M)) by 

PM: lP'(Oe EB Oe(-M))---> E 
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and its minimal section by TM; by the minimal section, we always mean 
the section of minimal degree on a normalized ruled surface. For P E 

JP>(OEE90E( ~M)), let F be the fibre over p = PM(P). In the blowing-up 

11: Sp ~ JP>(OE E9 OE( -M)) 

of the ruled surface JP>( 0 E E9 0 E (-M)) at P, let e be the exceptional 
divisor of ry, f the proper transform of F and 

T: Sp ~ S' 

the contraction of f. We put P' = r(f) E S'. Since S' is an elementary 
transformation of JP>( 0 E E9 0 E (-M)) with center P, S' is a ruled surface 
over E; cf. [4, p.416]. We define p' as its rulingS'~ E. 

We choose a section HM E \TM + pM-M\ and hence HM n TM = 
0. Let TM and HM be the proper transforms of TM and HM on Sp 
respectively, and set T' = r(TM ), H' = r(HM ). Since HM n TM = 0, 
we have H' n T' = 0 for P E TM U HM which implies 

S' ~ JP>(OE E9 OE( -M')) 

for some M' E Div(E); cf. [4, p.383]. Let Co be an irreducible curve on 
JP>(OE E9 OE( -M)) with Co "'2TM + PM-(Z) for some Z E Div(E), let 
¢ : C ~ C0 be its normalization, let Co be the proper transform of Co 
on Sp, let Cb = r(Co) and let ¢' : C ~ Cb be its normalization. Let 
11" =PM¢· Note that 11" = p'¢' and 11": C ~Eisa double covering and 
we denote the associated involution by CT. 

From now, we assume that P E TM U HM. First, we consider the 
case, the point P E TMUHM is a smooth point of Co. By (Co+e.f+e) = 

(Co.F) = 2 and (Co.e) = 1, we have (Co.f) = 1. Hence Cb is non
singular at P'. Therefore Co~ Co~ Cb, when Cis non-singular. 

Lemma 1.2. (i) T' is a minimal section TM' on JP>(OE E9 OE(-M')). 
(ii) In case P E HM and deg(M- p) 2 0, we have 

JP>(OE E9 OE( -M')) ~ JP>(OE E9 OE( -(M- p))), 

H' "'T'+PM-p*(M -p), C~ "'2T'+PM-p*(Z-p) and¢'* H' = ¢* HM-P. 

(iii) In case P E TM, we have 

JP>(OE E9 OE( -M')) ~ JP>(OE E9 OE( -(M + p))), 

H' "' T' + PM+p *(M + p), Cb "' 2T' + PM+p *(Z + p) and¢'* H' 
</J*HM+CT*P. 
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Proof. We only give a proof for the case P E HM and deg(M- p) ?: 0; 

the case P E TM is similar. Since HMico = HM + elc;, and (Co.e) = 1, 
we have 

Now we show that T' is a minimal section. Since P ¢. TM, 

Since TM is a (minimal) section, TM 9'. E and OrM(TM) 9'. OE(-M). 
Therefore we have 

Since Or,(T') ~ OT-(T*T') = OT-(TM +f), 
M M 

(1.2.1) Or,(T') 9'. OE(-(M- p)). 

To see lP'(O EB 0(-M')) ~ lP'(O EB 0(-(M- p))), we argue as follows. 
If (T'.TM') < 0, T' = TM' which implies M'"' -T'Ir' "'M- p and 
we are done for this case. Therefore we may assume (T'.TM') ?: 0. 
LetT' "' aTM' + p'M,B with degB = band let (T'£I,) = -n'. By the 
assumption deg(M- p) ?: 0, we have (T'2 ) = a(2b- an') :::;; 0. Since T' 
is a section, a = 1 and b ?: an' by (T'.TM') ?: 0, which implies b = 0. 
On the other hand, since T' is effective 

(1.2.2) {0} f= F(S', O(T')) 9'. F(E, OE(B) EB OE(B- M')) 

by projection formula. When M' > 0, deg(B- M') = deg( -M') 
-n' < 0 implying B "' 0 and hence T' = TM'. Therefore it follows 
that M'"' -T'Ir' "'M- p by (1.2.1). When M' = 0, we have either 
B "' 0 or M' "' B by (1.2.2). Since M' = degM' = 0, TM' + p'M,M' 
is linearly equivalent to a minimal section T-M' C lP'(OE EB OE(M')) ~ 
lP'(OE EB OE( -M')). Therefore we have either T' = TM' when B "' 0 
or T' = T-M' when M' "' B. In either cases, T' is a minimal section 
satisfying (1.2.1). Therefore 

lP'(OE EB OE( -M')) ~ lP'(OE EB OE( -(M- p))) and T' = TM-p· 

Now we prove H' "'T' +PM-p *(M -p). Let H' "'T' +PM-p *(G) for 
some G E DivE. Since H' n T' = 0, H'lr' "'0 and hence T'lr' + G "'0 
which implies G"' -T'Ir' "'M- p. Hence H' "'T' + PM-p *(M- p). 
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Finally we prove Cb "' 2T' + p M -p * ( Z - p). Since Cb is smooth and 

r*Cb "'Co+ J, 
(1.2.3) r*Cb "' ry*Co - e +f. 

Since ry*Co "'2TM + 17* PM-(Z- p + p) "'2TM + ry*pM-(Z- p) + (e + !), 

r*Qb "' 2(TM+f)+r*PM-p*(Z-p) 
= 2r*T' + r*pM--p(Z- p) = r*(2T' + PM-p(Z- p)) 

by (1.2.3). Hence Cb "'2T' + PM-p*(Z- p). 
Q.E.D. 

Next, we consider the case, the point P E TM U HM is a singular 
point of Co. Let F = PM-P where p = PM(P). Since PM¢ = 1r : C---+ E 
is a double covering, ¢* F = 1r*p which means P is a double point or a 
cusp. 

Lemma 1.3. (i) In case P E HM and deg(M- p) 2: 0, we have 

S' ~ JP>(OE EB OE( -(M- p))), 

H' "'T'+PM-p *(M -p), Cb "'2T"+PM-p *(Z) and¢'* H' = ¢* HM-1r*p. 

(ii) In case P E TM, we have 

S' ~ JP>(OE EB OE( -(M + p))), 

H' "'T'+PM+p*(M+p), Cb "'2T'+PM+p*(Z) and¢* H' = ¢'*HM+1r*p. 

Proof. We only give a prooffor the case P E HM and deg(M- 2p) 2: 0; 
the case P E TM is similar. By Lemma 1.2, S" ~ JP>(OE EB OE( -(M-
2p))), H" "' T" + PM-2p *(M - 2p). We now prove C~ :__ 2T" + 
PM-2p*(Z- 2p). Since P E Co is.a double point, ryiCo "' Co+ 2e1. 
Therefore 2 = (Co.F) = (Co + 2e1.e1 + !1) which implies (Co.el) = 2. 
Hence (Co./!) = 0, so we have Co= riCo because r1 is a contraction of 
11. Since 1 = (TM.F) = (TM+e1.e1 + !1) and (TM.el) = 1, (TM.!l) = 0. 
Therefore riT' = TM which implies 

riCb "'17i(2TM + pM-Z)- 2el "'2riT' + "'iPM-Z. 

S. * * Z * *Z *C' *(2T' + *Z) . Ince "'!PM "'rl Pl , rl o "'rl Pl , l.e. 

Cb "' 2T' + Pi Z. 

Q.E.D. 
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Finally, we consider the case, the point P E TM U HM does not lie 
on Co. 

Lemma 1.4. (i) In case P E HM and deg(M- p) 2: 0, we have 

S' ~ JPl(OE E9 OE( -(M- p))), 

H' "'T' +PM-p *(M -p), Cb "'2T" +PM-p*(Z -2p) and ¢iH' = ¢* HM. 

(ii) In case P E TM, we have 

S' ~ JPl(OE E9 OE( -(M + p))), 

Proof. We only give a proof for the case P E H M and deg( M- 2p) 2: 0; 
the case P E TM is similar. By Lemma 1.2, S" ~ JPl(OE E9 OE( -(M-
2p))), H" "' T" + PM-2p *(M- 2p). We now prove Cff :..__ 2T" + 

PM-2p*(Z- 2p). Since P E Co is a double point, 1JiCo "'Co+ 2el. 
Therefore 2 = (C0 .F) = (Co+ 2e1 .e1 +h) which implies (Co.el) = 2. 
Hence (Co.h) = 0, so we have C0 = TiCb because T1 is a contraction of 

fi. Since 1 = (TM.F) = (TM+e1.e1 +h) and (TM.ei) = 1, (TM.h) = 0. 
Therefore TiT' = TM which implies 

T~Cb "'1Ji(2TM + PMZ)- 2el "'2T~T' + 1JiPMZ. 

S. * * Z * *Z *C' *(2T'+ *Z) . mce 111 PM rv 7 1 PI ) 7 1 0 rv Tl Pl ) I.e. 

Cb "'2T' + piZ. 

Q.E.D. 

We recall some basics of a double covering of a curve E of genus 
h; see [5] for a full treatment. For N E E9 _ 2h+I, let R be an effective 
divisor onE with OE(R) ~ OE(2N). Given an isomorphism 

one defines an OE-algebra structure on OE E9 OE( -N) by 

(a, b)· (c, d) = (ac + ¢(bd), ad+ be). 

One then has a double covering 1r: C = Spec(OEffiOE( -N)) -7 E with 
1r*Oc ~ OE. The virtual genus of Cis g, i.e. dimH1 (C, Oc) =g. Note 
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that (a, b) f-) (a, -b) is an 0 E-algebra isomorphism of order 2 which 
induces an involution a : C ----+ C over E. Conversely, every double 
covering over E is of this form. We also recall that a double covering 
1r : C = Spec(OE E9 OE(-N)) ----+ E is an irreducible reduced non
singular curve if and only if R is reduced. Let >. : n* £ ----+ Oc be the 
restriction of a natural map >. : n*n*(Oc) ----+ Oc ton*£. Since >. is 
surjective, we have a morphism 

~: c ---TIP'(£)= IP'(OE E9 OE(-N)) 

with PN~ = 1r. 

Proposition 1.5. ~ is embedding and~( C) rv 2(TN + P'N(N)) on IP'(£) = 
IP'(OE E9 OE( -N)). 

Proof. Let U = Spec(A) C E be an affine open subset and SpecB = 
n-1u. Let Elu = n*(Oc)lu = Oue1 E80ue2 where e1 = 1A and n*e1 = 
(et,O) is the identity of B = T(U,n*Oc). Let (n-1U)7r•e1 = {P E 

n- 1u ln*et(P) =1- 0}. Note that (n-1U)7r•e1 = n-1U = Spec(B) is 
affine and the homomorphism A[e~,e2]---+ T(n-1(U),Oc) = B defined 

* by ei f-) 7r* ei = n*ei (i = 1, 2) is surjective. By [4, p.151 Proposition 
1r e1 

7.2], ~17r-tu is embedding and hence~ is embedding. Since PN*O(TN) ~ 
n*Oc, 

by the projection formula. Therefore>.® Oc(n*(N)) : n*pN*O(TN + 
P'N(N))----+ Oc(n*(N)) again defines~- This means cPI1r*(N)I = cPiTN+PJ\r(N)I~ 
where ¢>17r*(N)I : C ----+ IP'(T(C, Oc(n*(N)))) is a morphism defined by 
Jn*(N)J and cPiTN+PJ\r(N)I : IP'(OE E9 OE( -N))----+ IP'(T(O(TN + P!v(N)))) 
is a morphism defined by JTN + P'N(N)J. Since ~is an embedding and 
cPiTN+PJ\r(N)I is an birational morphism only contracting TN, cPI1r*(N)I is 
a birational morphism onto its image. Hence 

(~(C).TN + P'N(N)) = deg¢>17r*(N)I(C) = 2(g- 2h + 1). 

Since ~ is an embedding and PN~ = 1r, (~(C).p'N(N)) = degn*(N) 
2(g-2h+1) which implies (~(C).TN) = 0, i.e. ~(C)nTN = 0 because ~(C) 
and TN are irreducible. Therefore ~(C)JrN rv 0. Let ~(C) rv 2TN + p'NB. 
Then 

0 rv ~(C)JrN rv 2TNJTN +B. 

Since TNITN rv -(N), ~(C) rv 2(TN + P'N(N)). 
Q.E.D. 
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Corollary 1.6. Let 1r : C ~ E be a smooth double covering. Then 
C is isomorphic to Spec(OE EB OE( -N)) over E if and only if it has 
an embedding t : C '---+ JP>(OE EB OE( -N)) with PNL = 1r and t(C) "' 
2(TN + p'NN). 

Proof. Assume that there is an embedding t : C '---+ JP>( 0 E EEl 0 E (-N)) 
with PNL = 1r and t(C) "' 2(TN + p'NN). Let R' be the branch locus 
of the double covering 1r. Then there is a divisor N' on E with an 
isomorphism¢' : OE(N')'g)2 ~ OE(R') such that: 

OE EEl OE( -N') is an OE-algebra by (a, b)· (c, d) = (ac + ¢'(bd), ad+ be) 
C S':! Spec(OE EEl OE( -N')) over E. 

We need to show N "' N'. By the Hurwitz relation, K c "' rr* ( K E + N'). 
On the other hand, we have 

Kn>(VEffiVE(-N)) + t(C)I,(c) "'P'N(KE + N)l,(c) "'rr*(KE + N) 

by the adjunction formula and the assumption t(C) "' 2(TN + p'NN). 
Therefore we have KE + N' "' KE + N and hence N "' N'. For the 
converse part, we denote t = t-0 . Then the result is clear by Proposition 
1.5. 

Q.E.D. 

Remark 1.7. Lett: C ~ JP>(OEEElOE( -N)) with t(C) "'2(TN+P'N(N)) 
be an embedding associated with a double covering C S':! Spec( 0 E EEl 
OE(-N)) ~E. Since 

F(JP>(OE EEl OE( -N)),O(TN + P'N(N))) S':! F(E, OE(N) EEl OE), 

we have 

{1. 7.1) lrr*(N)I = {HI,(c) I HE ITN + P'N(N)I}. 

Since TNI<(C) "'0, we have 

{1. 7.2) {rr* L I L E INI} ={(TN+ p'NL)I.(c) I L E INI}. 

Now we prove Theorem 1.1. 

Proof of Theorem 1.1: 1) ::::} 2): Since C has a base point free g~_ 2h+l 
not composed with 1r, the morphism ¢ = (g~_2h+l, 1r) : C ~ JP>1 x E = 

JP>(OE EEl OE) is a birational morphism. Note that ¢(0) "' 2T0 + p0(J) 
where J = rr*L and L E g~_2h+l" Take a-=/:- bE JP>1 and put To= {a} xE, 
Ho = {b} x E which implies TonHo = 0. Let D~ = ¢*To, D~ = ¢* Ho and 
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note that D~, D~ E g~_2h+l" Applying Lemma 1.2-(iii) and Lemma 1.3-
(ii) to every P ~ D~, we get a ruled surface PM: JP>(OEEBOE( -M)) -t E 
and a non-singular curve C' on JP>( 0 E EB 0 E (-M)) such that C' ~ C and 
C' "'2(TM + p'MM). We put D1 =a* D~ and D2 = D~ which implies 
D1 "' a* D2. Note that 1r*Di "' 1r*D~ since D~ "' D~. By Theorem 
1.6, M rv N and we finally have 7r*Dl, 7r*D2 E INI, H' rv TN+ PN(N), 
H'lc2 = D1 + D2. 

2) =? 4): We take a section HE ITN+PNNI, Dt, D2 E Div(C) satisfying 
the condition 2). Since H n TN = 0, H ¢ {TN+ p* No I No E INI}. 
We put A = Hl,(c), N1 = 1r*D1 and N2 = 1r*D2. Then we have 
A E l1r* Nl \ {1r* No I No E INI} by Remark 1.7 and 1r*A = N1 + N2, 
Nt,N2 E INI. 

4) =? 3): We take a divisor A E l1r*NI \ {1r* No I No E INI} such 
that 1r*A = N1 + N2 and N1.N2 E INI· By (1.7.1) there is a divisor 
HE ITN+PNNI such that HI~(C) =A. Since 1r*A = N1 +N2, there exist 
two effective divisors D1, D2 E Div(C) such that Hl~(c) = D1 + D2 and 
1r*D1. 1r*D2 E INI. By (1.7.2), H n TN is finite and hence H n TN= 0 
by (H. TN) = 0. 

3) =? 1): Take a divisor H E ITN + pNNI such that H n TN = 0 
satisfying Hl~(c) = D1 + D2 with 1r*D1, 1r*D2 E INI. We prove that H 

is a section. Since (H.pNp) = 1, there exists an irreducible divisor fi and 
a divisor B such that H = fi + B with (H.pNp) = 1 and (B.pNp) = 0. 
Therefore B = p*(pl + · · · + Ps) for some Pl.··· Ps E E. By (H.TN) = 0, 
(H.TN) + s = 0. If s > 0, then (H.TN) < 0 implying fi =TN and hence 
H n TN f=. 0, a contradiction. Therefore s = 0 and H = fi, i.e. His a 
section. Applying Lemma 1.2-(ii) and Lemma 1.3-(i) to every P ~ Dt, 
we get a ruled surface Po : JP>(OE EB OE) = JP>1 x E -t E, a non-singular 
curve C' such that C' ~ C, and C' "' 2T0 + p0 ( N) = 2{pt} x E + JP>1 x N 
with degN = g- 2h + 1. Therefore the second projection JP>( 0 E EB 0 E) ~ 
JP>1 x E -t JP>1 restricted on C' induces a base point free g~_ 2h+l not 
composed with 1r. 

§2. Proof of Theorem A 

Let 

¢: T(E, OE(N)) l8l T(E, OE(N)) -t T(E, OE(2N)) 

Q.E.D. 
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be the natural cup product map. Our eventual goal is to prove Theorem 
A, but for most of this paper, we prove the following theorem. 

Theorem 2.1. Let C = Spec(OEEBOE( -N)) ~ E be a double covering 
of genus g over a curve E of genus h with g 2: 4h- 2. Choose r E 

F(E, OE(2N)) whose zero is the branch locus of 1r. Then C has a base 
point free and complete g~_2h+l not composed with 1r if and only if r E 

im[¢: F(E, OE(N)) ® F(E, OE(N)) ~ F(E, OE(2N)J. 

We put V = F(E, OE(N)). We assume that g 2: 4h- 2. Since 
deg(OE(N)) = g- 2h + 1 2: 2h- 1, OE(N) is non-special and hence 
dimV = g- 3h + 2 by the Riemann-Roch Theorem. Let M(m) be the 
variety of m x m complex matrices. Let 

Mk(g- 3h + 2) c M(g- 3h + 2) 

be the kth determinantal variety, i.e. the subvariety of M(g- 3h + 2) 
defined by the ideal generated by (k + 1) x (k +I)-minors of (ai3). The 
codimension of Mk(g- 3h + 2) is 

(2,1) codimMk(g- 3h + 2) = (g- 3h + 2- k) 2 

by [1, p.67 Proposition]. Let e1, · · · , e9 _ 3h+2 be a basis of V and let 

X : V ® V ~ M(g - 3h + 2) 

be the natural isomorphism defined by 
i,j=l,··· ,g-3h+2 

Lemma 2.2. x- 1(Ml(g- 3h + 2)) = {u ®vI u,v E V}. 

Proof. Since 

M1(g- 3h + 2) = {(aij) I aiJ = uiv1, i,j = 1, · · · ,g- 3h + 2}, 

we have x-1(Ml(g- 3h + 2)) = {u ®vI u = LUiei, v = LVjej}· 
Q.E.D. 

We put 

M1 = x- 1(M1(g- 3h + 2)) and Mo ={a® a I a E V}, 

which are affine cones, i.e. if c E Mi and .X E C, then .Xc E Mi for 
i = 0, 1. For an affine cone A, we denote JP>(A) by A/C*. For an element 
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z E A, we denote [z] by Cz/C* E IP'(A). Let S2V be the subspace of 
V 0 V generated by {a 0 b + b 0 a I a, b E V}. Then S2V is indeed the 
second symmetric product of V containing M 0 . 

Lemma 2.3. IP'(Mo) C IP'(S2 V) is the image of!P'(V) under the Veronese 
embedding. 

g-3h+2 

Proof. Let a= L aiei E V. Then 
i=l 

g-3h+2 

a 0 a= 2::::: arei 0 ei + 2::::: aia1(ei 0 e1 + e1 0 ei) 
i=l i<j 

which gives a coordinate of the Veronese embedding IP'(V) '----+ IP'(S2 V). 
Q.E.D. 

By (2.1) and Lemma 2.3, we have the following: 

Corollary 2.4. dim!P'(Ml) = 2g- 6h + 2 and dim!P'(Mo) = g- 3h + 1. 

~ ~ 

Let V be a vector space. For affine cones S, T C V, we put 

Note that S *Tis again an affine cone and we may consider IP'(S * T) c 
IP'(V). 

Lemma 2.5. Let M* = Mo * M 1 C V 0 V. Then dim!P'(M*) = 3g-
9h+4. 

Proof. We define a morphism 

e : V EB V EB V ----> M* 

by e(x, y, u) = X 0 y + u 0 u, which is surjective. Let x, y, u E v be 
general elements and let x 1, y1, u1 E V be arbitrary elements. We may 
assume that x, y, u are linearly independent. We put 

g-3h+2 g-3h+2 g-3h+2 

X= 2::::: xiei, y= 2::::: Yiei, U= 2::::: uiei 
i=l i=l i=l 

and 
g-3h+2 g-3h+2 g-3h+2 

xl = 2::::: 
I 

xiei, yl = 2::::: y~ei, ul = 2::::: 
I 

uiei. 
i=l i=l i=l 
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Assume that O(x,y,u) = O(x1,y1,u1). Then 

(2.5.1) x ® y + u ® u = x 1 ® y1 + u1 ® u1• 

Since V ® V can be decomposed as (V ® e1) EB · · · EB (V ® eg-3h+2), 

YiX + UiU = y~x1 + u~u1 (i = 1, · · · ,g- 3h + 2) 

by (2.5.1). Since x,y,u E V are general elements, we may assume that 

det ( Yi Ui ) =f. 0 for any i,j = l,···g- 3h + 2 with i =f. j, and 
Yi Uj 

hence x,u are linear combinations of x 1,u1• Note that x,y are linearly 
independent, we have 

x 1 = ax + (3u and u1 = !X + c5u 

for some a, (3, /, c5 E C. Since V ® V = (e1 ® V) EB · · ·EB (eg-3h+2® V) and 
x, y, u E V are general elements, we again have XiY + uiu = x~y1 + u~u1 

for i = 1, · · · , g - 3h + 2 and hence 

Y1 = ey + '17U and U1 = ).y + J.LU 

for some e, ry, >., J.L E C. Especially 

u1 = /X + c5u = >.y + J.LU. 

Since x, y, u are linearly independent, 1 = >. = 0 and c5 = J.L. Therefore 
x 1 = ax + (3u, y1 = ey + ryu and u 1 = c5u. By (2.5.1), ae = 1, ary = 
0, f3e = 0, !377 + c52 = 1. Therefore (3 = 77 = 0, ae = 1, c52 = 1, i.e. 

I I 1 d I x = ax, y = -y an u = ±u. 
a 

Therefore o-1(x®y+u®u) is !-dimensional for general elements x, y, u E 
V. Hence dimM* = 3dimV -1 = 3g-9h+5, i.e. dimlP'(M*) = 3g-9h+4. 

Q.E.D. 

We take 0 =f. K, E im¢ C F(E, OE(2N)), K, E q,- 1(/'i,) and consider a 
linear subspace 

L~< = { >.i£ + x I >. E C, x E ker¢} = Ci£ + ker¢ C V ® V. 

Note that Ci£ n ker¢ = {0} and hence dim£~<= dimker¢ + 1 ~ dimV ® 
V- dimF(E, OE(2N) + 1 = dimV ® V- (2g- 5h + 3) + 1, therefore 

(2.2) dimlP'(L~<) ~ dimlP'(V ® V) - (2g- 5h + 2). 
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We now prove Theorem 2.1. 

Proof of Theorem 2.1:Let s E F(C, Oc(rr* N)) and let (s)o = A. 
Since so-*s = rr*A for some A E F(E,OE(2N)), we put Nmc;E(s) =A 
and call it the Norm of s for the Galois covering 1r : C --> E. Since 
rr*Oc(rr* N) ~ OE(N) EB OE, there is an isomorphism 

F(C, OE(rr* N)) ~ F(E, OE(N)) EB F(E, OE)· 

Therefore s can be written as s = (a, !3) for some a E F(E, OE(N)), 
f3 E F(E, OE) and 

A= (s)o E {'rr* No I No E INI} if and only if f3 = 0. 

By the OE-algebra structure on OE EB OE( -N), we have 

so-* s = (a2 - rf32 , 0) E F(E, OE(2N)) EB F(E, OE(N)). 

Therefore Nmc;E(s) = a 2 - rf32 . Since rr*A is defined by Nmc;E(s), 
rr*A = (a2 - rf32 )o. Let 

w = {Nmc;E(s) I s E r(c, Oc(rr* N))} c r(E, OE(2N)). 

Since Mo ={a Q9 a I a E F(E, OE(N))} and Nmc;E(rr*a) = a2 for any 
a E F(E, OE(N)), 

¢(Mo) = {Nmc;E(rr*a) I a E r(E, OE(N))} c F(E, OE(2N)). 

Then w = {a2 -rf32 I (X E r(E,OE(N)),/3 E r(E,OE)} which implies 
IP'(W) = IP'(¢(Mo) * Cr). 

We now assume C has a base point free and complete g~_ 2h+l not 
composed with rr. By Theorem 1.1, there exist l, m E F(E, OE(N)) 
such that lm E W \ ¢(Mo). Then there exists ao E F(E, OE(N)) such 
that r E lP'(Ca6 + Clm). Hence r = aa6 + f3lm = ¢(aao Q9 ao + f3l Q9 m) 
for some a, f3 E C which implies r E im¢. 

Next we assume r E im(¢). Since lP'(Lr) is a linear subspace of 
IP'(V 0 V), 

dim!P'(M*) n IP'(Lr) ~ dim!P'(M*)- (2g- 5h + 2) = g- 4h + 2 ~ 0 

by (2.2) and Lemma 2.5. Hence there exists x E M* such that ¢(x) = r. 
Since x = l Q9 m +a Q9 a for some l, m, a E V, we have 

r=lm+a2 • 

Assume [l] i= [m]. Then lm E W \ ¢(Mo). We now put a = J=Ia, 
f3 = H(i= 0) and s = (a,f3). Let A= (s)o E lrr*NI. Sincer = lm+a2 , 
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a 2 - r/32 = lm. Therefore rr*A = N1 + N2, N11 N2 E INI and A E 
jrr*NI \ {rr*N0 I N0 E jNj}. By Theorem 1.1, there exists a base point 
free g~_2h+l not composed with rr. Assume [l] = [m]. We may assume 
that l = m. Then r = (l + v'-Ia)(l - v'-Ia). When (l + v'-Ia)o = 
(l- J=Ta)o, we have (l)o = (a)o which implies the branch locus (r)o is 
not reduced. This is a contradiction, since C is non-singular. Therefore 
(l+J=Ta)o =f. (l- J=Ta)o. We puts= (0, 1) and let A= (s)o E jrr* Nj. 
Then rr*A = (r) 0 • Since r = (l + v'-Ia)(l - v'-Ia), we again have 
rr*A = N1 + N2, N1,N2 E INI and A E jrr*NI \ {rr*No I No E jNj}, 
which implies that there exists a base point free g~_2h+l not composed 
with rr by Theorem 1.1. 

Q.E.D. 

Finally we prove Theorem A: 

ProofofTheorem A: Sinceg ~ 4h, deg(OE(N)) = g-2h+1 ~ 2h+l. 
Therefore OE(N) is normally generated and hence ¢ is automatically 
surjective. Hence we have Theorem A by Theorem 2.1. 

Q.E.D. 

We are now ready to prove Theorem B as a corollary to Theorem 
A. 

Proof of Theorem B 

Claim. Fix an integer e ~ 1. Let C be a smooth curve of genus g ~ 
4e - 4, not necessarily a double covering. Let E~ be the union of those 
components of WJ(C) whose general element is base point free and 
complete. If E~-e+1 =f. 0 then dim E~-e+1 has the expected dimension 
and E~-e+2 =f. 0. 
Proof of the Claim. Since it is assumed that E~-e+1 =f. 0, any component 
of E~-e+1 has dimension at least p(g- e + 1,g, 1) = g- 2e. Suppose 
there exists a component E C E~-e+1 such that dimE = n ~ g - 2e + 1 
and take a general L E E. By the base point free pencil trick and the 
description of the tangent space to the scheme WJ (C) in general, we 
have 

h0 (C, L2 ) = 2(g- e + 1)- g + 1 + h1(C, L2 ) 

= 2(g- e + 1)- g + 1 + ker J.Lo 

~ g- 2e + 3 + n- p(g- e + 1, g, 1) = n + 3, 

where J.Lo: H 0 (C,L) Q9 H 0 (C,KL- 1 )--+ H 0 (C,K) is the natural map 
given by multiplication of sections; cf. [1, p 189]. Therefore it follows 
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that 

g- 2e + 1 ~ n ~dim W~~22e+2 (C) ~dim W:f9-_2;;:2(C) = 2e- 4, 

contrary to the assumption g ~ 4e - 4. And this completes the proof of 
the first assertion of the Claim. Suppose now that E!-e+2 = 0. Then, 
we have 

Since 

dim[E~-e+l + W1(C)] = p(g- e + 1,g, 1) + 1 < p(g- e + 2,g, 1), 

it follows that the closed locus E!-e+l + W1 (C) is contained in W_i-e (C)+ 
W2(C). Note that a general element in the locus E!-e+l + W1(C) is a 
complete pencil with only one base point, whereas a complete pencil in 
W.J"-e(C) + W2(C) has at least two base points, which is an absurdity. 
This completes the proof of the Claim. 

We now take e = 2h in the Claim. By Theorem A, we have 
E~_2h+l =I 0 and hence E~_2h+2 =I 0 by the Claim. By taking e' = 

2h- 1 in the Claim, we again have E!-e'+2 = E!_2h+3 =I 0; note that 
g ~ 8h - 4 > 4e' - 4. We may continue this process by taking smaller 
e' s and we are done. 

Q.E.D. 

§3. Examples 

In this final section, we exhibit two examples which show that the 
genus assumption g ~ 4h in Theorem A is the best possible one. We 
first give an example of a double covering C ~ E of genus g = 4h - 1 
without a base point free and complete g~_2h+l not composed with 1r. 

We also give another example of a double covering C ~ E possessing a 
base point free and complete g~_ 2h+l not composed with 1r under the 
same genus assumption g = 4h - 1. In these examples we shall make 
use of the following well-known fact regarding the normal generation of 
line bundles on a hyperelliptic curve. 

Remark 3.1. Let E be a hyperelliptic curve of genus h. A very ample 
line bundle on E of degree 2h is not normally genemted; cf [1, p.221 
C-3]. 
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Example 3.2. There exists a double covering C ~ E of genus g = 4h-1 
which does not have a base point free and complete g;_ 2h+1 not composed 
with n. 

Proof. Let E be a hyperelliptic curve of genus h > 2. Given N E 

Div(E), we consider the natural cup product map 

¢: F(E, OE(N)) 0 F(E, OE(N)) ____. F(E, OE(2N)). 

For h = 2, let OE(N) be a base point free line bundle of degree 2h = 4. 
Note that OE(N) is not very ample. Assume that ¢ is surjective. By 
using [1, p.222 C-4] inductively, we easily see that 

F(E, OE(N)) 0 k ____. F(E, O(kN)) 

is surjective for every k ~ 1, i.e. OE(N) is normally generated. Hence 
OE(N) is very ample which is a contradiction. Therefore we may choose 
r ~ im¢ such that (r) 0 = R is reduced. For h ~ 3, by a well-known 
theorem of Halphen, we may take a very ample line bundle OE(N) 
of degree 2h = g- 2h + 1. By Remark 3.1, OE(N) is not normally 
generated and hence¢ is not surjective by [1, p.222]. Therefore we may 
again chooser~ im¢ such that (r)o = R is reduced. 

Let C ~ E be a double covering of genus g = 4h - 1 with the 
branch locus R. By Theorem 2.1, C does not have a base point free and 
complete g;_ 2h+1 not composed with 1r. 

Q.E.D. 

For an example of a double covering of genus g = 4h- 1 with a base 
point free and complete g;_ 2h+l' we have implictly exhibited such one 
for h ~ 3 in the Example 0.4. We simply note that, in the Example 
0.4, it is possible to take a very ample N E E9 _ 2h+l even in the range 
3h + 2 :::; g :::; 4h - 1 for any curve E of genus h ~ 3. One may also 
construct such an example by a similar method as in Example 3.2. 

Example 3.3. There is double covering C ~ E of gneus g = 4h - 1 
which has a base point free and complete g;_2h+l. 

Proof. Let OE(N) be a line bundle of degree 2h = g- 2h + 1. Since 
INI is base point free , we may take r E im¢ whose zero R = (r)o is 
reduced and let C ~ E be a double covering of genus genus g = 4h- 1 
with the branch locus R. Then C has a base point free and complete 
g;_ 2h+l not composed with 1r by Theorem 2.1. 

Q.E.D. 
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