On the Castelnuovo-Severi inequality for a double covering

Changho Keem ${ }^{1}$ and Akira Ohbuchi ${ }^{2}$

§0. Introduction, motivation and the results

Let C be a smooth projective irreducible complex algebraic curve of genus $g \geq 2$. We denote g_{d}^{1} by a 1 -dimensional possibly incomplete linear system of degree d on C. For any $d \geq g+1$, every curve C of genus g has a base point free g_{d}^{1} which may be taken as a general pencil of a general element in $W_{d}^{d-g}(C)=J(C)$. If C is a hyperelliptic curve with the hyperelliptic pencil g_{2}^{1}, it is well-known that any base point free pencil of degree $d \leq g$ is a subsystem of the complete $r g_{2}^{1}$ where $r=\frac{d}{2}$; cf. [1, p.109]. In particular, the only base point free and complete pencil on a hyperelliptic curve is the g_{2}^{1}. On the other hand, a non-hyperelliptic curve C has a base point free and complete pencil of degree g, by taking off $g-2$ general points from the very ample canonical linear system $\left|K_{C}\right|$.

Furthermore, a theorem of Harris asserts that any non-hyperelliptic curve of genus g has a base point free and complete pencil of degree $g-1$; cf. [1, p.372]. However, this seemingly simple fact requires a proof which is somewhat involved. Especially, in case C is a bi-elliptic curve, one needs to show that the variety $W_{g-1}^{1}(C)$ consisting of special pencils of degree $g-1$ is reducible by using enumerative methods; see also [3, Proposition 3.3], [6, Proposition 2.5] for the other proofs concerning the existence of a base point free and complete pencil g_{g-1}^{1} on a bi-elliptic curve. At this point, it is worthwhile to recall the following classical result known as Castelnuovo-Severi inequality.

[^0]Proposition 0.1 (Castelnuovo-Severi inequality, [1, p.366]). Let C, B_{1}, B_{2} be curves of respective genera g, g_{1}, g_{2}. Assume that

$$
\pi_{i}: C \rightarrow B_{i}, i=1,2
$$

is a d_{i}-sheeted mapping such that

$$
\left(\pi_{1}, \pi_{2}\right): C \rightarrow B_{1} \times B_{2}
$$

is birational to its image. Then

$$
g \leq\left(d_{1}-1\right)\left(d_{2}-1\right)+d_{1} g_{1}+d_{2} g_{2}
$$

As an easy application of Proposition 0.1, we make a note of the following remarks.

Remark 0.2. (i) Let C be a hyperelliptic curve with the 2 -sheeted covering $\pi_{1}: C \rightarrow \mathbb{P}^{1}$ induced by the unique hyperelliptic pencil g_{2}^{1}. Let g_{d}^{1} be a base point free pencil not composed with the g_{2}^{1}. In other words, g_{d}^{1} induces a covering $\pi_{2}: C \rightarrow \mathbb{P}^{1}$ of degree d such that $\left(\pi_{1}, \pi_{2}\right): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is birational to its image. By the Castelnuovo-Severi inequality, we have $g \leq d-1$. This recovers the fact that any base point free pencil of degree $d \leq g$ is a subsystem of a multiple of the hyperelliptic pencil, which was mentioned earlier.
(ii) More generally, let $\pi: C \rightarrow E$ be a double covering of a smooth curve E of genus h. Let g_{d}^{1} be a base point free pencil of degree d not composed with the involution determined by π (composed with π for short). Again by the Castelnuovo-Severi inequality, we have

$$
\begin{equation*}
d \geq g-2 h+1 \tag{0.1}
\end{equation*}
$$

Therefore it follows that any base point free pencil of degree $d \leq g-2 h$ is of the the form $\pi^{*} g_{e}^{1}$ for some g_{e}^{1} on E.

In case $h=1$, the theorem of Harris quoted earlier indicates that the inequality (0.1) is indeed sharp on a bi-elliptic curve. For the case $h=2$, it only has been known that there exists a base point free and complete pencil of degree $g-2$ not composed with the double covering under somewhat unsatisfactory genus assumption $g \geq 11$, whereas the existence of a base point free and complete g_{g-3}^{1} has remained open; cf. [2, Proposition 2.6]. Therefore, we would like to raise the following questions regarding the sharpness of the inequality (0.1).

Question 0.3. (i) Let $\pi: C \rightarrow E$ be double covering of a smooth curve E of genus h. Does there exist a base point free pencil of degree $g-2 h+1$ not composed with π ?
(ii) Let $\pi: C \rightarrow E$ be double covering of a smooth curve E of genus h. Does there exists a base point free pencil of degree d not composed with π for every $d \geq g-2 h+1$?
(iii) What is the optimal range for the genus g of the double covering with respect to the genus h of the base curve E ensuring affirmative answers to the questions above? Or, find examples of double coverings for which questions (i) or (ii) fail.

We may even pose a more naive question: Given a smooth curve E of genus h, does there exist a smooth double covering $C \xrightarrow{\pi} E$ of genus g possessing a base point free pencil of degree $g-2 h+1$ not composed with π ? However this turns out to be relatively easy to answer.

Example 0.4. Given a smooth curve E of genus $h \geq 0$ and an integer $g \geq 4 h$, let $C \subset \mathbb{P}^{1} \times E$ be a general divisor linearly equivalent to $D:=$ $2 p \times E+\mathbb{P}^{1} \times N$ with $\operatorname{deg} N=g-2 h+1$ and $p \in \mathbb{P}^{1}$. By the condition $g \geq 4 h, D$ is very ample and hence C is a smooth curve of genus g by the adjunction formula. Furthermore, the two projection maps of $E \times \mathbb{P}^{1}$ to E and \mathbb{P}^{1} restricted to C correspond to a degree two morphism $C \xrightarrow{\pi} E$ and a base point free and complete pencil $g_{g-2 h+1}^{1}$ not composed with π.

Motivated by Example 0.4, the main result of this paper is the following theorem which provides an affirmative answer to the Question 0.3 (i).

Theorem A. Let C be a curve of genus g which admits a double covering $\pi: C \longrightarrow E$ with $g(E)=h \geq 0$ and $g \geq 4 h$. Then C has a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π.

By using Theorem A, we are also able to answer the Question 0.3 (ii) in the affirmative.

Theorem B. Let C be a curve of genus g which admits a double covering $\pi: C \longrightarrow E$ with $g(E)=h$ and $g \geq 8 h-4$. Then there exists a base point free pencil of degree d not composed with π for any degree d with $d \geq g-2 h+1$.

The organization of this paper is as follows. In $\S 1$, after giving a general theory between a double covering $\pi: C \rightarrow E$ and an embedding of C into a ruled surface (see Proposition 1.5), we prove necessary and sufficient conditions for the existence of base point free and complete $g_{g-2 h+1}^{1}$ (see Theorem 1.1). This can be done by observing the relationship between the above associated embedding of C into a ruled surface
and the embedding $\left(\pi, g_{g-2 h+1}^{1}\right): C \hookrightarrow E \times \mathbb{P}^{1}$ by using elementary transformations. In $\S 2$, we prove that the necessary and sufficient condition in $\S 1$ for the existence of such $g_{g-2 h+1}^{1}$ holds for any smooth double covering under the numerical assumption $g \geq 4 h$ by using Theorem 2.1, thereby proving Theorem A. This will be carried out by using an elementary theory of determinantal varieties. We then proceed to prove Theorem B by the excess linear series argument. In §3, we mainly deal with the Question 0.3 (iii). Specifically, we show that the numerical assumption $g \geq 4 h$ in Theorem A is the best possible one by constructing an example of a double covering of $g=4 h-1$ without a base point free and complete $g_{g-2 h+1}^{1}$. We also exhibit an example of a double covering with a base point free and complete $g_{g-2 h+1}^{1}$ under the same numerical condition $g=4 h-1$. Throughout we use the same notations and conventions as in [1].

$\S 1$. Curves on ruled surfaces

In this section we study double coverings on a ruled surface. In particular we collect and develop some methods realizing a double covering with a base point free pencil of particular degree as a smooth divisor on a ruled surface. The goal of this section is to prove the following result:

Theorem 1.1. Let $C=\operatorname{Spec}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right) \xrightarrow{\pi} E$ be a smooth double covering and let $\iota: C \rightarrow \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$ be an embedding associated with π such that $\rho_{N} \iota=\pi$. Then the following four conditions are equivalent:

1) C has a base point free and complete $g_{g-2 h+1}^{1}$ which is not composed with π, and $\pi_{*} D \in|N|$ for $D \in g_{g-2 h+1}^{1}$.
2) There is a section $H \in\left|T_{N}+\rho_{N}^{*}(N)\right|$ such that $\left.H\right|_{\iota(C)}=D_{1}+D_{2}$ with $\pi_{*} D_{1}, \pi_{*} D_{2} \in|N|$ and $D_{1} \sim \sigma^{*} D_{2}$.
3) There is a divisor $H \in\left|T_{N}+\rho_{N}^{*} N\right|$ such that $H \cap T_{N}=\emptyset$ satisfying $\left.H\right|_{\iota(C)}=D_{1}+D_{2}$ with $\pi_{*} D_{1}, \pi_{*} D_{2} \in|N|$.
4) There is a divisor $A \in\left|\pi^{*} N\right| \backslash\left\{\pi^{*} L|L \in| N \mid\right\}$ such that $\pi_{*} A=$ $N_{1}+N_{2}$ and $N_{1}, N_{2} \in|N|$.

Let M be an effective divisor on a smooth projective curve E of genus h and let $\mathcal{O}_{E}(M)$ be the line bundle associated with M. Throughout this paper, we denote the structure morphism of the ruled surface $\mathbb{P}\left(\mathcal{O}_{E} \oplus\right.$ $\left.\mathcal{O}_{E}(-M)\right)$ by

$$
\rho_{M}: \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right) \rightarrow E
$$

and its minimal section by T_{M}; by the minimal section, we always mean the section of minimal degree on a normalized ruled surface. For $P \in$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)$, let F be the fibre over $p=\rho_{M}(P)$. In the blowing-up

$$
\eta: S_{P} \rightarrow \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)
$$

of the ruled surface $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)$ at P, let e be the exceptional divisor of η, f the proper transform of F and

$$
\tau: S_{P} \rightarrow S^{\prime}
$$

the contraction of f. We put $P^{\prime}=\tau(f) \in S^{\prime}$. Since S^{\prime} is an elementary transformation of $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)$ with center P, S^{\prime} is a ruled surface over E; cf. [4, p.416]. We define ρ^{\prime} as its ruling $S^{\prime} \rightarrow E$.

We choose a section $H_{M} \in\left|T_{M}+\rho_{M}^{*} M\right|$ and hence $H_{M} \cap T_{M}=$ \emptyset Let $\widetilde{T_{M}}$ and $\widetilde{H_{M}}$ be the proper transforms of T_{M} and H_{M} on S_{P} respectively, and set $T^{\prime}=\tau\left(\widetilde{T_{M}}\right), H^{\prime}=\tau\left(\widetilde{H_{M}}\right)$. Since $H_{M} \cap T_{M}=\emptyset$, we have $H^{\prime} \cap T^{\prime}=\emptyset$ for $P \in T_{M} \cup H_{M}$ which implies

$$
S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right)
$$

for some $M^{\prime} \in \operatorname{Div}(E)$; cf. [4, p.383]. Let C_{0} be an irreducible curve on $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)$ with $C_{0} \sim 2 T_{M}+\rho_{M}^{*}(Z)$ for some $Z \in \operatorname{Div}(E)$, let $\phi: C \rightarrow C_{0}$ be its normalization, let $\widetilde{C_{0}}$ be the proper transform of C_{0} on S_{P}, let $C_{0}^{\prime}=\tau\left(\widetilde{C_{0}}\right)$ and let $\phi^{\prime}: C \rightarrow C_{0}^{\prime}$ be its normalization. Let $\pi=\rho_{M} \phi$. Note that $\pi=\rho^{\prime} \phi^{\prime}$ and $\pi: C \rightarrow E$ is a double covering and we denote the associated involution by σ.

From now, we assume that $P \in T_{M} \cup H_{M}$. First, we consider the case, the point $P \in T_{M} \cup H_{M}$ is a smooth point of C_{0}. By $\left(\widetilde{C_{0}}+e . f+e\right)=$ $\left(C_{0} . F\right)=2$ and $\left(\widetilde{C_{0}} \cdot e\right)=1$, we have $\left(\widetilde{C_{0}} . f\right)=1$. Hence C_{0}^{\prime} is nonsingular at P^{\prime}. Therefore $C_{0} \cong \widetilde{C_{0}} \cong C_{0}^{\prime}$, when C is non-singular.
Lemma 1.2. (i) T^{\prime} is a minimal section $T_{M^{\prime}}$ on $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right)$.
(ii) In case $P \in H_{M}$ and $\operatorname{deg}(M-p) \geq 0$, we have

$$
\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right) \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-p))\right)
$$

$H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(M-p), C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M-p}{ }^{*}(Z-p)$ and $\phi^{*} H^{\prime}=\phi^{*} H_{M}-P$.
(iii) In case $P \in T_{M}$, we have
$\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right) \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M+p))\right)$,
$H^{\prime} \sim T^{\prime}+\rho_{M+p}{ }^{*}(M+p), C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M+p}{ }^{*}(Z+p)$ and $\phi^{*} H^{\prime}=$ $\phi^{*} H_{M}+\sigma^{*} P$.

Proof. We only give a proof for the case $P \in H_{M}$ and $\operatorname{deg}(M-p) \geq 0$; the case $P \in T_{M}$ is similar. Since $\left.H_{M}\right|_{C_{0}}=\widetilde{H_{M}}+\left.e\right|_{\widetilde{C_{0}}}$ and $\left(\widetilde{C_{0}} . e\right)=1$, we have

$$
\left.H^{\prime}\right|_{C_{0}^{\prime}}=\left.\widetilde{H_{M}}\right|_{\widetilde{C_{0}}},\left.e\right|_{\widetilde{C_{0}}}=P,\left.H^{\prime}\right|_{C_{0}^{\prime}}=\left.H_{M}\right|_{C_{0}}-P
$$

Now we show that T^{\prime} is a minimal section. Since $P \notin T_{M}$,

$$
\eta^{*} T_{M}=\widetilde{T_{M}} \cong T_{M} \cong T^{\prime}
$$

Since T_{M} is a (minimal) section, $T_{M} \cong E$ and $\mathcal{O}_{T_{M}}\left(T_{M}\right) \cong \mathcal{O}_{E}(-M)$. Therefore we have

$$
\mathcal{O}_{E}(-M) \cong \mathcal{O}_{T_{M}}\left(T_{M}\right) \cong \mathcal{O}_{\widetilde{T_{M}}}\left(\eta^{*} T_{M}\right)=\mathcal{O}_{\widetilde{T_{M}}}\left(\widetilde{T_{M}}\right)
$$

Since $\mathcal{O}_{T^{\prime}}\left(T^{\prime}\right) \cong \mathcal{O}_{\widetilde{T_{M}}}\left(\tau^{*} T^{\prime}\right)=\mathcal{O}_{\widetilde{T_{M}}}\left(\widetilde{T_{M}}+f\right)$,

$$
\begin{equation*}
\mathcal{O}_{T^{\prime}}\left(T^{\prime}\right) \cong \mathcal{O}_{E}(-(M-p)) \tag{1.2.1}
\end{equation*}
$$

To see $\mathbb{P}\left(\mathcal{O} \oplus \mathcal{O}\left(-M^{\prime}\right)\right) \cong \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-(M-p)))$, we argue as follows. If $\left(T^{\prime} . T_{M^{\prime}}\right)<0, T^{\prime}=T_{M^{\prime}}$ which implies $M^{\prime} \sim-\left.T^{\prime}\right|_{T^{\prime}} \sim M-p$ and we are done for this case. Therefore we may assume $\left(T^{\prime} \cdot T_{M^{\prime}}\right) \geq 0$. Let $T^{\prime} \sim a T_{M^{\prime}}+\rho_{M^{\prime}}^{*} B$ with $\operatorname{deg} B=b$ and let $\left(T_{M^{\prime}}^{2}\right)=-n^{\prime}$. By the assumption $\operatorname{deg}(M-p) \geq 0$, we have $\left(T^{\prime 2}\right)=a\left(2 b-a n^{\prime}\right) \leq 0$. Since T^{\prime} is a section, $a=1$ and $b \geq a n^{\prime}$ by $\left(T^{\prime} \cdot T_{M^{\prime}}\right) \geq 0$, which implies $b=0$. On the other hand, since T^{\prime} is effective

$$
\begin{equation*}
\{0\} \neq \Gamma\left(S^{\prime}, \mathcal{O}\left(T^{\prime}\right)\right) \cong \Gamma\left(E, \mathcal{O}_{E}(B) \oplus \mathcal{O}_{E}\left(B-M^{\prime}\right)\right) \tag{1.2.2}
\end{equation*}
$$

by projection formula. When $M^{\prime}>0, \operatorname{deg}\left(B-M^{\prime}\right)=\operatorname{deg}\left(-M^{\prime}\right)=$ $-n^{\prime}<0$ implying $B \sim 0$ and hence $T^{\prime}=T_{M^{\prime}}$. Therefore it follows that $M^{\prime} \sim-\left.T^{\prime}\right|_{T^{\prime}} \sim M-p$ by (1.2.1). When $M^{\prime}=0$, we have either $B \sim 0$ or $M^{\prime} \sim B$ by (1.2.2). Since $M^{\prime}=\operatorname{deg} M^{\prime}=0, T_{M^{\prime}}+\rho_{M^{\prime}}^{*} M^{\prime}$ is linearly equivalent to a minimal section $T_{-M^{\prime}} \subset \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(M^{\prime}\right)\right) \cong$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right)$. Therefore we have either $T^{\prime}=T_{M^{\prime}}$ when $B \sim 0$ or $T^{\prime}=T_{-M^{\prime}}$ when $M^{\prime} \sim B$. In either cases, T^{\prime} is a minimal section satisfying (1.2.1). Therefore

$$
\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-M^{\prime}\right)\right) \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-p))\right) \text { and } T^{\prime}=T_{M-p}
$$

Now we prove $H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(M-p)$. Let $H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(G)$ for some $G \in \operatorname{Div} E$. Since $H^{\prime} \cap T^{\prime}=\emptyset,\left.H^{\prime}\right|_{T^{\prime}} \sim 0$ and hence $\left.T^{\prime}\right|_{T^{\prime}}+G \sim 0$ which implies $G \sim-\left.T^{\prime}\right|_{T^{\prime}} \sim M-p$. Hence $H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(M-p)$.

Finally we prove $C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M-p}{ }^{*}(Z-p)$. Since C_{0}^{\prime} is smooth and $\tau^{*} C_{0}^{\prime} \sim \widetilde{C_{0}}+f$,

$$
\begin{equation*}
\tau^{*} C_{0}^{\prime} \sim \eta^{*} C_{0}-e+f \tag{1.2.3}
\end{equation*}
$$

Since $\eta^{*} C_{0} \sim 2 \widetilde{T_{M}}+\eta^{*} \rho_{M}^{*}(Z-p+p) \sim 2 \widetilde{T_{M}}+\eta^{*} \rho_{M}^{*}(Z-p)+(e+f)$,

$$
\begin{aligned}
\tau^{*} C_{0}^{\prime} & \sim 2\left(\widetilde{T_{M}}+f\right)+\tau^{*} \rho_{M-p}^{*}(Z-p) \\
& =2 \tau^{*} T^{\prime}+\tau^{*} \rho_{M-p}^{*}(Z-p)=\tau^{*}\left(2 T^{\prime}+\rho_{M-p}^{*}(Z-p)\right)
\end{aligned}
$$

by (1.2.3). Hence $C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M-p}{ }^{*}(Z-p)$.
Q.E.D.

Next, we consider the case, the point $P \in T_{M} \cup H_{M}$ is a singular point of C_{0}. Let $F=\rho_{M}^{*} p$ where $p=\rho_{M}(P)$. Since $\rho_{M} \phi=\pi: C \rightarrow E$ is a double covering, $\phi^{*} F=\pi^{*} p$ which means P is a double point or a cusp.
Lemma 1.3. (i) In case $P \in H_{M}$ and $\operatorname{deg}(M-p) \geq 0$, we have

$$
S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-p))\right)
$$

$H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(M-p), C_{0}^{\prime} \sim 2 T^{\prime \prime}+\rho_{M-p}{ }^{*}(Z)$ and $\phi^{*} H^{\prime}=\phi^{*} H_{M}-\pi^{*} p$.
(ii) In case $P \in T_{M}$, we have

$$
S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M+p))\right)
$$

$H^{\prime} \sim T^{\prime}+\rho_{M+p}{ }^{*}(M+p), C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M+p}{ }^{*}(Z)$ and $\phi^{*} H^{\prime}=\phi^{\prime} * H_{M}+\pi^{*} p$.

Proof. We only give a proof for the case $P \in H_{M}$ and $\operatorname{deg}(M-2 p) \geq 0$; the case $P \in T_{M}$ is similar. By Lemma 1.2, $S^{\prime \prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-\right.$ $2 p)$),$H^{\prime \prime} \sim T^{\prime \prime}+\rho_{M-2 p}{ }^{*}(M-2 p)$. We now prove $C_{0}^{\prime \prime} \sim 2 T^{\prime \prime}+$ $\rho_{M-2 p}{ }^{*}(Z-2 p)$. Since $P \in C_{0}$ is a double point, $\eta_{1}^{*} C_{0} \sim \widetilde{C_{0}}+2 e_{1}$. Therefore $2=\left(C_{0} \cdot F\right)=\left(\widetilde{C_{0}}+2 e_{1} \cdot e_{1}+f_{1}\right)$ which implies $\left(\widetilde{C_{0}} \cdot e_{1}\right)=2$. Hence $\left(\widetilde{C_{0}} \cdot f_{1}\right)=0$, so we have $\widetilde{C_{0}}=\tau_{1}^{*} C_{0}^{\prime}$ because τ_{1} is a contraction of f_{1}. Since $1=\left(T_{M} \cdot F\right)=\left(\widetilde{T_{M}}+e_{1} \cdot e_{1}+f_{1}\right)$ and $\left(\widetilde{T_{M}} \cdot e_{1}\right)=1,\left(\widetilde{T_{M}} \cdot f_{1}\right)=0$. Therefore $\tau_{1}^{*} T^{\prime}=\widetilde{T_{M}}$ which implies

$$
\tau_{1}^{*} C_{0}^{\prime} \sim \eta_{1}^{*}\left(2 T_{M}+\rho_{M}^{*} Z\right)-2 e_{1} \sim 2 \tau_{1}^{*} T^{\prime}+\eta_{1}^{*} \rho_{M}^{*} Z
$$

Since $\eta_{1}^{*} \rho_{M}^{*} Z \sim \tau_{1}^{*} \rho_{1}^{*} Z, \tau_{1}^{*} C_{0}^{\prime} \sim \tau_{1}^{*}\left(2 T^{\prime}+\rho_{1}^{*} Z\right)$, i.e.

$$
C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{1}^{*} Z
$$

Finally, we consider the case, the point $P \in T_{M} \cup H_{M}$ does not lie on C_{0}.
Lemma 1.4. (i) In case $P \in H_{M}$ and $\operatorname{deg}(M-p) \geq 0$, we have

$$
S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-p))\right)
$$

$H^{\prime} \sim T^{\prime}+\rho_{M-p}{ }^{*}(M-p), C_{0}^{\prime} \sim 2 T^{\prime \prime}+\rho_{M-p}{ }^{*}(Z-2 p)$ and $\phi_{1}^{*} H^{\prime}=\phi^{*} H_{M}$.
(ii) In case $P \in T_{M}$, we have

$$
S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M+p))\right)
$$

$H^{\prime} \sim T^{\prime}+\rho_{M+p}{ }^{*}(M+p), C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{M+p}{ }^{*}(Z+2 p)$ and $\phi^{*} H^{\prime}=\phi^{*} H_{M}$.

Proof. We only give a proof for the case $P \in H_{M}$ and $\operatorname{deg}(M-2 p) \geq 0$; the case $P \in T_{M}$ is similar. By Lemma $1.2, S^{\prime \prime} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-(M-\right.$ $2 p)$) , $H^{\prime \prime} \sim T^{\prime \prime}+\rho_{M-2 p}{ }^{*}(M-2 p)$. We now prove $C_{0}^{\prime \prime} \sim 2 T^{\prime \prime}+$ $\rho_{M-2 p}{ }^{*}(Z-2 p)$. Since $P \in C_{0}$ is a double point, $\eta_{1}^{*} C_{0} \sim \widetilde{C_{0}}+2 e_{1}$. Therefore $2=\left(C_{0} \cdot F\right)=\left(\widetilde{C_{0}}+2 e_{1} \cdot e_{1}+f_{1}\right)$ which implies $\left(\widetilde{C_{0}} \cdot e_{1}\right)=2$. Hence $\left(\widetilde{C_{0}} \cdot f_{1}\right)=0$, so we have $\widetilde{C_{0}}=\tau_{1}^{*} C_{0}^{\prime}$ because τ_{1} is a contraction of f_{1}. Since $1=\left(T_{M} \cdot F\right)=\left(\widetilde{T_{M}}+e_{1} \cdot e_{1}+f_{1}\right)$ and $\left(\widetilde{T_{M}} \cdot e_{1}\right)=1,\left(\widetilde{T_{M}} \cdot f_{1}\right)=0$. Therefore $\tau_{1}^{*} T^{\prime}=\widetilde{T_{M}}$ which implies

$$
\tau_{1}^{*} C_{0}^{\prime} \sim \eta_{1}^{*}\left(2 T_{M}+\rho_{M}^{*} Z\right)-2 e_{1} \sim 2 \tau_{1}^{*} T^{\prime}+\eta_{1}^{*} \rho_{M}^{*} Z
$$

Since $\eta_{1}^{*} \rho_{M}^{*} Z \sim \tau_{1}^{*} \rho_{1}^{*} Z, \tau_{1}^{*} C_{0}^{\prime} \sim \tau_{1}^{*}\left(2 T^{\prime}+\rho_{1}^{*} Z\right)$, i.e.

$$
C_{0}^{\prime} \sim 2 T^{\prime}+\rho_{1}^{*} Z
$$

Q.E.D.

We recall some basics of a double covering of a curve E of genus h; see [5] for a full treatment. For $N \in E_{g-2 h+1}$, let R be an effective divisor on E with $\mathcal{O}_{E}(R) \cong \mathcal{O}_{E}(2 N)$. Given an isomorphism

$$
\phi: \mathcal{O}_{E}(-N)^{\otimes 2} \xrightarrow{\sim} \mathcal{O}_{E}(-R) \subset \mathcal{O}_{E}
$$

one defines an \mathcal{O}_{E}-algebra structure on $\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)$ by

$$
(a, b) \cdot(c, d)=(a c+\phi(b d), a d+b c)
$$

One then has a double covering $\pi: C=\mathbf{S p e c}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right) \rightarrow E$ with $\pi_{*} \mathcal{O}_{C} \cong \mathcal{O}_{E}$. The virtual genus of C is g, i.e. $\operatorname{dim} H^{1}\left(C, \mathcal{O}_{C}\right)=g$. Note
that $(a, b) \mapsto(a,-b)$ is an \mathcal{O}_{E}-algebra isomorphism of order 2 which induces an involution $\sigma: C \rightarrow C$ over E. Conversely, every double covering over E is of this form. We also recall that a double covering $\pi: C=\operatorname{Spec}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right) \rightarrow E$ is an irreducible reduced nonsingular curve if and only if R is reduced. Let $\lambda: \pi^{*} \mathcal{E} \rightarrow \mathcal{O}_{C}$ be the restriction of a natural map $\lambda: \pi^{*} \pi_{*}\left(\mathcal{O}_{C}\right) \rightarrow \mathcal{O}_{C}$ to $\pi^{*} \mathcal{E}$. Since λ is surjective, we have a morphism

$$
\iota: C \rightarrow \mathbb{P}(\mathcal{E})=\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)
$$

with $\rho_{N} \iota=\pi$.
Proposition 1.5. ι is embedding and $\iota(C) \sim 2\left(T_{N}+\rho_{N}^{*}(N)\right)$ on $\mathbb{P}(\mathcal{E})=$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$.
Proof. Let $U=\operatorname{Spec}(A) \subset E$ be an affine open subset and $\operatorname{Spec} B=$ $\pi^{-1} U$. Let $\left.\mathcal{E}\right|_{U}=\left.\pi_{*}\left(\mathcal{O}_{C}\right)\right|_{U}=\mathcal{O}_{U} e_{1} \oplus \mathcal{O}_{U} e_{2}$ where $e_{1}=1_{A}$ and $\pi^{*} e_{1}=$ $\left(e_{1}, 0\right)$ is the identity of $B=\Gamma\left(U, \pi_{*} \mathcal{O}_{C}\right)$. Let $\left(\pi^{-1} U\right)_{\pi^{*} e_{1}}=\{P \in$ $\left.\pi^{-1} U \mid \pi^{*} e_{1}(P) \neq 0\right\}$. Note that $\left(\pi^{-1} U\right)_{\pi^{*} e_{1}}=\pi^{-1} U=\operatorname{Spec}(B)$ is affine and the homomorphism $A\left[e_{1}, e_{2}\right] \rightarrow \Gamma\left(\pi^{-1}(U), \mathcal{O}_{C}\right)=B$ defined by $e_{i} \mapsto \frac{\pi^{*} e_{i}}{\pi^{*} e_{1}}=\pi^{*} e_{i}(i=1,2)$ is surjective. By [4, p. 151 Proposition 7.2], $\left.\iota\right|_{\pi^{-1} U}$ is embedding and hence ι is embedding. Since $\rho_{N *} \mathcal{O}\left(T_{N}\right) \cong$ $\pi_{*} \mathcal{O}_{C}$,
$\pi^{*} \rho_{N *} \mathcal{O}\left(T_{N}+\rho_{N}^{*} N\right) \cong \pi^{*}\left(\rho_{N *} \mathcal{O}\left(T_{N}\right) \otimes \mathcal{O}_{E}(N)\right) \cong \pi^{*} \pi_{*}\left(\mathcal{O}_{C}\right) \otimes \mathcal{O}_{C}\left(\pi^{*}(N)\right)$
by the projection formula. Therefore $\lambda \otimes \mathcal{O}_{C}\left(\pi^{*}(N)\right): \pi^{*} \rho_{N *} \mathcal{O}\left(T_{N}+\right.$ $\left.\rho_{N}^{*}(N)\right) \rightarrow \mathcal{O}_{C}\left(\pi^{*}(N)\right)$ again defines ι. This means $\phi_{\left|\pi^{*}(N)\right|}=\phi_{\left|T_{N}+\rho_{N}^{*}(N)\right|^{\iota}}$ where $\phi_{\left|\pi^{*}(N)\right|}: C \rightarrow \mathbb{P}\left(\Gamma\left(C, \mathcal{O}_{C}\left(\pi^{*}(N)\right)\right)\right)$ is a morphism defined by $\left|\pi^{*}(N)\right|$ and $\phi_{\left|T_{N}+\rho_{N}^{*}(N)\right|}: \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right) \rightarrow \mathbb{P}\left(\Gamma\left(\mathcal{O}\left(T_{N}+\rho_{N}^{*}(N)\right)\right)\right)$ is a morphism defined by $\left|T_{N}+\rho_{N}^{*}(N)\right|$. Since ι is an embedding and $\phi_{\left|T_{N}+\rho_{N}^{*}(N)\right|}$ is an birational morphism only contracting $T_{N}, \phi_{\left|\pi^{*}(N)\right|}$ is a birational morphism onto its image. Hence

$$
\left(\iota(C) \cdot T_{N}+\rho_{N}^{*}(N)\right)=\operatorname{deg} \phi_{\left|\pi^{*}(N)\right|}(C)=2(g-2 h+1)
$$

Since ι is an embedding and $\rho_{N} \iota=\pi,\left(\iota(C) \cdot \rho_{N}^{*}(N)\right)=\operatorname{deg} \pi^{*}(N)=$ $2(g-2 h+1)$ which implies $\left(\iota(C) \cdot T_{N}\right)=0$, i.e. $\iota(C) \cap T_{N}=\emptyset$ because $\iota(C)$ and T_{N} are irreducible. Therefore $\left.\iota(C)\right|_{T_{N}} \sim 0$. Let $\iota(C) \sim 2 T_{N}+\rho_{N}^{*} B$. Then

$$
0 \sim \iota(C)\left|T_{N} \sim 2 T_{N}\right|_{T_{N}}+B
$$

Since $\left.T_{N}\right|_{T_{N}} \sim-(N), \iota(C) \sim 2\left(T_{N}+\rho_{N}^{*}(N)\right)$.

Corollary 1.6. Let $\pi: C \rightarrow E$ be a smooth double covering. Then C is isomorphic to $\operatorname{Spec}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$ over E if and only if it has an embedding $\iota: C \hookrightarrow \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$ with $\rho_{N} \iota=\pi$ and $\iota(C) \sim$ $2\left(T_{N}+\rho_{N}^{*} N\right)$.

Proof. Assume that there is an embedding $\iota: C \hookrightarrow \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$ with $\rho_{N} \iota=\pi$ and $\iota(C) \sim 2\left(T_{N}+\rho_{N}^{*} N\right)$. Let R^{\prime} be the branch locus of the double covering π. Then there is a divisor N^{\prime} on E with an isomorphism $\phi^{\prime}: \mathcal{O}_{E}\left(N^{\prime}\right)^{\otimes 2} \xrightarrow{\sim} \mathcal{O}_{E}\left(R^{\prime}\right)$ such that:
$\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-N^{\prime}\right)$ is an \mathcal{O}_{E}-algebra by $(a, b) \cdot(c, d)=\left(a c+\phi^{\prime}(b d), a d+b c\right)$ $C \cong \operatorname{Spec}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-N^{\prime}\right)\right)$ over E.

We need to show $N \sim N^{\prime}$. By the Hurwitz relation, $K_{C} \sim \pi^{*}\left(K_{E}+N^{\prime}\right)$. On the other hand, we have

$$
K_{\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)}+\left.\left.\iota(C)\right|_{\iota(C)} \sim \rho_{N}^{*}\left(K_{E}+N\right)\right|_{\iota(C)} \sim \pi^{*}\left(K_{E}+N\right)
$$

by the adjunction formula and the assumption $\iota(C) \sim 2\left(T_{N}+\rho_{N}^{*} N\right)$. Therefore we have $K_{E}+N^{\prime} \sim K_{E}+N$ and hence $N \sim N^{\prime}$. For the converse part, we denote $\iota=\iota_{0}$. Then the result is clear by Proposition 1.5.
Q.E.D.

Remark 1.7. Let $\iota: C \rightarrow \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right)$ with $\iota(C) \sim 2\left(T_{N}+\rho_{N}^{*}(N)\right)$ be an embedding associated with a double covering $C \cong \operatorname{Spec}\left(\mathcal{O}_{E} \oplus\right.$ $\left.\mathcal{O}_{E}(-N)\right) \rightarrow E$. Since

$$
\Gamma\left(\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right), \mathcal{O}\left(T_{N}+\rho_{N}^{*}(N)\right)\right) \cong \Gamma\left(E, \mathcal{O}_{E}(N) \oplus \mathcal{O}_{E}\right)
$$

we have

$$
\begin{equation*}
\left|\pi^{*}(N)\right|=\left\{\left.H\right|_{\iota(C)}|H \in| T_{N}+\rho_{N}^{*}(N) \mid\right\} \tag{1.7.1}
\end{equation*}
$$

Since $\left.T_{N}\right|_{\iota(C)} \sim 0$, we have

$$
\begin{equation*}
\left\{\pi^{*} L|L \in| N \mid\right\}=\left\{\left.\left(T_{N}+\rho_{N}^{*} L\right)\right|_{\iota(C)}|L \in| N \mid\right\} \tag{1.7.2}
\end{equation*}
$$

Now we prove Theorem 1.1.
Proof of Theorem 1.1: 1) $\Rightarrow 2$): Since C has a base point free $g_{g-2 h+1}^{1}$ not composed with π, the morphism $\phi=\left(g_{g-2 h+1}^{1}, \pi\right): C \rightarrow \mathbb{P}^{1} \times E=$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\right)$ is a birational morphism. Note that $\phi(C) \sim 2 T_{0}+\rho_{0}^{*}(J)$ where $J=\pi_{*} L$ and $L \in g_{g-2 h+1}^{1}$. Take $a \neq b \in \mathbb{P}^{1}$ and put $T_{0}=\{a\} \times E$, $H_{0}=\{b\} \times E$ which implies $T_{0} \cap H_{0}=\emptyset$. Let $D_{1}^{\prime}=\phi^{*} T_{0}, D_{2}^{\prime}=\phi^{*} H_{0}$ and
note that $D_{1}^{\prime}, D_{2}^{\prime} \in g_{g-2 h+1}^{1}$. Applying Lemma 1.2-(iii) and Lemma 1.3(ii) to every $P \leq D_{1}^{\prime}$, we get a ruled surface $\rho_{M}: \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right) \rightarrow E$ and a non-singular curve C^{\prime} on $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-M)\right)$ such that $C^{\prime} \cong C$ and $C^{\prime} \sim 2\left(T_{M}+\rho_{M}^{*} M\right)$. We put $D_{1}=\sigma^{*} D_{1}^{\prime}$ and $D_{2}=D_{2}^{\prime}$ which implies $D_{1} \sim \sigma^{*} D_{2}$. Note that $\pi_{*} D_{1}^{\prime} \sim \pi_{*} D_{2}^{\prime}$ since $D_{1}^{\prime} \sim D_{2}^{\prime}$. By Theorem $1.6, M \sim N$ and we finally have $\pi_{*} D_{1}, \pi_{*} D_{2} \in|N|, H^{\prime} \sim T_{N}+\rho_{N}^{*}(N)$, $\left.H^{\prime}\right|_{C_{2}}=D_{1}+D_{2}$.
2) $\Rightarrow 4)$: We take a section $H \in\left|T_{N}+\rho_{N}^{*} N\right|, D_{1}, D_{2} \in \operatorname{Div}(C)$ satisfying the condition 2). Since $H \cap T_{N}=\emptyset, H \notin\left\{T_{N}+\rho^{*} N_{0}\left|N_{0} \in\right| N \mid\right\}$. We put $A=\left.H\right|_{\iota(C)}, N_{1}=\pi_{*} D_{1}$ and $N_{2}=\pi_{*} D_{2}$. Then we have $A \in\left|\pi^{*} N\right| \backslash\left\{\pi^{*} N_{0}\left|N_{0} \in\right| N \mid\right\}$ by Remark 1.7 and $\pi_{*} A=N_{1}+N_{2}$, $N_{1}, N_{2} \in|N|$.
4) $\Rightarrow 3$): We take a divisor $A \in\left|\pi^{*} N\right| \backslash\left\{\pi^{*} N_{0}\left|N_{0} \in\right| N \mid\right\}$ such that $\pi_{*} A=N_{1}+N_{2}$ and $N_{1}, N_{2} \in|N|$. By (1.7.1) there is a divisor $H \in\left|T_{N}+\rho_{N}^{*} N\right|$ such that $\left.H\right|_{\iota(C)}=A$. Since $\pi_{*} A=N_{1}+N_{2}$, there exist two effective divisors $D_{1}, D_{2} \in \operatorname{Div}(C)$ such that $\left.H\right|_{\iota(C)}=D_{1}+D_{2}$ and $\pi_{*} D_{1}, \pi_{*} D_{2} \in|N|$. By (1.7.2), $H \cap T_{N}$ is finite and hence $H \cap T_{N}=\emptyset$ by $\left(H . T_{N}\right)=0$.
3) \Rightarrow 1): Take a divisor $H \in\left|T_{N}+\rho_{N}^{*} N\right|$ such that $H \cap T_{N}=\emptyset$ satisfying $\left.H\right|_{\iota(C)}=D_{1}+D_{2}$ with $\pi_{*} D_{1}, \pi_{*} D_{2} \in|N|$. We prove that H is a section. Since $\left(H . \rho_{N}^{*} p\right)=1$, there exists an irreducible divisor \widehat{H} and a divisor B such that $H=\widehat{H}+B$ with $\left(\widehat{H} \cdot \rho_{N}^{*} p\right)=1$ and $\left(B \cdot \rho_{N}^{*} p\right)=0$. Therefore $B=\rho^{*}\left(p_{1}+\cdots+p_{s}\right)$ for some $p_{1}, \cdots p_{s} \in E . \operatorname{By}\left(H \cdot T_{N}\right)=0$, $\left(\widehat{H} \cdot T_{N}\right)+s=0$. If $s>0$, then $\left(\widehat{H} \cdot T_{N}\right)<0$ implying $\widehat{H}=T_{N}$ and hence $H \cap T_{N} \neq \emptyset$, a contradiction. Therefore $s=0$ and $H=\widehat{H}$, i.e. H is a section. Applying Lemma 1.2-(ii) and Lemma 1.3-(i) to every $P \leq D_{1}$, we get a ruled surface $\rho_{0}: \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\right)=\mathbb{P}^{1} \times E \rightarrow E$, a non-singular curve C^{\prime} such that $C^{\prime} \cong C$, and $C^{\prime} \sim 2 T_{0}+\rho_{0}^{*}(N)=2\{\mathrm{pt}\} \times E+\mathbb{P}^{1} \times N$ with $\operatorname{deg} N=g-2 h+1$. Therefore the second projection $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\right) \cong$ $\mathbb{P}^{1} \times E \rightarrow \mathbb{P}^{1}$ restricted on C^{\prime} induces a base point free $g_{g-2 h+1}^{1}$ not composed with π.
Q.E.D.

§2. Proof of Theorem A

Let

$$
\phi: \Gamma\left(E, \mathcal{O}_{E}(N)\right) \otimes \Gamma\left(E, \mathcal{O}_{E}(N)\right) \rightarrow \Gamma\left(E, \mathcal{O}_{E}(2 N)\right)
$$

be the natural cup product map. Our eventual goal is to prove Theorem A, but for most of this paper, we prove the following theorem.

Theorem 2.1. Let $C=\operatorname{Spec}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)\right) \xrightarrow{\pi} E$ be a double covering of genus g over a curve E of genus h with $g \geq 4 h-2$. Choose $r \in$ $\Gamma\left(E, \mathcal{O}_{E}(2 N)\right)$ whose zero is the branch locus of π. Then C has a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π if and only if $r \in$ $\operatorname{im}\left[\phi: \Gamma\left(E, \mathcal{O}_{E}(N)\right) \otimes \Gamma\left(E, \mathcal{O}_{E}(N)\right) \rightarrow \Gamma\left(E, \mathcal{O}_{E}(2 N)\right]\right.$.

We put $V=\Gamma\left(E, \mathcal{O}_{E}(N)\right)$. We assume that $g \geq 4 h-2$. Since $\operatorname{deg}\left(\mathcal{O}_{E}(N)\right)=g-2 h+1 \geq 2 h-1, \mathcal{O}_{E}(N)$ is non-special and hence $\operatorname{dim} V=g-3 h+2$ by the Riemann-Roch Theorem. Let $\mathrm{M}(m)$ be the variety of $m \times m$ complex matrices. Let

$$
M_{k}(g-3 h+2) \subset M(g-3 h+2)
$$

be the k th determinantal variety, i.e. the subvariety of $M(g-3 h+2)$ defined by the ideal generated by $(k+1) \times(k+1)$-minors of $\left(a_{i j}\right)$. The codimension of $M_{k}(g-3 h+2)$ is

$$
\begin{equation*}
\operatorname{codim} M_{k}(g-3 h+2)=(g-3 h+2-k)^{2} \tag{2.1}
\end{equation*}
$$

by [1, p. 67 Proposition]. Let $e_{1}, \cdots, e_{g-3 h+2}$ be a basis of V and let

$$
\chi: V \otimes V \rightarrow \mathrm{M}(g-3 h+2)
$$

be the natural isomorphism defined by $\sum_{i, j=1, \cdots, g-3 h+2} a_{i j} e_{i} \otimes e_{j} \mapsto\left(a_{i j}\right)$.
Lemma 2.2. $\chi^{-1}\left(M_{1}(g-3 h+2)\right)=\{u \otimes v \mid u, v \in V\}$.
Proof. Since

$$
M_{1}(g-3 h+2)=\left\{\left(a_{i j}\right) \mid a_{i j}=u_{i} v_{j}, i, j=1, \cdots, g-3 h+2\right\}
$$

we have $\chi^{-1}\left(M_{1}(g-3 h+2)\right)=\left\{u \otimes v \mid u=\sum u_{i} e_{i}, v=\sum v_{j} e_{j}\right\}$. Q.E.D.

We put

$$
M_{1}=\chi^{-1}\left(M_{1}(g-3 h+2)\right) \text { and } M_{0}=\{a \otimes a \mid a \in V\}
$$

which are affine cones, i.e. if $c \in M_{i}$ and $\lambda \in \mathbb{C}$, then $\lambda c \in M_{i}$ for $i=0,1$. For an affine cone A, we denote $\mathbb{P}(A)$ by A / \mathbb{C}^{*}. For an element
$z \in A$, we denote $[z]$ by $\mathbb{C} z / \mathbb{C}^{*} \in \mathbb{P}(A)$. Let $\mathrm{S}^{2} V$ be the subspace of $V \otimes V$ generated by $\{a \otimes b+b \otimes a \mid a, b \in V\}$. Then $\mathrm{S}^{2} V$ is indeed the second symmetric product of V containing M_{0}.

Lemma 2.3. $\mathbb{P}\left(M_{0}\right) \subset \mathbb{P}\left(S^{2} V\right)$ is the image of $\mathbb{P}(V)$ under the Veronese embedding.
Proof. Let $a=\sum_{i=1}^{g-3 h+2} a_{i} e_{i} \in V$. Then

$$
a \otimes a=\sum_{i=1}^{g-3 h+2} a_{i}^{2} e_{i} \otimes e_{i}+\sum_{i<j} a_{i} a_{j}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)
$$

which gives a coordinate of the Veronese embedding $\mathbb{P}(V) \hookrightarrow \mathbb{P}\left(\mathrm{S}^{2} V\right)$. Q.E.D.

By (2.1) and Lemma 2.3, we have the following:
Corollary 2.4. $\operatorname{dim} \mathbb{P}\left(M_{1}\right)=2 g-6 h+2$ and $\operatorname{dim} \mathbb{P}\left(M_{0}\right)=g-3 h+1$.
Let \tilde{V} be a vector space. For affine cones $S, T \subset \widetilde{V}$, we put

$$
S * T=\{\lambda \widetilde{x}+\mu \widetilde{y} \mid \widetilde{x} \in S, \widetilde{y} \in T, \lambda, \mu \in \mathbb{C}\}
$$

Note that $S * T$ is again an affine cone and we may consider $\mathbb{P}(S * T) \subset$ $\mathbb{P}(\widetilde{V})$.

Lemma 2.5. Let $M^{*}=M_{0} * M_{1} \subset V \otimes V$. Then $\operatorname{dimP}\left(M^{*}\right)=3 g-$ $9 h+4$.

Proof. We define a morphism

$$
\theta: V \oplus V \oplus V \rightarrow M^{*}
$$

by $\theta(x, y, u)=x \otimes y+u \otimes u$, which is surjective. Let $x, y, u \in V$ be general elements and let $x^{\prime}, y^{\prime}, u^{\prime} \in V$ be arbitrary elements. We may assume that x, y, u are linearly independent. We put

$$
x=\sum_{i=1}^{g-3 h+2} x_{i} e_{i}, y=\sum_{i=1}^{g-3 h+2} y_{i} e_{i}, u=\sum_{i=1}^{g-3 h+2} u_{i} e_{i}
$$

and

$$
x^{\prime}=\sum_{i=1}^{g-3 h+2} x_{i}^{\prime} e_{i}, y^{\prime}=\sum_{i=1}^{g-3 h+2} y_{i}^{\prime} e_{i}, u^{\prime}=\sum_{i=1}^{g-3 h+2} u_{i}^{\prime} e_{i} .
$$

Assume that $\theta(x, y, u)=\theta\left(x^{\prime}, y^{\prime}, u^{\prime}\right)$. Then

$$
\begin{equation*}
x \otimes y+u \otimes u=x^{\prime} \otimes y^{\prime}+u^{\prime} \otimes u^{\prime} . \tag{2.5.1}
\end{equation*}
$$

Since $V \otimes V$ can be decomposed as $\left(V \otimes e_{1}\right) \oplus \cdots \oplus\left(V \otimes e_{g-3 h+2}\right)$,

$$
y_{i} x+u_{i} u=y_{i}^{\prime} x^{\prime}+u_{i}^{\prime} u^{\prime}(i=1, \cdots, g-3 h+2)
$$

by (2.5.1). Since $x, y, u \in V$ are general elements, we may assume that $\operatorname{det}\left(\begin{array}{cc}y_{i} & u_{i} \\ y_{j} & u_{j}\end{array}\right) \neq 0$ for any $i, j=1, \cdots g-3 h+2$ with $i \neq j$, and hence x, u are linear combinations of x^{\prime}, u^{\prime}. Note that x, y are linearly independent, we have

$$
x^{\prime}=\alpha x+\beta u \text { and } u^{\prime}=\gamma x+\delta u
$$

for some $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Since $V \otimes V=\left(e_{1} \otimes V\right) \oplus \cdots \oplus\left(e_{g-3 h+2} \otimes V\right)$ and $x, y, u \in V$ are general elements, we again have $x_{i} y+u_{i} u=x_{i}^{\prime} y^{\prime}+u_{i}^{\prime} u^{\prime}$ for $i=1, \cdots, g-3 h+2$ and hence

$$
y^{\prime}=\xi y+\eta u \text { and } u^{\prime}=\lambda y+\mu u
$$

for some $\xi, \eta, \lambda, \mu \in \mathbb{C}$. Especially

$$
u^{\prime}=\gamma x+\delta u=\lambda y+\mu u
$$

Since x, y, u are linearly independent, $\gamma=\lambda=0$ and $\delta=\mu$. Therefore $x^{\prime}=\alpha x+\beta u, y^{\prime}=\xi y+\eta u$ and $u^{\prime}=\delta u$. By (2.5.1), $\alpha \xi=1, \alpha \eta=$ $0, \beta \xi=0, \beta \eta+\delta^{2}=1$. Therefore $\beta=\eta=0, \alpha \xi=1, \delta^{2}=1$, i.e.

$$
x^{\prime}=\alpha x, y^{\prime}=\frac{1}{\alpha} y \text { and } u^{\prime}= \pm u .
$$

Therefore $\theta^{-1}(x \otimes y+u \otimes u)$ is 1-dimensional for general elements $x, y, u \in$ V. Hence $\operatorname{dim} M^{*}=3 \operatorname{dim} V-1=3 g-9 h+5$, i.e. $\operatorname{dim} \mathbb{P}\left(M^{*}\right)=3 g-9 h+4$.
Q.E.D.

We take $0 \neq \kappa \in \operatorname{im} \phi \subset \Gamma\left(E, \mathcal{O}_{E}(2 N)\right), \widetilde{\kappa} \in \phi^{-1}(\kappa)$ and consider a linear subspace

$$
L_{\kappa}=\{\lambda \widetilde{\kappa}+x \mid \lambda \in \mathbb{C}, x \in \operatorname{ker} \phi\}=\mathbb{C} \widetilde{\kappa}+\operatorname{ker} \phi \subset V \otimes V
$$

Note that $\mathbb{C} \widetilde{\kappa} \cap \operatorname{ker} \phi=\{0\}$ and hence $\operatorname{dim} L_{\kappa}=\operatorname{dimker} \phi+1 \geq \operatorname{dim} V \otimes$ $V-\operatorname{dim} \Gamma\left(E, \mathcal{O}_{E}(2 N)+1=\operatorname{dim} V \otimes V-(2 g-5 h+3)+1\right.$, therefore

$$
\begin{equation*}
\operatorname{dim} \mathbb{P}\left(L_{\kappa}\right) \geq \operatorname{dim} \mathbb{P}(V \otimes V)-(2 g-5 h+2) \tag{2.2}
\end{equation*}
$$

We now prove Theorem 2.1.
Proof of Theorem 2.1:Let $s \in \Gamma\left(C, \mathcal{O}_{C}\left(\pi^{*} N\right)\right.$) and let $(s)_{0}=A$. Since $s \sigma^{*} s=\pi^{*} \lambda$ for some $\lambda \in \Gamma\left(E, \mathcal{O}_{E}(2 N)\right)$, we put $\mathrm{Nm}_{C / E}(s)=\lambda$ and call it the Norm of s for the Galois covering $\pi: C \rightarrow E$. Since $\pi_{*} \mathcal{O}_{C}\left(\pi^{*} N\right) \cong \mathcal{O}_{E}(N) \oplus \mathcal{O}_{E}$, there is an isomorphism

$$
\Gamma\left(C, \mathcal{O}_{E}\left(\pi^{*} N\right)\right) \cong \Gamma\left(E, \mathcal{O}_{E}(N)\right) \oplus \Gamma\left(E, \mathcal{O}_{E}\right)
$$

Therefore s can be written as $s=(\alpha, \beta)$ for some $\alpha \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)$, $\beta \in \Gamma\left(E, \mathcal{O}_{E}\right)$ and

$$
A=(s)_{0} \in\left\{\pi^{*} N_{0}\left|N_{0} \in\right| N \mid\right\} \text { if and only if } \beta=0
$$

By the \mathcal{O}_{E}-algebra structure on $\mathcal{O}_{E} \oplus \mathcal{O}_{E}(-N)$, we have

$$
s \sigma^{*} s=\left(\alpha^{2}-r \beta^{2}, 0\right) \in \Gamma\left(E, \mathcal{O}_{E}(2 N)\right) \oplus \Gamma\left(E, \mathcal{O}_{E}(N)\right)
$$

Therefore $\operatorname{Nm}_{C / E}(s)=\alpha^{2}-r \beta^{2}$. Since $\pi_{*} A$ is defined by $\mathrm{Nm}_{C / E}(s)$, $\pi_{*} A=\left(\alpha^{2}-r \beta^{2}\right)_{0}$. Let

$$
W=\left\{\operatorname{Nm}_{C / E}(s) \mid s \in \Gamma\left(C, \mathcal{O}_{C}\left(\pi^{*} N\right)\right)\right\} \subset \Gamma\left(E, \mathcal{O}_{E}(2 N)\right)
$$

Since $M_{0}=\left\{a \otimes a \mid a \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)\right\}$ and $\operatorname{Nm}_{C / E}\left(\pi^{*} a\right)=a^{2}$ for any $a \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)$,

$$
\phi\left(M_{0}\right)=\left\{\operatorname{Nm}_{C / E}\left(\pi^{*} a\right) \mid a \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)\right\} \subset \Gamma\left(E, \mathcal{O}_{E}(2 N)\right)
$$

Then $W=\left\{\alpha^{2}-r \beta^{2} \mid \alpha \in \Gamma\left(E, \mathcal{O}_{E}(N)\right), \beta \in \Gamma\left(E, \mathcal{O}_{E}\right)\right\}$ which implies $\mathbb{P}(W)=\mathbb{P}\left(\phi\left(M_{0}\right) * \mathbb{C} r\right)$.

We now assume C has a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π. By Theorem 1.1, there exist $l, m \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)$ such that $l m \in W \backslash \phi\left(M_{0}\right)$. Then there exists $a_{0} \in \Gamma\left(E, \mathcal{O}_{E}(N)\right)$ such that $r \in \mathbb{P}\left(\mathbb{C} a_{0}^{2}+\mathbb{C l m}\right)$. Hence $r=\alpha a_{0}^{2}+\beta l m=\phi\left(\alpha a_{0} \otimes a_{0}+\beta l \otimes m\right)$ for some $\alpha, \beta \in \mathbb{C}$ which implies $r \in \operatorname{im} \phi$.

Next we assume $r \in \operatorname{im}(\phi)$. Since $\mathbb{P}\left(L_{r}\right)$ is a linear subspace of $\mathbb{P}(V \otimes V)$,

$$
\operatorname{dim} \mathbb{P}\left(M^{*}\right) \cap \mathbb{P}\left(L_{r}\right) \geq \operatorname{dim} \mathbb{P}\left(M^{*}\right)-(2 g-5 h+2)=g-4 h+2 \geq 0
$$

by (2.2) and Lemma 2.5. Hence there exists $\widetilde{x} \in M^{*}$ such that $\phi(\widetilde{x})=r$. Since $\widetilde{x}=l \otimes m+a \otimes a$ for some $l, m, a \in V$, we have

$$
r=l m+a^{2}
$$

Assume $[l] \neq[m]$. Then $l m \in W \backslash \phi\left(M_{0}\right)$. We now put $\alpha=\sqrt{-1} a$, $\beta=\sqrt{-1}(\neq 0)$ and $s=(\alpha, \beta)$. Let $A=(s)_{0} \in\left|\pi^{*} N\right|$. Since $r=l m+a^{2}$,
$\alpha^{2}-r \beta^{2}=l m$. Therefore $\pi_{*} A=N_{1}+N_{2}, N_{1}, N_{2} \in|N|$ and $A \in$ $\left|\pi^{*} N\right| \backslash\left\{\pi^{*} N_{0}\left|N_{0} \in\right| N \mid\right\}$. By Theorem 1.1, there exists a base point free $g_{g-2 h+1}^{1}$ not composed with π. Assume $[l]=[m]$. We may assume that $l=m$. Then $r=(l+\sqrt{-1} a)(l-\sqrt{-1} a)$. When $(l+\sqrt{-1} a)_{0}=$ $(l-\sqrt{-1} a)_{0}$, we have $(l)_{0}=(a)_{0}$ which implies the branch locus $(r)_{0}$ is not reduced. This is a contradiction, since C is non-singular. Therefore $(l+\sqrt{-1} a)_{0} \neq(l-\sqrt{-1} a)_{0}$. We put $s=(0,1)$ and let $A=(s)_{0} \in\left|\pi^{*} N\right|$. Then $\pi_{*} A=(r)_{0}$. Since $r=(l+\sqrt{-1} a)(l-\sqrt{-1} a)$, we again have $\pi_{*} A=N_{1}+N_{2}, N_{1}, N_{2} \in|N|$ and $A \in\left|\pi^{*} N\right| \backslash\left\{\pi^{*} N_{0}\left|N_{0} \in\right| N \mid\right\}$, which implies that there exists a base point free $g_{g-2 h+1}^{1}$ not composed with π by Theorem 1.1.

> Q.E.D.

Finally we prove Theorem A:
Proof of Theorem A: Since $g \geq 4 h, \operatorname{deg}\left(\mathcal{O}_{E}(N)\right)=g-2 h+1 \geq 2 h+1$. Therefore $\mathcal{O}_{E}(N)$ is normally generated and hence ϕ is automatically surjective. Hence we have Theorem A by Theorem 2.1.
Q.E.D.

We are now ready to prove Theorem B as a corollary to Theorem A.

Proof of Theorem B

Claim. Fix an integer $e \geq 1$. Let C be a smooth curve of genus $g \geq$ $4 e-4$, not necessarily a double covering. Let Σ_{d}^{1} be the union of those components of $W_{d}^{1}(C)$ whose general element is base point free and complete. If $\Sigma_{g-e+1}^{1} \neq \emptyset$ then $\operatorname{dim} \Sigma_{g-e+1}^{1}$ has the expected dimension and $\Sigma_{g-e+2}^{1} \neq \emptyset$.
Proof of the Claim. Since it is assumed that $\Sigma_{g-e+1}^{1} \neq \emptyset$, any component of Σ_{g-e+1}^{1} has dimension at least $\rho(g-e+1, g, 1)=g-2 e$. Suppose there exists a component $\Sigma \subset \Sigma_{g-e+1}^{1}$ such that $\operatorname{dim} \Sigma=n \geq g-2 e+1$ and take a general $L \in \Sigma$. By the base point free pencil trick and the description of the tangent space to the scheme $W_{d}^{r}(C)$ in general, we have

$$
\begin{aligned}
h^{0}\left(C, L^{2}\right) & =2(g-e+1)-g+1+h^{1}\left(C, L^{2}\right) \\
& =2(g-e+1)-g+1+\operatorname{ker} \mu_{0} \\
& \geq g-2 e+3+n-\rho(g-e+1, g, 1)=n+3
\end{aligned}
$$

where $\mu_{0}: H^{0}(C, L) \otimes H^{0}\left(C, K L^{-1}\right) \rightarrow H^{0}(C, K)$ is the natural map given by multiplication of sections; cf. [1, p 189]. Therefore it follows
that

$$
g-2 e+1 \leq n \leq \operatorname{dim} W_{2 g-2 e+2}^{n+2}(C) \leq \operatorname{dim} W_{2 g-2 e+2}^{g-2 e+3}(C)=2 e-4
$$

contrary to the assumption $g \geq 4 e-4$. And this completes the proof of the first assertion of the Claim. Suppose now that $\Sigma_{g-e+2}^{1}=\emptyset$. Then, we have

$$
W_{g-e+2}^{1}(C)=\left[\Sigma_{g-e+1}^{1}+W_{1}(C)\right] \cup\left[W_{g-e}^{1}(C)+W_{2}(C)\right]
$$

Since

$$
\operatorname{dim}\left[\Sigma_{g-e+1}^{1}+W_{1}(C)\right]=\rho(g-e+1, g, 1)+1<\rho(g-e+2, g, 1)
$$

it follows that the closed locus $\Sigma_{g-e+1}^{1}+W_{1}(C)$ is contained in $W_{g-e}^{1}(C)+$ $W_{2}(C)$. Note that a general element in the locus $\Sigma_{g-e+1}^{1}+W_{1}(C)$ is a complete pencil with only one base point, whereas a complete pencil in $W_{g-e}^{1}(C)+W_{2}(C)$ has at least two base points, which is an absurdity. This completes the proof of the Claim.

We now take $e=2 h$ in the Claim. By Theorem A, we have $\Sigma_{g-2 h+1}^{1} \neq \emptyset$ and hence $\Sigma_{g-2 h+2}^{1} \neq \emptyset$ by the Claim. By taking $e^{\prime}=$ $2 h-1$ in the Claim, we again have $\Sigma_{g-e^{\prime}+2}^{1}=\Sigma_{g-2 h+3}^{1} \neq \emptyset$; note that $g \geq 8 h-4>4 e^{\prime}-4$. We may continue this process by taking smaller $e^{\prime} s$ and we are done.

> Q.E.D.

§3. Examples

In this final section, we exhibit two examples which show that the genus assumption $g \geq 4 h$ in Theorem A is the best possible one. We first give an example of a double covering $C \xrightarrow{\pi} E$ of genus $g=4 h-1$ without a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π. We also give another example of a double covering $C \xrightarrow{\pi} E$ possessing a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π under the same genus assumption $g=4 h-1$. In these examples we shall make use of the following well-known fact regarding the normal generation of line bundles on a hyperelliptic curve.
Remark 3.1. Let E be a hyperelliptic curve of genus h. A very ample line bundle on E of degree $2 h$ is not normally generated; cf. [1, p. 221 $\mathrm{C}-3]$.

Example 3.2. There exists a double covering $C \xrightarrow{\pi} E$ of genus $g=4 h-1$ which does not have a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π.

Proof. Let E be a hyperelliptic curve of genus $h \geq 2$. Given $N \in$ $\operatorname{Div}(E)$, we consider the natural cup product map

$$
\phi: \Gamma\left(E, \mathcal{O}_{E}(N)\right) \otimes \Gamma\left(E, \mathcal{O}_{E}(N)\right) \rightarrow \Gamma\left(E, \mathcal{O}_{E}(2 N)\right)
$$

For $h=2$, let $\mathcal{O}_{E}(N)$ be a base point free line bundle of degree $2 h=4$. Note that $\mathcal{O}_{E}(N)$ is not very ample. Assume that ϕ is surjective. By using [1, p. $222 \mathrm{C}-4$] inductively, we easily see that

$$
\Gamma\left(E, \mathcal{O}_{E}(N)\right)^{\otimes k} \rightarrow \Gamma(E, \mathcal{O}(k N))
$$

is surjective for every $k \geq 1$, i.e. $\mathcal{O}_{E}(N)$ is normally generated. Hence $\mathcal{O}_{E}(N)$ is very ample which is a contradiction. Therefore we may choose $r \notin \operatorname{im} \phi$ such that $(r)_{0}=R$ is reduced. For $h \geq 3$, by a well-known theorem of Halphen, we may take a very ample line bundle $\mathcal{O}_{E}(N)$ of degree $2 h=g-2 h+1$. By Remark 3.1, $\mathcal{O}_{E}(N)$ is not normally generated and hence ϕ is not surjective by [1, p.222]. Therefore we may again choose $r \notin \operatorname{im} \phi$ such that $(r)_{0}=R$ is reduced.

Let $C \xrightarrow{\pi} E$ be a double covering of genus $g=4 h-1$ with the branch locus R. By Theorem 2.1, C does not have a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π.
Q.E.D.

For an example of a double covering of genus $g=4 h-1$ with a base point free and complete $g_{g-2 h+1}^{1}$, we have implictly exhibited such one for $h \geq 3$ in the Example 0.4. We simply note that, in the Example 0.4 , it is possible to take a very ample $N \in E_{g-2 h+1}$ even in the range $3 h+2 \leq g \leq 4 h-1$ for any curve E of genus $h \geq 3$. One may also construct such an example by a similar method as in Example 3.2.

Example 3.3. There is double covering $C \xrightarrow{\pi} E$ of gneus $g=4 h-1$ which has a base point free and complete $g_{g-2 h+1}^{1}$.
Proof. Let $\mathcal{O}_{E}(N)$ be a line bundle of degree $2 h=g-2 h+1$. Since $|N|$ is base point free, we may take $r \in \operatorname{im} \phi$ whose zero $R=(r)_{0}$ is reduced and let $C \xrightarrow{\pi} E$ be a double covering of genus genus $g=4 h-1$ with the branch locus R. Then C has a base point free and complete $g_{g-2 h+1}^{1}$ not composed with π by Theorem 2.1.
Q.E.D.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves I, Springer-Verlag, 1985.
[2] E. Ballico and C. Keem, Variety of linear systems on double covering curves, J. Pure Appl. Algebra, 128 (1998), 213-224.
[3] C. Ciliberto and E. Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom., 1 (1992), 231-250.
[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[5] D. Mumford, Prym varieties I, Contribution to Analysis, Acad. Press, 1974, 325-355.
[6] V. V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math., 65 (1981), 209-219.

Changho Keem
Department of Mathematics
Seoul National University
Seoul 151-742 SOUTH KOREA
E-mail address: ckeem@math.snu.ac.kr

Akira Ohbuchi
Department of Mathematics
Faculty of Integrated Arts and Sciences
Tokushima University
Tokushima 770-8502 JAPAN
E-mail address: ohbuchi@ias.tokushima-u.ac.jp

[^0]: Received August 17, 2006.
 Revised January 12, 2007.
 ${ }^{1}$ Supported by Korea Research Foundation (Grant \# 2001-DS0003).
 ${ }^{2}$ Supported by Brain Pool Program of KOFST and partially supported by Grant-in-Aid for Scientific Research (15540035), JSPS.

