Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface

Masato Kuwata and Tetsuji Shioda

Abstract

. We pose the problem to determine explicit defining equations of various elliptic fibrations on a given $K 3$ surface, and study the case of the Kummer surfaces of the product of two elliptic curves.

§1. Introduction

1.1. Problem setting

Let X be a $K 3$ surface defined over a base field k, and let $k(X)$ denote its function field. Suppose $f: X \rightarrow \mathbf{P}^{1}$ is an elliptic fibration on X with a section O. Then it defines a non-constant function $u=$ $f(x)(x \in X)$, and hence an element $u \in k(X)$. We call u the elliptic parameter for the elliptic fibration f. (Actually u is unique only up to the linear fractional transformations, but to fix the idea, we always choose one u. Note that the subfield $k(u)$ of $k(X)$ is uniquely defined by f).

Now let E denote the generic fiber of f. Then E is an elliptic curve defined over $k(u)$ such that the function field $k(u)(E)$ is isomorphic to $k(X)$ as the extensions of k.

Problem 1. Given a K3 surface X / k and an elliptic fibration f, determine (i) the elliptic parameter u for f, (ii) the defining equation of the elliptic curve $E / k(u)$, and (iii) the Mordell-Weil lattice (MWL) $E(k(u))$.

Problem 2. Given a $K 3$ surface X / k, determine all the (essentially distinct) elliptic parameters.

Revised February 2, 2007.
2000 Mathematics Subject Classification. 14J27, 14J28.

Problem 2 is a combination of Problem 1 and the following standard problem:

Problem 3. Given a $K 3$ surface X / k, classify the elliptic fibrations $f: X \rightarrow \mathbf{P}^{1}$ up to isomorphisms.

1.2. Main results

In this paper, we focus on the case of Kummer surfaces $X=\operatorname{Km}(A)$, where $A=C_{1} \times C_{2}$ is a product of two elliptic curves, and assume k is an algebraically closed field of characteristic different from 2.

In this case, Problem 3 has been solved by Oguiso [8] under the assumption
(\#) C_{1}, C_{2} are not isogenous to each other and $k=\mathbf{C}$ (the field of complex numbers).
Namely he classifies the configuration of singular fibers on such a Kummer surface X into eleven types $\mathscr{J}_{1}, \ldots, \mathscr{J}_{11}$, and determines the number of the isomorphism classes for each type.

Our main results can be stated as follows: we solve Problem 1 for each type of Oguiso's list (without assuming (\#)), and thus solve Problem 2 under the assumption (\#). More details will be given in $\S 1.5$ and 1.7 after we fix the notation and review some known cases.

1.3. Notation

By a (-2 -curve we mean a smooth rational curve on X whose selfintersection number is -2 . (It is called a "nodal curve" in Oguiso [8].) It is known (cf. [4]) that all irreducible components of a reducible fiber in an elliptic fibration are (-2)-curves.

We have a configuration of twenty-four (-2)-curves on X , called the double Kummer pencil (see Fig. 1, cf. [10]). It consists of the 16 exceptional curves $A_{i j}$ arising from the minimal resolution $X \rightarrow A / \iota_{A}$, plus the 8 curves F_{i}, G_{j} obtained as the image of $v_{i} \times C_{2}$ or $C_{1} \times v_{j}^{\prime}$ under the rational map $A \rightarrow S$. Here $\left\{v_{i}\right\}$ (or $\left\{v_{i}^{\prime}\right\}$) denote the 2-torsion points of $C_{1}\left(\right.$ resp. $\left.C_{2}\right)(i, j \in I=\{0,1,2,3\})$, and ι_{A} denotes the inversion automorphism of A. These curves will be referred to as the basic curves below.

Suppose that the elliptic curve C_{i} is defined by the Legendre form

$$
C_{i}: y_{i}^{2}=x_{i}\left(x_{i}-1\right)\left(x_{i}-\lambda_{i}\right) \quad \lambda_{i} \neq 0,1
$$

We order the 2-torsion points by $v_{1}=(0,0), v_{2}=(1,0), v_{3}=\left(\lambda_{1}, 0\right)$, with v_{0} denoting the origin of C_{1}; similarly for v_{j}^{\prime} and C_{2}.

Fig. 1. double Kummer pencil

The function field $k(X)$ is equal to the subfield of the function field $k(A)=k\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ consisting of the elements invariant under the inversion $\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \mapsto\left(x_{1},-y_{1}, x_{2},-y_{2}\right)$, namely we have

$$
k(X)=k\left(x_{1}, x_{2}, t\right), \quad t=\frac{y_{2}}{y_{1}}
$$

where x_{1}, x_{2} and t are naturally regarded as functions on X, satisfying the relation

$$
\begin{equation*}
x_{1}\left(x_{1}-1\right)\left(x_{1}-\lambda_{1}\right) t^{2}=x_{2}\left(x_{2}-1\right)\left(x_{2}-\lambda_{2}\right) \tag{1.1}
\end{equation*}
$$

1.4. Examples

We start from the most classical and elementary example:
Example 1.1 (Kummer pencils). The projection of A to the first factor induces an elliptic fibration $\pi_{1}: X \rightarrow \mathbf{P}^{1}$ with four singular fibers of type I_{0}^{*} :

$$
\Phi_{i}=2 F_{i}+\sum_{j} A_{i j}
$$

(see Fig. 2). This π_{1} and the similar π_{2} (obtained from the second projection) are respectively called the first or second Kummer pencil on X. The elliptic parameter for π_{1} (or π_{2}) is obviously given by the

Fig. 2. Kummer pencil (type \mathscr{J}_{4})
function x_{1} (resp. x_{2}) in $k(X)$. (This belongs to type \mathscr{J}_{4} in [8], and π_{1} and π_{2} are the two representatives of isomorphism classes, if C_{1}, C_{2} are not isogenous.)

The defining equation of the generic fiber over $k\left(x_{1}\right)$ is easily obtained (see $\S 2.3$), which is isomorphic to the constant curve C_{2} over the quadratic extension $k\left(x_{1}, y_{1}\right)=k\left(C_{1}\right)$ of $k\left(x_{1}\right)$. The Mordell-Weil lattice is isomorphic to the lattice $\operatorname{Hom}\left(C_{1}, C_{2}\right)$ with norm $\varphi \mapsto \operatorname{deg}(\varphi)$ up to torsion (see [14, Prop.3.1]).

The next is the motivating example for studying the elliptic parameters and the problems posed in $\S 1.1$ in general.

Example 1.2 (Inose's pencils). Using the twenty-four basic curves, we can find two disjoint divisors of Kodaira type IV*. Namely, take the following divisors shown in Fig. 3:

$$
\left\{\begin{array}{l}
\Psi_{1}=G_{1}+G_{2}+G_{3}+2\left(A_{01}+A_{02}+A_{03}\right)+3 F_{0} \\
\Psi_{2}=F_{1}+F_{2}+F_{3}+2\left(A_{10}+A_{20}+A_{30}\right)+3 G_{0}
\end{array}\right.
$$

There is an elliptic fibration, called Inose's pencil, having these divisors as the singular fibers over $u=0$ and $u=\infty$, as first shown by Inose [3]. The elliptic parameter for this is given by the function $u=t\left(=y_{2} / y_{1}\right) \in$ $k(X)$, and the generic fiber $E / k(t)$ is isomorphic to the cubic curve

Fig. 3. Inose's pencil (type \mathscr{J}_{3})
defined by the equation (1.1) in the projective plane with inhomogeneous coordinates x_{1}, x_{2}. (This belongs to type \mathscr{J}_{3} in [8].)

It should be remarked that Kuwata [6] has succeeded in constructing, by the use of Inose's pencil, some elliptic $K 3$ surfaces with high Mordell-Weil rank which have an explicit defining equation. For example, the base change $t=s^{3}$ gives rise to the elliptic curve $E / k(s)$ which has the highest possible rank $r=18$ (for $k=\mathbf{C}$) provided that C_{1} and C_{2} are mutually isogenous but non-isomorphic elliptic curves with complex multiplications. We refer to Kuwata [6] and Shioda [12], [14] for more details including the defining equation of E in the Weiertrass form as well as the structure of MWL; see also §2.2.

Example 1.3. Besides the Kummer pencils (Example 1.1), the elliptic pencil on the Kummer surface $X=\operatorname{Km}\left(C_{1} \times C_{2}\right)$ which has been studied first is perhaps the one introduced in Shioda-Inose [10]. It has $\mathrm{II}^{*}, \mathrm{I}_{0}^{*}, \mathrm{I}_{0}^{*}$ as reducible singular fibers (for general values of λ_{1} and λ_{2}). This has type \mathscr{J}_{9} in [8] (see Fig. 16). Via the base change of degree 2, it gives rise to an elliptic $K 3$ surface with two II^{*} fibers, which plays an important role in the theory of singular $K 3$ surfaces [10] and which has been reconsidered by Morrison [7] in a more general situation. It turns out that the elliptic parameter and the defining equation for this type \mathscr{J}_{9} is the hardest case treated in this paper (see §5.3).

1.5. Results

In the following Table 1, we give a summary of the elliptic parameters and the structure of the MWL for each type \mathscr{J}_{n}, to be constructed in the subsequent sections.

The first column shows the type \mathscr{J}_{n} of elliptic fibration following Oguiso's notation (cf. [8]). The second column shows the configuration of singular fibers in the generic case, which means that λ_{1} and λ_{2} are algebraically independent elements of k over \mathbf{Q}_{0}, where \mathbf{Q}_{0} is the prime field in k. The third column shows the structure of MWL of the generic fiber E over $k(u)$, again in the generic case. The last column gives the elliptic parameter which can be used for any $\lambda_{1}, \lambda_{2}(\neq 0,1)$.

The explicit form of defining equations should be found in the text, since it is not suitable to tabulate here. We note that each of these defining equations has coefficients in $\mathbf{Q}_{0}\left(\lambda_{1}, \lambda_{2}\right)(u)$, where u is the elliptic parameter.

We see from the table that the elliptic parameters for \mathscr{J}_{n} for $n=$ $1,2,3$ are of the form $u=t \varphi\left(x_{1}, x_{2}\right)$ with $\varphi\left(x_{1}, x_{2}\right) \in k\left(x_{1}, x_{2}\right)$, while those for \mathscr{J}_{n} for $n>3$ are contained in $k\left(x_{1}, x_{2}\right)$.

1.6. Basic strategy of construction

Theoretically, constructing an elliptic fibration on a $K 3$ surface is to find a divisor that has the same type as a singular fiber in the Kodaira's list (cf. [4] [9]). In practice, however, we need to find two divisors, one for the fiber at $u=0$, and the other for the fiber at $u=\infty$, to write down an actual elliptic parameter. This is where the difficulty is.

Once an elliptic parameter is found, we want to find a change of variables that converts the defining equation to a Weierstrass form. In most cases we encounter an equation of the form $y^{2}=$ (quartic polynomial). We then use a standard algorithm to transform it to a Weierstrass form (see for example Cassels [1], or Connell [2]).

Some elliptic fibrations have nontrivial Mordell-Weil group. To determine the structure of Mordell-Weil lattice, we can use the method in [11] since we understand very well the intersection between the section and the components of singular fibers. Alternatively, we can compute the height pairing using the algorithm in [5] once we establish the conversion to the Weierstrass form. Note that [11] and [5] use different normalization of the height pairing, and they differ by a multiple of 2 . In this article we adopt the normalization used in [11].

Type	Singular fibers	MWL	Elliptic parameter u
\mathcal{F}_{1}	$2 \mathrm{I}_{8}+8 \mathrm{I}_{1}$	$\mathbf{Z}^{2} \oplus \mathbf{Z} / 2 \mathbf{Z}$	$\frac{t x_{1}}{x_{2}}$
\mathscr{J}_{2}	$\mathrm{I}_{4}+\mathrm{I}_{12}+8 \mathrm{I}_{1}$	$A_{2}^{*}[2] \oplus \mathbf{Z} / 2 \mathbf{Z}$	$\frac{t\left(x_{1}-\lambda_{1}\right)\left(x_{1}-x_{2}\right)}{x_{2}\left(x_{2}-1\right)}$
\mathscr{J}_{3}	$2 \mathrm{IV}^{*}+8 \mathrm{I}_{1}$	$\left(A_{2}^{*}[2]\right)^{2}$	t
\mathscr{J}_{4}	$4 \mathrm{I}_{0}^{*}$	$(\mathbf{Z} / 2 \mathbf{Z})^{2}$	x_{i}
7_{5}	$\mathrm{I}_{6}^{*}+6 \mathrm{I}_{2}$	$(\mathbf{Z} / 2 \mathbf{Z})^{2}$	$\frac{\left(x_{1}-x_{2}\right)\left(\lambda_{2}\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}\right)}{\left(\lambda_{2} x_{1}-x_{2}\right)\left(x_{1}-\lambda_{1}+\left(\lambda_{1}-1\right) x_{2}\right)}$
\mathscr{f}_{6}	$2 \mathrm{I}_{2}^{*}+4 \mathrm{I}_{2}$	$(\mathbf{Z} / 2 \mathbf{Z})^{2}$	$\frac{x_{1}}{x_{2}}$
\mathscr{J}_{7}	$\mathrm{I}_{4}^{*}+2 \mathrm{I}_{0}^{*}+2 \mathrm{I}_{1}$	Z/2Z	$\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}$
\mathscr{J}_{8}	$\mathrm{III}^{*}+\mathrm{I}_{2}^{*}+3 \mathrm{I}_{2}+\mathrm{I}_{1}$	Z/2Z	$-\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{\lambda_{2}\left(\lambda_{2}-1\right) x_{1}\left(x_{1}-1\right)}$
f_{9}	$\mathrm{II}^{*}+2 \mathrm{I}_{0}^{*}+2 \mathrm{I}_{1}$	\{0\}	$\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\right)}$
\mathcal{F}_{10}	$\mathrm{I}_{8}^{*}+\mathrm{I}_{0}^{*}+4 \mathrm{I}_{1}$	\{0\}	$\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\left(\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)+\lambda_{2} x_{1}\left(x_{1}-1\right)\right)}{x_{2}\left(x_{2}-1\right)\left(x_{1}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}$
f_{11}	$2 \mathrm{I}_{4}^{*}+4 \mathrm{I}_{1}$	\{0\}	$\frac{x_{2}\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{x_{1}\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}$

Table 1. Results

1.7. Remark

Fix a type $\mathscr{J}_{n}(n=1, \ldots, 11)$. As noted in $\S 1.5$, each of the defining equation of $E / k(u)$ constructed in this paper has the coefficients in $\mathbf{Q}_{0}\left(\lambda_{1}, \lambda_{2}\right)(u)$, where u is the elliptic parameter, and λ_{1} (resp. λ_{2}) is the Legendre parameter for C_{1} (resp. C_{2}). Given C_{i}, there are in general six choices of λ_{i} (i.e., six different level 2 -structures on C_{i}). We have verified that, by different choices of λ_{1} or λ_{2}, we obtain as many nonisomorphic E 's belonging to the same type \mathscr{J}_{n}, as predicted by Oguiso's result ($[8$, Table B, p. 652]), and thus solved Problem 2 when C_{1} and C_{2} are not isogenous. The proof for this will be omitted in this paper, but we write down the results in a single special case where we take $C_{1}: y_{1}^{2}=x_{1}^{3}-1$ and $C_{2}: y_{2}^{2}=x_{2}^{3}-x_{2}$ (see $\S 6$).

This paper is organized as follows.

Contents

1. Introduction 177
2. Elliptic parameters for $\mathscr{J}_{1}, \mathscr{J}_{3}, \mathscr{J}_{4}$, and $\mathscr{J}_{6} \quad 184$
3. More (-2)-curves 190
4. Elliptic parameters for $\mathscr{J}_{2}, \mathscr{J}_{7}, \mathscr{J}_{8}$ and $\mathscr{J}_{11} \quad 194$
5. (2,2)-curves and $\mathscr{J}_{5}, \mathscr{J}_{9}$ and $\mathscr{J}_{10} \quad 200$
6. Full list of the defining equations in a special case 209
7. Closing remark 213
§2. Elliptic parameters for $\mathscr{J}_{1}, \mathscr{J}_{3}, \mathscr{J}_{4}$, and \mathscr{J}_{6}
In this section we construct elliptic fibrations that have two singular fibers consisting only of the twenty-four basic curves. We use combinations of the following divisors of typical functions (cf. Examples in §1.4):

$$
\begin{gathered}
\left(x_{1}\right)=2 F_{1}+A_{10}+A_{11}+A_{12}+A_{13}-\left(2 F_{0}+A_{00}+A_{01}+A_{02}+A_{03}\right) \\
\left(x_{2}\right)=2 G_{1}+A_{01}+A_{11}+A_{21}+A_{31}-\left(2 G_{0}+A_{00}+A_{10}+A_{20}+A_{30}\right) \\
(t)=G_{1}+G_{2}+G_{3}+2\left(A_{01}+A_{02}+A_{04}\right)+3 F_{0} \\
-\left(F_{1}+F_{2}+F_{3}+2\left(A_{10}+A_{20}+A_{30}\right)+3 G_{0}\right)
\end{gathered}
$$

2.1. \mathscr{J}_{1}

An elliptic parameter for the type \mathscr{J}_{1} fibration is given by

$$
u=\frac{t x_{1}}{x_{2}}
$$

It is easy to verify that the divisor of u is given by

$$
\begin{aligned}
(u)=F_{0}+F_{1}+ & G_{2}+G_{3}+A_{02}+A_{03}+A_{12}+A_{13} \\
& -\left(G_{0}+G_{1}+F_{2}+F_{3}+A_{20}+A_{21}+A_{30}+A_{31}\right)
\end{aligned}
$$

which is indicated in Fig. 4. Choosing A_{00} as the 0 -section of the group

Fig. 4. \mathscr{J}_{1}
structure, we obtain the Weierstrass equation of the elliptic fibration $Y^{2}=X^{3}+\left(\left(\lambda_{1}-1\right)^{2} u^{4}-2\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right) u^{2}+\left(\lambda_{2}-1\right)^{2}\right) X^{2}+16 \lambda_{1} \lambda_{2} u^{4} X$, where the change of variables is given by

$$
X=\frac{4 t^{2} x_{1}^{3}}{x_{2}}, \quad Y=\frac{4 t^{2} x_{1}^{3}\left(t^{2} x_{1}\left(x_{1}^{2}-\lambda_{1}\right)+x_{2}\left(x_{2}^{2}-\lambda_{2}\right)\right)}{x_{2}^{3}} .
$$

Its discriminant is given by

$$
\Delta(u)=2^{12} \lambda_{1}^{2} \lambda_{2}^{2} u^{8} d(u) d(-u)
$$

where $d(u)$ is a polynomial of degree 4 in u :

$$
\begin{aligned}
& d(u)=\left(\lambda_{1}-1\right)^{2} u^{4}+4\left(\lambda_{1}-1\right) u^{3} \\
&-2\left(\lambda_{1} \lambda_{2}+\lambda_{1}+\lambda_{2}-3\right) u^{2}+4\left(\lambda_{2}-1\right) u+\left(\lambda_{2}-1\right)^{2}
\end{aligned}
$$

[The discriminant of $d(u)$ vanishes if and only if $\lambda_{1}=\lambda_{2}$. If $\lambda_{1}=\lambda_{2}$, the elliptic fibration has two I_{2} fibers for general λ_{1}.]

The curve A_{11} corresponds to the 2-torsion section $T=(0,0)$. The correspondence between the curves and the sections are as follows:

$$
\begin{aligned}
& A_{22} \leftrightarrow P_{1}=\left(4 u^{2},-4 u^{2}\left(\left(\lambda_{1}-1\right) u^{2}+\lambda_{2}-1\right)\right) \\
& A_{23} \quad \leftrightarrow \quad P_{2}=\left(4 \lambda_{2} u^{2},-4 \lambda_{2} u^{2}\left(\left(\lambda_{1}-1\right) u^{2}-\lambda_{2}+1\right)\right) \\
& A_{32} \leftrightarrow P_{3}=\left(4 \lambda_{1} u^{2}, 4 \lambda_{1} u^{2}\left(\left(\lambda_{1}-1\right) u^{2}-\lambda_{2}+1\right)\right) \\
& A_{33} \leftrightarrow P_{4}=\left(4 \lambda_{1} \lambda_{2} u^{2}, 4 \lambda_{1} \lambda_{2} u^{2}\left(\left(\lambda_{1}-1\right) u^{2}+\lambda_{2}-1\right)\right) \\
& A_{01} \leftrightarrow P_{5}=\left(4 \lambda_{2}, 4 \lambda_{2}\left(\left(\lambda_{1}+1\right) u^{2}-\lambda_{2}-1\right)\right) \\
& A_{10} \quad \leftrightarrow \quad P_{6}=\left(4 \lambda_{1} u^{4},-4 \lambda_{1} u^{4}\left(\left(\lambda_{1}+1\right) u^{2}-\lambda_{2}-1\right)\right)
\end{aligned}
$$

These sections satisfy the following relations.

$$
\begin{array}{ll}
P_{3}=P_{2}+T, & P_{4}=P_{1}+T \\
P_{5}=P_{1}+P_{2}, & P_{6}=P_{5}+T
\end{array}
$$

The Mordell-Weil group is generated by T, P_{1} and P_{2} in the general case where C_{1} and C_{2} are not isogenous. The height matrix with respect to $\left\{P_{1}, P_{2}\right\}$ is shown to be

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2.2. \mathscr{J}_{3}

As we have seen in Example 1.2 (§1.4),

$$
u=t
$$

gives an elliptic parameter of type \mathscr{J}_{3}. We regard (1.1) as a cubic curve in x_{1} and x_{2} with coefficients in $k(u)=k(t)$. We choose $\left(x_{1}, x_{2}\right)=(0,0)$ as the origin of the group structure. The Weierstrass form is given by

$$
\begin{aligned}
Y^{2}= & X^{3}+4\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right) u^{2} X^{2} \\
& +16 u^{4}\left(\left(\lambda_{1} \lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+1\right)-1\right) X \\
& +16 u^{4}\left(\left(\lambda_{1}\left(\lambda_{1}-1\right) u^{2}+\lambda_{2}\left(\lambda_{2}-1\right)\right)^{2}+4 \lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right) u^{2}\right)
\end{aligned}
$$

(This is relatively simple, but the intermediate calculations are rather complicated.) The change of variables between two forms of equations is given by

$$
\begin{aligned}
X= & \frac{4\left(\lambda_{2}\left(x_{1}-1\right)\left(x_{1}-\lambda_{1}\right)+\lambda_{1}\left(x_{2}-1\right)\left(x_{2}-\lambda_{2}\right)-\lambda_{1} \lambda_{2}\right) t^{2}}{x_{1} x_{2}} \\
Y= & \frac{8\left(x_{2}-1\right)\left(x_{2}-\lambda_{2}\right)\left(\lambda_{2}\left(\lambda_{1}+1\right) x_{1}+\lambda_{1}\left(\lambda_{2}+1\right) x_{2}-\lambda_{1} \lambda_{2}\right) t^{2}}{x_{1}^{2} x_{2}} \\
& +\frac{4 \lambda_{1}\left(\left(\lambda_{1}+1\right) x_{1}-2 \lambda_{1}\right) t^{4}}{x_{1}}+\frac{4 \lambda_{2}\left(\left(\lambda_{2}+1\right) x_{2}-2 \lambda_{2}\right) t^{2}}{x_{2}} .
\end{aligned}
$$

The discriminant is of the form $u^{8} d(u)$, where $d(u)$ is an irreducible polynomial of degree 8. Besides two IV* fibers, the elliptic fibration has eight I_{1} fibers in the generic case. These eight I_{1} fibers can degenerate in four different ways; $2 \mathrm{I}_{2}+4 \mathrm{I}_{1}, 4 \mathrm{I}_{2}, 4 \mathrm{II}$ or 2 IV. For more detail, see Prop. 5.1 in [14].

There are eight other $A_{i j}$'s which define sections; the correspondence between these curves and the sections is as follows:

$$
\left.\begin{array}{rl}
A_{12} \leftrightarrow & P_{1}= \\
& \left(4 u^{2}\left(\lambda_{1}^{2} u^{2}-\lambda_{2}\left(\lambda_{1}+1\right)\right),\right. \\
& \left.-4 u^{2}\left(2 \lambda_{1}^{3} u^{4}-\lambda_{1}\left(\lambda_{1}+1\right)\left(2 \lambda_{2}-1\right) u^{2}+\lambda_{2}\left(\lambda_{2}-1\right)\right)\right)
\end{array}\right)
$$

These sections satisfy the following relations:

$$
\begin{array}{ll}
P_{1}=P_{5}+P_{8}, & P_{2}=P_{4}+P_{7} \\
P_{3}=P_{7}+P_{8}, & P_{6}=P_{4}+P_{5}
\end{array}
$$

We can show that P_{4}, P_{8}, P_{5}, and P_{7} generate the Mordell-Weil group in the generic case. The height matrix with respect to the basis $\left\{P_{4}, P_{8}, P_{5}\right.$, $\left.P_{7}\right\}$ is

$$
\left(\begin{array}{cccc}
\frac{4}{3} & \frac{2}{3} & 0 & 0 \\
\frac{2}{3} & \frac{4}{3} & 0 & 0 \\
0 & 0 & \frac{4}{3} & \frac{2}{3} \\
0 & 0 & \frac{2}{3} & \frac{4}{3}
\end{array}\right) .
$$

This is the direct sum of two copies of $A_{2}^{*}[2]$, the dual lattice of A_{2} scaled by 2 .

2.3. \mathscr{J}_{4}

The elliptic parameter for the fibration π_{1} in Example 1.1 is given by

$$
u=x_{1},
$$

while the elliptic parameter for π_{2} is given by $u=x_{2}$. For π_{1}, the change of variables

$$
\begin{aligned}
& X=u(u-1)\left(u-\lambda_{1}\right) x_{2} \\
& Y=u^{2}(u-1)^{2}\left(u-\lambda_{1}\right)^{2} t,
\end{aligned}
$$

converts the equation (1.1) to

$$
Y^{2}=X\left(X-u(u-1)\left(u-\lambda_{1}\right)\right)\left(X-\lambda_{2} u(u-1)\left(u-\lambda_{1}\right)\right) .
$$

The curve G_{0} is the 0 -section. Other sections are:

$$
\begin{aligned}
& G_{1} \leftrightarrow \\
& T_{1}=(0,0) \\
& G_{2} \leftrightarrow \\
& T_{2}=\left(u(u-1)\left(u-\lambda_{1}\right), 0\right) \\
& G_{3} \leftrightarrow \\
& T_{3}=\left(\lambda_{2} u(u-1)\left(u-\lambda_{1}\right), 0\right)
\end{aligned}
$$

Similar results hold for π_{2}.

2.4. \mathscr{J}_{6}

The divisor of the function x_{1} / x_{2} is given by

$$
\begin{aligned}
&\left(\frac{x_{1}}{x_{2}}\right)=2\left(F_{1}+A_{10}+G_{0}\right)+A_{12}+A_{13}+A_{20}+A_{30} \\
&-\left(2\left(F_{0}+A_{01}+G_{1}\right)+A_{02}+A_{03}+A_{21}+A_{31}\right)
\end{aligned}
$$

This is the difference of two disjoint divisors of type I_{2}^{*}, and thus

$$
u=\frac{x_{1}}{x_{2}}
$$

is an elliptic parameter of type \mathscr{J}_{6}.

Fig. 5. \mathscr{J}_{6}

In order to write down a Weierstrass equation using the curve F_{2} as the 0 -section, we put

$$
\begin{aligned}
X & =\frac{x_{1}\left(x_{1}-\lambda_{1}\right)\left(x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{\left(x_{1}-1\right) x_{2}^{3}} \\
Y & =\frac{\left(\lambda_{1}-1\right) t x_{1}^{3}\left(x_{1}-\lambda_{1}\right)\left(x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{\left(x_{1}-1\right) x_{2}^{5}}
\end{aligned}
$$

Then we obtain the Weierstrass equation

$$
Y^{2}=X\left(X-u(u-1)\left(\lambda_{2} u-\lambda_{1}\right)\right)\left(X-u\left(u-\lambda_{1}\right)\left(\lambda_{2} u-1\right)\right)
$$

Its discriminant is given by

$$
\Delta(u)=16 u^{8}\left(\lambda_{1}-1\right)^{2}\left(\lambda_{2}-1\right)^{2}(u-1)^{2}\left(u-\lambda_{1}\right)^{2}\left(\lambda_{2} u-1\right)^{2}\left(\lambda_{2} u-\lambda_{1}\right)^{2} .
$$

Besides two I_{2}^{*} fibers at $u=0$ and ∞, there are four I_{2} fibers at $u=$ $1, \lambda_{1}, 1 / \lambda_{2}$ and $\lambda_{1} / \lambda_{2}$. This elliptic surface has the following three 2torsion sections:

$$
\begin{aligned}
& F_{3} \leftrightarrow \\
& T_{1}=(0,0) \\
& G_{2} \leftrightarrow \\
& T_{2}=\left(u\left(u-\lambda_{1}\right)\left(\lambda_{2} u-1\right), 0\right) \\
& G_{3} \leftrightarrow \\
& T_{3}=\left(u(u-1)\left(\lambda_{2} u-\lambda_{1}\right), 0\right)
\end{aligned}
$$

Note that A_{22}, A_{23}, A_{32}, and A_{33} are components of four I_{2} fibers. The other components of these four I_{2} fibers are new (-2)-curves not among the basic curves, which will be clarified in §3.2.

§3. More (-2)-curves

In order to describe elliptic parameters for other types, we need more (-2)-curves than the basic curves. When we constructed elliptic parameters of type \mathscr{J}_{6} just above, we obtained some new (-2)-curves as components of I_{2} fibers. In this section we give a systematic way to obtain such (-2)-curves.

For our purpose, it is convenient to regard $X=\operatorname{Km}\left(C_{1} \times C_{2}\right)$ as a double cover of the product of projective lines: $\mathbf{P}^{1} \times \mathbf{P}^{1}=\left\{\left(x_{1}\right.\right.$: $\left.\left.z_{1}\right),\left(x_{2}: z_{2}\right)\right\}$. Let $p_{i}: C_{i} \rightarrow \mathbf{P}^{1}(i=1,2)$ be the projection given by

$$
\left.\begin{array}{rl}
p_{i}: & C_{i}
\end{array}\right) \quad \begin{array}{cc}
\mathbf{P}^{1} \\
\left(x_{i}: y_{i}: z_{i}\right) & \longmapsto \begin{cases}\left(x_{i}: z_{i}\right) & \text { if } z_{i} \neq 0 \\
(1: 0) & \text { if } z_{i}=0\end{cases}
\end{array}
$$

Then the map $p_{1} \times p_{2}: A=C_{1} \times C_{2} \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ factors through $\bar{\pi}: A / \iota_{A} \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$. Let π be the morphism of degree two from X to $\mathbf{P}^{1} \times \mathbf{P}^{1}$ that makes the following diagram commutative:

We denote by $R_{i j}$ the point in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ that is the image of the exceptional curve $A_{i j}$ by π. To obtain more (-2)-curves, we look for curves in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ which lift to a (-2)-curve via the map π.

3.1. $(1,1)$-curves

Let L be a curve in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ defined by a bihomogeneous equation of bidegree $(1,1)$:

$$
a x_{1} x_{2}+b x_{1} z_{2}+c z_{1} x_{2}+d z_{1} z_{2}=0
$$

We call such a curve (1,1)-curve for short. By an abuse of notation, we denote the image of F_{i} and G_{i} under $\pi: S \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ by the same letters F_{i} and G_{i}, respectively. For example, F_{1} is the curve with the equation $x_{1}=0$, and G_{3} with $x_{2}-\lambda_{2} z_{2}=0$, etc.

Let L be a $(1,1)$-curve in $\mathbf{P}^{1} \times \mathbf{P}^{1}$. Its pullback $\pi^{-1}(L)$ ramifies at the intersection of L and F_{i} or G_{j}, except when the intersection point falls on $R_{i j}=F_{i} \cap G_{j}$.

Lemma 4. Let L be a (1,1)-curve. Then,
(1) If L passes three of sixteen $R_{i j}$'s, then $\pi^{-1}(L)$ is a curve of genus 0.
(2) If L passes two out of sixteen $R_{i j}$'s, then $\pi^{-1}(L)$ is a curve of genus 1.

Proof. In general a (1, 1)-curve L intersects with $\sum F_{i}$ (resp. $\sum G_{j}$) at four points. If L passes three of sixteen $R_{i j}$'s, then it intersects with F_{i} one more time and G_{j} one more time outside $R_{i j}$. This implies that $\pi^{-1}(L)$ ramifies at two points. By Hurwitz's theorem $\pi^{-1}(L)$ is a curve of genus 0 . Similarly, if L passes two out of sixteen $R_{i j}$'s, $\pi^{-1}(L)$ ramifies at four points, and it is a curve of genus 1.
Q.E.D.

A (1,1)-curve is uniquely determined by a set of three points in a general position. If we choose $R_{i_{0} j_{0}}, R_{i_{1} j_{1}}, R_{i_{2} j_{2}}$ so that no two of them are on the same F_{i} or G_{j}, then they are in general position. Let i_{3} and j_{3} be the missing indices. In other words, we choose i_{3} and j_{3} such that $\left\{i_{0}, i_{1}, i_{2}, i_{3}\right\}=\left\{j_{0}, j_{1}, j_{2}, j_{3}\right\}=\{0,1,2,3\}$. Under the condition that the two elliptic curves C_{1} and C_{2} are not isomorphic, the (1,1)curve passing through $R_{i_{0} j_{0}}, R_{i_{1} j_{1}}$, and $R_{i_{2} j_{2}}$ does not pass $R_{i_{3} j_{3}}$. Thus, choosing $R_{i_{0} j_{0}}, R_{i_{1} j_{1}}, R_{i_{2} j_{2}}$ we obtain a (1,1)-curve whose pullback by π is an irreducible (-2)-curve in X. We denote such a $(1,1)$-curve by $L_{i_{0} j_{0}, i_{1} j_{1}, i_{2} j_{2}}$, and its pullback by $\tilde{L}_{i_{0} j_{0}, i_{1} j_{1}, i_{2} j_{2}}$. There are ninety-six such (-2)-curves. Also note that $\tilde{L}_{i_{0} j_{0}, i_{1} j_{1}, i_{2} j_{2}}$ intersects twice with each of $A_{i_{0} j_{0}}, A_{i_{1} j_{1}}$, and $A_{i_{2} j_{2}}$.

The (1, 1)-curve $L_{00,11,22}$ passes through R_{00}, R_{11}, R_{22}. It is given by the bihomogeneous equation $x_{2} z_{1}-x_{1} z_{2}=0$. In the sequel we write it in the affine form $x_{2}-x_{1}=0$ for simplicity. $\tilde{L}_{00,11,22}$ is denoted by A^{44} in Oguiso [8], which appears in the \mathscr{J}_{2} fibration. We denote it by B_{33} to
make it consistent with our notation, indicating that it intersects with F_{3} and G_{3} outside A_{33}. Note, however, that there are six (-2)-curves of the form $\tilde{L}_{i_{0} j_{0}, i_{1} j_{1}, i_{2} j_{2}}$ that intersect with F_{3} and G_{3}.

Fig. 6 shows the curve B_{33} in the affine space $\mathbf{A}_{x_{1}} \times \mathbf{A}_{x_{2}} \times \mathbf{A}_{t}$. As a matter of fact, if we substitute x_{2} by x_{1} in (1.1), the equation factorizes into

$$
x_{1}\left(x_{1}-1\right)\left(x_{1} t^{2}-x_{1}-t^{2} \lambda_{1}+\lambda_{2}\right)=0
$$

which implies that the intersection between $x_{2}-x_{1}=0$ and the affine Kummer surface (1.1) has three irreducible components, namely A_{11}, A_{22}, and B_{33}. We also see that a parametrization of B_{33} is given by

$$
\left(x_{1}, x_{2}, t\right)=\left(\frac{\lambda_{1} s^{2}-1}{s^{2}-1}, \frac{\lambda_{1} s^{2}-1}{s^{2}-1}, s\right)
$$

Fig. 6. (-2)-curve B_{33}

The zero divisor of the function $x_{2}-x_{1} \in k\left(x_{1}, x_{2}, t\right)$ is $A_{11}+A_{22}+$ B_{33}, while the polar divisor is of the form $D_{1}+D_{2}+r A_{00}$, where

$$
\begin{aligned}
& D_{1}=2 F_{0}+A_{00}+A_{01}+A_{02}+A_{03}, \\
& D_{2}=2 G_{0}+A_{00}+A_{10}+A_{20}+A_{30}
\end{aligned}
$$

Since A_{00} intersects twice with the divisor $A_{11}+A_{22}+B_{33}$, the intersection number $A_{00} \cdot\left(D_{1}+D_{2}+r A_{00}\right)$ must be 2 , which implies $r=-1$.

This shows

$$
\begin{aligned}
& \left(x_{2}-x_{1}\right)=A_{11}+A_{22}+B_{33} \\
& \quad-\left(2 F_{0}+2 G_{0}+A_{00}+A_{01}+A_{02}+A_{03}+A_{10}+A_{20}+A_{30}\right)
\end{aligned}
$$

This and similar calculations of divisors are used to find the elliptic parameter with a prescribed divisor in $\S 4$ and $\S 5$.

3.2. I_{2} fibers of type \mathscr{J}_{6} fibration

The elliptic parameter $u=x_{1} / x_{2}$, which is of type \mathscr{J}_{6}, defines a pencil of $(1,1)$-curves $x_{1}-u x_{2}=0$. The general fiber of this elliptic fibration is the pullback of a (1,1)-curve passing through R_{00} and R_{11}. If $x_{1}-u x_{2}=0$ passes through a third $R_{i j}$, then its pullback is a singular fiber (see Fig. 7). Four fibers of type I_{2}, which are mentioned in $\S 2.4$

Fig. 7. pencil of $(1,1)$-curves
arise as follows:

$$
\begin{array}{llll}
\tilde{L}_{00,11,23}+A_{23} & \text { at } u=1 / \lambda_{2}, & B_{33}+A_{22} & \text { at } u=1, \\
\tilde{L}_{00,11,33}+A_{33} & \text { at } u=\lambda_{1} / \lambda_{2}, & \tilde{L}_{00,11,32}+A_{32} & \text { at } u=\lambda_{1} .
\end{array}
$$

3.3. Notation

Even though the notation " B_{33} " is ambiguous as we mentioned earlier, it is quite convenient. We thus use the following notation in the
sequel:

$$
\begin{array}{ll}
B_{32}=\tilde{L}_{00,11,23}: \lambda_{2} x_{1}-x_{2}=0, & B_{33}=\tilde{L}_{00,11,22}: x_{1}-x_{2}=0 \tag{3.1}\\
B_{22}=\tilde{L}_{00,11,33}: \lambda_{2} x_{1}-\lambda_{1} x_{2}=0, & B_{23}=\tilde{L}_{00,11,32}: x_{1}-\lambda_{1} x_{2}=0
\end{array}
$$

Later in $\S 4.3$ and $\S 5.2$, we introduce more (-2)-curves of this type, B_{31}, B_{12} and B_{13}.
§4. Elliptic parameters for $\mathscr{J}_{2}, \mathscr{J}_{7}, \mathscr{J}_{8}$ and \mathscr{J}_{11}

4.1. \mathscr{J}_{2}

Using B_{33}, we can construct an elliptic parameter of type \mathscr{J}_{2}. In fact, the divisor

$$
\Psi_{2,0}=F_{3}+A_{33}+G_{3}+B_{33}
$$

is a divisor of type I_{4}, and it does not intersect with the divisor of type I_{12} given by

$$
\begin{aligned}
\Psi_{2, \infty}=F_{0}+A_{02}+G_{2}+A_{12} & +F_{1}+A_{10} \\
& +G_{0}+A_{20}+F_{2}+A_{21}+G_{1}+A_{01}
\end{aligned}
$$

(see Fig. 8 below). It turns out that the divisor of the function

$$
u=\frac{t\left(x_{1}-\lambda_{1}\right)\left(x_{1}-x_{2}\right)}{x_{2}\left(x_{2}-1\right)}
$$

is $\Psi_{2,0}-\Psi_{2, \infty}$, and it is an elliptic parameter of type \mathscr{J}_{2}. Choosing A_{30} as the 0 -section, we obtain the Weierstrass equation

$$
\begin{aligned}
Y^{2}=X^{3}+\left(u^{4}+2\left(2 \lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right.\right. & \left.+2) u^{2}+\left(\lambda_{2}-\lambda_{1}\right)^{2}\right) X^{2} \\
& -16 \lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u^{2} X
\end{aligned}
$$

where the change of variables is given by

$$
\begin{aligned}
X= & -\frac{4 \lambda_{1}\left(\lambda_{1}-1\right)\left(x_{1}-x_{2}\right)\left(x_{2}-\lambda_{2}\right)}{x_{1}\left(x_{1}-1\right)} \\
Y=- & \frac{4 \lambda_{1}\left(\lambda_{1}-1\right)\left(x_{1}-x_{2}\right)\left(x_{2}-\lambda_{2}\right)\left(2 x_{1}-2 x_{2}-\lambda_{1}+\lambda_{2}\right)}{x_{1}\left(x_{1}-1\right)} \\
& \quad+\frac{4 \lambda_{1}\left(\lambda_{1}-1\right)\left(x_{1}-x_{2}\right)^{2}\left(x_{2}-\lambda_{2}\right)^{3}\left(2 x_{1} x_{2}-x_{1}-x_{2}\right)}{t^{2} x_{1}^{3}\left(x_{1}-1\right)^{3}} .
\end{aligned}
$$

Fig. 8. \mathscr{J}_{2}

The discriminant of the fibration is of the form $u^{4} d(u)$, where $d(u)$ is a polynomial of degree 8. The discriminant of $d(u)$ vanishes if and only if

$$
\lambda_{2}=\lambda_{1}, 1-\lambda_{1}, \frac{1}{\lambda_{1}}, \text { or } \frac{\lambda_{1}}{\lambda_{1}-1} .
$$

The curve A_{03} corresponds to the 2-torsion section $T=(0,0)$. The correspondence between the curves and the sections is as follows:

$$
\begin{array}{ccc}
A_{31} & \leftrightarrow & \left.P_{1}=\left(4 \lambda_{1} \lambda_{2}, 4 \lambda_{1} \lambda_{2}\left(u^{2}+\lambda_{1}+\lambda_{2}\right)\right)\right) \\
A_{32} & \leftrightarrow & P_{2}=\left(4\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right),\right. \\
& & \left.\left.-4\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(u^{2}-\lambda_{1}-\lambda_{2}+2\right)\right)\right) \\
A_{13} & \leftrightarrow & P_{3}=\left(-4 u^{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right),\right. \\
& & \left.\left.4\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u^{2}\left(u^{2}+\lambda_{1}+\lambda_{2}\right)\right)\right) \\
A_{23} & \leftrightarrow & \left.P_{4}=\left(-4 \lambda_{1} \lambda_{2} u^{2},-4 \lambda_{1} \lambda_{2} u^{2}\left(u^{2}-\lambda_{1}-\lambda_{2}+2\right)\right)\right)
\end{array}
$$

These sections satisfy the following relations.

$$
P_{3}=P_{1}+T, \quad P_{4}=P_{2}+T
$$

The Mordell-Weil group is generated by T, P_{1} and P_{2} in the general case where C_{1} and C_{2} are not isogenous. The height matrix with respect to
$\left\{P_{1}, P_{2}\right\}$ is shown to be

$$
\left(\begin{array}{ll}
\frac{4}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{4}{3}
\end{array}\right)
$$

Thus the Mordell-Weil lattice is isomorphic to $A_{2}^{*}[2]$.

4.2. \mathscr{J}_{7}

Using the curves B_{33} and B_{32} introduced in $\S 3.3$, we can form two disjoint divisors of type I_{0}^{*} :

$$
\begin{aligned}
& \Psi_{7,0}=2 G_{3}+A_{03}+A_{13}+A_{33}+B_{33} \\
& \Psi_{7, \infty}=2 G_{2}+A_{02}+A_{12}+A_{32}+B_{32}
\end{aligned}
$$

Looking for the function whose divisor is $\Psi_{7,0}-\Psi_{7, \infty}$, we obtain the elliptic parameter

$$
\begin{equation*}
u=\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)} \tag{4.1}
\end{equation*}
$$

The divisor of the function

$$
u-1=-\frac{\left(\lambda_{2}-1\right) x_{2}\left(x_{1}-1\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}
$$

is given by the following divisor consisting only of the basic curves:

$$
A_{01}+A_{31}+2 G_{1}+2 A_{21}+2 F_{2}+2 A_{20}+2 G_{0}+A_{10}+A_{30}
$$

This is a singular fiber of type I_{4}^{*} (see Fig. 9). Thus, the elliptic parameter given by (4.1) is of type \mathscr{J}_{7}.

The change of variables

$$
\begin{aligned}
X & =\frac{\lambda_{2} u(u-1)^{2} x_{1}}{x_{2}} \\
& =\frac{\lambda_{2}\left(\lambda_{2}-1\right)^{2} x_{1}\left(x_{1}-1\right)^{2} x_{2}\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{\left(x_{2}-1\right)^{3}\left(\lambda_{2} x_{1}-x_{2}\right)^{3}} \\
Y & =\frac{\lambda_{2}\left(\lambda_{2}-1\right) u^{2}(u-1)^{2}}{t} \\
& =\frac{\lambda_{2}\left(\lambda_{2}-1\right)^{3}\left(x_{1}-1\right)^{2} x_{2}^{2}\left(x_{2}-\lambda_{2}\right)^{2}\left(x_{1}-x_{2}\right)^{2}}{t\left(x_{2}-1\right)^{4}\left(\lambda_{2} x_{1}-x_{2}\right)^{4}}
\end{aligned}
$$

converts (1.1) to the Weierstrass equation

$$
Y^{2}=X^{3}-u(u-1)\left(\left(\lambda_{1} \lambda_{2}+1\right) u-\lambda_{1}-\lambda_{2}\right) X^{2}+\lambda_{1} \lambda_{2} u^{2}(u-1)^{4} X
$$

Fig. 9. \mathscr{J}_{7}

Its discriminant is of the form $u^{6}(u-1)^{10} d(u)$, where $d(u)$ is a polynomial of degree 2 .

Generically, it has only one section other than 0-section:

$$
F_{2} \quad \leftrightarrow \quad T=(0,0) .
$$

4.3. \mathscr{J}_{8}

To find an elliptic parameter of type \mathscr{J}_{8}, we need to construct a I_{2}^{*} fiber. For this, we can make use of B_{33} once again. The divisor

$$
\Psi_{8,0}=A_{01}+A_{02}+2 F_{0}+2 A_{03}+2 G_{3}+A_{33}+B_{33}
$$

is of type I_{2}^{*} and it does not intersect with the divisor

$$
\Psi_{8, \infty}=A_{12}+2 F_{1}+3 A_{10}+4 E_{0}+3 A_{20}+2 F_{2}+A_{21}+2 A_{30}
$$

which is of type III*. We look for a function whose divisor is $\Psi_{8,0}-\Psi_{8, \infty}$, and we obtain the elliptic parameter of type \mathscr{J}_{8}

$$
u=-\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{\lambda_{2}\left(\lambda_{2}-1\right) x_{1}\left(x_{1}-1\right)}
$$

Fig. 10. \mathscr{J}_{8}

Let B_{31} be the (-2)-curve $\tilde{L}_{00,13,22}:\left(\lambda_{2}-1\right) x_{1}+x_{2}-\lambda_{2}=0$. Then B_{32} and B_{31} form a fiber of type I_{2} at $u=1$. Also A_{32} and the pullback of a certain (2,2)-curve form another fiber of type I_{2} at $u=1 /\left(\lambda_{1} \lambda_{2}\right)$, while A_{31} together with the pullback of a certain (2,2)-curve form the third fiber of type I_{2} at $u=\left(\lambda_{1}-1\right)^{-1}\left(\lambda_{2}-1\right)^{-1}$. The change of variables

$$
\begin{aligned}
& X=u\left(\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u-1\right) \frac{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{\left(\lambda_{2}-1\right) x_{2}\left(x_{1}-1\right)} \\
& Y=-u^{3}\left(\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u-1\right) \frac{\lambda_{2}\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{t x_{2}\left(x_{1}-1\right)},
\end{aligned}
$$

converts (1.1) to the Weierstrass equation

$$
\begin{aligned}
Y^{2}=X^{3}-u(& \left.\left(2 \lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}+2\right) u-2\right) X^{2} \\
& \quad-u^{2}(u-1)\left(\lambda_{1} \lambda_{2} u-1\right)\left(\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u-1\right) X
\end{aligned}
$$

Its discriminant is

$$
\begin{aligned}
& \Delta(u)=16 u^{8}(u-1)^{2}\left(\lambda_{1} \lambda_{2} u-1\right)^{2}\left(\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u-1\right)^{2} \\
& \times\left(4 \lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u+\left(\lambda_{1}-\lambda_{2}\right)^{2}\right) .
\end{aligned}
$$

[If $\lambda_{2}=-\lambda_{1}, 2-\lambda_{2}$, or $\lambda_{1} /\left(2 \lambda_{1}-1\right)$, this elliptic fibration has fiber of type III for general λ_{1}.]

Generically, it has only one section other than 0-section:

$$
G_{2} \quad \leftrightarrow \quad T=(0,0)
$$

4.4. \mathscr{J}_{11}

Modifying the divisors appearing in the type \mathscr{J}_{7} fibration we constructed in §4.2, we form two divisors

$$
\begin{aligned}
& \Psi_{11,0}=A_{31}+A_{21}+2 G_{1}+2 A_{01}+2 F_{0}+2 A_{03}+2 G_{3}+A_{33}+B_{33} \\
& \Psi_{11, \infty}=A_{30}+A_{20}+2 G_{0}+2 A_{10}+2 F_{1}+2 A_{12}+2 G_{2}+A_{32}+B_{32}
\end{aligned}
$$

They are of type I_{4}^{*} and they do not intersect with each other.

Fig. 11. \mathscr{J}_{11}

We look for a function whose divisor is $\Psi_{11,0}-\Psi_{11, \infty}$, and we obtain the elliptic parameter of type \mathscr{J}_{11} :

$$
u=\frac{x_{2}\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{x_{1}\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}
$$

The change of variables

$$
\begin{aligned}
X & =u \frac{\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)}{x_{1}\left(x_{1}-1\right)} \\
& =\frac{\left(\lambda_{1}-1\right) x_{2}\left(x_{2}-\lambda_{2}\right)^{2}\left(x_{1}-x_{2}\right)^{2}}{x_{1}^{2}\left(x_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)} \\
Y & =u^{2} \frac{\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)^{2}\left(x_{1}-x_{2}\right)^{2}}{t x_{1}^{2}\left(x_{1}-1\right)^{2}} \\
& =\frac{\left(\lambda_{1}-1\right) x_{2}^{2}\left(x_{2}-\lambda_{2}\right)^{4}\left(x_{1}-x_{2}\right)^{4}}{t x_{1}^{4}\left(x_{1}-1\right)^{2}\left(x_{2}-1\right)^{2}\left(\lambda_{2} x_{1}-x_{2}\right)^{2}}
\end{aligned}
$$

converts (1.1) to the Weierstrass equation

$$
\begin{aligned}
& Y^{2}=X^{3}+\left(\lambda_{1} u^{2}-\left(2 \lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}+2\right) u+\lambda_{2}\right) u X^{2} \\
+ & \left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\left(\lambda_{1} \lambda_{2}+1\right) u-2 \lambda_{2}\right) u^{3} X+\lambda_{2}\left(\lambda_{1}-1\right)^{2}\left(\lambda_{2}-1\right)^{2} u^{5}
\end{aligned}
$$

Its discriminant is of the form $u^{10} d(u)$, where $d(u)$ is a polynomial of degree 4. The discriminant of $d(u)$ is too complicated to write down here. However, a simple search reveals that there are cases where four I_{1} fibers degenerate even when C_{1} and C_{2} are not isogenous.

Remark. Suppose that the characteristic of the base field is 0 .
(1) If $\lambda_{1}=-1$ and $\lambda_{2}=9 \pm 4 \sqrt{5}$, then the fibration has one I_{2} fibers and one type II fiber. In this case j-invariant of C_{1} is 1728 and that of C_{2} is $78608=2^{4} 17^{3}$. They are not isogenous, and they can be defined over \mathbf{Q}.
(2) If $\lambda_{1}=-1$ and $\lambda_{2}= \pm \sqrt{-1}$, then the fibration has two type II fibers. In this case j-invariant of C_{1} is 1728 and that of C_{2} is 128 . They are not isogenous, and they can be defined over \mathbf{Q}.
$\S 5 . \quad(2,2)$-curves and $\mathscr{J}_{5}, \mathscr{J}_{9}$ and \mathscr{J}_{10}

5.1. (2, 2)-curves

Now the pullbacks of $(1,1)$-curves are not enough to construct all the elliptic fibrations in Oguiso's list. A pullback of a (2,2)-curve is a candidate for missing (-2)-curves. A nonsingular (2,2)-curve in $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{1}$ is a curve of genus 1 , and thus, we first look for $(2,2)$-curves with a node. Then we try to impose conditions such that their pullbacks are (-2)curves. Here, we do not try to make a systematic search as before.

Actually, we can construct an elliptic fibration of type \mathscr{J}_{5} using only pullbacks of (1,1)-curves and the basic curves. As a by-product,
however, we obtain some new (-2)-curves which are pullbacks of $(2,2)$ curves. Such curves have a node at R_{11}. They are given by an equation of the form

$$
a x_{1}^{2} z_{2}^{2}+b x_{2} x_{1} z_{2} z_{1}+c x_{2}^{2} z_{1}^{2}+d x_{1} z_{2}^{2} z_{1}+e x_{2} z_{2} z_{1}^{2}+f z_{2}^{2} z_{1}^{2}=0
$$

The fact that it has a node at R_{11} corresponds to the fact that the equation does not have the terms $x_{1}^{2} x_{2}^{2}, x_{1}^{2} x_{2} z_{2}$, and $x_{1} z_{1} x_{2}^{2}$. In order to obtain such a (2,2)-curve, we need to specify six points among $R_{i j}$ $(1 \leq i, j \leq 4)$ such that no three among them are on the same F_{i} or G_{j}. We use such curves to construct an elliptic fibration of type \mathscr{J}_{9} and \mathscr{J}_{10}.

5.2. \mathscr{J}_{5}

An elliptic fibration of type \mathscr{J}_{5} has six I_{2} fibers together with one I_{6}^{*} fiber. In order to write down an elliptic parameter for \mathscr{J}_{5}, we need to identify these six I_{2} fibers.

Let B_{33} and B_{32} be the (-2)-curves introduced in $\S 3.3$. Consider two more (-2)-curves of this type:

$$
\begin{aligned}
& B_{12}:=\tilde{L}_{00,23,31}: \lambda_{2}\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}=0 \\
& B_{13}:=\tilde{L}_{00,22,31}: x_{1}-\lambda_{1}+\left(\lambda_{1}-1\right) x_{2}=0
\end{aligned}
$$

Looking at Fig. 12, we see that B_{33} and B_{12} intersect each other only at two points above the intersection of lines $x_{1}-x_{2}=0$ and $\lambda_{2}\left(x_{1}-\right.$ $\left.\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}=0$. Thus, the divisor $B_{33}+B_{12}$ is a singular fiber of type I_{2}. Similarly, $B_{32}+B_{13}$ is another singular fiber of type I_{2}. Furthermore, $B_{33}+B_{12}$ and $B_{32}+B_{13}$ do not intersect each other since the image of these curves in $\mathbf{A}_{x_{1}} \times \mathbf{A}_{x_{2}}$ intersect only at $R_{i j}$ (see Fig. 12 below).

Computing the divisors $\left(x_{1}-x_{2}\right),\left(\lambda_{2}\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}\right),\left(\lambda_{2} x_{1}-\right.$ x_{2}) and $\left(x_{1}-\lambda_{1}+\left(\lambda_{1}-1\right) x_{2}\right)$, we see that

$$
u=\frac{\left(x_{1}-x_{2}\right)\left(\lambda_{2}\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}\right)}{\left(\lambda_{2} x_{1}-x_{2}\right)\left(x_{1}-\lambda_{1}+\left(\lambda_{1}-1\right) x_{2}\right)}
$$

is an elliptic parameter of type \mathscr{J}_{5}. We have

$$
u-1=\frac{-\lambda_{1}\left(\lambda_{2}-1\right) x_{2}\left(x_{1}-1\right)}{\left(\lambda_{2} x_{1}-x_{2}\right)\left(x_{1}-\lambda_{1}+\left(\lambda_{1}-1\right) x_{2}\right)}
$$

which shows that the fiber at $u=1$ is a singular fiber of type I_{6}^{*}. Each of the divisors A_{12}, A_{13}, A_{32} and A_{33} is a component of a singular fiber

Fig. 12. (1, 1)-curves
of type I_{2}. The other (-2)-curves are pullbacks of (2,2)-curves. For example, the singular fiber at $u=\lambda_{1} \lambda_{2}-\lambda_{1}+1$ consists of A_{12} and the pullback of the $(2,2)$-curve given by

$$
\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)=0 .
$$

In order to obtain a Weierstrass equation using the curve G_{0} as the 0 -section, we first put

$$
\begin{aligned}
X_{0} & =\frac{\left(x_{1}-x_{2}\right)\left(x_{1}-\lambda_{1}\right)}{x_{1}\left(\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}\right)} \\
Y_{0} & =\frac{\lambda_{1}\left(\lambda_{1}-1\right) t x_{2}\left(x_{1}-1\right)\left(x_{1}-\lambda_{1}\right)\left(x_{2}-x_{1}\right)}{x_{1}\left(\lambda_{2} x_{1}-x_{2}\right)\left(\left(x_{1}-\lambda_{1}\right)+\left(\lambda_{1}-1\right) x_{2}\right)^{2}}
\end{aligned}
$$

and then put

$$
\begin{aligned}
& X=\lambda_{1}\left(\lambda_{2}-1\right)(u-1)\left(u-\lambda_{1} \lambda_{2}+\lambda_{1}-1\right)\left(\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) u+\lambda_{2}\right) X_{0} \\
& Y=\lambda_{1}^{2}\left(\lambda_{2}-1\right)^{2}(u-1)^{2}\left(u-\lambda_{1} \lambda_{2}+\lambda_{1}-1\right)\left(\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) u+\lambda_{2}\right) Y_{0} .
\end{aligned}
$$

Then (X, Y) satisfy the Weierstrass equation

$$
Y^{2}=X(X-\alpha)(X-\beta)
$$

Fig. 13. \mathscr{J}_{5}
where
$\alpha=-\lambda_{1}\left(\lambda_{2}-1\right)(u-1)\left(\left(\lambda_{1} \lambda_{2}-1\right) u-\lambda_{1}+1\right)\left(\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) u+\lambda_{2}\right)$,
$\beta=\lambda_{1}\left(\lambda_{2}-1\right) u(u-1)\left(u-\lambda_{1} \lambda_{2}+\lambda_{1}-1\right)\left(\left(\lambda_{1} \lambda_{2}-\lambda_{2}\right) u-\lambda_{1}+\lambda_{2}\right)$.
The discriminant of this fibration is given by

$$
\begin{aligned}
\Delta(u)=16 & 1_{1}^{6} \lambda_{2}^{2}\left(\lambda_{1}-1\right)^{2} u^{2}(u-1)^{12} \\
& \times\left(u-\lambda_{1} \lambda_{2}+\lambda_{1}-1\right)^{2}\left(\left(\lambda_{1} \lambda_{2}-1\right) u-\lambda_{1}+1\right)^{2} \\
& \times\left(\left(\lambda_{1} \lambda_{2}-\lambda_{2}\right) u-\lambda_{1}+\lambda_{2}\right)^{2}\left(\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) u+\lambda_{2}\right)^{2}
\end{aligned}
$$

The Mordell-Weil group of this elliptic surface has the following three sections:

$$
\begin{aligned}
& F_{3} \leftrightarrow T_{1}=(0,0), \\
& G_{2} \leftrightarrow T_{2}=(\alpha, 0), \\
& G_{3} \leftrightarrow T_{3}=(\beta, 0) .
\end{aligned}
$$

5.3. \mathscr{J}_{9}

In order to construct an elliptic fibration of type \mathscr{J}_{9}, we need to find a divisor of type I_{0}^{*} different from the ones appearing in \mathscr{J}_{4} or \mathscr{J}_{7}. To
do so we look for a (-2)-curve P_{33} such that $2 G_{3}+A_{03}+A_{33}+B_{33}+P_{33}$ is of type I_{0}^{*}. We can show that P_{33} cannot be a pullback of a (1,1)curve; if that were the case, B_{33} and P_{33} would have to intersect each other. Thus, we look for a $(2,2)$-curve whose double cover serves as P_{33}.

Fig. 14. fiber at $u=0$

It turns out that the pullback of the $(2,2)$-curve

$$
\begin{equation*}
\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)=0 \tag{5.1}
\end{equation*}
$$

can be used as P_{33}. This curve is a component of a I_{2} fiber of the elliptic fibration of type \mathscr{J}_{5} which we constructed in the previous subsection. The (2,2)-curve (5.1) has a node at R_{00}, and passes through $R_{11}, R_{12}, R_{22}, R_{23}$, and R_{31}. Fig. 14 shows the projection of the (-2)curves contained in the divisor $\Psi_{9,0}=2 G_{3}+A_{03}+A_{33}+B_{33}+P_{33}$. (The projection of A_{03} is R_{03}, which is a point at infinity.)

Similarly, let P_{32} be the pullback of the (2,2)-curve

$$
\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)=0 .
$$

Then, the divisor $\Psi_{9, \infty}=2 G_{2}+A_{02}+A_{32}+B_{32}+P_{32}$ is again of type I_{0}^{*}, which does not intersect with $\Psi_{9,0}$. Fig. 15 shows the curves contained in the divisor $\Psi_{9, \infty}$. Looking for the function having the

Fig. 15. fiber at $u=\infty$
divisor $\Psi_{9,0}-\Psi_{9, \infty}$, we find the elliptic parameter u given by

$$
\begin{equation*}
u=\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\right)} \tag{5.2}
\end{equation*}
$$

We have

$$
\begin{aligned}
& u-1= \\
& \frac{-\lambda_{2}\left(\lambda_{2}-1\right) x_{1} x_{2}\left(x_{1}-1\right)^{2}}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)\left(\lambda_{2} x_{1}\left(x_{1}-1\right)+\left(\lambda_{1}-1\right)\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\right)} .
\end{aligned}
$$

The zero divisor of this function $u-1$ is given by the following divisor consisting only of the basic curves:

$$
A_{01}+2 G_{1}+3 A_{21}+4 F_{2}+5 A_{20}+6 G_{0}+3 A_{30}+4 A_{10}+2 F_{1}
$$

This is a singular fiber of type II^{*} (see Fig. 16). Thus, the elliptic parameter given by (5.2) is of type \mathscr{J}_{9}.

Our next task is to write down a Weierstrass equation. If we regard (5.2) as the defining equation of a curve in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ defined over $k(u)$, then we can show that this curve is a curve of genus 0 , and thus it can be parametrized. In fact, we can parametrize x_{1} and x_{2} satisfying (5.2) using the parameter

$$
\xi=-\frac{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{\lambda_{2} x_{1} x_{2}}
$$

Fig. 16. \mathscr{J}_{9}

Actual parametrizations of x_{1} and x_{2} are complicated and we omit here. Substituting x_{1} and x_{2} in the equation (1.1) by these parametrizations, we obtain an equation of a curve of genus 1 with variables in (ξ, t) defined over $k(u)$. This equation turns out to be a quadratic equation in t, and it is easily converted to a Weierstrass equation. Combining all these, we obtain the change of variables

$$
X_{0}=-\frac{\lambda_{2}\left(\lambda_{2}-1\right) x_{1}\left(x_{1}-1\right)}{\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}, \quad Y_{0}=\frac{\lambda_{2}\left(\lambda_{2}-1\right)}{t}
$$

that converts (1.1) to a twisted form of Weierstrass equation

$$
\begin{aligned}
u(u-1) Y_{0}^{2}= & X_{0}^{3}+\left(\lambda_{1} \lambda_{2}-2 \lambda_{1}-2 \lambda_{2}+1\right)(u-1) X_{0}^{2} \\
- & \left(\lambda_{1}+\lambda_{2}-1\right)\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right)(u-1)^{2} X_{0} \\
& -\lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)(u-1)^{2} .
\end{aligned}
$$

By letting

$$
X=u(u-1) X_{0}, \quad Y=u^{2}(u-1)^{2} Y_{0}
$$

we obtain the following Weierstrass equation:

$$
\begin{aligned}
& Y^{2}=X^{3}+\left(\lambda_{1} \lambda_{2}-2 \lambda_{1}-2 \lambda_{2}+1\right) u(u-1)^{2} X^{2} \\
& -\left(\lambda_{1}+\lambda_{2}-1\right)\left(\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) u^{2}(u-1)^{4} X \\
& -\lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u^{3}(u-1)^{5} .
\end{aligned}
$$

Its discriminant is of the form $u^{6}(u-1)^{10} d(u)$, where $d(u)$ is a polynomial of degree 2. The discriminant of $d(u)$ is given by

$$
16 \lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}-1\right)^{2}\left(\lambda_{2}-1\right)^{2}\left(\lambda_{1}^{2}-\lambda_{1}+1\right)^{3}\left(\lambda_{2}^{2}-\lambda_{2}+1\right)^{3}
$$

If either λ_{1} or λ_{2} is a sixth root of unity, then two I_{1} fibers of the fibration degenerate to form a type II fiber.

5.4. \mathscr{J}_{10}

In order to construct an elliptic fibration of type \mathscr{J}_{10}, we must find yet another divisor of type I_{0}^{*}. The divisor $\Psi_{9,0}=2 G_{3}+A_{03}+A_{33}+B_{33}+$ P_{33} is a divisor of type I_{0}^{*} appearing in the elliptic fibration constructed in the previous subsection. Since neither B_{33} nor P_{33} intersects with A_{13}, we see that

$$
\Psi_{10,0}=2 G_{3}+A_{13}+A_{33}+B_{33}+P_{33}
$$

is also a divisor of type I_{0}^{*}. We then find a divisor of type I_{6}^{*} that does not intersect with $\Psi_{10,0}$:

$$
\begin{aligned}
\Psi_{10, \infty}=B_{32}+A_{32} & +2 G_{2}+2 A_{02}+2 F_{0}+2 A_{01} \\
& +2 G_{1}+2 A_{21}+2 F_{2}+2 A_{20}+2 G_{0}+A_{10}+A_{30}
\end{aligned}
$$

(see Fig.17). Looking for the function having the divisor $\Psi_{10,0}-\Psi_{10, \infty}$, we find the elliptic parameter of type \mathscr{J}_{10} given by

$$
\begin{equation*}
u=\frac{\left(x_{2}-\lambda_{2}\right)\left(x_{1}-x_{2}\right)\left(\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)+\lambda_{2} x_{1}\left(x_{1}-1\right)\right)}{x_{2}\left(x_{2}-1\right)\left(x_{1}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)} . \tag{5.3}
\end{equation*}
$$

The curve in $\mathbf{P}^{1} \times \mathbf{P}^{1}$ over $k(u)$ defined by (5.3) is a curve of genus 0 . As in the case of \mathscr{J}_{9}, the parameter

$$
\xi=\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-\lambda_{2}\right)}{\left(x_{1}-1\right) x_{2}}
$$

Fig. 17. \mathscr{J}_{10}
can be used to parametrize this curve. We can proceed in a similar manner to the case of \mathscr{J}_{9} and we obtain the change of variables

$$
\begin{aligned}
& X_{0}=\frac{\lambda_{1}\left(\lambda_{1}-1\right)\left(x_{2}-1\right)\left(\lambda_{2} x_{1}-x_{2}\right)}{x_{1}\left(x_{1}-1\right)} \\
& Y_{0}=\frac{\lambda_{1}\left(\lambda_{1}-1\right)\left(x_{2}-1\right)^{2}\left(\lambda_{2} x_{1}-x_{2}\right)^{2}}{t x_{1}^{2}\left(x_{1}-1\right)^{2}},
\end{aligned}
$$

which converts (1.1) to

$$
\begin{aligned}
u Y_{0}^{2}=X_{0}^{3}-\left(u+\lambda_{1}+\lambda_{2}-1\right)\left(u-\lambda_{1} \lambda_{2}\right. & \left.+\lambda_{1}+\lambda_{2}\right) X_{0}^{2} \\
+\lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(2 u-\lambda_{1} \lambda_{2}\right. & \left.+2 \lambda_{1}+2 \lambda_{2}-1\right) X_{0} \\
& +\lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}-1\right)^{2}\left(\lambda_{1}-1\right)^{2}
\end{aligned}
$$

Putting

$$
X=u X_{0}, \quad Y=u^{2} Y_{0}
$$

we obtain the Weierstrass equation

$$
\left.\begin{array}{rl}
Y^{2}= & X^{3}+u\left(u-\lambda_{1}-\lambda_{2}+1\right)\left(u+\lambda_{1} \lambda_{2}-\lambda_{1}-\lambda_{2}\right) X^{2} \\
& +\lambda_{1} \lambda_{2}\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) u^{2}(2 u+
\end{array} \lambda_{1} \lambda_{2}-2 \lambda_{1}-2 \lambda_{2}+1\right) X .
$$

Its discriminant is of the form $u^{6} d(u)$, where $d(u)$ is a polynomial of degree 2 . We can show that $d(u)$ can have a multiple root without C_{1} and C_{2} being isogenous.

§6. Full list of the defining equations in a special case

In this section, we take as C_{1} and C_{2} the most familiar elliptic curves

$$
\begin{equation*}
C_{1}: y_{1}^{2}=x_{1}^{3}-x_{1}, \quad C_{2}: y_{2}^{2}=x_{2}^{3}-1 \tag{6.1}
\end{equation*}
$$

and write down the full list of the defining equations of mutually nonisomorphic elliptic fibrations on the Kummer surface $S=\operatorname{Km}\left(C_{1} \times C_{2}\right)$ in characteristic 0 . Although they are very special among elliptic curves (e.g. automorphisms or complex multiplications), corrseponding Kummer surface S serves as a more or less "typical" case, since C_{1}, C_{2} are not isogenous to each other.

In this case, the number $N(n)$ of nonisomorphic elliptic fibrations on S of type \mathscr{J}_{n} has been determined by Oguiso as follows:

$$
N(n)=1 \quad \text { for } n=2,3,5,8,9,10
$$

and

$$
N(n)=2 \text { for } n=1,4,6,7,11
$$

(See Oguiso [8, p. 652]. We note that this number N is not typical among all non-isogenous curves, as shown there.)

Now observe that the values of Legendre parameter λ_{i} for the present C_{i} are as follows:

$$
\lambda_{1}=-1,2 \text { or } 1 / 2, \quad \lambda_{2}=-\omega \text { or }-\omega^{2},
$$

where ω is a cubic root of unity. In the following, we write down the $N=N(n)$ defining equations for each type \mathscr{J}_{n}. When $N=1$, we give essentially the same equation as the one constructed in the previous sections, except that we make some coordinate change when it makes the equation look simpler. When $N>1$, we make the same construction as before using a suitable equivalent value of λ_{i}. We briefly indicate how to verify that the resulting defining equations are not isomorphic to each other.

6.1. \mathscr{J}_{1}

$$
\begin{equation*}
y^{2}=x\left(x^{2}+\left(u^{4}+1\right) x+4 u^{4}\right) \tag{6.2}
\end{equation*}
$$

$$
\begin{gather*}
y^{2}=x\left(x^{2}+\left(u^{4}+6(2 \omega+1) u^{2}+1\right) x-32 u^{4}\right) \tag{6.3}\\
J=\frac{1}{6912} \frac{\left(u^{8}+12(2 \omega+1) u^{6}-10 u^{4}+12(2 \omega+1) u^{2}+1\right)^{3}}{u^{8}\left(u^{8}+12(2 \omega+1) u^{6}+22 u^{4}+12(2 \omega+1) u^{2}+1\right)}
\end{gather*}
$$

Both the equations (6.2) and (6.3) have two I_{8} fibers at $u=0$ and ∞ and eight I_{1} fibers. Suppose they define isomorphic elliptic curves over $k(u)$. Then there must be a linear transformation of u fixing 0 and ∞ which sends one J into the other, J denoting the classical absolute invariant of the generic fibre (normalized so that $J=1$ for $y^{2}=x^{3}-x$). But this is impossible, as the positions of the eight I_{1} fibers are determined by the simple poles of J and they cannot be transformed by such a linear transformation. This proves that the two elliptic fibrations are not isomorphic to each other.

6.2. \mathscr{J}_{2}

$$
\begin{gather*}
y^{2}=x\left(x^{2}-\left(3 u^{4}+6 u^{2}-1\right) x+32 u^{6}\right) \tag{6.4}\\
J=\frac{1}{6912} \frac{\left(9 u^{8}-60 u^{6}+30 u^{4}-12 u^{2}+1\right)^{3}}{u^{12}\left(u^{4}-10 u^{2}+1\right)\left(9 u^{4}-2 u^{2}+1\right)} .
\end{gather*}
$$

6.3. \mathscr{J}_{3}

$$
\begin{equation*}
y^{2}=x^{3}+u^{4}\left(u^{4}+1\right), \quad J=0 \tag{6.5}
\end{equation*}
$$

6.4. \mathscr{J}_{4}

$$
\begin{gather*}
y^{2}=x^{3}-\left(u^{3}-1\right)^{2} x,\left(u=x_{1}\right), \quad J=1 \tag{6.6}\\
y^{2}=x^{3}-\left(v^{3}-v\right)^{3},\left(v=x_{2}\right), \quad J=0 \tag{6.7}
\end{gather*}
$$

These are the two obvious elliptic fibrations on S induced by the projections $C_{1} \times C_{2} \rightarrow C_{1}$ or C_{2}.
6.5. \mathscr{J}_{5}

$$
\begin{gather*}
y^{2}=x(x-4)\left(x+2 u\left(u^{2}+3 u+3\right)\right) \tag{6.8}\\
J=\frac{1}{27} \frac{\left(u^{6}+6 u^{5}+15 u^{4}+20 u^{3}+15 u^{2}+6 u+4\right)^{3}}{u^{2}(u+2)^{2}\left(u^{2}+u+1\right)^{2}\left(u^{2}+3 u+3\right)^{2}}
\end{gather*}
$$

6.6. \mathscr{J}_{6}

$$
\begin{gather*}
y^{2}=x\left(x+2 u^{2}\right)\left(x-u\left(u^{2}-u+1\right)\right), \tag{6.9}\\
J=\frac{1}{27} \frac{\left(u^{4}+5 u^{2}+1\right)^{3}}{u^{2}\left(u^{4}+u^{2}+1\right)^{2}} . \\
y^{2}=x\left(x-\omega u^{2}\right)\left(x+u(2 u-1)\left(u+\omega^{2}\right)\right), \tag{6.10}\\
J=\frac{4}{27} \frac{\omega\left(2 u^{2}-(\omega+2) u-\omega^{2}\right)^{3}\left(2 u^{2}-2(\omega+2) u-\omega^{2}\right)^{3}}{u^{2}(u-1)^{2}(2 u-1)^{2}\left(u+\omega^{2}\right)^{2}\left(2 u+\omega^{2}\right)^{2}} .
\end{gather*}
$$

The Legendre parameters we employed for the first equation (6.9) are $\lambda_{1}=-1, \lambda_{2}=-\omega$, while those for the second one (6.10) are $\lambda_{1}=$ $2, \lambda_{2}=-\omega$. That the two equations define nonisomorphic elliptic fibrations can be checked in the same way as the case for \mathscr{J}_{1} above.

6.7. \mathscr{J}_{7}

$$
\begin{gather*}
y^{2}=x\left(x^{2}-u(u+1)(u+2) x+u^{2}(u+2)^{2}\right), \tag{6.11}\\
J=\frac{4}{27} \frac{\left(u^{2}+2 u-2\right)^{3}}{(u-1)(u+3)} . \\
y^{2}=x\left(x^{2}+\omega u(u-1)(u-3 \omega-2) x+2 \omega^{2} u^{2}(u-1)^{2}\right) . \tag{6.12}\\
J=\frac{1}{27} \frac{\left(u^{2}-2(3 \omega+2) u+3 \omega-11\right)^{3}}{\left(u^{2}-2(3 \omega+2) u+3 \omega-13\right)} .
\end{gather*}
$$

In this case, we can check that there is a linear transformation of u sending the first J into the second one. However it does not preserve the position of singular fibres which can be seen from the discriminants (but not from the absolute invariants). Hence (6.11) and (6.12) are not isomorphic.
6.8. \mathscr{J}_{8}

$$
\begin{gather*}
y^{2}=x\left(x^{2}+u(3 u+2) x+1+3 u+3 u^{2}+2 u^{3}\right) \tag{6.13}\\
J=\frac{4}{27} \frac{\left(6 u^{3}-3 u-1\right)^{3}}{u^{2}(2 u+1)^{2}\left(u^{2}+u+1\right)^{2}(8 u+3)}
\end{gather*}
$$

6.9. \mathscr{J}_{9}

$$
\begin{equation*}
y^{2}=x^{3}+u\left(u^{2}-4\right)^{3}, \quad J=0 \tag{6.14}
\end{equation*}
$$

6.10. \mathscr{J}_{10}

$$
\begin{equation*}
y^{2}=x^{3}+u^{2}(u+3) x^{2}+u^{2}\left(-2 u^{2}-2 u+3\right) x+u^{4}(u-1) \tag{6.15}
\end{equation*}
$$

We omit J.

6.11. \mathscr{J}_{11}

$$
\begin{align*}
& y^{2}=x^{3}-27 u^{2}\left(u^{4}+6 u^{3}+5 u^{2}-6 u+1\right) x \tag{6.16}\\
& \quad-54 u^{3}\left(u^{2}+1\right)\left(u^{4}+9 u^{3}+20 u^{2}-9 u+1\right) \\
& \begin{aligned}
y^{2}=x^{3}- & 27 u^{2}\left(4 u^{4}-12 u^{3}+10(\omega+1) u^{2}-6 \omega u+\omega\right) x \\
& +27 u^{3}\left(16 u^{6}-72 u^{5}+6(19+10 \omega) u^{4}\right. \\
& \left.-63(1+2 \omega) u^{3}+3(-9+10 \omega) u^{2}+18 u-2\right)
\end{aligned} \tag{6.17}
\end{align*}
$$

We omit J, but it can be checked that the two elliptic fibrations are not isomorphic to each other by a similar argument as before.

Thus we have listed the defining equations of elliptic fibrations (with a section) on the Kummer surface $S=\operatorname{Km}\left(C_{1} \times C_{2}\right)$ with C_{i} given by (6.1) over an algebraically closed field k of characteristic 0 . Needless to say that the function field $k(x, y, u)$ defined by each of the equations (6.2) through (6.17) is isomorphic to one and the same function field $k(S)$, which is the extension $k\left(x_{1}, x_{2}, t\right)$ with $t=y_{1} / y_{2}$ determined by (6.1).

§7. Closing remark

In closing this paper, it should be remarked that the problems posed in the Introduction (§1.1) should be interesting and worth considering for more general $K 3$ surfaces.

Even in the case of Kummer surfaces, we could ask such questions as follows:

Problem 5. Study Problems 1 and 2 for the Kummer surface $X=$ $\mathrm{Km}(A)$, when A is the Jacobian variety of a genus two curve.

For this, the so-called 166_{6}-configuration of thirty-two (-2)-curves on X should play an important role in place of the twenty-four basic curves used in this paper. A special case has been treated in Shioda [13].

According to Weil [15], a principally polarized abelian surface is either the Jacobian variety of a genus two curve or a product of two elliptic curves. Beyond the case of principally polarized abelian surfaces, we ask:

Problem 6. Find at least one elliptic parameter for the Kummer surface $X=\operatorname{Km}(A)$ when A is a generic member in a family of polarized abelian surfaces.

The coefficients in the defining equation (especially the discriminant) for such should be related to some modular forms or thetafunctions of interest.

Acknowledgements We would like to thank Professor Fumio Sakai of Saitama University who arranged a Seminar by the second author about "Elliptic parameters" in September 2005, which resulted in this fruitful joint work with the first author who attended the Seminar. We thank Matthias Schütt for careful reading of the manuscript. We are most grateful to the referee for making very sharp and constructive comments on the manuscript, who has requested the three things: (i) to make the paper free from mistakes (since many standard calculations are nicely omitted), (ii) to add a few words about the case of quasi-elliptic fibrations, and (iii) to include "a full account in one non-trivial case" after saying that Remark 1.7 is very impressive.

In answering these requests, (i) we have tried our best to minimize the possible errors (but still some errors might have crept in during correction). (ii) In char $k=3$, it is possibe that some of the defining equations becomes a quasi-elliptic fibration. We should leave this question to the interested reader, but let us say this: if for example we let $\lambda_{1}=\lambda_{2}=-1$ in char $k=3$, then \mathscr{J}_{3}-fibration gives the same equation
as the \mathscr{J}_{3}-fibration in $\S 6$ (for char $k \neq 3$), which is indeed quasi-elliptic in char $k=3$. (iii) We have added a new section $\S 6$ in the revised version to respond to this request.

The second-named author ackowledges the support from Grant-inAid for Scientific Research No. 17540044.

References

[1] J. W. S. Cassels, Lectures on elliptic curves, London Math. Soc. Stud. Texts, 24, Cambridge Univ. Press, Cambridge, 1991.
[2] I. Connell, Addendum to a paper of K. Harada and M.-L. Lang: Some elliptic curves arising from the Leech lattice, J. Algebra, 125 (1989), 298-310, J. Algebra, 145 (1992), 463-467.
[3] H. Inose, Defining equations of singular $K 3$ surfaces and a notion of isogeny, In: Proceedings of the International Symposium on Algebraic Geometry, Kyoto Univ., Kyoto, 1977, Kinokuniya, Tokyo, 1978, pp. 495-502.
[4] K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2), 77 (1963), 563-626; ibid., 78 (1963), 1-40.
[5] M. Kuwata, The canonical height and elliptic surfaces, J. Number Theory, 36 (1990), 201-211.
[6] , Elliptic K3 surfaces with given Mordell-Weil rank, Comment. Math. Univ. St. Paul., 49 (2000), 91-100.
[7] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math., 75 (1984), 105-121.
[8] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan, 41 (1989), 651-680.
[9] I. I. Pjateckii -Šapiro and I. R. Šafarevič, Torelli's theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 530572; English tansl., Math. USSR, Izv., 5 (1971), 547-588.
[10] T. Shioda and H. Inose, On singular K3 surfaces, Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, pp. 119-136.
[11] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39 (1990), 211-240.
[12] _ A note on $K 3$ surfaces and sphere packings, Proc. Japan Acad. Ser. A Math. Sci., 76 (2000), 68-72.
[13] __ Classical Kummer surfaces and Mordell-Weil lattices, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, pp. 213-221.
[14] _ Correspondence of elliptic curves and Mordell-Weil lattices of certain elliptic K3's, Algebraic Cycles and Motives, vol. 2, London Math. Soc. Lecture Note Ser., 344, Cambridge Univ. Press, Cambridge, 2007, pp. 319-339.
[15] A. Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1957 (1957), 33-53.

Masato Kuwata
Faculty of Economics
Chuo University
742-1 Higashi-Nakano, Hachioji-shi
Tokyo 192-0393 JAPAN
E-mail address: kuwata@tamacc.chuo-u.ac.jp

Tetsuji Shioda
Department of Mathematics
Rikkyo University
3-34-1 Nishi-Ikebukuro, Toshima-ku
Tokyo 171-8501 JAPAN
E-mail address: shioda@rkmath.rikkyo.ac.jp

