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The ramifications of a shift by 2

Peter Elliott

Abstract.

Harmonic analysis and the elementary geometry of Hilbert spaces
enable the representation of rationals by quotients of doubly-shifted
primes. These representations offer an approach to lower bounds on
the gaps between successive primes.

§1. Introduction

If F is a free abelian group, A its subgroup generated by a sequence

of elements aj,as,..., and B its subgroup generated by the sequence
aj+1aj‘1, j =1,2,..., then what is the relation of the quotient group
F/B to F/A?

For example, elementary group theory shows that F'/B is finite if
and only if F/A and A/B are finite. Here A/B is finitely generated, so
will be the direct sum of its finite torsion group and of a free group of
rank at most 2. In particular, it will be finite if and only if there is a
positive integer m so that af* and a3* belongs to B.

Whilst every denumerable abelian group has a presentation in the
form F'/A, there may be differing choices for the elements a;. Whether
some power of a; belongs to B need not be at all evident.

The following result shows that with an appropriate choice of the a;
the initial question becomes number-theoretically interesting.

Let p; < p2 < --- be the rational primes.

Theorem 1. There is a positive integer k, so that given any further
positive integer t, each positive rational r has a representation
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where I is a finite set of integers, the exponents d; are integers, possibly
negative, and every prime exceeds t.

I shall show the theorem to be valid for some k not exceeding 8.
Taking logarithms,

Pj+2 +1
< I
klogr < Q(r,t) g}g}élog ( ) ,

pj+1

where Q(r,t) denotes the sum of the positive d;. Since log(l +y) <y

for positive y,
klogr < max | P2 TP
Qr,t) ~ pi>t Pi

Typically y = (p; + 1)1 (pi+2 — p;), which the prime number theorem
shows to approach zero as p; becomes unbounded. Our replacement of
log(1 + y) by vy is not too wasteful.

In particular, an upper bound on Q(r, t) gives a lower bound on gaps
between primes.

A conjecture of Dickson from 1904, [1], would imply that every posi-
tive rational has a representation in the form (¢+1)~*(p+1) with primes
p,q. For example, if we consider the possible primality of 19(q + 1) — 1
as g runs through the sequence of primes, then the first occurrence gives
19 = (5 + 1)7!(113 + 1). Employing telescopes

pj+1 ) (pj—2 —|—1>
pi+1= ( RN
! pj—2+1 Pj—a+1
together with

541\ /1741 5+1)°
2+1= (2+1) (11+1>’ 3+1= (2+1) '
we obtain a representation of the type asserted in the theorem where
r=19,k=1,¢t=1and ) |d;| =19.

The next occurrence gives 19 = (7 +1)71(151 + 1), and the interval
(7,151) contains 31 primes, enabling a single telescope to reach from 151
+ 1to 7 + 1. There is a corresponding representation for 19 of the type
in the theorem with k = 1,¢ =1 every d; > 0 and }_d; = 16.

However, trial and error discovers

lo— 1141\* (1341 (17+1) (1941 /37 +1
C\5+1 7+1/\11+1/\13+1/\29+1

where every exponent is positive and there are only six terms.
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From a number-theoretical point of view it is desirable to obtain
product representations of the type in the theorem that use as few terms
as possible. Once the restriction p; > t is required, simple telescoping
is not adequate to the situation.

I approach the theorem group theoretically. Let Q* be the multi-
plicative group of positive rationals, I'; the subgroup of it generated by
the ratios of shifted primes (p; + 1)~!(pj12 + 1), where each p; exceeds
t. In the notation of the introduction, F' is Q* and the role of the a; is
played by the p; +1 with p; > t. The validity of the theorem with k =1
would then amount to the assertion that the quotient groups @*/I'; are
all trivial.

Consider a typical group G = Q*/T';. We may compose each char-
acter on G with the canonical homomorphism Q* — @Q*/T'; and ob-
tain a function g with values in the unit circle of the complex plane,
satisfying g(ab) = g(a)g(b) for every pair of positive rationals a,b and
g((pj + 1)"X(pj+2 + 1)) = 1 if p; > t. This last asserts that for primes
p>t, g(p+1) is periodic, of period at most 2.

Given k characters on G, with extensions, ¢1,..., g%, the points
(gi(p+1),...,9x(p+1)) in C* are ultimately periodic. If (ci,...,ck) is
a further point in C*, then the inner-product

aglp+1)+ - +eage(p+1)

is also ultimately periodic, period at most 2.
To continue, we pursue upper and lower bounds on a collection of
partially known inner products.

§2. Upper bound

Lemma 1. The inequality

2 ingj(erl) | = (l_:\gii o ((loga: 21/20)) Z|c]|2

p+1<z |j=1

with

1<e<k x(modd

44d |1 —
A =4+ max 3 | Z ge(n)g;(n)x(n)
(d) z nlzx
J?éf B

holds uniformly for x > 3, g; multiplicative functions with values in the
complex unit disc, complez cj, j = 1,...,k, The inner mazrimum runs
over Dirichlet characters to squarefree moduli.
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Lemma 1 is Theorem 3 of [2]. A version with the constant 4 replaced
by another, strictly less than 4, may be derived from Lemma 15 of the
same reference. No doubt the constant should be 1, and that would
improve the bound &k < 8 attached to the theorem to k < 2.

Lemma 1 relates the values of a multiplicative function g on the
shifted primes to the values on the natural numbers of the multiplicative
functions obtained by braiding g with varous Dirichlet characters.

In turn we may relate the values of a multiplicative function on the
natural numbers to its values on the primes themselves by a result of
Hal4sz, cf. [3], Lemma 6.10.

Lemma 2. The inequality

1 1 ;
z71 Y g(n) < T™V44exp | —7 min B " —(1 - Reg(p)p")
n<z
holds uniformly for all multiplicative functions g with values in the com-
plex unit disc, real x > 2 and T > 2. Here 7 is confined to real values.

§3. Lower bound

k . -
I assume that 37, lcj|# = 1, and introduce a renormalisation

%(gl(;ﬁ 1),...,g6(p +1)).

Lemma 3. For any r points w; of unit length in a Hilbert space,
there is a further unit point z such that

((z,w;)| > V2r(3r¥/H ™Y, j=1,....n

The space may be real or complex

The lower bound in this result is not best possible.

As a sample argument consider r points in the real space R*. Let
Y1,...,Y; be independent random variables, each normally distributed,
mean zero and variance 1. If wy = (s1,..., s;) in a unit point in R?, then
$1Y1 + - + 5:Y; is also normally distributed, mean zero, variance

¢
Zvar(sij) =524 452 =1.
j=1

For any real 6 > 0,

[
P(ls1Y1 + -+ 5Y;| < 6) = 127r/ e_,uz/zduS 2297.{.
% -6 v



The ramifications of a shift by 2 73

Arguing simply, for any w > 0,

t
PY{ +---+ Y/ >w)<w 'E| Y V7| =wlt.
j=1

If r6(2/m)Y/2 4+ w='t < 1, then the unit vector
z= Y2+ +YHTVN,.. . Y)

satisfies
min -1/2,

min |(z,w;)] > bu

Bearing in mind that the unit sphere in R? is compact in the usual
topology, we see that our best choices are § = r~1(7/2)/2(1 — w='t)
and w = 3t. The minimum is then at least (2m)1/2(3rt1/2)~1,

It transpires that within a constant multiple a natural form for the
lower bound is (rt'/2)~! when the space is real, (tr'/2)~! when the space
is complex.

If 7 = 2, then the best possible lower bound is 1/+/2, whether the
space is real or complex. In our application there are complex numbers
¢, j=1,...,k, Z?zl lcj|? = 1, so that for all primes p > t,

k
ijgj(p +1)| > (k/2)Y2
=1

If £ > 8, then Lemmas 1 and 2 guarantee the existence of j,¢, 1 < 5 <
£ < k, a Dirichlet character xs to a squarefree modulus 4, and a real T,
so that the series

> p (1 - Reg;(p)9e(P) x5(p));

taken over the primes, converges.

Lemma 4 (Proximity Lemma). If on the shifted primes p + 1 the
unimodular multiplicative function g assumes finitely many values, and
if the series Y. p~ (1 — Reg(p)p""xs(p)) converges, then g(2md)xs(t)
belongs to the set of values g(p+1) of infinite multiplicity, uniformly for
(t,0) = 1 and all positive integers m

A proof of this result may be adapted from that for Lemma 13 of
[2], there concerned with the case that g(p + 1) = 1 holds for all but
finitely many primes. I confine myself to two remarks.
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If x5 has order h, then the inequality 1 —Rew” < h?(1—Rew), valid
for |w| < 1, shows that the series 3~ p~!(1—Re g(p)"p'™*) converges. The
initial argument of [2}, Lemma 13, using a sieve to localise primes p for
which p + 1 has a bounded number of factors, then shows that for any
real a, g(2)2'" exp(2miar) belongs to the finite value set of the g(p+1).
This is only feasible if 7 = 0.

Refinement of the argument employs the asymptotic uniform distri-
bution of the primes in reduced residue classes.

As an application, suppose that g(p + 1) assumes at most d values.
Choosing t = 1 in Lemma 4 we see that the powers g(m)?, j = 1,...,d+1
~ cannot be distinct. Each g(m) is a root of unity, of order at most d.

As a corollary, the values of g on the positive integers form a group.

As a further corollary the set of g(p+ 1)-values of infinite multiplicity
also form a group, W, say.

In our case W has order at most 2. If W has order 2, then g(p+ 1)
must ultimately assume values +1, —1,+1,—1,.... In particular,

z 1= -;—F(l:) + 0(1), x> 2,

p<z
g(p+1)=y

holds for y = 1, —1. An estimation of this accuracy is scarcely credible!

Lemma 5. Let g be a unimodular completely multiplicative function
for which the series
>, ¢

g(P)#xs (p)

converges. Then

: -1
Jim 7(@)71 ) g(p+1)
p<z

exists and is non-zero.

The limit may be evaluated as an Euler product involving the Dirich-
let character ;5. If g is assumed only to be multiplicative, g{ab) =
g(a)g(b) when (a,b) = 1, then the limit can be zero.

In our case, W can have exact order 2 only if ¢ has mean-value zero
on the shifted primes, a possibility excluded by Lemma 5. The extended
characters g;, ge on Q* coincide.

The group dual to G is finite, of order at most 8. The second dual
of G and, since G can be embedded in it, G itself are finite. All three
groups are isomorphic, of order at most 8.

Proof of the theorem. As t increases, the subgroups I'; form a decreasing
chain, ordered by inclusion. For s > ¢ there is a natural homomorphism
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from Q*/T's onto Q* /Ty, and (Q*/T'5)/(T:/Ts) is isomorphic to Q*/T;.
In particular
s—1

1Q*/Tsl = 1Q*/Tel [T IT5/T 5411

Jj=t

Since the orders |Q*/I's| are uniformly bounded, from some value of ¢
onwards the I'; coincide and the groups Q*/I'; are isomorphic.

The common group, which I denote by G, is again of order at most
8. The assertion of the theorem is valid with k£ = |G|

84. Further results

It is natural to seek an analog of the theorem employing ratios (p; +
1)7Y(p;j+3 + 1) with a shift by 3.

The k-tuples (g1(p + 1),...,g9x(p + 1)), ultimately periodic, may
have a period of 1 or 3. Lemma 3 will then provide ¢;, j = 1,...,k,
Z?:l lcj|? = 1, for which the uniform but not necessarily best possible,
lower bound

k
Z c;gi(p +1)| > kY2 /(3V/3)

holds.

If £ > 108, then we gain a pair of extended characters g;,g¢, 1 <
j <€ <k, and a real 7 for which the function n — g;(n)ge(n)n’" is in
an appropriate sense close to a Dirichlet character.

The proximity Lemma gives for the group W, of ultimate values
attached to the (g;G¢)(p + 1), a bound |W| < 3.

If |W| = 3, then W consists of 1, p, p?, with a cube root of unity p,
p # 1. The periodic values of (g;3¢)(p + 1) sum to zero and an appeal
to Lemma 5 will yield the desired contradiction.

There remains the possibility that |IW| = 2, so that the (g;G,)(p+1)
ultimately assume one of the periodic patterns 1, —1, -1 or 1,1, —1, with
a corresponding mean-value £1/3.

I conjecture that if g(p + 1) assumes finitely many values, then for
any y, an estimate

Z 1= Am(z) +0(Q1), z2>2,

glp+1)=y

with A # 0,1, is impossible.
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It seems that it is the irregularities in the distribution of primes in
residue classes that force finer structure upon the g(p+ 1), and thus the
groups generated by ratios of shifted primes.

Lacking a suitable variant of Lemma 5, we operate with the subgroup
of squares in G, rather than with G itself. In this way we conclude the
existence of an integer K, K < 216, for which the analog of the theorem
holds with representations of the form

d;
. 1 9
TK = I l (p————J+3 + > R
p; +1

jel

but we have not proved the corresponding groups Q*/T'; to be finite.

It seems likely that if we replace the ratios (p; +1)~!(pj42 + 1) by
(pj +1)71(pj+m +1), for any fixed m > 1 then the corresponding groups
Q* /Ty are all trivial.

All inequalities in this account may be made explicit.

It might be mentioned that in pursuit of a lower bound for gaps
between primes we may not only choose the represented rational 7, but
consider product representations using shifted primes p; + a, where a is
allowed to vary.

The method of this paper is quite general and may be applied to
study products and gaps formed by any sequence b;, j = 1,2,... for
which the values g(b;) for characters g on @Q*, or some other appropriate
group, exhibit suitable cancellation.

The foregoing account closely follows the lecture, under the same
title, that I gave at the International Conference on Probability and
Number Theory, held in Kanazawa, Japan, June 20-24, 2005.

With great pleasure I thank the organizers of the conference for their
kind invitation to speak and for their financial support.
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