






















354 T. Aikou 

Theorem 3.1. If a Hermitian vector bundle (E, h) over a compact 
complex manifold M is negative, then E is negative. 

Proof We define a function G on Ex by G(z, () = h(£, £) = 
L hi](z)(i(i. We set Gj = G /l(i 12 on each Uj = { [(] E P(E) I (i =1- 0 }. 
Then {Gj} satisfy thq relation l(ii 2Gi = l(ii 2Gi on Ui n Ui =I-¢. Hence 
the family { G j} defines a Hermitian metric on L( E). By direct calcula
tions, we see that the curvature form B8log G j = B8log G of this metric 
is given by 

Hence Rz(v, X) < 0 implies that L(E) and thus E is negative. 

Q.E.D. 

The converse of this fact is not true except the case of dim M = 
1 ([Urn]). Kobayashi[Ko1] characterized negativity of holomorphic vector 
bundles in terms of complex Finsler metrics (see Theorem 4.1 below). 

Remark 3.1. In [Sc], some examples of complex surface with neg
ative tangent bundle are constructed. Let M be a compact connected 
complex surface and C a compact Riemann surface. Let p : M ______, C 
be a surjective holomorphic map of maximal rank. The exact sequence 

0 ______, VM ___i:__. T 1,0 M ~ 1r*T1,°C ______, 0, where VM = ker p* yields an 
exact sequence 

0 ______, T 1' 0 X ___i:__. (T1' 0 M)lx ~ 1r*TxC ______, 0 

for any point x E C and X = p- 1(x). This sequence leads to the 
following exact sequence of cohomology groups 

· · · ______, H 0 (T 1'0 Mix) ______, H 0 (p*(TxC)) ~ H 1 (T1' 0X) ______, · · ·, 

where 8x : H 0 (p*(TxC)) ______, H 1 (T1,0 X) is the Kodaira-Spencer map. 
Such a complex surface M is called a Kodaira surface if 8x =I- 0 for any 
point x E C. Schneider[Sc] proved that any Kodaira surface M has 
negative tangent bundle T 1,0 M. 

§4. Chern-Finsler connection and Kobayashi's theorem 

Let E be a holomorphic vector bundle of rank(E) = r + 1 (r 2: 1) 
over a complex manifold M. Let F be a strongly pseudoconvex Finsler 
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metric on E. Then, the Hermitian matrix (Hi]) defined by 

( 4.1) 

is smooth on Ex and positive-definite. We also identify the local holo
morphic frame field s = {so, · · · , Sr} with the one of the pull-back bundle 
E. Then E admits a Hermitian metric H defined by 

(4.2) 

for all Z = l:::Zisi and W = L:=WJsj. 
Let V' : A(Ex, E) ----> A1(Ex, E) be the Hermitian connection of 

(E, H), i.e., V' is the unique connection satisfying \7°• 1 = [)and 

(4.3) dH(Z, W) = H('VZ, W) + H(Z, 'VW) 

for all Z, WE A(Ex, E). 

Definition 4.1. ([Ab-Pa]) The Hermitian connection V' on (E, H) 
is called the Chem-Finsler connection of (E, F). 

The connection form w = (wj) of V' with respect to s is defined by 
V' Sj = 'I: si Q9 wj, and the connection forms are given by 

(4.4) wj = LHim8Hjm = L l'Jadz<> + LCJkd(k, 

where we put !'ja(z, () ='I: Him8aHjm and Cjk(z, () ='I: Him8kHjm 
for the inverse matrix (Him) of (Him)· We note that the coefficients 
CJk = wj(sk) satisfy the symmetric properties 

(4.5) 

By definitions, it is easily shown that a complex Finsler metric F is 
Hermitian, i.e., F 2 ='I: hij(z)(i(j for some Hermitian metric h = (hi]) 
on E if and only if Cjk = 0. 

In the sequel of this section, we shall discuss the negativity (or am
pleness) of holomorphic vector bundles, and we show an outline of the 
proof of Kobayashi's theorem. 

Since the Chern class c1 (L(E)) of L(E) is expressed in terms of the 
curvature 88 log F 2 of a Hermitian metric F on L(E), L(E) is negative 
if and only if there exists a complex Finsler metric F on E satisfying 

(4.6) Ff---88 log F 2 < 0 
271" 
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or equivalently this real (1, 1)-form WP(E) = J=T881ogF2 defines a 
Kahler metric on the base manifold P(E). 

Conversely, in general, the projective bundle P(E) associated with 
an arbitrary vector bundle E is not a Kahler manifold. Since each fibre 
P(Ez) ~ pr-l is a Kahler manifold, it has only the structure of pseudo
Kahler manifold. For an arbitrary convex Finsler metric F on E, the 
(1, 1)-form wP(E) is a pseudo-Kahler metric on P(E). Kobayashi's char
acterization is obtained by analyzing the positivity of wP(E) ( cf. [Ai2]). 

For the curvature R of \7, we define a (1, 1)-form lf/ on Ex by 

(4.7) lf/ = H(R£, £) 
11£11 2 . 

To investigate the negativity of A8a log F 2 , the following is useful. 

Lemma 4.1. The curvature 88 log F 2 of (L (E), F) is given by 

(4.8) 

where the (1, 0)-forms gi are defined by (2.14) for the Chern-Finsler 
connection \7. 

Since the second term of ( 4.8) is negative definite in the vertical 
direction in P(E), the curvature of (L(E), F) is negative if and only if 
lf/ is negative. 

Theorem 4.1. ([Ko1]) A holomorphic vector bundle E is negative 
if and only if E admits a strongly pseudoconvex Finsler metric F with 
negative curvature lf/. 

We shall state a characterization of negative vector bundles due to 
[Ca-Wo]. We denote by 8mE the symmetric product of E. Then, we 
need the following Grothendieck's identification: 

(4.9) 

for all p ;=:: 0 and m ;=:: 0. Let 1: HP (P(E), L)--+ HP(M, 8m E*) be the 
isomorphism. The bases { a 0 , · · · , aN} of H 0 ( P (E), L) is identified with 
a bases {w 0 ,··· ,wN} of H 0 (M,8mE*) by setting 1*wb = ab. Then a 
Hermitian metric h®m on 8m E is defined by 

(4.10) 
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for all section A, B of 0m E. Then it induces a Finsler metric F on E 
by setting 

(4.11) 

In [Ca-Wo], it is proved that the metric h®m on 0m E has negative 
curvature, and thus the Finsler metric F defined by ( 4.11) has negative 
curvature lJ!. Summarizing the discussion above, we have 

Theorem 4.2. ([Ca-Wo]) Let 1r: E---+ M be a holomorphic vector 
bundle over a compact complex manifold M such that rank( E) ~ 2. The 
following statements are equivalent. 

(1) 
(2) 

(3) 

E* is ample, 
E admits a strongly pseudoconvex Finster metric with negative 
curvature lJ!, 
there exists a sufficiently large m E Z and a Hermitian metric 
h®m on the symmetric product 0m E with negative curvature. 

In the rest of this section, we shall investigate some vanishing theo
rems in complex Finsler geometry. To this end, we show a Weitzenbock 
formula. The covariant derivative V'v = I: V' aV Q9 dz"' of a holomorphic 
section v of E is defined by V'v = v*'\7[: 

If we set f(z) = v* H(£, £) = v* F 2 , then we have 

Proposition 4.1. ([Ai3]) Let v be a non-vanishing holomorphic 
section of E. Then we have 

(4.12) a[Jj = H(V'v, V'v)- H (Rv, v) 

We suppose that M admits a Hermitian metric h. 

Definition 4.2. Let (E, F) be a strongly pseudoconvex Finsler bun
dle over a compact Hermitian manifold (M, h). The mean curvature K 
of (E, F) is defined by the h-trace of H(Rv, v): 

(4.13) K(v, v) = trhH(Rv, v). 

We seth= I: h0 i3dz"' Q9 dz!3. By taking the h-trace of (4.12) we get 
the Weitzenbock formula: 

(4.14) """' ai3 82 f - 2 L...t h 8z"'8zf3 - IIY'vll - K(v, v), 
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where we put II'Vvll 2 = "'£ HiJ(\7 avi\7 (3vJ)ha!J. Then Hopf's maximal 
principle implies the following theorem. 

Theorem 4.3. ([Ai3]) Let (E, F) be a strongly pseudoconvex Finsler 
bundle over a compact Hermitian manifold (M, h), and K the mean 
curvatureof(E,F). Then 

(1) 

(2) 

if K is semi-negative everywhere on E, then every holomor
phic section v of E is parallel with respect to \7 and satisfies 
K(v, v) = 0, 
if K is semi-negative everywhere on E and negative definite on 
some points in E, then E admits no non-trivial holomorphic 
sections, i.e., H 0 (M, O(E)) = 0. 

As an application of Theorem 4.1 and 4.3, we shall show the follow
ing Kobayashi's vanishing theorem: 

Theorem 4.4. ([Ko1]) Let 1r : E ---+ M be a negative vector bun
dle over a compact complex manifold M. Then E has no non-trivial 
holomorphic sections: H 0 (M, O(E)) = 0. 

Proof We suppose that E is negative. Let h = "'£ ha!J(z)dza @ 

dzf3 be a Hermitian metric on Jill. Then, by Theorem 4.1, E admits 
a strongly pseudoconvex Finsler metric F with negative curvature tJ!. 
For a non-trivial local holomorphic section v of E, we have K ( v, v) = 
llvll- 2 "'£ ha/Jl}/a!J from (4.14), which show that the negativity of tJ! im
plies the one of K ( v, v), hence, from second assertion in Theorem 4.3, 
we have H 0 (M, O(E)) = 0. 

Q.E.D. 

§5. Differential geometry of complex Finsler bundles 

Let E be a holomorphic vector bundle over A1 with a strongly pseu
doconvex Finsler metric F and the Chern-Finsler connection \7. ~ex 

be the vertical bundle ofT1•0 Ex, i.e., Vex = ker1r*{T1•0 Ex ---+ T 1·D Af}. 
The bundle Vex is naturally identified withE over Ex. Then, similarly 
to ( 1.12), we define a connection () by 

(5.1) () = \7[. 

By the identity"'£ Cjk(j ==: 0, we can easily obtain ()(Z) = \7 z[ = Z 
for every Z E A(Ex, Vex), i.e., it is a morphism () : T 1•0 Ex ---+ Vex 
satisfying() o i =identity. Furthermore, by the homogeneity (F3), this 
form () is invariant by the action of ex on E. Thus ()defined by (5.1) 
is a connection of 1r: 
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o- Vex TCOM-o. 
(} 

If we define the horizontal subbundle Hex C yl,O Ex by Hex = kerB, 
the tangent bundle Ti:'~ is decomposed as T 1,0 Ex =Vex EB Hex. 

For every vector field X E A(Ex, yl,O Ex), we denote by xv = B(X) 
the vertical part, and by KH = X - B(X) the horizontal part of X. 
Then the differential operator d is also decomposed as d = dv + dfi, 
where dH f(X) = df(Xfi), dv f(X) = df(Xv) for every smooth function 
f E c=(EX ). Furthermore the partial derivation are also decomposed 
as a = aH + av and a = t)H + t)V. Then, the integrability tensor 8 of 
(} is defined by (1.6) for all X, Y E A(Ex, T 1,0 Ex). If 8 = 0, then Hex 
is integrable. 

Let Pc be the parallel displacement with respect to (} along a smooth 
curve c in Af. 

Definition 5.1. If Pc: (Ec(o), Hc(o))-+ (Ec(l)' Hc(l)) is an isometry 
for every curve c in M, then we say ( E, F) has isometric fibres. 

It is known that (E, F) has isometric fibres if and only if each fibre is 
a totally geodesic submanifold, and the necessary and sufficient condition 
for this is given by 

(5.2) 

for every vector field X E A(Ex,yl,OEx)(cf. [Is-Ko]). 
Since the tautological section [ is given by (2.13), the connection 

B =Lsi® (Ji is given by (Ji = 'VC: 

(5.3) 

Here, since the homogeneity (F3) of F implies L Cjk(1 = 0, we put 

N~ = Lr.Ja(1. These forms (Ji satisfy the relations Bi(s1) = 5j, and 
thus(}= {fJ0 , · · · , (}r} is the dual frame field of s =(so,··· , Sr)· 

On the other hand, the bundle fl,O Af is naturally isomorphic to the 
horizontal bundle Hex as a complex vector bundle by sending 

~ a (a)({ a ( a) yl,O M 3 - ---> - = - - (} -aza aza aza azo: E Hex. 

In the sequel we set Xa = (ajaz"')H (a= 1, · · · ,n). 
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According to the splitting X = xrt + xv, we have the decomposition 
'\7 = '\71t + '\7V of '\7, where we define '\7~ = '\7 X'H and '\7~ = '\7 xv for 
every vector field X on E. If we put rJa = wj(Xa), then we have 

Using these notations, we have wj = L rJadz"' + L CjkBk' and 

§6. Torsion of Chern-Finsler connection 

Let '\7 be the Chern-Finsler connection of the Finsler bundle ( E, F), 
and B the connection of E defined by ( 5.1). The canonical form ij of the 
holomorphic tangent bundle of the total space E is expressed by 

(6.1) 

with respect to the connection B. Similarly to (1.16), we shall define 

Definition 6.1. The torsion of (E, '\7) is a E-valued 1-form on Ex 
defined by 

(6.2) T = 'VB =dB+ w 1\ fJ. 

By this definition, the torsion T is given by 

T(X, Y) = '\7 xB(Y) - '\lyB(X) - B([X, Y]) 

for all vector fields X, Y on Ex. The torsion form [li with respect to 
s = (so.··· , Sr) is given by 

(6.3) 

According to the decomposition of '\7, the torsion T of (E, '\7) is decom
posed as T = T'H'H + Trtv: 

Trtrt(X, Y) = T(Xrt, yrt), Trtv(X, Y) = T(Xrt, Yv) + T(Xv, yrt). 

We note that (4.5) implies Tvv = 0. Since 

Trtrt(X, Y) = -B([Xrt, yrt]) = 8(X, Y), 

T1t1t = 0 if and only if the horizontal subbundle He is integrable. For 
the mixed part T'HV, we know that Trtv = 0 if and only if E has 
isometric fibres. 
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Proposition 6.1. ( [Ai8]) LetT = yrtrt + yrtv be the torsion of the 
Chern-Finsler connection \7. Then 

(1) yrtrt vanishes if and only if 1-{E is integrable, 
(2) yrtv vanishes if and only if 1r : E --+ M has isometric fibres. 

In a previous paper [Ai2], we have investigated a complex Finsler 
bundle (E, F) which is modeled on a complex Minkowski space. Such a 
bundle (E, F) is characterized by the vanishing of yrtv_ Furthermore, 
we proved the following 

Theorem 6.1. ([Ai2]) If (E, F) is modeled on a complex Minkowski 
space, then there exists a Hermitian metric hF on E such that \71-1 
1r*D for the Hermitian connection D of(E,hF)· 

We shall write down the torsion tensor field of \7. The torsion 
T = yrtrt +THV is given by yrtv =[)He and yrtv =ave. With respect 
to a local holomorphic frame field s = {so, · · · , Sr}, the horizontal part 
yrtrt and mixed part yrtv are given as as follows: 

and 

where the torsion tensors Ri (3- and Ri , are defined by 
a <>J 

(6.4) 

respectively. The homogeneity (F3) implies the following. 

Proposition 6.2. The torsion tensor R~:; satisfies 

(6.5) 

(6.6) 
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§7. Curvature of Chern-Finsler connection 

We denote by R = V' o V' the curvature of the Chern-Finsler con
nection '\7. By definition, R is computed by the formula (1.19) for all 
vector fields X, Y on Ex and section s of E. Since V' is the Hermitian 
connection of (E, H), R is a section of A1•1 (Ex, End(E)), and thus the 
curvature form nj is given by (2.11). 

The curvature R is also decomposed as R = R'H'H + R'HV + Rvv 
into the sum of horizontal part R'H'H = V''H o V''H, mixed part R'HV = 
V''H o V'v + V'v o V''H and vertical part Rvv = V'v o V'v. Since () is defined 
by (5.1), the Ricci identity V' o V'£ = R£ implies 

(7.1) R'H'H[ = T1t1t, R'HV[ = T'HV, RVV[ := 0. 

Since the torsion form Qi and curvature form ilj satisfy the relation 
Qi = L ilj(J, the identity (7.1) implies that T = aB. 

We shall write down the curvature tensor field of V'. With respect 
to a local holomorphic frame field s = { s0 , · · · , Sr}, the horizontal part 
R'H'H, mixed part R'HV and vertical part Rvv are given as follows: 

R'H'H sj = Lsi 0 (2: Rj 0 ,adz<> 1\ dz/3) , 

R1tv s = '""'"s 0 ('""'" Ri -dz 0 1\ iJk + Ri -{}k 1\ dz/3) J L • L 1<>k Jk/3 ' 

where we put 

(7.2) 

(7.3) 

(7.4) 

Then the homogeneity condition (F3) implies 

(7.5) 

(7.6) 
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Furthermore, by direct calculations, we have 

We shall show an application of this expression. 

Proposition 7.1. If R'H'H = 0, then (E, F) is modeled on a complex 
Minkowski space, and its associated Hermitian metric hF is fiat. 

Proof First we shall prove that (E, F) is modeled on a complex 
Minkowski space (R~] = 0). From the assumption and (7.5), the hori-

zontal subbundle HEx is integrable. Then, (7.7) implies 2::: R~m.R,B] = 0. 

For any section Z of E, we define cp(Z) E A 1•0 (Ex, E) by 

If we fix an arbitrary Hermitian metric h = 2::: h0 13(z)dz0 181 dz!3 on M, 
the norm llcp(Z)II is computed as follows: 

llcp(Z)II 2 = LHiJ (LR~1Z1R~mzm) ha./3 

= L ('LRa.JlZ1R~mzm) ha./3 

= L ('LRa.GZ1R~mzm) ha./3 

= 'L Hir ('L R~m.R;kzk 21) ha13 

=0 

for every z E A(E, E). Consequently we haveR~] = 0, i.e., rrtv = 0. 
Denoting by D the Hermitian connection of the associated Hermit

ian metric hF, the flatness of hF is obtained from 0 = R'H'H = 1r* Do D. 

Q.E.D. 

By this proposition, we know that if R'H'H = 0, then (E, F) is mod
eled on a complex Minkowski space. Then, from Theorem 6.1, the hor
izontal part "V'H is given by '\l'H = 1r* D for the Hermitian connection 
D of a Hermitian metric hF on E. Thus we have rJa = Fj0 (z), and 
consequently we get Ri. k- = 0. 

JO. 
We shall state some properties of curvature of "V. First we state 

Definition 7 .1. A strongly pseudoconvex Finsler metric F is said 
to be fiat if F has the form F = F( () at around of every point of M 
with respect to a suitable local holomorphic frame field s = (so, · · · , Sr). 
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Then we have 

Theorem 7.1. A strongly pseudoconvex Finsler metric F is flat if 
and only if the horizontal curvature R1t1t vanishes identically. 

Proof. Setting rj = "£ rj()ldz 01 ' from (5.5) we have 'V'H Sj = "£ Si Q9 

rj. The flatness ofF is equivalent to 'YJ 01 = 0, and from (5.4), this is 
also equivalent to Fj01 = 0 which implies R1i1t = 0. 

Conversely, we suppose that R'H'H = 0. Then, from Proposition 7.1, 
(E, F) is modeled on a complex Minkowski space, and its associated 
Hermitian metric hp is flat. Then Theorem 6.1 implies that rj is given 
by the pull-back n*'Y] for the connection form 'YJ of the associated Her
mitian metric hp, and this implies that [j1t rj = n*8'Y] = 0. Now, if we 
take another local holomorphic frame field Sj = "£ siAj(z), we have 

Then, because of 

the integrability condition for dAj + n*'Yf A; = 0 is satisfied, and thus, if 
R'H'H = 0, we have '\l'Hsj = 0 with respect to Sj = "£ siAj. Consequently 
we have iJ01 = 0. 

Q.E.D. 

Similarly to Theorem 7.1, we have 

Theorem 7.2. A strongly pseudoconvex Finsler metric F is Her
mitian, i.e., F 2 = "£ hiJ(z)(i(j for a Hermitian metric h onE if and 
only if the vertical part Rvv of the curvature of R vanishes identically. 

§8. Complex Finsler manifolds 

Let M be a complex manifold of dime M = n. In this section, we 
shall investigate the case where a strongly pseudoconvex Finsler metric 
F is given on the holomorphic tangent bundle T 1•0 M. We call the 
pair (M, F) a complex Finsler manifold. In the case of E = T 1•0 M, 
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we iden~a;az1 , ... , a;azn} a local holomorphic frame field of the 

bundle Tl,O M, and so the Chern-Finsler connection V' is denoted by 

a "" a . 
V' azj = ~ azi l8l wj 

for the connection form w] of V'. 

8.1. Holomorphic sectional curvature 

Let ~(r) = {17 E C: 1171 < r} be the disk of radius r inC with the 
Poincare metric 

4r2 

9r = (r2 - 11712)2 d7718l dfj. 

For every point (z, () E T 1•0 Mx, there exists a holomorphic map cp : 
~(r) ---> M satisfying cp(O) = z and 

(8.1) 

Then, the pull-back cp* F defines a Hermitian metric in a neighbor
hood of the origin by cp* F 2 = E(17)d17 l8l dfj, where we put E(17) 
F 2 (cp(17), cp*(17)). The Gauss curvature K<p·F(z, ()is defined by 

( 1 a 2logE) 
K"'·F(z,() =- E a a . 

17 17 ry=O 

Definition 8.1. ([Ro]) The holomorphic sectional curvature KF of 
(M, F) at (z, () E T 1•0 Mx is defined by 

KF(z, () = sup { K"'. F(z, () I cp(O) = z, cp* (0) = (}, 
'P 

where cp ranges pver all holomorphic maps from a small disk into M 
satisfying cp(O) = z and (8.1). 

Then KF has a computable expression in terms of the curvature 
tensor of the Chern-Finsler connection V'. 

Proposition 8.1. ([Ail]) The holomorphic sectional curvature KF 
of (M, F) at (z, () E T 1•0 Mx is given by 

(8.2) K (z () - lfl(£, £) - - 1- ""R- -(z ()(i(j (k(l 
F ' - 11£11 2 - 11£11 4 ~ ijkl ' ' 

where Ri]kf = L Hm3R';11 is the curvature tensor of the Finsler connec
tion V' on (T1•0 M, F). 
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Then we have the Schwarz-type lemma: 

Proposition 8.2. ([Ail]) Let F be a strongly pseudoconvex Finsler 
metric on the holomorphic tangent bundle of a complex manifold M. 
Suppose that its holomorphic sectional curvature KF(z, () at every point 
(z, () E T 1•0 Mx is bounded above by a negative constant -k. Then, for 
every holomorphic map cp: ~(r)----> M satisfying cp(O) = z and (8.1), we 
have 

(8.3) 

The Kobayashi metric FM on a complex manifold M is a positive 
semi-definite pseudo metric defined by 

(8.4) 

In general, FM is not smooth. FM is only upper semi-continuous, i.e., 
for every X E T 1•0 M and every € > 0 there exists a neighborhood U 
of X such that FM(Y) < FM(X) + € for allY E U. Even though FM 
is not a Finsler metric in our sense, the decreasing principle shows the 
importance of the Kobayashi metric, i.e., for every holomorphic map 
cp : N ----> M, we have the inequality 

(8.5) 

This principle shows that FM is holomorphically invariant, i.e., if cp : 
N ----> M is biholomorphic, then we have FN = cp* FM. In this sense, FM 
is an intrinsic metric on complex manifolds. It is well-known that, if Jvl 
is a strongly convex domain with smooth boundary in en, then FM is 
a pseudo convex Finsler metric in our sense ( cf. [Le]) 

A complex manifold M is said to be Kobayashi hyperbolic if its 
Kobayashi metric FM is a metric in the usual sense. If M admits a 
pseudoconvex Finsler metric F whose holomorphic sectional curvature 
KF is bounded above by a negative constant -k, then (8.3) implies the 
inequality 

(8.6) 

and thus M is Kobayashi hyperbolic. 

Theorem 8.1. ([Kol]) Let M be a compact complex manifold. If 
its holomorphic tangent bundle T 1•0 M is negative, then M is Kobayashi 
hyperbolic. 
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Proof We suppose that T 1•0 M is negative. Then, Theorem 4.1 
implies that there exists a pseudoconvex Finsler metric F on T 1•0 M 
with negative-definite iJt. By the definition ( 4. 7), the negativity of l[t 
and (8.2) imply 

iJt(£, £) 
Kp(z,() = 2 < 0. 

11£11 
Since M is compact, P(E) is also compact. Moreover, since Kp is a 
function on P(E), the negativity of Kp shows that Kp is bounded by 
a negative constant -k. Hence we obtain (8.6), and M is Kobayashi 
hyperbolic. 

Q.E.D. 

8.2. Finsler-Kahler manifolds 

In this subsection, we shall generalize the Kahlerity of Hermitian 
metrics to complex Finsler geometry. We define the Kahler form w of 
(M,F) by 

(8.7) 

We can easily show that dw = 0 if and only if F 2 = L, h{j(z)(i(j for a 
Kahler metric h = L, h{J(z)dzi Q9 dzJ on M. 

Let £ be the tautological vector field over T 1•0 M and() the connec
tion of 1r: T 1•0 M----> M defined by (5.1). 

Definition 8.2. ([Ail]) A strongly pseudoconvex Finsler metric F 
is said to be Finsler-Kiihler if the following is satisfied: 

(8.8) 

Remark 8.1. In [Ab-Pa], a strongly pseudoconvex Finsler metric 
F satisfying (8.8) is called a strongly Finsler-Kahler metric. 

If we denote by Xj (j = 1, · · · , n) the vector field (8/8z])'H, then F 
is a Finsler-Kahler metric if and only if 

(8.9) 

The connection form wj of the Chern-Finsler connection \1 is given 
b i - "" ri d k + "" Ci ()k 'th ri - "" Himx H d Ci y wj - L.... jk z L.... jk w1 jk - L.... j km an jk 
L, HimajHkm, and the condition (8.8) is equivalent to 

(8.10) 
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We remark that the coefficients Cjk always satisfy the symmetric prop
erties ( 4.5). 

Remark 8.2. The differentialn* of the projection n: T 1•0 M-+ M 
is considered as the canonical form of T1•0 M, and it has the form 

""" a . n* = L azj ®dzl, 

where { dz 1, · · · , dzn} is, of course, considered as the dual frame field of 
the frame field {X 1, · · · , Xn} for the horizontal bundle 'Hr1o M x . Since 

\h* = 2: a~i ® (2:rJkdzk + 2:c;kek) 1\dzj, 

Vn. vanishes if and only if F 2 = "I:9i](z)C(j for a Kahler metric h = 
I: hi](z)dzi ® dzj on M. The condition (8.8) is equivalent to 

(8.11) 

For the complex structure J on T M, ~lso denote by the ~me 
notation J the lifted com~tructure on TM = n*T !VI. Then T M is 

naturally identified with T 1•0 M via the isomorphism 

-- 1 ~ 
(} : T M :3 y ----7 (}(Y) = 2 (Y- HJY) E T 1•0 M. 

We denote by G the real part of H: 

(8.12) G = ~ [H (Q(Y), Q(Z)) + H (Q(Y), Q(Z))]. 

Then G is an inner product on T ~M, and it satisfies 

(8.13) H (Q(Y), Q(Z)) = G(Y, z)- Rc (JY, z) 

for allY, Z E A(T Mx, T M), i.e., G is a Hermitian metric on (T M, J). 
The imaginary part of H us given by 

R[ J G(JY, Z) = - 2- H (Q(Y), Q(Z))- H (Q(Y), Q(Z)) 

R = - 2- [H (Q(Y), Q(Z))- H (Q(Z), Q(Y))] 

= zv(p(Y), p(Z)), 

where w in the last line is the Kahler form defined by ( 8. 7). 
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Under the isomorphism(!, the Chern-Finsler connection \7 on T 1•0 M 
is considered as c connection on the bundle T M: 

(8.14) \7 (!(Y) = (!(V'Y). 

This connection \7 on T M is metrical with respect to G. In fact, we 
have 

dH((!(Z), (!(W)) = H(\7 (!(Z), (!(W)) + H((!(Z), \7 (!(W)) 

= H ((!(V'Z), (!(W)) + H ((!(Z), (!(V'W)). 

Taking the real part of both sides, we have 

dG(Z, W) = G(V'Z, W) + G(Z, V'W), 

and thus \7 is metrical with respect to G. 
Since \7 satisfies \7 R (!(Y) = H\7 (!(Y) and the multiplication 

by R is identified with the operator J, we have 

H\7 (!(Y) = V'H(!(Y) = \7 (!(JY) = (! (V'(JY))' 

and 
HV'(!(Y) = (!(J(V'Y)). 

Thus the lifted complex structure J is \?-parallel: 

(8.15) \7] = 0. 

Consequently, the connection \7 on TM defined by (8.14) is the Hermit

ian connection of (T 1\I, G), and so we call \7 on T 1\1 is the Chem-Finsler 
connection on (T M, G). 

2'<?r the connection e defined by ( 5.1), the corresponding connection 
ofT 1\1 is denoted by the same symbol e, i.e., 

B((!(Z)) = (!(B(Z)) 

for every z E A(T 1\fX' T M). Then e defines a splitting T(T MX) 
VrMx ffi'Hrl\fx, and the differential operator d also splits as d = dH +dv. 
Then, for every horizontal real k-form 8, we have 

(dH8) (Z1, .. · , Zk+l) 

k+l 
= 2:) -1F-1 zje(Z1, ... , zj, ... , zk+l) 

j=l 

+ 
+. H A A 

(-1) 2 18([Z Z] .. · Z .. · Z .. · Zk+l) 
z,, J ' ' z., ' J' ' 
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for all sections zl, ... 'zk+l E A(T MX' 7-lrMx ), where zi means that 
zi is to be omitted. 

In the sequel of this subsection, to avoid the confusion of notations, 
we shall identify the bundle T M with the horizontal bundle 7-lrMx. 

1-lrMx TM 
(•)'H 

7-lrl.oMx ~====:: Tl,OM 
(e)'H 

We suppose that a connection D = D'H + vv is given on T M. Since 
the torsion D1-£1r * is given by 

under the identification TM 9:! 7-lrMx, the condition D1-£1r* = 0 is given 
by 

(8.16) D~W- D'ft.Z- [Z, W]'H = 0 

for all Z, WE A(TMx,TM). Then we have 

Proposition 8.3. We suppose that a connection D satisfies the 
symmetric property (8.16). Then 

(1) D satisfies 

for any horizontal real k-form 8 and all horizontal vector fields 
z1, · · · , zk+l· 

(2) Any D'H-parallel horizontal form is d1-l-closed. 

Definition 8.3. A connection D on the bundle T M is called the 
Cartan connection of (T M, G) if it satisfies the following conditions. 

(1) Dis metrical, i.e., DG = 0, 
(2) D satisfies (8.16), i.e., D1-£1r* = 0, 
(3) D satisfies rvv = 0, 

where rvv is the vertical part of the torsion DB of D. 
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Remark 8.3. The Cartan connection D of (T M, G) is uniquely 
determined. However we remark that the Cartan connection D in our 
sense is not the Cartan connection in the usual sense in [Ma], since G is 
a generalized Finsler metric, not a real Finsler metric in the usual sense 
( cf. [Ic]). 

Remark 8.4. The Chern-Finsler connection V' of (T M, G) is metri
cal and it satisfies the symmetric property rvv = 0, but not necessarily 
the condition (8.16). 

Identifying i0JM with T M via the morphism {!, we have con
structed two metrical connections V' and D on (T M, G). Then we have 
a characterization of Finsler-Kiihler metrics. 

Theorem 8.2. Let (M, F) be a complex Finsler manifold. Then 
the following conditions are equivalent. 

(1) The Cartan connection D coincides with the Chern-Finsler 
connection V'. 

(2) The lifted complex structure J is parallel with respect to D: 

(8.17) D?-l J = 0. 

(3) The Kahler form ro is parallel with respect to D: 

(4) (M, F) is a Finsler-Kiihler manifold. 

Proof (1) ----> (2) is obvious, since the assumption D = V' and 
(8.15) imply (8.17). 

(2) ----> (3) is proved as follows. For all X, Y, Z E A(T Mx, T M), 
we have 

(D~w)(Y, Z) 

=X w(Y, Z)- w(D~Y, Z)- w(Y, D~Z) 

= XG(JY, Z)- G(JD~Y, Z)- G(JY, D~Z) 

= G(D~(JY), Z) + G(JY, D~Z)- G(JD~Y, Z)- G(JY, D~Z) 

=0, 

since DG = 0, and thus the condition (8.17) implies (8.18). 
(3) ----> ( 4) is proved as follows. Since D satisfies the symmetric 

property (8.16), the second assertion in Proposition 8.3 implies (8.8). 
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( 4) -----+ ( 1) is proved as follows. Since the Chern-Finsler connection 

\7 of (T M, G) is metrical and satisfies rvv = 0, it is enough to prove 
that \7 satisfies V''H.1r * = 0. Because of 

(V''H.Ir*)(Q(Y), Q(Z)) 

= V'~y)Ir*(Q(Z))- V'~z)Ir*(Q(Y))- 1r*([Q(Y), Q(Z)]) 

= Q (Y'i11r*(Z))- Q{V'~1r*(Y))- Q (1r*([Y, Z])) 

= Q (Y'i11r*(Z)- V'~1r*(Y)- 1r*([Y, Z])) 

= Q ((V'1i1r*)(Y, Z)) 

for all Y, Z E A(T Mx, T M), the assumption (8.18) on fl,O M implies 

V''H.1r* = 0 on T !vi, and thus the Chern-Finsler connection \7 on (T 111, G) 
coincides with the Cart an connection D. 

Q.E.D. 
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