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An analogue of the Chowla-Selberg formula for 
several automorphic £-functions 

Masatoshi Suzuki 

Abstract. 

In this paper, we will give a certain formula for the Riemann zeta 
function that expresses the Riemann zeta function by an infinte se
ries consisting of K-Bessel functions. Such an infinite series expression 
is regarded as an analogue of the Chowla-Selberg formula. Roughly 
speaking, the Chowla-Selberg formula is the formula that expresses 
the Epstein zeta-function by an infinite series consisting of K-Bessel 
functions. In addition, we also give certain analogues of the Chawla
Selberg formula for Dirichlet L-functions and L-functions attached to 
holomorphic cusp forms. Moreover, we introduce a two variable func
tion which is analogous to the real analytic Eisenstein series and give 
a certain limit formula for this one. Such a limit formula is regarded 
as an analogue of Kronecker's limit formula. 

§1. Introduction and the statement of results 

Let ( ( s) be the Riemann zeta function. It is defined by the Dirichlet 
series 

00 

(1.1) ((s) = L n-s 
n=l 

for Re( s) > 1 and is extended to a meromorphic function on CC. In this 
paper, we will give a certain formula that expresses ((s) by an infinite 
series consisting of K-Bessel functions. It can be regarded as an analogue 
of the Chawla-Selberg formula for the Epstein zeta-function attached to 
a binary quadratic form. 
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The original Chawla-Selberg formula was given in [3]. Let Q(m, n) = 
am 2 + bmn +en 2 be a positive definite binary quadratic form of discrim
inant d = b2 - 4ac < 0, a, b and c are real numbers and a > 0. The 
Epstein zeta-function Zq(s) attached to the binary quadratic form Q is 
defined by 

(1.2) 
1 

Zq(s) = '2 L Q(m,n)-s 
(7u.·n)EZ2 

(m .. n.)'f"(O.O) 

for Re( s) > 1. It is continued meromorphically to the whole complex 
plane. Concerning Zq(s), Chawla and Selberg [3] gave the identity which 
is called the Chawla-Selberg formula: 
(1.3) 

r(s- .!. ) 
Zq(s) =a-s ((2s) + a-s,(ff r(s) 2 ((2s -1) k1- 28 + Rq(s), 

4 -sk-s+l = b 
Rq(s) = :-sr(s) 2 L ns-! (L d1- 28 )Ks-lj2(21I'nk) cos(n: ), 

n=l din 

where K v ( z) is the K-Bessel function (modified Bessel function of the 
third kind) and k = JldT/(2a). The series Rq(s) converges very quickly. 

The Chawla-Selberg formula has many applications in number the
ory. In particular, it was used to investigate the distribution of the 
complex zeros of Zq(s). For example, studies of Stark [10], Fujii [4] and 
Ki [8]. Therefore, it is expected that if one obtains suitable analogue of 
the Chawla-Selberg formula for ((s), it may be useful to investigate the 
complex zeros of ( ( s). The first aim of this paper is to give an analogue 
of the Chawla-Selberg formula for ((s) motivated by this expectation. 

Let 8(x) be the theta series 

CX) 

(1.4) 8(x) = L e-11'n2x 

n=-oo 

It is well known that the completed Riemann zeta-function (*(s) 
7!'-s/2f(s/2)((s) has the integral representation 

(1.5) 
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This holds for Re( s) > 1. For a positive real number a, we define the 
numbers ca(m) (m = 1, 2, 3, · · ·) by 

(1.6) 
00 

= 1 + L Ca(m)e-11"mx. 
m=l 

In addition, we define 

(1. 7) 100 dt 
Za(s) = (B(t2 )"' -1) t 8 -. 

0 t 

This Za(s) is equal to the two-variable zeta function ZIQJ(a, s) studied 
by Lagarias and Rains [6]. As a part of their results, the integral on 
the right-hand side converges absolutely for Re( s) > a and is continued 
meromorphically to the whole complex plane. Using this Za(s), our first 
result is stated as follows. 

Theorem 1. Let a and f3 be positive real numbers with a + f3 = 1. 
Then we have 
(1.8) 

oo oo n 8-f' 

(*(s) = z13 (s)+Za(1-s)+ L Lca(m)c;3(n)(m) 4 K"';~' (21rvmn) 
m=ln=l 

for any s E C. In particular, we have 

(1.9) (*(s) Z1;2(s) + Z1;2(1- s) 
00 00 

+" "c1;2(m)ci/2(n)(~) 'i-~ K£_! (21rvmn) L...., L...., m 2 4 

m=l n=l 

for any s E <C by taking a = f3 = 1/2. 

Now we compare formula (1.8) in Theorem 1 with the Chawla
Selberg formula (1.3). Let Q1(m, n) = m 2 + n 2 . Then we have 

(1.10) (*(2s) + (*(2- 2s) 
00 

+4 L ns-~ (L d1- 28 )Ks-lj2(27rn) 
n=l din 
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by using the functional equation (*(s) = (*(1- s). On the other hand 
(1.8) can be written as 
(1.11) 

7r-s/2r(s/2) ((s) = Z13(s) + Za(1- s) 
00 

+ L n9 (Lca(d)c!3G) d-~) K~(21ry'ri). 
n=l din 

Here we observe that formulas (1.10) and (1.11) have similar forms. In 
this sense, formula (1.8) is regarded as an analogue of (1.3). 

Also, we can consider formula (1.8) as an "one dimensional" ana
logue of the Chowla-Selberg formula. Formula (1.3) is the identity for 
the Epstein zeta function of a two dimensional lattice. On the other 
hand, we can regard ((s) as the Epstein zeta function of the one dimen
sional lattice Z by the formula 

In this sense, our (1.8) is regarded as an one dimensional analogue of 
(1.3). The higher dimensional analogue of (1.3) had been studied by 
several authors, for example, Terras [11]. However, as far as the author 
knows, the one dimensional analogue had not been published. 

Before describing the application of Theorem 1, we state two fur
ther results. Roughly speaking, Theorem 1 is deduced from only two 
properties of ((s). That two properties are the functional equation 
B(t- 2 ) = t B(t2 ) and the integral representation (1.5). Therefore, if a 
Dirichlet series L( s) has properties as these, we can prove a formula 
that is similar to (1.8) for L(s). As such examples, we give the following 
Theorem 2 and Theorem 3 that are the formulas for Dirichlet L-functions 
and L-functions attached to holomorphic cusp forms, respectively. 

Let x be a real primitive Dirichlet character modulo q. The theta 
series B(x, x) is defined by 

(1.12) B(x, x) = L n 8 x(n)e- '":12x' 
nEZ 

where 

(1.13) o={o
1 

ifx(-1)=1, 
if x(-1) = -1. 
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The completed Dirichlet £-function L*(s, x) is defined by 

(1.14) 
* dE. dE. s+J oo 

L (s, x) = q 2 7r- 2 r(-2-) L x(n) n- 8 • 

n=l 

The series on the right-hand side converges absolutely for Re(s) > 1. 
It is known that L*(s, x) is continued to an entire function. Hereafter, 
we assume that B(x, x) > 0 for any x > 0. Then, for any positive real 
number a, we can define the numbers cx,a(m) (m = 0, 1, 2, · · ·) by 

n=2 

(1.15) 
_ ~"·' ~ a ( ~ 8 ( ) _~en -1)"· )j 00() 00 2 

= 2"'e " L . L n x n e " 
j=O J n=2 

00 
Q ~ _~(m+n)"' 

= 2 L Cx,a(m)e " . 
m=O 

Theorem 2. Let a and (3 be positive real numbers with a + (3 = 1. 
Let x be a real primitive Dirichlet character modulo q. Assume that 
B(x, x) > 0 for any X > 0. Then we have 

(1.16) 

00 00 n + (3 8-/J+.I(n-/l) 

L *(s, x) = 2 L L Cx,a(m)cx,,a(n)( m +a) 4 

m=On=O 

27r ----~~-= 
X K'-1'+"("-IJJ ( -y(m + a)(n + (3)) 

2 q 

for any s E C. In particular, we have 

00 00 
(1.17) L*(s, x) = 2 L L Cx,l/2(m)cx,l/2(n) 

m=On=O 

2n + 1 ' 1 7r 
( ) 4 - 8 KL 1 (-)(2m+ 1)(2n + 1)) 

2m+ 1 2 4 q 

by taking a = (3 = 1/2. 

Remark 1. We need the assumption that B(x, x) > 0 for any x > 0 
to define B(x, x)"' = exp( a log B(x, x)), because B(x, x) is not necessarily 
positive for all x > 0 for a general real character x. We note that if 
B(x, x) > 0 for any x > 0, its Mellin transform has no zeros on the 
real line, and hence the corresponding Dirichlet L-function has no Siegel 
zero. 
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Taking suitable binary quadratic form Q, formula (1.3) gives a useful 
expression of the product ((s)L(s, x). However it does not give similar 
type of expressions for factors ((s) and L(s, x). In a sense, our formulas 
(1.8) and (1.16) give a factorization of formula (1.3). 

Successively, we state the result for L(s, f). As for the theory of 
holomorphic modular forms, see Chapter 14 of [5], for example. Let k 
be a positive integer, and let f 0 (q) = { ( ~ :) E SL2 (Z) I c = 0 mod q}. 
Let f(z) be a holomorphic cusp form of weight k on f 0 (q), and let 

00 

(1.18) f(z) = L aJ(n)e21rinz 
n=l 

be its Fourier expansion at the cusp ioo. The completed L-function 
L*(s, f) attached to the cusp form f(z) is defined by the series 

00 

(1.19) L*(s, f)= q~ (2n)-sr(s) L aJ(n) n- 8 • 

n=l 

It is known that the series on the right-hand side converges absolutely 
for Re(s) > (k + 1)/2 and is continued to an entire function. We also 
introduce the operator W (sometimes called the Fricke involution) by 

Wf(z) = q-~z-kf(-.!_ ). 
qz 

(1.20) 

Hereafter, we assume that a1(1) = 1 and f(iy) > 0 for any y > 0. 
Then, for any positive real number o:, we can define the numbers CJ,a(m) 
(m = 0, 1, 2, .. ·) by 

00 

f(iy)<> = e-27r<>Y(1 + L aJ(n)e-27r(n-l)yt 

n=2 

(1.21) 

00 

= L Cj,a(m)e-27r(m+a)y. 

m=O 

Theorem 3. Let k be a positive integer with k = 0 ( 4). Let o: and 
(3 be positive real numbers with o: + (3 = 1. Let f(z) be a holomorphic 
cusp form of weight k on f 0 (q), and let 

00 

(1.22) f(z) = L aJ(n)e21rinz 
n=l 
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be its Fourier expansion at the cusp ioo. Assume that a1(1) = 1, W f = 
f and f(iy) > 0 for any y > 0. Then we have 

(1.23) 
= = n + (3 .<-kfJ 

L*(s, f)= 2 L L CJ,a(m)cJ,f3(n)( m +a) - 2-

m=On=O 

4 7f ,..,----:--:------=-
Ks-k/3( yqJ(m+a)(n+(J)) 

for any s E C. In particular, we have 

(1.24) 
= = 2n + 1 £_fi. 

L*(s,f) = 2 "'"' c1 l(m)c1 1 (n)( ) 2 4 

~ ~ ' 2 ' 2 2m+ 1 
m=On=O 

2n rc-----,---,----,-

Ks-d r;;-V(2m+1)(2n+1)) 
2 v q 

by taking a = (3 = 1/2. 

Remark 2. The conditions k = 0 (4), at(1) = 1 and Wf =fare 
technical ones. Even if one of these is not satisfied, (1.23) and (1.24) 
hold up to a complex constant multiple. See the proof of this theorem in 
Section 3. On the other hand, the assumptions in Theorem 3 are actually 
satisfied by several specific cusp forms. For example, the Ramanujan 
delta function ~(z) = e2"'iz TI~=l (1- e2"'inz) 24 E s12(ro(1)) satisfies 
the assumptions in this theorem. 

In the latter half of this section, we collect three applications and 
one possible further generalization of the above results. 

Corollary 1. Denote c1; 2 (n) by c(n). On the critical line Re(s) = 
1/2, we have 

(X) 

(*(1/2 +it) = zl/2(1/2 +it)+ zl/2(1/2- it)+ L c(m) 2 K;tj2(2nm) 
m=l 

00 t 
+ 2 L c(m)c(n) cos(- log( 2:_ ))Kit;2(2nymn) 

4 m 
l'Sm<n 

= z1;2(1j2 +it)+ Z1;2(112- it) 
00 

+ L nit/4 ( L c(d) c(n/d) d-it/2) Kit/2(2nyn ). 
n=l djn 

At the point t = 0, this formula is to be understood as the limit t ----+ 0. 
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From the above formula, we have 

(1.25)((1/2 +it)= (1; 2(1/2 +it)+ 1r1/ 4 ( ~(it/2) / ) ( 1; 2(1/2- it) r 1 4.+ it 2 

7!"1/4+it/2 00 ( ) 

+f(1/4 + it/2) L nit/4 L c(d) c(n/d) d-it/2 Kit/2(27ryfii), 
n=1 din 

where ( 1; 2(s) = 7r8 / 2f(s/2)- 1 Z1; 2(s). As see in Figure 1 and Figure 
2 (in the last page), the right-hand side gives a good approximation of 
((1/2+it) on the critical line. Our expressions of ((1/2+it) in Corollary 
1 or (1.25) may be useful to study (( s) on the critical line. 

Corollary 2. Let x be as in Theorem 2. Denote cx, 1; 2 (n) by cx(n). 
The value L(1, x) at the edge of the critical strip and the central value 
L(1/2, x) have the following infinite series expressions : 

(1.26) 
27!"8 oo oo 2n + 1 1. 

L(1, x) = 1/2+8/2 L L Cx(m)cx(n)( 2m+ 1)" 
q m=On=O 

K1. ( ~y'(2m + 1)(2n + 1) ), 
4 q 

(1.27) 
2 (7r/q)¥ 00 00 

L(1/2, x) = f(1/4 + J/2) f.~ Cx(m)cx(n) 

Ko( ~y'(2m + 1)(2n + 1) ). 
q 

Corollary 3. Let f(z) be as in Theorem 3. Denote c1,1; 2 (n) by 
c f ( n). The value L( ( k + 1) /2, f) at the edge of the critical strip has the 
infinite series expression 

(1.28) L((k + 1)/2, f) 

(27r)(k+l)/2 oo oo e- ~y'(2m+l)(2n+l) 

= qk/4r((k + 1)/2) fo~ CJ(m)cJ(n) y'2m + 1 . 

Here we used K 1; 2 (x) = y'1r /(2x) ex. Also, the central value L(k/2, f) 
has the infinite series expression 
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The values of £-functions at the edge of the critical strip and at 
the central point are very important quantities in number theory. Our 
formulas for these values may be useful to investigate them. 

To generalize Theorem 1 to other directions, we recall the real an
alytic Eisenstein series. The real analytic Eisenstein series E* (z, s) is 
defined by 

(1.30) E*(z, s) = ~7r- 8f(s) 
(rn.n)EZ2 

(rn.n}¢(Cl.O) 

lmz + nl2s 

for z = x + iy withy > 0 and Re(s) > 1. It is known that E*(z, s) is a 
modular form of weight zero on PSL2(Z) as a function of z and has the 
Fourier expansion 

E*(z, s) = (*(2s)y8 + (*(2- 2s)y1-s 

(1.31) 
00 

+ 4JY L ns-l/2 (L d1- 28 ) Ks-l/2(27rny) cos(27rnx). 
n=l din 

The Chowla-Selberg formula (1.3) is the special case of this Fourier 

expansion at the CM-point ZQ = b~fd. From this point of view, it 
is natural to regard (1.8) or (1.9) in Theorem 1 as a special case of a 
certain general formula for some two variable function which is analogous 
to E* ( z, s). As a candidate of such two variable function, we consider 
the two variable function 

(1.32) E1;2 (y, s) = ( J B(y2t 2)B(y-2t 2) - 1) t 8 -. 100 dt 

0 t 

This definition resembles the following integral representation of E* ( z, s): 

1100 dt E*(z, s) =- (8z(t)- 1)t8 -, 

2 0 t 

'""' ( lmz + nl 2 ) 8z(t) = ~ exp -7!" t . 
(m,n)EZ2 Y 

Theorem 4. Let E 1; 2 (y, s) be the function defined by (1.32). It is 
defined for y > 0 and Re(s) > 1. For any fixed y > 0, E 1; 2(y, s) is 
continued meromorphically to the whole s-plane. Moreover, the identity 
(1.33) 

E1;2(y, s) = Z1;2(s) Y8 + Z1; 2(1- s) y1-s 

00 

+ VYL ni-k ( L c1;2(d) c1;2(njd) d-~+i )K~-!(27rny2 ) 
n=l din 
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holds for any y > 0 and s E C. 

At the point y = 1, we have E 1; 2(1, s) = (*(s). Hence, Theorem 4 
contains formula (1.9). We regard the relation between (1.9) and (1.33) 
as an analogue of the relation between (1.10) and (1.31). As a corollary 
of Theorem 4, we obtain the following analogue of Kronecker's limit 
formula. 

Corollary 4. For any fixed y > 0, we have 
(1.34) 

lim ( E1;2(y, s)- - 1-) = Z1;2(1) y + 1112 
s--+1 S- 1 

00 

+ JY L n118 ( L c1;2(d) c1;2(njd) d- 1/ 4 )K1;4(21rny2), 
n=1 din 

where the constant11; 2 is given by11; 2 = lim {Z1; 2(s)-(s-1/2)-1}. 
s--+1/2 

Original Kronecker's limit formula is the formula 

lim (2E*(z, s)- - 1-) = ( ~ -log47r) y + 1 
s--+1 S- 1 3 

00 

+ 8JY L v'n (L d- 1 )K1; 2(27rny) cos(27rnx), 
n=1 din 

where 1 = 0.577215 ... is Euler's constant. It is well known that 

00 

8JY L v'n (L d-1 )K1; 2(27rny) cos(21rnx) = -i y- 4log lry(z)l, 
n=1 din 

where ry(z) is the Dedekind eta function ry(z) = e ';.'2" f1::'=1 (1-e2?rinz). It 
seems that it is an interesting problem to consider what is the analogue 
of log lry(z)l (cf. Asai [1]). 

Unfortunately, we have not yet obtained any result about application 
to the distribution of zeros of zeta-functions, although it is our first 
motivation. We would like to deal with such applications in our future 
study. 

The paper is organized as follows. In Section 2, we collect several 
lemmas and its proofs. In Section 3, we give the proofs of Theorem 1, 
Theorem 2 and Theorem 3. In Section 4, we prove Theorem 4 in more 
general form (Theorem 5). 

Acknowledgement. The author thanks the referee for his detailed and 
helpful comments on the first version of this paper. 
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§2. Lemmas 

Lemma 1. Let a be a positive real number. Let Za(s) be the func-
tion defined by the integral (1.7). Then we have 

(a) Z1(s) = (*(s), 
(b) the integral in (1.7) converges absolutely for Re(s) >a, 
(c) Za(s) is continued meromorphically to the whole s-plane, 
(d) Za(s) satisfies the functional equation 

(2.1) 

(e) 

(2.2) 

(f) 

Za(s) = Za(a- s), 

in any vertical strip with finite width, 

Z a ( s) is holomorphic except for two simple poles at s = 0 and 
s = a with residues -1 and 1, respectively. 

As mentioned in Section 1, all properties of Za(s) in Lemma 1 had 
been given in Lagarias and Rains [6]. However, we review the proof of 
Lemma 1 according to [6], because we use a method similar to the one 
to prove succeeding Lemma 2 and Lemma 3. 

Proof of Lemma 1. Assertion (a) follows from definition ( 1. 7) and the 
integral representation (1.5). Assertion (b) is an immediate consequence 
of 

(2.3) 
as t ---+ +0 for any N 2': 1, 

as t ---+ +oo for any N 2': 1. 

We prove (2.3). We have 

(2.4) 

by using the functional equation 

(2.5) 

Hence 

(2.6) 
= r"'{ 1 + ~ (;) 2j (~ e-7rn

2 /t2 r} -1 

= r"' - 1 + O(tN) as t---+ +0 
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for any N 2': 1. On the other hand, we have 

(2.7) 
e(t2)a = (1 + 2 ~ e-7rn2t2t = 1 + ~ (;) 2j ( ~ e-7rn2t2 r 

= 1 + O(t-N) as t----+ +oo 

for any N 2': 1. Hence we obtain (2.3) and (b). Now we prove (c), (d) 
and (f) simultaneously. Initially, we suppose that Re(s) > a for the 
convergence of integral. We split integral (1. 7) into the part from 1 to 
oo and the part from 0 to 1. Using the functional equation (2.5), we 
have 

(2.8) 

Hence, for the part from 0 to 1, we have 

This leads 

(2.9) Za(s) = ---- + (8(t2)a- 1) W + ta-s)-. 1 1 joo dt 
s-a s 1 t 

Here, we find that the integral on the right-hand side converges abso
lutely for any s E C by (2.3). Therefore the integral is an entire function 
on C. Hence, the representation (2.9) gives the meromorphic contin
uation of Za(s) to the whole complex plane. More precisely, Za(s) is 
holomorphic except for simple poles at s = 0 and s = a with residues -1 
and 1 respectively. Because the right-hand side of (2.9) is invariant un
der s >--+a-s, we obtain the functional equation (2.1). We complete the 
proof of (c), (d) and (f). Finally, we prove (e). For s with Re(s) =f. 0, a, 
we have 

(2.10) _1 __ ~ = o( 1 ) 
s-a s 1 + Jlm(s)J 2 · 

Also, we have 

(2.11) 
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for any N 2: 1 in any vertical strip with finite width by using integration 
by parts. Here, we used 

(2.12) 

for any N 2: 1 and k 2: 0 which is obtained by (2.7). These two estimates 
and (2.9) imply assertion (e). D 

Lemma 2. Let a be a positive real number. Let x be a real primitive 
Dirichlet character modulo q. Assume that e(x, x) > 0 for any X > 0. 
Define 

(2.13) 

Then we have 

(a) Z1(s, x) = L*(s, x), 
(b) the integral in (2.13) converges absolutely for any sEC, 
(c) Za(s, x) is an entire function, 
(d) Za(s, x) satisfies the functional equation 

(2.14) Za(s, x) = Za(a- s, x), 

(e) in any vertical strip with finite width, 

(2.15) 

for any N 2: 1. 

Proof of Lemma 2. First, we note that B(x, x)a = exp(alogB(x,x)) is 
well defined by the assumption that e(x, x) > 0 for any X > 0. Assertion 
(a) is a consequence of the integral representation 

(2.16) 
{'XJ dt 

L*(s,x) = Jo B(t2 ,x)ts+6 t 

which is found in [5, §4.6], for example. To prove (b), we show that 

(2.17) B(x, x) = {O(xN) as x......, +0 for any N 2: 1, 
O(x-N) as x ......, +oo for any N 2: 1. 

Clearly, this implies (b), since a in (2.13) is positive. From the definition, 
we have 

(2.18) 
00 

B(x, x) = 2 L n 8x(n)e- ~;;2 x = O(x-N) as x......, +oo 
n=l 
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for any N 2: 1. On the other hand, we have 

(2.19) 
00 

B(x, x) = 2 x-!-.5 L n8 x(n)e- ~;~2 = O(xN) as x __, +0 
n=1 

for any N 2: 1 by using the functional equation 

(2.20) B(x- 1 , x) = x!H B(x, x). 

In (2.20), we used the fact that the Gauss sum T(X) is equal to i8 ,j7i for 
any real primitive character x modulo q. For this fact and the functional 
equation of B(x, x), see [5, §4.6]. From (2.18) and (2.19), we obtain 
( 2.1 7). Assertion (c) is an immediate consequence of (b). To prove (d), 
we split integral (2.13) into the part from 1 to oo and the part from 0 
to 1. Using the functional equation (2.20), we have 

(2.21) 

Therefore, 

r= dt r= dt 
(2.22) Za(s, x) = }

1 
B(t2 , x)"' ts+8at + }

1 
B(t2 , x)"' t<>-s+8at. 

The integrals on the right-hand side converge absolutely for any s E C, 
because of (2.17). Since the right-hand side of (2.22) is invariant if we 
replaces by a-s, we obtain the functional equation (2.14). Finally, we 
prove (d). From the definition of B(x, x), we have 

(2.23) 

This shows that 

(2.24) 
dk 
-d k B(t2 , x)"' = O(cN) as t __, +oo 

t 

for any N 2: 1 and k 2: 0. Hence, we obtain (d) from (2.22) by using 
(2.24) and integration by parts. 0 
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Lemma 3. Let k be a positive integer with k ::::=: 0 (4) and let f(z) be 
a holomorphic cusp form of weight k on r 0 (q). Assume that f(iy) > 0 
for any y > 0. Let a be a positive real number. Define 

(2.25) Za(s,f) = r)() f( i~tYsdY. 
lo yQ Y 

Then we have 

(a) Z1(s, f)= L*(s, f), 
(b) the integral in (2.25) converges absolutely for any sEC, 
(c) Z 0 (s, f) is an entire function, 
(d) Za(s, f) satisfies the functional equation 

(2.26) Za(s, f) = Za(ka- s, W f). 

(e) in any vertical strip with finite width, 

(2.27) IZa(a +it, f) I = O(lti-N) as itl --> +oo 

for any N ~ 1. 

Proof of Lemma 3. First, we note that f( lJq )0 = exp(a log f( ~)) is 

well defined by the assumption that f(iy) > 0 for any y > 0. Assertion 
(a) is a consequence of the integral representation 

(2.28) L*(s,f) = {oo f( .!:J!_ )ysdy 
lo VQ Y· 

which is found in [5, §14.5], for example. It is known that iff belongs to 
Sk(ro(q)), Wf also belongs to Sk(ro(q)). Therefore both f and Wf are 
cusp forms, i.e., f(iy) and Wf(iy) decay exponentially fast as y--> +oo. 
Hence equation (1.20) shows that integral (2.25) converges absolutely 
for any s E C. This is assertion (b). Assertion (c) is an immediate 
consequence of (b). To prove (d), we split integral (2.25) into the part 
from 1 to oo and the part from 0 to 1. For the part from 0 to 1, we have 

(2.29) 

by using (1.20) and k = 0 (4) in the second equality. Therefore, we 
obtain 
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Because W(W f) = f, representation (2.30) shows the functional equa
tion (2.26). This is assertion (d). By a way similar to the proof of 

Lemma 2, we find that l:k f( :}q )a and l:k (W f( :}q))a decay exponen

tially fast as y--+ +oo for any k 2: 0. Hence, we obtain (e) from (2.30) 
by using integration by parts. 0 

Lemma 4. Let f(x) and g(x) be continuous functions on (0, oo). 
Let F(w) and G(w) be the Mellin transforms of f(x) and g(x), re
spectively. Suppose that f(x) and g(x) decay rapidly as x --+ oo, and 
f(x) = O(x-a) as x--+ +0, g(x) = O(x-!3) as x --> +0, where a and 
(3 are real numbers. In addition, we suppose that F(c +it) belongs to 
L 1 ( -oo, oo) for any c > a as a function oft . Then 

(2.31) 
1 lc+ioo 1oo dx 
-. F(w)G(s-w)dw= f(x)g(x)x 8 -

2nz c-ioo o X 

for Re(s) >a+ (3, where cis chosen as a< c < Re(s)- (3. 

Proof of Lemma 4. The Mellin transform F(w) of f(x) is defined by 

100 dx 
F(w) = f(x)xw -. 

0 X 

Under the assumption the integral on the right-hand side converges abso
lutely for Re( w) > a. Hence it follows from the Mellin inversion formula 
that 

1 lc+ioo 
-. F(w)x-wdw = f(x), 
2nz c-ioo 

where c > a. Multiply g(x)xs-l to the both sides and integrate over 
(0, oo). Then we have formally 
(2.32) 

100 
( 1 lc+ioo ) dx 100 dx -. F(w)x-wdw g(x)x 8 - = f(x)g(x)x 8 -. 

0 2nz c-ioo X o X 

This equality is valid for Re( s) > a+ (3. In fact the integral on the right
hand side converges absolutely for Re(s) > a+ (3, because f(x)g(x) = 
O(x-a-!3) as x --+ +0 and decays rapidly as x --+ +oo. On the left-hand 
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side of (2.32), we have formally 

(2.33) 100 
( 1 ic+ioo ) dx -. F(w)x-wdw g(x)x8 -

o 27T~ c-ioo X 

1 ic+ioo (100 dx) = -. F(w) g(x)xs-w_ dw 
27T~ c-ioo 0 X 

1 ic+ioo 
= -2 . F(w)G(s- w)dw. 

7T~ c-ioo 

This is justified by Fubini's theorem if the integral 

(2.34) {oo Joo F(c +it) g(x)xs-c-it- 1dtdx 
Jo -oo 

converges absolutely. From the assumptions for F(w) and g(x), the 
double integral (2.34) converges absolutely when cis chosen as o: < c < 
Re(s) - j]. Hence we obtain (2.31) for Re(s) > o: + j3 and o: < c < 
Re(s)- j3 by (2.32) and (2.33). D 

Lemma 5. We have 

(2.35) 
1 ic+ioo S S - V v -. r(-)r(-) x- 8 ds = 4K~(2x)x-2 

27T~ c-ioo 2 2 

and 

(2.36) 

fore> max{O,Re(v)}, where Kv(x) is the K-Besselfunction defined by 

x-- e2 't-K ( ) - 11oo -"'(t+l) -v dt 
v 2 0 t (x > 0). 

Proof of Lemma 5. Equations (2.35) and (2.36) are simple modifica
tions of the equation in [12, p.197, l.lO]. In [12, p.197, l.lO], we replace 
v by v/2 and x by 2x. Then, we obtain 

v 1 ic+ioo S S - V 
4x-2 K~ (2x) = -. r(- )r(-)x-sds 

2m c-ioo 2 2 

for any real v, where c is chosen as c > max{O, v }. On the other hand, 
in [12, p.197, l.lO], we replaces by 2s and x by 2vfx. Then we obtain 

v 1 ic+ioo 
2Kv(2vx)x-2 = -. f(s)r(s- v)x-sds 

2n~ c-ioo 
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for any realv, where cis chosen as c > max{O, v }. For any complex v, 
we find that the integrals on the right-hand side of the above formulas 
converge absolutely for c > max{O, Re(v)} by using Stirling's formula. 
Hence (2.35) and (2.36) hold for c > max{O, Re(v)} by analytic contin
uation. 0 

§3. Proofs of Theorem 1 to Theorem 3 

First, we describe the proof of Theorem 1 in detail. Because the 
other theorems are proved by a very similar way, we only describe an 
outline for the proof of Theorem 2 and Theorem 3. 

3.1. Proof of Theorem 1 

The first step of the proof is to prove that the identity 

(3.1) (*(s) = Z13(s) + Za(s- (3) + 2~i 1::~= Z0 (w)Z13(s- w)dw 

holds for positive a and (3 with a+ (3 = 1 under the conditions Re( s) > 1, 
c > Re(s). To prove (3.1), we calculate the integral 

in two ways. We start with formal computations for J(s; a, (3). Since 

we have 

(3.4) I(s; a, (3) = (*(s)- Za(s)- Z13(s). 

On the other hand, we have 

(3.5) 
1 lc+ioo 

I(s; a, (3) = -2 . Za(w)Z13(s- w)dw 
1ft c-ioo 

by applying Lemma 4 formally to B(t2 )<> - 1 and B(t2 )!3 - 1, where we 
understand that cis chosen as a< c < Re(s)- (3. By moving the path 
of integration to the vertical line Re( w) = c' > Re( s), we have 
(3.6) 

1 lc+ioo 
27ri c-ioo Za(w)Z13(s- w)dw 

1 ic'+ioo 
= Z0 (s- (3) - Z 0 (s) + -2 . Za(w)Z13(s- w)dw. 

1ft c' -ioo 
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By putting (3.4), (3.5), (3.6) together, we obtain (3.1) in a formal sense. 
Now we justify each steps. Because a and /3 are positive and a+ /3 = 

1, we have 

(B(t2)"' -1)(B(t2)/3 -1) = {O(t-1) as t ___, +0, 
O(t-N) as t ___, +oo for any N ::::: 1. 

Therefore, the integral I ( s; a, /3) is defined for Re( s) > 1. From (b) 
of Lemma 1, (3.4) holds for Re(s) > 1. To apply Lemma 4 to f(t) = 
B(t2)"'- 1 and g(t) = B(t2 )!3- 1, we check the conditions in Lemma 4 
for these f(t) and g(t). Because 

as t ___, +0, 

as t ___, +oo for any N :::=: 1, 

our f(t) and g(t) satisfy the growth condition in Lemma 4. Also, the 
Mellin transform F(w) of f(t) is defined for Re(w) > a, and F(w) is 
holomorphic in Re( w) > a. Therefore, the estimate in (e) of Lemma 
1 implies F(c +it) E L 1 ( -oo, oo) for any c > a. Hence we can apply 
Lemma 4 to f(t) = B(t2 )"' - 1 and g(t) = B(t2 )!3- 1. As the result, 
we obtain (3.5) with Re(s) > 1 and a < c < Re(s) - /3. From the 
estimate in (e) of Lemma 1, we can move the path of integration in 
(3.5) to the vertical line Re(w) = c' > Re(s). From (f) of Lemma 1, 
as a function of w, the poles of Z 0 (w)Z13(s- w) in the vertical strip 
c < Re(w) < Re(s) + 1 are only the simple poles w = s- /3 and w = s. 
Their residues are -Z0 (s- /3) and Z 0 (s), respectively. Hence we obtain 
(3.6) by using the residue theorem. Together with the above things, we 
obtain (3.1) for positive a and /3 with a+ /3 = 1 under the conditions 
Re(s) > 1, c > Re(s). We complete the first step of the proof. 

The second step of the proof is to express the integral in (3.1) by 
the series involving K-Bessel functions. To do this, we need an estimate 
for c0 (n) defined by (1.6). Let a > 0 and let iJ(T) = LnEZ e1rin2

T for 
Im(T) > 0. Then B(x) = iJ(ix) and iJ(T)"' is a modular form of the real 
weight a/2 on the theta group with a unitary multiplier system. A clas
sical estimate of Petersson [9] and Lehner [7] for the Fourier coefficients 
of arbitrary modular forms of positive real weight with multiplier system 
show that they grow polynomially in m as 

(3.7) 

for 0 <a< 4, where the 0-constant depends on a in a specified manner. 
Using this estimate, we calculate the integral in (3.1). From (3.7), we 
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obtain 
(3.8) 

Za(s) = f c0 (m) 100 
e-1rmt2 t 8 ~t = ~ 7r-s/2f(s/2) f c0 (m)m-s/2 

m=l 0 m=l 

for Re( s) > ( a/2) + 2 with 0 < a < 4. On the other hand, the integrand 
Z0 (w)Z;3(s -w) on the right-hand side of (3.1) is equal to Z0 (w)Z;3(w
s + (3) because of the functional equation (2.1). Hence we obtain 
(3.9) 
Z0 (w)Z13(s- w) = Z0 (w)Z13(w- s + (3) 

1 ~ ~ ~-i' (w) (w-s+(3) ~ =4 ~ ~c0 (m)c;3(n)(nn)_2_ X f 2 f 2 (nymn)-w 
m=l n=l 

if Re( w) is sufficiently large. If necessary, by moving the path of inte
gration in (3.1) to the right, we have 
(3.10) 

1 ~c+ioo 
-. Z0 (w)Z;3(s- w)dw 
27rt c-ioo 

= ~ f fc0 (m)c;3(n)(nn)~ 
m=ln=l 

oo oo n .~-,, 

= L L ca(m)c;3(n)(m) - 4 K~ 2 ~, (2nvmn). 
m=l n=l 

Here we used identity (2.35) in Lemma 5. Now we obtain 
(3.11) 

oo oo n .~-~' 
(*(s) = Z13(s) + Za(s- (3) + L L c0 (m)c;3(n)(m) - 4 K~2 1, (2nvmn) 

m=l n=l 

for positive 01 and (3 with 01 + (3 = 1 under the condition Re( s) > 1. 
The series on the right-hand side converges absolutely for any s E CC, 
because c0 (m) is of polynomial order and the asymptotic behavior of 
the K-Bessel function is given by 

for any fixed v E CC (see [13]). Hence (3.11) holds on the whole complex 
plane for positive 01 and (3 with 01 + (3 = 1 by analytic continuation. 
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Using the functional equation (2.1), Za(s - (J) = Z 0 (a + (3 - s) = 
Z0 (1- s). Therefore, (3.11) is equivalent to identity (1.8) in Theorem 
1. We complete the proof of Theorem 1. D 

3.2. Proof of Theorem 2 

As in the proof of Theorem 1, we first prove that 

(3.12) 
1 ic+ioo 

L *(s, x) = -2 . Za(w, x)Zp(s- w, x)dw 
1ft c-ioo 

holds for any positive a and (3 with a+ (3 = 1 and s E C, where c is an 
arbitrary real number. Unlike the situation of ((s), this holds for any 
s E C. To prove (3.12), we define 

(3.13) 

for positive real numbers a and (3 with a + (3 = 1. The integral on the 
right-hand side converges absolutely for any sEC by (2.17). We have 

(3.14) lx(s; a, (3) = L*(s, x) 

for any sEC, because of a+(J = 1 and (2.16). While, from (d) of Lemma 
2, we can apply Lemma 4 to f(t) = B(t2 , x)<> and g(t) = B(t2 , x)i3. From 
(2.17), we obtain 

(3.15) 
1 Jc+ioo 

Ix(s; a, (3) = -. Za(w, x)Zp(s- w, x)dw, 
27ft c-ioo 

for Re(s) > -2aN- 2(3N, -2aN < c < Re(s) + 2(3N, where N is an 
arbitrary positive integer. Hence (3.15) holds for any s E C and c E R 
From (3.14) and (3.15), we obtain (3.12) under the desired conditions. 

Now, we calculate the integral on the right-hand side of (3.12). Let 
t9(T, x) = LnEZ n6x(n)e11"in2

T for Im(T) > 0. Then B(x, x) = t9(ix, x) 
and 19( T, x)<> is a modular form of real weight a/2 on the theta group with 
a unitary multiplier system. Hence cx,a(m) = O(m<>/4) for 0 <a< 4. 
Therefore, we have 
(3.16) 

00 100 -rr(m+~)12 dt 
Za(s, x) = 2° L Cx,a(m) e- 'I ts+Oat 

m=O 0 

_ 1 ~ _ sto~ ( S + Ja) ~ ) ) _ s±.l~ 
=2° q 2 1f 2 f - 2- ~Cx,a(m (m+a 2 

m=O 
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for Re(s) > (a/2) + 2- <Sa. From the functional equation (2.14), the 
integrand Za(w, x)Z13 (s- w, x) on the right-hand side of (3.12) is equal 
to Za(w, x)Z13(w- s + {3, x). From (3.16), we obtain 

Za(w, x)Z13(s- w, x) = Za(w, x)Z13(w- s + {3, X) 

for w with a sufficiently large real part. Hence, if necessary, by moving 
the path of integration in (3.12) to the right, we obtain 

(3.17) 
1 fc+ioo 
-. Za(w, x)Z13(s- w, x)dw 
27r~ c-ioo 

by using (2.35) of Lemma 5. We find that the series on the right-hand 
side of (3.17) converges absolutely for any s E C by a reason similar to 
that in the proof of Theorem 1. Combining (3.12) with (3.17), we obtain 
Theorem 2. 0 

3.3. Proof of Theorem 3 

From Lemma 3, we can apply Lemma 4 to JC:}q )0 and f( :}q )!3. By 

a way similar to that in the proof of Theorem 2, we obtain 

(3.18) 
1 fc+ioo 

L*(s, f)=-. Za(w, f)Z13(s- w, f)dw 
21r~ c-ioo 

for any positive a and {3 with a+ {3 and s E C, where c is an arbitrary 
real number. Because f(z) 0 is a modular form of real weight ka on 
fo(q), CJ,a(m) is at most of polynomial order (cf. [6, §3.2]). Hence, we 
have, by (1.21 ), 

00 

(3.19) Za(s, f)= q~ (27r)-sr(s) L CJ,a(m) (m + a)- 8 , 

m=O 
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if Re(s) is sufficiently large. From the functional equation (2.25), (3.19) 
and the assumption W f = f, we have 

Z0 (w, f)Z13(s- w, f) = Z0 (w, f)Z13(w- s + k/3, f) 
00 00 

(3.20) =q- .<-2k# (21f)s-k{3 L L CJ,a(m)cJ,{3(n)(n + ms-k{3 
m=On=O 

Using (2.36) of Lemma 5, we have 
(3.21) 

1 lc+ioo 
21fi c-ioo Za(w, f)Z13(s- w, f)dw 

oo oo n + /3 .<-kli 41f 
= 2 ~~ CJ,a(m)ct,!3(n)(m +) 2 Ks-kf3( vqJ(m + a)(n + /3) ). 

Combining (3.18) with (3.21), we obtain Theorem 3. 0 

§4. Proof of Theorem 4 

In this section, we prove Theorem 4 in more general form. To state 
such general theorem, we introduce the function Ea,{3(y, s) as follows. 

Let a and /3 be positive real numbers. Define Ea,!3(Y, s) by 

The integral on the right-hand side converges absolutely for y > 0 and 
Re(s) >a+ /3, because the integrand decays exponentially fast as t __, 
+oo and is estimated as o(t-o.-!3) as t --; +0. From the definition, 
we find that Ea,/3(1, s) = (*(s) whenever a+ /3 = 1. In particular, 
El/2,1/2(1, s) = (*(s). 

Theorem 5. Let a be positive real number. Denote Ea,a(Y, s) by 
Ea(Y, s). Then, 

(1) as a function of y, Ea(Y, s) satisfies the modular equation 

(2) as a function of s, Ea(y, s) is a meromorphic function on C, 
(3) as a function of s, E 0 (y, s) is holomorphic except for the simple 

poles at s = 0 and s = 2a with residues -1 and 1, respectively, 
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( 4) E 01 (y, s) satisfies the functional equation 

E01(y, s) = E01(y, 2a- s), 

(5) E 01 (y, s) has the expansion 

(4.2) 

(6) 

EOI(y, s) = Z01(s) y8 + Z 01 (2a- s) y 201-s 
CXl CXl 

+ Y01 L L c01(m)c01(n)(:) '"4" K';" (21ry2y'rrffi) 
m=ln=l 

for any y > 0 and s E C, where Z01 (s) and c01 are defined in 
(1.6) and (1.7), respectively, 
the singularities of E 01 (y, s) depend only on the first two terms 
on the right-hand side of (4.2). 

Clearly, Theorem 5 leads Theorem 4 by taking a= 1/2. The above 
properties of E01 (y, s) resemble the properties of E*(z, s). In this sense, 
we regard E 01 (y, s) as an analogue of E*(z, s). From this point of view, 
we consider ( 4.2) as an analogue of the Chowla-Selberg formula (1.3). 
As a corollary of (4.2), we obtain the following limit formula. 

Corollary 5 (an analogue of Kronecker's limit formula). Let a be 
a positive real number. For any fixed y > 0, we have 
(4.3) 

lim ( EOI(y, s)- - 1-) = ZOI(2a) y201 + "(01 s-+201 s- 2a 

where the constant "(01 is given by 

(4.4) "(01 = lim ( Z01 (s)- - 1-). 
s-+01 s-a 

Proof of Theorem 5. From definition (4.1), we have 

(4.5) 

Because E 01 (y, s) = E01 ,01 (y, s), we obtain (1). Splitting integral (4.1) 
into the part from 1 to oo and the part from 0 to 1, we have 

(4.6) 
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Here we used the functional equation of B(x). Representation ( 4.6) gives 
the meromorphic continuation of Ea.,{3(y, s) and the functional equation 

(4.7) Ea.,f3(Y, s) = yf3-a.Ef3,a.(Y, a+ {3- s). 

Taking {3 =a, we obtain (2), (3) and (4). To prove (5), we introduce 

The integral on the right-hand side converges absolutely for y > 0 and 
Re(s) > a+ {3 by a reason similar to that for (4.1). We find that 
Ea.,f3 (y, s) and Fa.,f3 (y, s) are related as 

for Re(s) > a+ {3 from the identity similar to (3.3). By a way similar 
to the proof of Theorem 1, we have 

( 4.10) Fa.,f3(Y, s) 

for Re(s) >a+ {3 and c > Re(s). Hence we obtain 

(4.11) Ea.,{3(y, s) 

for Re(s) >a+ {3 and c > Re(s). Here we have 
(4.12) 

1 ic+ioo 
-. Za.(w)Z{3(s- w)ys- 2wdw 
21fZ c-ioo 

oo oo n !...=.1!. 

= yf3 L L ca.(m)cf3(n)(m) 4 K~ (21ry2 ymn) 
m=l n=l 

by an almost same way as in the proof of Theorem 1. Combining ( 4.11) 
with (4.12), we obtain 
(4.13) 

Ea.,{3(y, s) = Z13(s) y8 + Za.(s- {3) y2f3-s 
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for any y > 0 and s with Re(s) > a+ (3. Because the series on the 
right-hand side converges absolutely for any sEC, (4.13) holds for any 
y > 0 and s E C by analytic continuation. Taking (3 = a, we obtain (5) 
and (6). 0 
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Fig. 1. The thick line is 1((1/2 + it)l, and the thin line is 
the absolute value of the sum of the first two terms on the 
right-hand side of (1.25) with s = 1/2 +it for 0 :S t :S 40. 
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Fig. 2. The thick line is 1((1/2 + it)l and the thin line is the 
absolute value of the sum of the first two terms and the terms 
corresponding to 1 :S n :S 3 of the infinite series on the right
hand side of (1.25) with s = 1/2 +it for 0 :S t :S 40. 
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