
































354 . T. Aikou

Theorem 3.1. If a Hermitian vector bundle (E, h) over a compact
complex manifold M is negative, then E is negative.

Proof. We define a function G on E* by G(z,() = h(£,€) =
> hi(2)¢P7. Weset G; = G/|¢?|? on each U; = {[¢] € P(E) | (7 # 0}.
Then {G,} satisfy the relation |(7|2G; = |(*|?G; on U; N U; # ¢. Hence
the family {G,} defines a Hermitian metric on L(E). By direct calcula-
tions, we see that the curvature form 99log G; = 99log G of this metric
is given by

1 .
dlogG;=| G ZRGO‘BC ¢’ 0 .
0 ~0;0;(log G)

Hence R,(v, X) < 0 implies that L(E) and thus E is negative.
Q.E.D.
The converse of this fact is not true except the case of dim M =

1([Um]). Kobayashi|Kol] characterized negativity of holomorphic vector
bundles in terms of complex Finsler metrics (see Theorem 4.1 below).

Remark 3.1. In [Sc], some examples of complex surface with neg-
ative tangent bundle are constructed. Let M be a compact connected
complex surface and C' a compact Riemann surface. Let p : M — C
be a surjective holomorphic map of maximal rank. The exact sequence

0 — Vi — THOM P25 77100 — 0, where Vi = kerp, yields an
exact sequence

0 — THOX s (THOM) | x 25 7*T,C — 0

for any point z € C and X = p~!(z). This sequence leads to the
following exact sequence of cohomology groups

s HY(TYOM|x) — HO(p*(T,C)) 25 HY(TYOX) — -,

where 4§, : H°(p*(T:C)) — HY(T'°X) is the Kodaira-Spencer map.
Such a complex surface M is called a Kodaira surface if 6, # 0 for any
point € C. Schneider[Sc|] proved that any Kodaira surface M has
negative tangent bundle T10M.

§4. Chern-Finsler connection and Kobayashi’s theorem

Let E be a holomorphic vector bundle of rank(E) =r +1 (r > 1)
over a complex manifold M. Let F be a strongly pseudoconvex Finsler
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metric on E. Then, the Hermitian matrix (H;;) defined by
(4.1) H;;(2,¢) = 0:0;F*

is smooth on E* and positive-definite. We also identify the local holo-
morphic frame field s = {s0," -, 87} with the one of the pull-back bundle
E. Then E admits a Hermitian metric H defined by

(4.2) H(Z,W)=> H;Z'Wi

forall Z =3 Z's; and W =5 Ws;.
_ Let V: A(EX,E) — AYE*,E) be the Hermitian connection of
(E,H), ie., V is the unique connection satisfying V%! = 9 and

(4.3) dH(Z,W)=H(VZ,W)+ H(Z, VW)
for all Z, W ¢ A(EX,E).

Definition 4.1. ([Ab-Pa]) The Hermitian connection V on (E, H)
is called the Chern-Finsler connection of (E, F).

The connection form w = (w?) of V with respect to s is defined by
Vs;j =38 ® w;, and the connection forms are given by

(44) w; = Z HlmaH]m - Z’Y_gadz + Z kdck

where we put 7}, (2,() = 3 H"™0oHjm and C};.(2,¢) = 3 H"™ 0 Hjm,
for the inverse matrix (H'™) of (H;»). We note that the coefficients

C3), = wj(sk) satisfy the symmetric properties

(4.5) Ch = Ci.

7

By definitions, it is easily shown that a complex Finsler metric F' is
Hermitian, i.e., F? = Y h;5(2)¢*¢? for some Hermitian metric h = (h;;)
on F if and only if C”,c =0.

In the sequel of this section, we shall discuss the negativity (or am-
pleness) .of holomorphic vector bundles, and we show an outline of the
proof of Kobayashi’s theorem.

Since the Chern class ¢ (L(F)) of L(E) is expressed in terms of the
curvature 90log F? of a Hermitian metric F' on L(E), L(FE) is negative
if and only if there exists a complex Finsler metric F' on E satisfying

(4.6) ——VQ_léa log F?2 <0
™
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or equivalently this real (1,1)-form wp(gy = /—100log F? defines a
Kahler metric on the base manifold P(E).

Conversely, in general, the projective bundle P(E) associated with
an arbitrary vector bundle F is not a Kahler manifold. Since each fibre
P(E,) = P! is a Kéhler manifold, it has only the structure of pseudo-
Kahler manifold. For an arbitrary convex Finsler metric F' on E, the
(1,1)-form wp (g is a pseudo-Kéhler metric on P(E). Kobayashi’s char-
acterization is obtained by analyzing the positivity of wp(g) (cf. [Ai2]).

For the curvature R of V, we define a (1,1)-form ¥ on E* by

_ H(RE€)

47
) [k

To investigate the negativity of /=190 log F?, the following is useful.

Lemma 4.1. The curvature 99 log F? of (L(E), F) is given by
(4.8) ddlog F? = ) " 9,0;(log F*)6" A 7,

where the (1,0)-forms 6° are defined by (2.14) for the Chern-Finsler
connection V.

Since the second term of (4.8) is negative definite in the vertical
direction in P(FE), the curvature of (L(E), F') is negative if and only if
¥ is negative.

Theorem 4.1. ([Kol]) A holomorphic vector bundle E 1is negative
if and only if E admits a strongly pseudoconvex Finsler metric F with
negative curvature W.

We shall state a characterization of negative vector bundles due to
[Ca-Wo]. We denote by ®™E the symmetric product of E. Then, we
need the following Grothendieck’s identification:

(4.9) H? (P(E),L) = HP(M,0™E")

forallp > 0and m > 0. Let v : H? (P(E),L) — HP(M,®™E*) be the
isomorphism. The bases {¢,--- , 0™} of H? (P(E), L) is identified with
a bases {w?, - ,wV} of H'(M,®™E*) by setting v*w® = ¢®. Then a
Hermitian metric h®™ on ©@™E is defined by

N _
(4.10) h®™(A,B) = wP(A)@*(B)

b=0
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for all section A, B of ®™E. Then it induces a Finsler metric F on E
by setting

411)  F(v) = [B®™ (@™, ™)™ = */hem (g™, @™)

In {Ca-Wo|, it is proved that the metric h®™ on ©®™E has negative
curvature, and thus the Finsler metric F' defined by {4.11) has negative
curvature ¥. Summarizing the discussion above, we have

Theorem 4.2. ([Ca-Wo)) Let 7 : E — M be a holomorphic vector
bundle over a compact complex manifold M such that rank(E) > 2. The
following statements are equivalent.

(1) E* is ample,

(2) E admits a strongly pseudoconvex Finsler metric with negative

curvature ¥,

(3) there exists a sufficiently large m € Z and a Hermitian metric

h®™ on the symmetric product ©™FE with negative curvature.

In the rest of this section, we shall investigate some vanishing theo-
rems in complex Finsler geometry. To this end, we show a Weitzenbock
formula. The covariant derivative Vv = 3" Vv ® dz® of a holomorphic
section v of F is defined by Vv = v*VE&:

Vo=> 8@ (d'+ Y wi(v)))
If we set f(z) = v*H(&,£) = v*F?, then we have

Proposition 4.1. ([Ai3]) Let v be a non-vanishing holomorphic
section of E. Then we have

(4.12) 00f = H(Vv,Vv) — H (Rv,v)
We suppose that M admits a Hermitian metric h.

Definition 4.2. Let (E, F) be a strongly pseudoconvex Finsler bun-
dle over a compact Hermitian manifold (M, h). The mean curvature K
of (E, F) is defined by the h-trace of H(Rv,v):

(4.13) K(v,v) = trp H(Rv, v).

We set h =3 h,3dz® ® dZ°. By taking the h-trace of (4.12) we get
the Weitzenbéck formula:

—~ A 82
(4.14) 3 haﬁgz—aaf—zﬁ — |Vo|? = K(v,v),
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where we put [[Vv]® = ZHiE(VanVL;vj)h“E. Then Hopf’s maximal
principle implies the following theorem.

Theorem 4.3. ([Ai3]) Let (E, F) be a strongly pseudoconvex Finsler
bundle over a compact Hermitian manifold (M,h), and K the mean
curvature of (E,F). Then
(1) if K is semi-negative everywhere on E, then every holomor-
phic section v of E is parallel with respect to V and satisfies
K(v,v) =0,

(2) if K is semi-negative everywhere on E and negative definite on
some points in F, then E admits no non-trivial holomorphic
sections, i.e., H*(M,O(E)) = 0.

As an application of Theorem 4.1 and 4.3, we shall show the follow-
ing Kobayashi’s vanishing theorem:

Theorem 4.4. ([Kol}]) Let 7 : E — M be a negative vector bun-
dle over a compact complex manifold M. Then E has no non-trivial
holomorphic sections: H(M, O(E)) = 0.

Proof. We suppose that E is negative. Let h = ) h,5(z)dz* ®
dz? be a Hermitian metric on M. Then, by Theorem 4.1, E admits
a strongly pseudoconvex Finsler metric F with negative curvature V.
For a non-trivial local holomorphic section v of E, we have K(v,v) =
(v] 2% h*PW 5 from (4.14), which show that the negativity of ¥ im-
plies the one of K(v,v), hence, from second assertion in Theorem 4.3,
we have H(M, O(E)) = 0.

Q.E.D.

§5. Differential geometry of complex Finsler bundles

Let E be a holomorphic vector bundle over M with a strongly pseu-
doconvex Finsler metric F' and the Chern-Finsler connection V. L/et\XEx
be the vertical bundle of TVOE> | ie., Vgx = ker m, {TVOEX — TLOM}.
The bundle Vg is naturally identified with E over EX. Then, similarly
to (1.12), we define a connection 6 by

(5.1) 9 = VE.

By the identity > C;k(j = 0, we can easily obtain 8(Z2) = Vz€ =72
for every Z € A(E*,Vgx), i.e., it is a morphism 8 : T'°E* — Vg
satisfying 6 o i = identity. Furthermore, by the homogeneity (F3), this
form @ is invariant by the action of C* on E. Thus 6 defined by (5.1)
is a connection of 7:
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T

0— Vpx TVOEX T10p — 0.

6

If we define the horizontal subbundle Hpx C TYOEX by Hgx = ker,
the tangent bundle Té‘g is decomposed as T'°EX = Vgx & Hpx.

For every vector field X € A(E*,TY°E>), we denote by XV = 6(X)
the vertical part, and by X" = X — 6(X) the horizontal part of X.
Then the differential operator d is also decomposed as d = d¥ + d™,
where d™ f(X) = df (X™), dVf(X) = df (XV) for every smooth function
f € C>(E*). Furthermore the partial derivation are also decomposed
as 0 = O™ + 9 and 0 = 8’ + §V. Then, the integrability tensor © of
g is defined by (1.6) for all X,Y ¢ A(EX, THOEX). If ©® =0, then Hgx
is integrable.

Let P, be the parallel displacement with respect to 6 along a smooth
curve ¢ in M.

Definition 5.1. If P, : (E¢), He0)) — (Ec1), He(ry) is an isometry
for every curve ¢ in M, then we say (E, F') has isometric fibres.

It is known that (E, F') has isometric fibres if and only if each fibre is
a totally geodesic submanifold, and the necessary and sufficient condition
for this is given by

(5.2) [LxnH]Y =0

for every vector field X € A(E*, T*°E*)(cf. [Is-Ko]).
Since the tautological section £ is given by (2.13), the connection
6 =>"s; ®0is given by 8 = V("

(5.3) ' =d¢' + Y wi¢d =d¢' + Y Nidz®.

Here, since the homogeneity (F3) of F implies ZC}ij = 0, we put
N} = 34,7 These forms 6" satisfy the relations §*(s;) = 67, and
thus 8 = {6°,--- 07} is the dual frame field of s = (sq,- - , $r).

On the other hand, the bundle T1-°M{ is naturally isomorphic to the
horizontal bundle Hgx as a complex vector bundle by sending

—~— 9 a\"* 8 d
1,0 — | — = -0 =— x.
M S 55 (aza> gz b (aza) €MHe

In the sequel we set X, = (8/9z*)" (a =1,--- ,n).
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According to the splitting X = X"+ XV, we have the decomposition
V = V" 4+ VY of V, where we define V¥ = Vx» and V¥ = Vyv for
every vector field X on E. If we put I'}, = w}(X,), then we have

(5.4) Tl = H™XoHym =Y H™ (0aHym - > 0HmNL) -
Using these notations, we have w? = Y~ I'},dz* + Y C}, 6%, and
(5.5 Vs =Y i@ ( r;’adza) , VW= s (2 c;ikok) .

§6. Torsion of Chern-Finsler connection

Let V be the Chern-Finsler connection of the Finsler bundle (E, F'),
and @ the connection of E defined by (5.1). The canonical form 7} of the
holomorphic tangent bundle of the total space E is expressed by

6.1) = 5000+ Xo®dz* =0+,
with respect to the connection . Similarly to (1.16), we shall define

Definition 6.1. The torsion of (E,V) is a E-valued 1-form on E*
defined by

(6.2) T=V0=do+wAnb.
By this definition, the torsion T is given by
T(X,Y) = Vx0(Y) - Vy0(X) - 6([X,Y])

for all vector fields X,Y on EX. The torsion form (2! with respect to
s =(sg.---,8) is given by

(6.3) Q' =dft +> wing
According to the decomposition of V, the torsion T of (E, V) is decom-
posed as T = THM 4 THV,
TH(X,Y)=T(X" Y™, T"(X,Y)=T(X", YY)+ T(XV,Y™).
We note that (4.5) implies TVY = 0. Since
T"(X,Y) = —6(X", V™)) = 0(X,Y),

TH" = 0 if and only if the horizontal subbundle Hg is integrable. For
the mixed part T"Y, we know that 7"V = 0 if and only if E has
isometric fibres.
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Proposition 6.1. ([Ai8]) Let T = TT" + TV be the torsion of the
Chern-Finsler connection V. Then

(1) TH"™" yanishes if and only if Hg is integrable,
(2) T™ vanishes if and only if 7 : E — M has isometric fibres.

In a previous paper [Ai2], we have investigated a complex Finsler
bundle (E, F') which is modeled on a complex Minkowski space. Such a
bundle (E, F) is characterized by the vanishing of 77V. Furthermore,
we proved the following

Theorem 6.1. ([Ai2]} If (E, F) is modeled on a complex Minkowski
space, then there exists a Hermitian metric hp on E such that VT =
m* D for the Hermitian connection D of (E, hr).

We shall write down the torsion tensor field of V. The torsion
T = TH" 4 TV is given by TV = 0M6 and THY = 9V6. With respect
to a local holomorphic frame field s = {sg, - , s, }, the horizontal part
THM and mixed part TV are given as as follows:

T =3 i@ () Rl gde A d2)
and

170 =S 6w (0 Rl ),
where the torsion tensors R’ 5 and Rii are defined by

(6.4) Rl ;= -X;Ni, Ri:=-3N}

L
af
respectively. The homogeneity (F3) implies the following.

Proposition 6.2. The torsion tensor Rfﬁ satisfies
(6.5) > R =0,

(6.6) R.i; = Rogi

where we set R.;5 = Hm;RZE—..
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87. Curvature of Chern-Finsler connection

We denote by R = V o V the curvature of the Chern-Finsler con-
nection V. By definition, R is computed by the formula (1.19) for all
vector fields X,Y on E* and section s of E. Since V is the Hermitian
connection of (E, H), R is a section of Ab'(E*,End(E)), and thus the
curvature form §2} is given by (2.11).

The curvature R is also decomposed as R = R"" + RMY + RVY
into the sum of horizontal part R*" = V™ o V™, mixed part R™Y =
VHoVY +VVYoVH and vertical part RYY = VYo VY. Since 6 is defined
by (5.1), the Ricci identity V o VE = RE implies

(7.1) RM®e = THH  RMWYg —THY RVVE =0.

Since the torsion form 2! and curvature form Q;- satisfy the relation
2" = 37 £2°(7, the identity (7.1) implies that T = 06.

We shall write down the curvature tensor field of V. With respect
to a local holomorphic frame field s = {sp,- -, 8y}, the horizontal part
RM"*"_ mixed part R™Y and vertical part RVY are given as follows:

Mg =3 s (Z R!, 5dz® A dzﬂ) ,
= ZSi by (Z R;klgk A 9l>

where we put

(7:2) Rj.5 = « =D CiRis

7 1)
(7.3) R ;=-— Z WRLE, R = X5Ch,
(7.4) Ry = —0CY.

Then the homogeneity condition (F3) implies

(7.5) ZCJR]aﬁ =Rl;5 Y R =R,

(7'6) ZC] jkB _ZC Jkl
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Furthermore, by direct calculations, we have

(7.7) Rl ;=0;R ;- RLRL - CLR.;

We shall show an application of this expression.

Proposition 7.1. If R"" = 0, then (E, F) is modeled on a complex
Minkowsk: space, and its associated Hermitian metric hp is flat.

Proof. First we shall prove that (E, F') is modeled on a complex
Minkowski space (Ri - = 0). From the assumption and (7.5), the hori-
zontal subbundle H g« is integrable. Then, (7.7) implies > RamR% = 0.
For any section Z of E, we define p(Z) € AY°(E*, E) by

= Z 8 ® (Z Rg;ﬁd%") .

If we fix an arbitrary Hermitian metric h = Y h,5(z)dz® ® dz” on M,
the norm ||¢(Z)}] is computed as follows:

I =" Hy (Y RyZ' RS, Zm) he?
-y (Z Ro;iZ'R),Z ) hoB
:Z(Z R AT Zm) hos
= ZH” (Z R.. R 7"2 ) ho?

for every Z € A(E, E). Consequently we have Ri} =0,ie., T =0.
Denoting by D the Hermitian connection of the associated Hermit-
ian metric kg, the flatness of hy is obtained from 0 = R"" = 7*Do D.

Q.E.D.

By this proposition, we know that if R*" = 0, then (E, F) is mod-
eled on a complex Minkowski space. Then, from Theorem 6.1, the hor-
izontal part V* is given by V' = 7*D for the Hermitian connection
D of a Hermitian metric hp on E. Thus we have I}, = I7,(2), and
consequently we get R’alE =0.

We shall state some properties of curvature of V. First we state

Definition 7.1. A strongly pseudoconvex Finsler metric F is said
to be flat if F has the form F = F(¢) at around of every point of M
with respect to a suitable local holomorphic frame field s = (sg,-- - , s,).
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Then we have

Theorem 7.1. A strongly pseudoconvex Finsler metric F is flat if
and only if the horizontal curvature R"™ vanishes identically.

Proof. Setting I'} = Y I'},dz®, from (5.5) we have V''s; = 3" 5, ®
F; The flatness of F' is equivalent to ’yJ’:a = 0, and from (5.4), this is
also equivalent to F}a = 0 which implies R*™ = 0.

Conversely, we suppose that R*" = 0. Then, from Proposition 7.1,
(E, F) is modeled on a complex Minkowski space, and its associated
Hermitian metric hp is flat. Then Theorem 6.1 implies that I is given
by the pull-back 7*~; for the connection form v; of the associated Her-
mitian metric hp, and this implies that 57{1"} =x* 57} = 0. Now, if we
take another local holomorphic frame field 5; = > s;A%(2), we have

= 5@ (d"A + [T AY) =) s @ (dAL + 77y AL) .

Then, because of

I

d(dAY) = = > (d(r*y)) AL + (7*)) A dAb)

= (0 + A’n’”+5ﬁ) A

= (o)Al

the integrability condition for dA? + Tr*’yliAg- = 0 is satisfied, and thus, if
R™" =0, we have V™5; = 0 with respect to §; = 3 s;A%. Consequently
we have 7%, = 0.

Q.E.D.

Similarly to Theorem 7.1, we have

Theorem 7.2. A strongly pseudoconvex Finsler metric F is Her-
mitian, i.e., F? =% h;(2)¢*¢? for a Hermitian metric h on E if and
only if the vertical part RVY of the curvature of R vanishes identically.

§8. Complex Finsler manifolds

Let M be a complex manifold of dimg M = n. In this section, we
shall investigate the case where a strongly pseudoconvex Finsler metric
F is given on the holomorphic tangent bundle T'9M. We call the
pair (M, F) a complex Finsler manifold. In the case of E = TVOM,
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we identify {8/8z!,---,8/82"} a local holomorphic frame field of the
bundle T10M, and so the Chern-Finsler connection V is denoted by

9 o
Vo = 25 O

for the connection form w} of V.

8.1. Holomorphic sectional curvature

Let A(r) ={n € C: |n| < r} be the disk of radius r in C with the

Poincaré metric )
4r

9= T

(r? — n[?)?
For every point (z,() € TH°MX, there exists a holomorphic map ¢ :
A(r) — M satistying ¢(0) = z and

(5.1) £2(0) 1= g (((.%):O) ¢

Then, the pull-back ¢*F defines a Hermitian metric in a neighbor-
hood of the origin by ¢*F? = E(n)dn ® dfj, where we put E(n) =
F2 (¢(n), 9«(n)). The Gauss curvature K «r(z,() is defined by

1 0%log B
Ko 0=~ (5500,
n=0

dn ® df.

Definition 8.1. ([Ro]) The holomorphic sectional curvature Kg of
(M,F) at (z,¢) € THOM* is defined by

Kp(z,¢) =sup {Kyr(z,() | 9(0) = 2, 9.(0) =},
©
where ¢ ranges over all holomorphic maps from a small disk into M
satisfying ¢(0) = z and (8.1).

Then Kr has a computable expression in terms of the curvature
tensor of the Chern-Finsler connection V.

Proposition 8.1. ([Ail]) The holomorphic sectional curvature Kp
of (M, F) at (2,¢) € TY'OM* is given by
vEE) 1
T end
len® el
where Rzr = > Hy; R is the curvature tensor of the Finsler connec-
tion V on (T*°M, F).

82  Kr(z0) = > Rigii(z, Q)¢ ¢,
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Then we have the Schwarz-type lemma:

Proposition 8.2. ([Ail]) Let F' be a strongly pseudoconvezr Finsler
metric on the holomorphic tangent bundle of a complex manifold M.
Suppose that its holomorphic sectional curvature Kr(z,() at every point
(2,¢) € TYOM™ is bounded above by a negative constant —k. Then, for
every holomorphic map ¢ : A(r) — M satisfying ¢(0) = z and (8.1), we
have

(8.3) gr > ko* F2.

The Kobayashi metric Fiy on a complex manifold M is a positive
semi-definite pseudo metric defined by

(8.4) Fu(z,0) = inf {3 | 0(0) = 2, ¢«(0) = ¢}

In general, Fis is not smooth. Fjs is only upper semi-continuous, i.e.,
for every X € T1OM and every € > 0 there exists a neighborhood U
of X such that Fj(Y) < Fp(X) + € for all Y € U. Even though Fi
is not a Finsler metric in our sense, the decreasing principle shows the
importance of the Kobayashi metric, i.e., for every holomorphic map
@ : N — M, we have the inequality

(8.5) Fn(X) 2 Fu (o4 (X))

This principle shows that Fj; is holomorphically invariant, i.e., if ¢ :
N — M is biholomorphic, then we have Fy = ¢*Fjs. In this sense, Fiy
is an intrinsic metric on complex manifolds. It is well-known that, if M
is a strongly convex domain with smooth boundary in C™, then Fjs is
a pseudoconvex Finsler metric in our sense (cf. [Le])

A complex manifold M is said to be Kobayashi hyperbolic if its
Kobayashi metric Fj; is a metric in the usual sense. If M admits a
pseudoconvex Finsler metric F' whose holomorphic sectional curvature
K is bounded above by a negative constant —k, then (8.3) implies the
inequality

(8.6) Fuv > kF,

and thus M is Kobayashi hyperbolic.

Theorem 8.1. ([Kol]) Let M be a compact complex manifold. If
its holomorphic tangent bundle TY°M is negative, then M is Kobayashi
hyperbolic.
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Proof. We suppose that T19M is negative. Then, Theorem 4.1
implies that there exists a pseudoconvex Finsler metric F' on T%%M
with negative-definite ¥. By the definition (4.7), the negativity of ¥
and (8.2) imply
U(EE)

<0
[k

KF(Zv C) =

Since M is compact, P(FE) is also compact. Moreover, since Kp is a
function on P(FE), the negativity of K shows that Kr is bounded by
a negative constant —k. Hence we obtain (8.6), and M is Kobayashi
hyperbolic.

Q.E.D.

8.2. Finsler-Kéahler manifolds

In this subsection, we shall generalize the Kéhlerity of Hermitian
metrics to complex Finsler geometry. We define the Kahler form w of
(M, F) by

(8.7) w=V=1Y Hgj(z()dz" nd2.

We can easily show that dw = 0 if and only if F? =} h;;(2)¢*(? for a
Kéhler metric h = Y~ h;j(z)dz* ® dz7 on M.

Let £ be the tautological vector field over TYM and 6 the connec-
tion of 7 : T1OM — M defined by (5.1).

Definition 8.2. ([Ail]) A strongly pseudoconvex Finsler metric F
is said to be Finsler-Kdhler if the following is satisfied:

(8.8) d"w =0.

Remark 8.1. In [Ab-Pa], a strongly pseudoconvex Finsler metric
F satistying (8.8) is called a strongly Finsler-Kahler metric.

If we denote by X; (j = 1,--- ,n) the vector field (8/8z7)™, then F
is a Finsler-Kéahler metric if and only if

(8.9) X]'Hil‘c = Xiijc'

The connection form w} of the Chern-Finsler connection V is given

by wj = 3 Ij,dz" + 37 C,0% with I}, = 3" H'"X;Hym and Cjp =
> H'"™0jHpyp, and the condition (8.8) is equivalent to

(8.10) Iy, =TI},
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We remark that the coeflicients C;k always satisfy the symmetric prop-
erties (4.5).

Remark 8.2. The differential m, of the projection 7 : TWYOM — M
is considered as the canonical form of T%%M, and it has the form

9 .
_\"_ 9 j
Ty = 8zj®dz ,

where {dz!,---,dz"} is, of course, considered as the dual frame field of
the frame field {X,---, X, } for the horizontal bundle Hr1i.0prx. Since

V.= 5 g (X st + 030)

V. vanishes if and only if F2 = 3 g;5(2)¢*¢? for a Kéhler metric h =
> hi(2)dz* ® dz7 on M. The condition (8.8) is equivalent to

(8.11) Vi, =0.

For the complex structure J on TM, we also denote by the same
notation J the lifted complex structure on TM = 7*TM. Then TM is

naturally identified with 7190 via the isomorphism
N 1 P
0:TM>Y — oY) = 5 (Y - V=1JY) € THOM.
We denote by G the real part of H:

1
8.12 G=-
(8.12) 5

—

H (oY), o(2)) + H (oY), e(2))]
Then G is an inner product on m, and it satisfies
(8.13) H(o(Y),0(2)) =G(Y,Z) - V-1G (JY, Z)

forallY, Z ¢ A(TMX,m), i.e., G is a Hermitian metric on (f]\?, J).
The imaginary part of H us given by

ﬁ

—1
2

G(IY,2) = Y= [H (oY), 0(2)) - H{oY), o(2))|

*|1

[H (0(Y),0(Z)) — H (0(Z), o(Y))]
(p(Y), p(2)),

where w in the last line is the Kéhler form defined by (8.7).

g
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Under the isomorphism o, the Chern-Finsler connection V on TH9M
is considered as ¢ connection on the bundle T M:

(8.14) Vo(Y) = o(VY).

This connection V on TM is metrical with respect to G. In fact, we
have

H(o(Z),0(W)) = H(Vo(Z), o(W)) + H(o(2),Vo(W))
= H (o(VZ),0(W)) + H (o(Z), o( VWV)) .

Taking the real part of both sides, we have
dG(Z, W) =G(VZ, W)+ G(Z, VW),

and thus V is metrical with respect to G.
Since V satisfies Vi/—1p(Y) = v/—1Vp(Y) and the multiplication
by v/—1 is identified with the operator J, we have

V=1Vp(Y) = VV—=1p(Y) = Vo(JY) = o(V(JY)),
and
V=1Vo(Y) = o (J(VY)).

Thus the lifted complex structure J is V-parallel:
(8.15) vJ=0.

Consequently, the connection V on TM defined by (8.14) is the Hermit-

ian connection of (m, G), and so we call V on TM is the Chern-Finsler

connection on (TM,G).
For the connection 6 defined by (5.1), the corresponding connection

of TM is denoted by the same symbol 0, i.e.,
0(0(2)) = 0(6(2))

for every Z € A(TMX,W). Then 6 defines a splitting T(TM*) =
Vi< ®Hrarx , and the differential operator d also splits as d = d" +dVY .
Then, for every horizontal real k-form @, we have

(d"0)(Z1,- , Zk+1)
k+1 .
—Z 1Z,0(Z1, -+ 250+ Zkya)

+ Z (— )H_]@([Zivzj]Hv'” >2i7"' ,Zj7"' 7Zk+1)
1<i<j<k+1
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for all sections Zy,- -, Zxy1 € A(TM*, Hpprx ), where Z; means that
Z; is to be omitted.

In the sequel of this subsection, to avoid the confusion of notations,
we shall identify the bundle T'M with the horizontal bundle Hrp,x.

T x

HTA,[X m
(o)™
0 o
T x e~
Herpi.oprx 1,0
T1.00f B TLOA

We suppose that a connection D = D™ + DV is given on TM. Since
the torsion D™, is given by

(D7, ) (Z,W) = DYfn. (W) — DIma(Z) — me([Z, W])

under the identification TM = Hrarx , the condition D™, = 0 is given
by

(8.16) DYw - Dz - [z, W]" =0
for all Z, W € A(TM>,TM). Then we have

Proposition 8.3. We suppose that a connection D satisfies the
symmetric property (8.16). Then

(1) D satisfies

k41
(d"0)(Z1,-++, Zkp1) = > (-1 NDEONZv, -+, Zy -+ s Zi)
j=1

for any horizontal real k-form © and all horizontal vector fields
Zi, 0 Ly
(2) Any D™ -parallel horizontal form is d™-closed.

Definition 8.3. A connection D on the bundle TM is called the
Cartan connection of (I'M,G) if it satisfies the following conditions.

(1) D is metrical, i.e., DG =0,

(2) D satisfies (8.16), i.e., D"m, =0,

(3) D satisfies TVY =0,

TVV

where is the vertical part of the torsion D8 of D.
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Remark 8.3. The Cartan connection D of (m, G) is uniquely
determined. However we remark that the Cartan connection D in our
sense is not the Cartan connection in the usual sense in [Mal], since G is
a generalized Finsler metric, not a real Finsler metric in the usual sense

(cf. [Ic]).

Remark 8.4. The Chern-Finsler connection V of (ﬂ//f , G) is metri-
cal and it satisfies the symmetric property TVY = 0, but not necessarily
the condition (8.16).

Identifying T10M with TM via the morphism g, we have con-
structed two metrical connections V and D on (TM,G). Then we have
a characterization of Finsler-Kéahler metrics.

Theorem 8.2. Let (M, F) be a complex Finsler manifold. Then
the following conditions are equivalent.

(1) The Cartan connection D coincides with the Chern-Finsler
connection V.
(2) The lfted complex structure J is parallel with respect to D:

(8.17) D®J=0.
(3) The Kdhler form w is parallel with respect to D:
(8.18) D"w = 0.

(4) (M, F) is a Finsler-Kdéhler manifold.

Proof. (1) — (2) is obvious, since the assumption D = V and
(8.15) imply (8.17). -
(2) — (3) is proved as follows. For all X,Y,Z ¢ A(TM*,TM),

we have
(D¥w)(Y, 2)
= Xw(Y,Z) - w(DYY, 2) - w(Y, DR Z)
=XG(JY,Z) - G(JDYRY,Z) - G(JY,D¥Z)
= GDRJIY), Z)+ GJY,D¥Z) - G(JDYY, Z) - G(JY, D% Z)
= 0,
since DG = 0, and thus the condition (8.17) implies (8.18).

(3) — (4) is proved as follows. Since D satisfies the symmetric
property (8.16), the second assertion in Proposition 8.3 implies (8.8).
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(4) — (1) is proved as follows. Since the Chern-Finsler connection

V of (m, G) is metrical and satisfies TVY = 0, it is enough to prove
that V satisfies V', = 0. Because of

(Vm)(e(Y), 0(2))

= Viivym(0(2)) = Viizym(o(Y)) = m([o(Y), o(Z)])
= 0 (V¥mu(2)) — o (VHm(Y)) — o (m ([, Z]))
:Q( YW*(Z) ZW*(Y —W*([sz]))

= o (V'r)(Y, 2))

forall Y, Z € .A(T]WX TM), the assumption (8.18) on TH0M implies

VHn, = 0onTM, and thus the Chern-Finsler connection V on (TM G)
coincides with the Cartan connection D.

QED.
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