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Abstract. 

In this paper, we shall discuss the theory of connection in complex 
Finsler geometry, i.e., the Chern-Finsler connection \7 and its applica­
tions. In particular, we shall investigate (1) the ampleness of holomor­
phic vector bundles over a compact complex manifold which is based 
on the study due to [Kol], (2) some special class of complex Finsler 
metrics and its characterization in terms of torsion and curvature of \7, 
and in the last section, (3) the characterization of Finsler-Kahler man­
ifolds in terms of the Cartan connection D which is naturally induced 
on the real tangent bundle from \7. 

§1. Introduction 

Let M be a smooth manifold, and 1r : E -+ M a vector bundle over 
M. A Finsler metric on E is a smooth assignment of a norm II · llx 
to each fibre Ex = 1r- 1 (x). If we set IIXII = L(X), then the function 
L : E -+ M satisfies the following conditions: 

(1) L(X) ~ 0, and L(X) = 0 if and only if X= 0, 
(2) L(>-.X) = )..L(X) for'~).. E R+ = {>-. E R: ).. > 0}, 
(3) L(X) is smooth on Ex, 
(4) L(X + Y) ~ L(X) + L(Y). 

We suppose that E admits a complex J. A complex Finsler metric 
on (E, J) is a Finsler metric satisfying 

(1.1) II (ale+ bJ) Xllx = J a 2 + b2IIXIIx 
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for all X E Ex and for all a, b E R, where Ie is the identity morphism 

of E. Let Ex® e = E~,o EB E~' 0 be the canonical decomposition. Then 
the condition ( 1.1) is equivalent to 

(1.2) 

for all X E E~,o and for all a, b E R. 
Let M be a complex manifold of dime M = n, and 1r : E ----> M a 

holomorphic vector bundle over M. For every X E Ez C Ez ® e, there 
exists a unique v E E;,o C Ez ® e satisfying X = v + v = 2Re( v). Then 
we set F( v) = L(X) /2. The function F satisfies 

(Fl) F is smooth on Ex, the outside of the zero-section of E, 
(F2) F(v) ~ 0, and F(v) = 0 if and only if v = 0, 
(F3) F(>.v) = i>.IF(v) for all),. E e and vEE. 

The pair (E, F) is called a complex Finsler bundle. In this paper, we 
furthermore suppose the following assumption: 

(F4) the pull-back of the real (1, 1)-form Ra8G to each fibre is 
positive-definite, where we set G = F 2 . 

Such a Finsler metric F is said to be strongly pseudoconvex. 
The interest in complex Finsler geometry has been motivated by 

the Kobayashi metric intrinsically defined in a bounded strictly convex 
domain in en. This metric is holomorphically invariant, and it plays 
an important role in the theory of several complex variables. Recently 
Nishikawa[Ni] has started to study the harmonic maps in complex Finsler 
geometry to give a differential geometric proof of Frankel conjecture. 

The interest in complex Finsler geometry also arises from the study 
of holomorphic vector bundles. The multiplier group ex = e\ { 0} acts 
on Ex by multiplication, and the projective bundle P(E) ----> M associ­
ated with E is defined by P(E) = Ex ;ex. Then the tautological line 
bundle L(E)----> P(E) is defined by L(E) = {(V, v) E P(E) x E I v E V}, 
and the hyperplane bundle H(E)----> P(E) by P(E) = L(E)*. Since L(E) 
is obtained from E by blowing up the zero section of E, the manifold 
L(EY is biholomorphic to Ex. Thus, any complex Finsler metric onE 
is identified as a Hermitian metric on the tautological line bundle L(E). 
The bundle E is said to be ample in the sense of Hartshone if H (E) is 
an ample line bundle over P(E). The negativity of E is equivalent to 
the ampleness of its dual E*, and is characterized by the existence of 
a complex Finsler metric on E of negative curvature. Since the Chern 
class c1 (L(E)) is represented by the first Chern form c1 (L(E),F) for 
a metric F on L(E), E is negative if and only if E admits a Finsler 
metric F satisfying c1 (L(E), F) < 0. This condition is written in terms 
of curvatures of Chern-Finsler connection of (E, F) (cf. [Ko1]). 
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We denote by R + the set of positive real numbers which defines 
a multiplier group. Since R + is naturally identified with the group 
{cl E GL(r,R); c E R+} c GL(r,R), R+ acts on the total space as a 
subalgebra of End(E). We denote this action by L : R+ x E -+ E, 
and we write L>,V = AV for '~A E R+. A connection is a selection of a 
horizontal subspace Hv at each point vEE in R+-invariant way: 

(1.3) 

Definition 1.1. A connection (in the sense ofEhresmann) onE is a 
selection of a horizontal subspace Hv at each point v E E. A connection 
is said to be linear if the selection is GL(r, R)-invariant. 

If a connection is selected, we have the splitting 

(1.4) TE = Ve EBHe, 

where He = ilvEe Hv is called the horizontal subbundle of T E. We 
denote by () : T E -+ Ve the projection, i.e., 

(1.5) B(Z) = Z 

for every Z E Ve. The horizontal bundle He is defined by He = kerB. 
For a vector field X on M, a section X1t of He such tha 1r*X1t =X is 
called the horizontal lift of X. 

Definition 1.2. The integrability tensor of a connection () on E is 
a section G of /\2w*T* AI 0 Ve defined by 

(1.6) 

for all vector fields X, Y on M. 

We can easily check the identity 

which implies 

for all vector fields X, Yon M. The horizontal subbundle He is said to 
be integrable if [X1t, Y1t] E He for all vector fields X, Yon M. Since 
He is defined by He =kerB, (1. 7) implies 

Proposition 1.1. The horizontal subbundle He is integrable if and 
only if G vanishes identically. 
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Definition 1.3. For a smooth curve c : I = [0, 1] --+ M in the base 
manifold M, a curve C( : I--+ E starting at a point ( E Ec(O) is called the 
horizontal lift of c with respect to e if it satisfies c((O) = (, 1r o c<:(t) = 
c(t) and 

(1.8) c(e = o. 

Since dim I = 1, this differential equation is integrable and thus, 
the horizontal lift C( exists for every curve c = c( t) in M and a point 
( E Ec(O)· 

Definition 1.4. The diffeomorphism Pc : Ec(o) 3 (--+ c<:(1) E Ec( 1) 

is called the parallel displacement of ( along c with respect to e. 

We denote by Ak(M) the sheaf of germs of smooth k-forms on M, 
and by Ak(M, E) the sheaf of germs of smooth k-forms on M with values 
in E. We merely denote A 0 (M, E) by A(M, E). A covariant derivative 
V' of Eisa morphism V': A(M, E) --+ A1(M, E) such that 

(1.9) V'(fs) = df 0 s + f'Vs 

for every smooth function f on M and every s E A(l\1, E). Any covariant 
derivative V' is naturally extended to a morphism V' : Ak(M, E) --+ 

Ak+l(M, E) by setting 

(1.10) 

for cp E Ak(M) and s E A(M, E). 
We shall show that any covariant derivative V' on E induces a linear 

connetion. To this end, we introduce the notion of tautological section 
of VE. The action L. of R+ induces a vertical vector filed E defined by 

(1.11) E(v) = (v,v) 

for all v E E. This vector field E on E is called the tautological section 
of VE. 

We denote by E the pull-back bundle 7r* E and by '\7 : A(E, E) --+ 

A 1 ( E, E) the pull-back 7r* V' of any covariant derivative V' on E. Because 
of VE ~ E, E is also considered as a section of E. Then we can check 
that e E A 1 ( E' E) defined by 

(1.12) 

induces a linear connection in the sense of Definition 1.1. Conversely, 
any linear connection e in the sense of Definition 1.1 defines a covariant 
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derivative \7 : A(M, E) ____. A1(M, E). In fact, for any curve c = c(t) 
tangents to X E Tc(o)M, 

(1.13) 

defines a covariant derivative \7 on E. Consequently any linear connec­
tion e on E is equivalent to a covariant derivative \7 Oil E (cf. [Be]). 
Thus, in the sequel, we shall use the terminology "connection" for a 
covariant derivative. 

1.1. Torsions of connections 

We shall recall the definition of torsion of affine connection \7 on the 
tangent bundle TM. A differential form Tv E A 2 (M,TM) defined by 

(1.14) Tv(X, Y) = \lxY- \lyX- [X, Y] 

is called the torsion of (TM, \7). Let 'T/ E A 1(M,TM) be the canonical 
form of TM, i.e., 'T/ is defined by ry(X) =X for all vector field X on M. 
Then Tv is given by 

(1.15) Tv= \lry. 

Hence the torsion Tv of (T M, \7) is given by the covariant derivative of 
the canonical form ry. 

In the case of a general vector bundle E with a connection \7, the 
pull-back 'V' defines a connection on the pull-back bundle E, and fur­
thermore, a connection e is introduced by (1.12). Then, since (1.5) is 
satisfied, e is considered as the canonical form of E. Similarly to (1.15), 
we set 

(1.16) t = 'V'e, 

and we call T the torsion form of (E, V). 

Proposition 1.2. The torsion form T E A 2 (E, E) of (E, V) is 
given by the integrability tensor 8 of 'HE. 

Proof It is enough to show that T (Xrt, yrt) = B(X, Y). By 
definition, we have 

f'(xrt,Yrt) = 'V'xrtO(Yrt) -'V'vrte(xrt) -e([xrt,yrt]) 

= -e ([xrt, yrt]) 

= B(X,Y). 
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Q.E.D. 

The horizontal subbundle HE is naturally identified with the pull­
back bundle T M = 1r* T M. For the differential1r * : T E ----> T M, we have 
ker 1r * = V E, and so the differential1r * is considered as the canonical form 
ofT M. However, there are no natural ways to introduce a connection 
on T M from \7 except the case of E = T M with an affine connection 
\7. In the case of T M, we have 

(1.17) - ( 1{ 1{) * V'1r* X , Y = 1r T\l(X, Y), 

and thus '\!1r* = 0 if and only if T\1 = 0. 
Furthermore, since T E ~ VEEBT M, the T £-valued 1-form i] = 8+1r * 

on E is considered as the canonical form of T E. In the case of E = T M, 
the connection \7 onE also induces a connection '\7 on T M, and we can 
define the covariant derivatives '\7 i] by 

(1.18) 

Thus '\7 i] = 0 if and only if the affine connection \7 on T M is symmetric 
and the horizontal subbundle HrM defined by \7 is integrable. 

1.2. Curvatures of connections 

Let \7 be a connection of a vector bundle 1r : E ----> M. 

Definition 1.5. The curvature R E A2 (M, End( E)) of (E, \7) is 
defined by R = \7 o \7, i.e., 

(1.19) R(X, Y)s = \7 x\i'ys- \i'y\i'xs- V'[x,Y]S 

for every s E A( M, E) and X, Y E A( M, T M). If R vanishes identically, 
then ( E, \7) is said to be fiat. 

Let '\7 be the connection on E induced from \7. Then, identifying 
s E A(M, E) as a section of E, the curvature R of '\7 is defined by 
- 2 - . 
\7 s = Rs, Le., 

R (xrt., yrt.) s = '\7x1t '\!yHs- '\!yH '\7 xHs- '\![xH,YHJs. 

Then, because of (1.12) and (1.16), we get 

R (xrt., yrt.) £ = t (Xrt., yrt.) = G(X, Y). 

Since '\7 is flat if and only if \7 is flat, we have 

Proposition 1.3. A connection \7 on a vector bundle E is fiat if 
and only if its horizontal bundle HE is integrable. 
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§2. Hermitian connections and Kahler manifolds 

2.1. Hermitian metrics and Hermitian connections 

Let (E, J) be a complex vector bundle over a smooth manifold M, 
namely J is an endmorphism of E satisfying 

(2.1) JoJ=-lE, 

where fe is the identity morphism of E. 
On a complex vector bundle (E, J), the complex scalar multiplica­

tion onE is defined by (a+v'-Ib)·v := (alE+bJ)v for all a+v'-Ib E C 
and v E A(M, E). By this definition, each fibre Ex is considered as a 
complex vector space of complex dimension r. 

We denote by E®C the complexification of E. Then J is canonically 
extended onE Q9 C by setting J(u + J=Tv) = Ju + Ff.Jv for all u + 
Rv E A(M, E®C). Since J satisfies (2.1), the eigenvalues are ±J=I. 
We denote by E 1•0 and E 0•1 the eigen-vector space corresponding to yCI 
and -J=I respectively. Then E Q9 Cis decomposed as 

(2.2) 

and E is identified with E 1•0 by the mapping e : E ---+ E 1•0 defined by 

(2.3) 
1 

e(v) =- (v- RJv). 
2 

By definition, the following is trivial: 

(2.4) e (Jv) = Re(v) 

A smooth inner product g on a complex vector bundle (E, J) is said 
to be a Hermitian metric if 

(2.5) g(Ju, Jv) = g(u, v) 

is satifsied for all sections u, v of E. Then, if we set 

(2.6) h (e(u), e(v)) = g(u, v) + yCTg(u, Jv), 

we can easily check the following conditions: 

(1) h(~, 7J) is C-linear in~' 
(2) h(~, 7J) = h(r}, ~), 
(3) h(~, ~) 2:: 0, and the equality holds if and only if~ = 0. 
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Conversely, if a map h : E 1•0 x E 1•0 ___, C satisfying the conditions 
above, we can easily check that the real part g of h is an inner product of 
(E, J) satisfying (2.5). Consequently, a Hermitian metric on a complex 
vector bundle E is characterized by the three conditions above. The 
pair ( E, h) is called a Hermitian bundle over M. 

A connection \7 on E said to be complex if it satisfies 

(2.7) 'VJ = 0. 

Definition 2.1. Let (E, h) be a Hermitian bundle. Then a complex 
connection \7 is said to be a Hermitian connection of (E, h) if it satisfies 
the metrical condition 

(2.8) dh(~, 1J) = h(\7~, 1J) + h(~, \71]) 

for all~' 1J E A(M, E). 

If the base manifold M is a complex manifold, then there exists a 
special class of complex vector bundles. 

Definition 2.2. A complex vector bundle 1r : E ___, M over a com­
plex manifold J\i[ is called a holomorphic vector bundle if it admits local 
trivializations {(U,cpu)}, cpu: 7r- 1 (U) ---7 u X cr, whose transition co­
cycles guv = cpu o cpv1 : U n V ___, GL(r, C) are holomorphic. In the 
case of r = 1, the bundle E is called a holomorphic line bundle. 

In the sequel, we suppose that M is a complex manifold of copm­
plex dimension n, and 1r : E ___, 1\J is a holomorphic vector bundle of 
rank( E) = r. In the sequel, we denote by T 1•0 1\J and T 1•0 E the holo­
morphic tangent bundles of the base manifold M and the total space E 
respectively: 

TM ® C = T 1•0M EB T 1•0M, TE ® C = T 1•0E EB T 1,0E. 

According to this decomposition, we get the decomposition A 1 ( M, E) = 
A 1•0 (M, E) EB A 0 •1 (M, E). Hence the connection \7 is also decomposed 
as \7 = \7 1•0 + \7°· 1 , where \7 1•0 : A(M,E) ___, A 1•0(M,E) and \7°· 1 : 

A(M,E) ___, A 0·1(M,E). A connection \7 is said to be of (1,0)-type if 
\7°· 1 = 8. It is known that a holomorphic vector bundle E admits a 
(1,0)-type connection (cf. [Ko2]). 

We shall work on a local trivialization cpu : n- 1 (U) ___, cr of E, 
where U C M is endowed with complex coordinate z = (z 1 , · · · , zn). 
We take a local holomorphic frame field su = (s1 , · · · , sr) on U. With 
respect to su, the connection form w = (wj) of a connection is defined 
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by '\lsj =,Lsi ®wj. If we set hi]= h(si,sj) on U, we have hi]= hji 
since h is Hermitian. Then we have 

Proposition 2.1. Let E be a holomorphic vector bundle with a 
Hermitian metric h over a complex manifold M. There exists a unique 
Hermitian connection '\1 of (1, 0)-type on (E, h), i.e., the connection 
form w = (wj) is given by 

(2.9) 

where (hi"') is the inverse matrix of(him) so that ,Lhi"'hjm = Jj. 

Let R = '\1 o '\1 be the curvature of the Hermitian connection '\1 of 
(E, h). Then we have 

'\1 o '\1 Sj = '\1 (LSi ® wj) = Lsi ® ( dw] + L w:r, 1\ wj) . 

The 2-form nj defined by 

(2.10) 

is called the curvature form of '\1. Since the Hermitian connection '\1 is 
of (1, 0)-type, we have 

v o v = (v1,o +a) o (v1,o +a) = v1,o o v1,o + (a 0 v1,o + v1,o o a) . 

Then we have 

Proposition 2.2. The curvature R of the Hermitian connection '\1 
of (E, h) is a section of A1•1(M, End( E)), i.e., the curvature form flj is 
given by 

(2.11) 

By this proposition, the curvature form flj is of the form 

(2.12) 

where the tensor field Ri {3- is called the curvature tensor of '\1. 
JC> 

By setting v = .L (isi for every v E n- 1 (U), we introduce a local 
complex coordinate (z,() = (z1 ,··· ,zn,(\··· ,(r) on n- 1 (U). Then 
the tautological section£ of Ve is expressed on n-1(U) as 

(2.13) 
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where we consider su = ( s1 , · · · , Sr) as local holomorphic frame field of 
E. As shown in §1, any connection \7 in E defines a connection Bin the 
sense of Definition 1.1. 

Let \7 be the Hermitian connection of a Hermitian bundle (E, h). 
Since the pull-back V is also of (1, D)-type and E is holomorphic, the 
connection e defined by (1.12) is of (1, D)-type, i.e., e E A 1•0 (E, E). If 
we set e = I: si ® Bi, the (1, D)-forms Bi are given by 

(2.14) 

The torsion T of (E, V) is defined by (1.16). Since T = V2E = RE, the 
form T E A 1•1 (E, E) is given by 

2.2. Kahler manifolds 

Let E be the holomorphic tangent bundle T 1•0 M of a complex man­
ifold !vi, and h a Hermitian metric on T 1•0 M. If we denote by \7 the 
Hermitian connectio~M, h), \7 of (M, h) also induces a connection 

V on the pull-back T 1•0 M = 1r*T1•0 M. 
Since the vert~ubbundle Vrt.o M is naturally identified with the 

pull-back bundle T 1•0 1VI, the covariant derivative V1r* of 1r* is given by 
V1r* = 1r*T'l for the torsion T'l of (T1•0 M, \7). A Hermitian manifold 
( M, h) is said to be K iihler if its Hermitian connection \7 is torsion free, 
i.e., T'l =D. Hence we have 

Proposition 2.3. A Hermitian manifold (M, h) is a Kahler mani­
fold if and only if V 1r * vanishes identically. 

For the isomorphism (! : TM ----+ T 1•0 M defined by (2.3), the real 
part g of h is defined by 

g(X, Y) = ~ { h(Q(X), Q(Y)) + h(Q(Y), Q(X))} 

for all sections X, Y E A(M, T lvl), and it defines a Riemannian metric 
on T AI. We shall compare the Hermitian connection \7 of ( M, h) and 
the Levi-Civita connection of (M, g). The Hermitian metric \7 of (M, h) 
induces a connection Don (M, g) by setting \7 Q(X) = Q(DX). Then D 
is a metrical connection of (AI, g). In fact, because of (2.8), we have 

dh (Q(X), Q(Y)) = h ('V(Q(X), (Q(Y)) + h ((Q(X), V'(Q(Y)). 
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Taking the real part of both sides implies dg(X, Y) 
g(X, DY), therefore D is metrical with respect to g. 
of (T M, D) is given by 

g(DX, Y) + 
The torsion TD 

TD(X, Y) = Q- 1 (Ve(X)Q(Y)- Ve(Y)Q(X)- [g(X), g(Y)]) 

= g- 1 (T\7 (g(X), g(Y))). 

Hence, Proposition 2.3. implies 

Proposition 2.4. A Hermitian manifold (M, h) is a Kahler mani­
fold if and only if the Hermitian connection \7 coincides with the Levi­
Civita connection D of (M, g). 

§3. Ample vector bundles 

Let E be a holomorphic vector bundle of rank( E) = r + 1 (2" 2) over 
a compact complex manifold .A1, and P(E) the associated with E. We 
denote by [v] the point of P(E) corresponding to v = (z, () E E. 

Definition 3.1. A holomorphic vector bundle E over a compact 
complex manifold M is said to be negative if its tautological line bundle 
L(E) is negative, and E is said to be ample if its dual E* is negative. 

Let z = (z<>) (1 :::; a:::; n) be a local complex coordinate system 
on M, and ( = (C) (0:::; i :::; r) the complex coordinate system on the 
fibre Ez = 1r- 1 ( z) with respect to a local frame field s = { s0 , · · · , Sr}. 

With respect to such a local coordinate system, we use the notations 
a a = a I az<> and aj = a I a(J. We denote by ai5 and a) their conjugate. 

We suppose that E admits a Hermitian metric h =(hi]), where we 
set hi3(z) = h(si, s1). The Hermitian connection \7 of (E, h) is given by 
(2.9), and its curvature R is given (2.11) and (2.12). For all non-zero 
v = (z,() E Ez and X E TzM, we set 

Definition 3.2. A Hermitian vector bundle (E, h) over a compact 
complex manifold M is said to be negative ( resp. positive) if Rz ( v, X) < 
0 (resp. Rz(v, X) > 0) for all non-zero v E Ez and X E TzM at every 
point z EM. 

We show a sufficient condition for (E, h) to be negative. 
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Theorem 3.1. If a Hermitian vector bundle (E, h) over a compact 
complex manifold M is negative, then E is negative. 

Proof We define a function G on Ex by G(z, () = h(£, £) = 
L hi](z)(i(i. We set Gj = G /l(i 12 on each Uj = { [(] E P(E) I (i =1- 0 }. 
Then {Gj} satisfy thq relation l(ii 2Gi = l(ii 2Gi on Ui n Ui =I-¢. Hence 
the family { G j} defines a Hermitian metric on L( E). By direct calcula­
tions, we see that the curvature form B8log G j = B8log G of this metric 
is given by 

Hence Rz(v, X) < 0 implies that L(E) and thus E is negative. 

Q.E.D. 

The converse of this fact is not true except the case of dim M = 
1 ([Urn]). Kobayashi[Ko1] characterized negativity of holomorphic vector 
bundles in terms of complex Finsler metrics (see Theorem 4.1 below). 

Remark 3.1. In [Sc], some examples of complex surface with neg­
ative tangent bundle are constructed. Let M be a compact connected 
complex surface and C a compact Riemann surface. Let p : M ______, C 
be a surjective holomorphic map of maximal rank. The exact sequence 

0 ______, VM ___i:__. T 1,0 M ~ 1r*T1,°C ______, 0, where VM = ker p* yields an 
exact sequence 

0 ______, T 1' 0 X ___i:__. (T1' 0 M)lx ~ 1r*TxC ______, 0 

for any point x E C and X = p- 1(x). This sequence leads to the 
following exact sequence of cohomology groups 

· · · ______, H 0 (T 1'0 Mix) ______, H 0 (p*(TxC)) ~ H 1 (T1' 0X) ______, · · ·, 

where 8x : H 0 (p*(TxC)) ______, H 1 (T1,0 X) is the Kodaira-Spencer map. 
Such a complex surface M is called a Kodaira surface if 8x =I- 0 for any 
point x E C. Schneider[Sc] proved that any Kodaira surface M has 
negative tangent bundle T 1,0 M. 

§4. Chern-Finsler connection and Kobayashi's theorem 

Let E be a holomorphic vector bundle of rank(E) = r + 1 (r 2: 1) 
over a complex manifold M. Let F be a strongly pseudoconvex Finsler 
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metric on E. Then, the Hermitian matrix (Hi]) defined by 

( 4.1) 

is smooth on Ex and positive-definite. We also identify the local holo­
morphic frame field s = {so, · · · , Sr} with the one of the pull-back bundle 
E. Then E admits a Hermitian metric H defined by 

(4.2) 

for all Z = l:::Zisi and W = L:=WJsj. 
Let V' : A(Ex, E) ----> A1(Ex, E) be the Hermitian connection of 

(E, H), i.e., V' is the unique connection satisfying \7°• 1 = [)and 

(4.3) dH(Z, W) = H('VZ, W) + H(Z, 'VW) 

for all Z, WE A(Ex, E). 

Definition 4.1. ([Ab-Pa]) The Hermitian connection V' on (E, H) 
is called the Chem-Finsler connection of (E, F). 

The connection form w = (wj) of V' with respect to s is defined by 
V' Sj = 'I: si Q9 wj, and the connection forms are given by 

(4.4) wj = LHim8Hjm = L l'Jadz<> + LCJkd(k, 

where we put !'ja(z, () ='I: Him8aHjm and Cjk(z, () ='I: Him8kHjm 
for the inverse matrix (Him) of (Him)· We note that the coefficients 
CJk = wj(sk) satisfy the symmetric properties 

(4.5) 

By definitions, it is easily shown that a complex Finsler metric F is 
Hermitian, i.e., F 2 ='I: hij(z)(i(j for some Hermitian metric h = (hi]) 
on E if and only if Cjk = 0. 

In the sequel of this section, we shall discuss the negativity (or am­
pleness) of holomorphic vector bundles, and we show an outline of the 
proof of Kobayashi's theorem. 

Since the Chern class c1 (L(E)) of L(E) is expressed in terms of the 
curvature 88 log F 2 of a Hermitian metric F on L(E), L(E) is negative 
if and only if there exists a complex Finsler metric F on E satisfying 

(4.6) Ff---88 log F 2 < 0 
271" 
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or equivalently this real (1, 1)-form WP(E) = J=T881ogF2 defines a 
Kahler metric on the base manifold P(E). 

Conversely, in general, the projective bundle P(E) associated with 
an arbitrary vector bundle E is not a Kahler manifold. Since each fibre 
P(Ez) ~ pr-l is a Kahler manifold, it has only the structure of pseudo­
Kahler manifold. For an arbitrary convex Finsler metric F on E, the 
(1, 1)-form wP(E) is a pseudo-Kahler metric on P(E). Kobayashi's char­
acterization is obtained by analyzing the positivity of wP(E) ( cf. [Ai2]). 

For the curvature R of \7, we define a (1, 1)-form lf/ on Ex by 

(4.7) lf/ = H(R£, £) 
11£11 2 . 

To investigate the negativity of A8a log F 2 , the following is useful. 

Lemma 4.1. The curvature 88 log F 2 of (L (E), F) is given by 

(4.8) 

where the (1, 0)-forms gi are defined by (2.14) for the Chern-Finsler 
connection \7. 

Since the second term of ( 4.8) is negative definite in the vertical 
direction in P(E), the curvature of (L(E), F) is negative if and only if 
lf/ is negative. 

Theorem 4.1. ([Ko1]) A holomorphic vector bundle E is negative 
if and only if E admits a strongly pseudoconvex Finsler metric F with 
negative curvature lf/. 

We shall state a characterization of negative vector bundles due to 
[Ca-Wo]. We denote by 8mE the symmetric product of E. Then, we 
need the following Grothendieck's identification: 

(4.9) 

for all p ;=:: 0 and m ;=:: 0. Let 1: HP (P(E), L)--+ HP(M, 8m E*) be the 
isomorphism. The bases { a 0 , · · · , aN} of H 0 ( P (E), L) is identified with 
a bases {w 0 ,··· ,wN} of H 0 (M,8mE*) by setting 1*wb = ab. Then a 
Hermitian metric h®m on 8m E is defined by 

(4.10) 
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for all section A, B of 0m E. Then it induces a Finsler metric F on E 
by setting 

(4.11) 

In [Ca-Wo], it is proved that the metric h®m on 0m E has negative 
curvature, and thus the Finsler metric F defined by ( 4.11) has negative 
curvature lJ!. Summarizing the discussion above, we have 

Theorem 4.2. ([Ca-Wo]) Let 1r: E---+ M be a holomorphic vector 
bundle over a compact complex manifold M such that rank( E) ~ 2. The 
following statements are equivalent. 

(1) 
(2) 

(3) 

E* is ample, 
E admits a strongly pseudoconvex Finster metric with negative 
curvature lJ!, 
there exists a sufficiently large m E Z and a Hermitian metric 
h®m on the symmetric product 0m E with negative curvature. 

In the rest of this section, we shall investigate some vanishing theo­
rems in complex Finsler geometry. To this end, we show a Weitzenbock 
formula. The covariant derivative V'v = I: V' aV Q9 dz"' of a holomorphic 
section v of E is defined by V'v = v*'\7[: 

If we set f(z) = v* H(£, £) = v* F 2 , then we have 

Proposition 4.1. ([Ai3]) Let v be a non-vanishing holomorphic 
section of E. Then we have 

(4.12) a[Jj = H(V'v, V'v)- H (Rv, v) 

We suppose that M admits a Hermitian metric h. 

Definition 4.2. Let (E, F) be a strongly pseudoconvex Finsler bun­
dle over a compact Hermitian manifold (M, h). The mean curvature K 
of (E, F) is defined by the h-trace of H(Rv, v): 

(4.13) K(v, v) = trhH(Rv, v). 

We seth= I: h0 i3dz"' Q9 dz!3. By taking the h-trace of (4.12) we get 
the Weitzenbock formula: 

(4.14) """' ai3 82 f - 2 L...t h 8z"'8zf3 - IIY'vll - K(v, v), 
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where we put II'Vvll 2 = "'£ HiJ(\7 avi\7 (3vJ)ha!J. Then Hopf's maximal 
principle implies the following theorem. 

Theorem 4.3. ([Ai3]) Let (E, F) be a strongly pseudoconvex Finsler 
bundle over a compact Hermitian manifold (M, h), and K the mean 
curvatureof(E,F). Then 

(1) 

(2) 

if K is semi-negative everywhere on E, then every holomor­
phic section v of E is parallel with respect to \7 and satisfies 
K(v, v) = 0, 
if K is semi-negative everywhere on E and negative definite on 
some points in E, then E admits no non-trivial holomorphic 
sections, i.e., H 0 (M, O(E)) = 0. 

As an application of Theorem 4.1 and 4.3, we shall show the follow­
ing Kobayashi's vanishing theorem: 

Theorem 4.4. ([Ko1]) Let 1r : E ---+ M be a negative vector bun­
dle over a compact complex manifold M. Then E has no non-trivial 
holomorphic sections: H 0 (M, O(E)) = 0. 

Proof We suppose that E is negative. Let h = "'£ ha!J(z)dza @ 

dzf3 be a Hermitian metric on Jill. Then, by Theorem 4.1, E admits 
a strongly pseudoconvex Finsler metric F with negative curvature tJ!. 
For a non-trivial local holomorphic section v of E, we have K ( v, v) = 
llvll- 2 "'£ ha/Jl}/a!J from (4.14), which show that the negativity of tJ! im­
plies the one of K ( v, v), hence, from second assertion in Theorem 4.3, 
we have H 0 (M, O(E)) = 0. 

Q.E.D. 

§5. Differential geometry of complex Finsler bundles 

Let E be a holomorphic vector bundle over A1 with a strongly pseu­
doconvex Finsler metric F and the Chern-Finsler connection \7. ~ex 

be the vertical bundle ofT1•0 Ex, i.e., Vex = ker1r*{T1•0 Ex ---+ T 1·D Af}. 
The bundle Vex is naturally identified withE over Ex. Then, similarly 
to ( 1.12), we define a connection () by 

(5.1) () = \7[. 

By the identity"'£ Cjk(j ==: 0, we can easily obtain ()(Z) = \7 z[ = Z 
for every Z E A(Ex, Vex), i.e., it is a morphism () : T 1•0 Ex ---+ Vex 
satisfying() o i =identity. Furthermore, by the homogeneity (F3), this 
form () is invariant by the action of ex on E. Thus ()defined by (5.1) 
is a connection of 1r: 
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o- Vex TCOM-o. 
(} 

If we define the horizontal subbundle Hex C yl,O Ex by Hex = kerB, 
the tangent bundle Ti:'~ is decomposed as T 1,0 Ex =Vex EB Hex. 

For every vector field X E A(Ex, yl,O Ex), we denote by xv = B(X) 
the vertical part, and by KH = X - B(X) the horizontal part of X. 
Then the differential operator d is also decomposed as d = dv + dfi, 
where dH f(X) = df(Xfi), dv f(X) = df(Xv) for every smooth function 
f E c=(EX ). Furthermore the partial derivation are also decomposed 
as a = aH + av and a = t)H + t)V. Then, the integrability tensor 8 of 
(} is defined by (1.6) for all X, Y E A(Ex, T 1,0 Ex). If 8 = 0, then Hex 
is integrable. 

Let Pc be the parallel displacement with respect to (} along a smooth 
curve c in Af. 

Definition 5.1. If Pc: (Ec(o), Hc(o))-+ (Ec(l)' Hc(l)) is an isometry 
for every curve c in M, then we say ( E, F) has isometric fibres. 

It is known that (E, F) has isometric fibres if and only if each fibre is 
a totally geodesic submanifold, and the necessary and sufficient condition 
for this is given by 

(5.2) 

for every vector field X E A(Ex,yl,OEx)(cf. [Is-Ko]). 
Since the tautological section [ is given by (2.13), the connection 

B =Lsi® (Ji is given by (Ji = 'VC: 

(5.3) 

Here, since the homogeneity (F3) of F implies L Cjk(1 = 0, we put 

N~ = Lr.Ja(1. These forms (Ji satisfy the relations Bi(s1) = 5j, and 
thus(}= {fJ0 , · · · , (}r} is the dual frame field of s =(so,··· , Sr)· 

On the other hand, the bundle fl,O Af is naturally isomorphic to the 
horizontal bundle Hex as a complex vector bundle by sending 

~ a (a)({ a ( a) yl,O M 3 - ---> - = - - (} -aza aza aza azo: E Hex. 

In the sequel we set Xa = (ajaz"')H (a= 1, · · · ,n). 
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According to the splitting X = xrt + xv, we have the decomposition 
'\7 = '\71t + '\7V of '\7, where we define '\7~ = '\7 X'H and '\7~ = '\7 xv for 
every vector field X on E. If we put rJa = wj(Xa), then we have 

Using these notations, we have wj = L rJadz"' + L CjkBk' and 

§6. Torsion of Chern-Finsler connection 

Let '\7 be the Chern-Finsler connection of the Finsler bundle ( E, F), 
and B the connection of E defined by ( 5.1). The canonical form ij of the 
holomorphic tangent bundle of the total space E is expressed by 

(6.1) 

with respect to the connection B. Similarly to (1.16), we shall define 

Definition 6.1. The torsion of (E, '\7) is a E-valued 1-form on Ex 
defined by 

(6.2) T = 'VB =dB+ w 1\ fJ. 

By this definition, the torsion T is given by 

T(X, Y) = '\7 xB(Y) - '\lyB(X) - B([X, Y]) 

for all vector fields X, Y on Ex. The torsion form [li with respect to 
s = (so.··· , Sr) is given by 

(6.3) 

According to the decomposition of '\7, the torsion T of (E, '\7) is decom­
posed as T = T'H'H + Trtv: 

Trtrt(X, Y) = T(Xrt, yrt), Trtv(X, Y) = T(Xrt, Yv) + T(Xv, yrt). 

We note that (4.5) implies Tvv = 0. Since 

Trtrt(X, Y) = -B([Xrt, yrt]) = 8(X, Y), 

T1t1t = 0 if and only if the horizontal subbundle He is integrable. For 
the mixed part T'HV, we know that Trtv = 0 if and only if E has 
isometric fibres. 
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Proposition 6.1. ( [Ai8]) LetT = yrtrt + yrtv be the torsion of the 
Chern-Finsler connection \7. Then 

(1) yrtrt vanishes if and only if 1-{E is integrable, 
(2) yrtv vanishes if and only if 1r : E --+ M has isometric fibres. 

In a previous paper [Ai2], we have investigated a complex Finsler 
bundle (E, F) which is modeled on a complex Minkowski space. Such a 
bundle (E, F) is characterized by the vanishing of yrtv_ Furthermore, 
we proved the following 

Theorem 6.1. ([Ai2]) If (E, F) is modeled on a complex Minkowski 
space, then there exists a Hermitian metric hF on E such that \71-1 
1r*D for the Hermitian connection D of(E,hF)· 

We shall write down the torsion tensor field of \7. The torsion 
T = yrtrt +THV is given by yrtv =[)He and yrtv =ave. With respect 
to a local holomorphic frame field s = {so, · · · , Sr}, the horizontal part 
yrtrt and mixed part yrtv are given as as follows: 

and 

where the torsion tensors Ri (3- and Ri , are defined by 
a <>J 

(6.4) 

respectively. The homogeneity (F3) implies the following. 

Proposition 6.2. The torsion tensor R~:; satisfies 

(6.5) 

(6.6) 
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§7. Curvature of Chern-Finsler connection 

We denote by R = V' o V' the curvature of the Chern-Finsler con­
nection '\7. By definition, R is computed by the formula (1.19) for all 
vector fields X, Y on Ex and section s of E. Since V' is the Hermitian 
connection of (E, H), R is a section of A1•1 (Ex, End(E)), and thus the 
curvature form nj is given by (2.11). 

The curvature R is also decomposed as R = R'H'H + R'HV + Rvv 
into the sum of horizontal part R'H'H = V''H o V''H, mixed part R'HV = 
V''H o V'v + V'v o V''H and vertical part Rvv = V'v o V'v. Since () is defined 
by (5.1), the Ricci identity V' o V'£ = R£ implies 

(7.1) R'H'H[ = T1t1t, R'HV[ = T'HV, RVV[ := 0. 

Since the torsion form Qi and curvature form ilj satisfy the relation 
Qi = L ilj(J, the identity (7.1) implies that T = aB. 

We shall write down the curvature tensor field of V'. With respect 
to a local holomorphic frame field s = { s0 , · · · , Sr}, the horizontal part 
R'H'H, mixed part R'HV and vertical part Rvv are given as follows: 

R'H'H sj = Lsi 0 (2: Rj 0 ,adz<> 1\ dz/3) , 

R1tv s = '""'"s 0 ('""'" Ri -dz 0 1\ iJk + Ri -{}k 1\ dz/3) J L • L 1<>k Jk/3 ' 

where we put 

(7.2) 

(7.3) 

(7.4) 

Then the homogeneity condition (F3) implies 

(7.5) 

(7.6) 
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Furthermore, by direct calculations, we have 

We shall show an application of this expression. 

Proposition 7.1. If R'H'H = 0, then (E, F) is modeled on a complex 
Minkowski space, and its associated Hermitian metric hF is fiat. 

Proof First we shall prove that (E, F) is modeled on a complex 
Minkowski space (R~] = 0). From the assumption and (7.5), the hori-

zontal subbundle HEx is integrable. Then, (7.7) implies 2::: R~m.R,B] = 0. 

For any section Z of E, we define cp(Z) E A 1•0 (Ex, E) by 

If we fix an arbitrary Hermitian metric h = 2::: h0 13(z)dz0 181 dz!3 on M, 
the norm llcp(Z)II is computed as follows: 

llcp(Z)II 2 = LHiJ (LR~1Z1R~mzm) ha./3 

= L ('LRa.JlZ1R~mzm) ha./3 

= L ('LRa.GZ1R~mzm) ha./3 

= 'L Hir ('L R~m.R;kzk 21) ha13 

=0 

for every z E A(E, E). Consequently we haveR~] = 0, i.e., rrtv = 0. 
Denoting by D the Hermitian connection of the associated Hermit­

ian metric hF, the flatness of hF is obtained from 0 = R'H'H = 1r* Do D. 

Q.E.D. 

By this proposition, we know that if R'H'H = 0, then (E, F) is mod­
eled on a complex Minkowski space. Then, from Theorem 6.1, the hor­
izontal part "V'H is given by '\l'H = 1r* D for the Hermitian connection 
D of a Hermitian metric hF on E. Thus we have rJa = Fj0 (z), and 
consequently we get Ri. k- = 0. 

JO. 
We shall state some properties of curvature of "V. First we state 

Definition 7 .1. A strongly pseudoconvex Finsler metric F is said 
to be fiat if F has the form F = F( () at around of every point of M 
with respect to a suitable local holomorphic frame field s = (so, · · · , Sr). 
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Then we have 

Theorem 7.1. A strongly pseudoconvex Finsler metric F is flat if 
and only if the horizontal curvature R1t1t vanishes identically. 

Proof. Setting rj = "£ rj()ldz 01 ' from (5.5) we have 'V'H Sj = "£ Si Q9 

rj. The flatness ofF is equivalent to 'YJ 01 = 0, and from (5.4), this is 
also equivalent to Fj01 = 0 which implies R1i1t = 0. 

Conversely, we suppose that R'H'H = 0. Then, from Proposition 7.1, 
(E, F) is modeled on a complex Minkowski space, and its associated 
Hermitian metric hp is flat. Then Theorem 6.1 implies that rj is given 
by the pull-back n*'Y] for the connection form 'YJ of the associated Her­
mitian metric hp, and this implies that [j1t rj = n*8'Y] = 0. Now, if we 
take another local holomorphic frame field Sj = "£ siAj(z), we have 

Then, because of 

the integrability condition for dAj + n*'Yf A; = 0 is satisfied, and thus, if 
R'H'H = 0, we have '\l'Hsj = 0 with respect to Sj = "£ siAj. Consequently 
we have iJ01 = 0. 

Q.E.D. 

Similarly to Theorem 7.1, we have 

Theorem 7.2. A strongly pseudoconvex Finsler metric F is Her­
mitian, i.e., F 2 = "£ hiJ(z)(i(j for a Hermitian metric h onE if and 
only if the vertical part Rvv of the curvature of R vanishes identically. 

§8. Complex Finsler manifolds 

Let M be a complex manifold of dime M = n. In this section, we 
shall investigate the case where a strongly pseudoconvex Finsler metric 
F is given on the holomorphic tangent bundle T 1•0 M. We call the 
pair (M, F) a complex Finsler manifold. In the case of E = T 1•0 M, 
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we iden~a;az1 , ... , a;azn} a local holomorphic frame field of the 

bundle Tl,O M, and so the Chern-Finsler connection V' is denoted by 

a "" a . 
V' azj = ~ azi l8l wj 

for the connection form w] of V'. 

8.1. Holomorphic sectional curvature 

Let ~(r) = {17 E C: 1171 < r} be the disk of radius r inC with the 
Poincare metric 

4r2 

9r = (r2 - 11712)2 d7718l dfj. 

For every point (z, () E T 1•0 Mx, there exists a holomorphic map cp : 
~(r) ---> M satisfying cp(O) = z and 

(8.1) 

Then, the pull-back cp* F defines a Hermitian metric in a neighbor­
hood of the origin by cp* F 2 = E(17)d17 l8l dfj, where we put E(17) 
F 2 (cp(17), cp*(17)). The Gauss curvature K<p·F(z, ()is defined by 

( 1 a 2logE) 
K"'·F(z,() =- E a a . 

17 17 ry=O 

Definition 8.1. ([Ro]) The holomorphic sectional curvature KF of 
(M, F) at (z, () E T 1•0 Mx is defined by 

KF(z, () = sup { K"'. F(z, () I cp(O) = z, cp* (0) = (}, 
'P 

where cp ranges pver all holomorphic maps from a small disk into M 
satisfying cp(O) = z and (8.1). 

Then KF has a computable expression in terms of the curvature 
tensor of the Chern-Finsler connection V'. 

Proposition 8.1. ([Ail]) The holomorphic sectional curvature KF 
of (M, F) at (z, () E T 1•0 Mx is given by 

(8.2) K (z () - lfl(£, £) - - 1- ""R- -(z ()(i(j (k(l 
F ' - 11£11 2 - 11£11 4 ~ ijkl ' ' 

where Ri]kf = L Hm3R';11 is the curvature tensor of the Finsler connec­
tion V' on (T1•0 M, F). 
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Then we have the Schwarz-type lemma: 

Proposition 8.2. ([Ail]) Let F be a strongly pseudoconvex Finsler 
metric on the holomorphic tangent bundle of a complex manifold M. 
Suppose that its holomorphic sectional curvature KF(z, () at every point 
(z, () E T 1•0 Mx is bounded above by a negative constant -k. Then, for 
every holomorphic map cp: ~(r)----> M satisfying cp(O) = z and (8.1), we 
have 

(8.3) 

The Kobayashi metric FM on a complex manifold M is a positive 
semi-definite pseudo metric defined by 

(8.4) 

In general, FM is not smooth. FM is only upper semi-continuous, i.e., 
for every X E T 1•0 M and every € > 0 there exists a neighborhood U 
of X such that FM(Y) < FM(X) + € for allY E U. Even though FM 
is not a Finsler metric in our sense, the decreasing principle shows the 
importance of the Kobayashi metric, i.e., for every holomorphic map 
cp : N ----> M, we have the inequality 

(8.5) 

This principle shows that FM is holomorphically invariant, i.e., if cp : 
N ----> M is biholomorphic, then we have FN = cp* FM. In this sense, FM 
is an intrinsic metric on complex manifolds. It is well-known that, if Jvl 
is a strongly convex domain with smooth boundary in en, then FM is 
a pseudo convex Finsler metric in our sense ( cf. [Le]) 

A complex manifold M is said to be Kobayashi hyperbolic if its 
Kobayashi metric FM is a metric in the usual sense. If M admits a 
pseudoconvex Finsler metric F whose holomorphic sectional curvature 
KF is bounded above by a negative constant -k, then (8.3) implies the 
inequality 

(8.6) 

and thus M is Kobayashi hyperbolic. 

Theorem 8.1. ([Kol]) Let M be a compact complex manifold. If 
its holomorphic tangent bundle T 1•0 M is negative, then M is Kobayashi 
hyperbolic. 
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Proof We suppose that T 1•0 M is negative. Then, Theorem 4.1 
implies that there exists a pseudoconvex Finsler metric F on T 1•0 M 
with negative-definite iJt. By the definition ( 4. 7), the negativity of l[t 
and (8.2) imply 

iJt(£, £) 
Kp(z,() = 2 < 0. 

11£11 
Since M is compact, P(E) is also compact. Moreover, since Kp is a 
function on P(E), the negativity of Kp shows that Kp is bounded by 
a negative constant -k. Hence we obtain (8.6), and M is Kobayashi 
hyperbolic. 

Q.E.D. 

8.2. Finsler-Kahler manifolds 

In this subsection, we shall generalize the Kahlerity of Hermitian 
metrics to complex Finsler geometry. We define the Kahler form w of 
(M,F) by 

(8.7) 

We can easily show that dw = 0 if and only if F 2 = L, h{j(z)(i(j for a 
Kahler metric h = L, h{J(z)dzi Q9 dzJ on M. 

Let £ be the tautological vector field over T 1•0 M and() the connec­
tion of 1r: T 1•0 M----> M defined by (5.1). 

Definition 8.2. ([Ail]) A strongly pseudoconvex Finsler metric F 
is said to be Finsler-Kiihler if the following is satisfied: 

(8.8) 

Remark 8.1. In [Ab-Pa], a strongly pseudoconvex Finsler metric 
F satisfying (8.8) is called a strongly Finsler-Kahler metric. 

If we denote by Xj (j = 1, · · · , n) the vector field (8/8z])'H, then F 
is a Finsler-Kahler metric if and only if 

(8.9) 

The connection form wj of the Chern-Finsler connection \1 is given 
b i - "" ri d k + "" Ci ()k 'th ri - "" Himx H d Ci y wj - L.... jk z L.... jk w1 jk - L.... j km an jk 
L, HimajHkm, and the condition (8.8) is equivalent to 

(8.10) 
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We remark that the coefficients Cjk always satisfy the symmetric prop­
erties ( 4.5). 

Remark 8.2. The differentialn* of the projection n: T 1•0 M-+ M 
is considered as the canonical form of T1•0 M, and it has the form 

""" a . n* = L azj ®dzl, 

where { dz 1, · · · , dzn} is, of course, considered as the dual frame field of 
the frame field {X 1, · · · , Xn} for the horizontal bundle 'Hr1o M x . Since 

\h* = 2: a~i ® (2:rJkdzk + 2:c;kek) 1\dzj, 

Vn. vanishes if and only if F 2 = "I:9i](z)C(j for a Kahler metric h = 
I: hi](z)dzi ® dzj on M. The condition (8.8) is equivalent to 

(8.11) 

For the complex structure J on T M, ~lso denote by the ~me 
notation J the lifted com~tructure on TM = n*T !VI. Then T M is 

naturally identified with T 1•0 M via the isomorphism 

-- 1 ~ 
(} : T M :3 y ----7 (}(Y) = 2 (Y- HJY) E T 1•0 M. 

We denote by G the real part of H: 

(8.12) G = ~ [H (Q(Y), Q(Z)) + H (Q(Y), Q(Z))]. 

Then G is an inner product on T ~M, and it satisfies 

(8.13) H (Q(Y), Q(Z)) = G(Y, z)- Rc (JY, z) 

for allY, Z E A(T Mx, T M), i.e., G is a Hermitian metric on (T M, J). 
The imaginary part of H us given by 

R[ J G(JY, Z) = - 2- H (Q(Y), Q(Z))- H (Q(Y), Q(Z)) 

R = - 2- [H (Q(Y), Q(Z))- H (Q(Z), Q(Y))] 

= zv(p(Y), p(Z)), 

where w in the last line is the Kahler form defined by ( 8. 7). 
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Under the isomorphism(!, the Chern-Finsler connection \7 on T 1•0 M 
is considered as c connection on the bundle T M: 

(8.14) \7 (!(Y) = (!(V'Y). 

This connection \7 on T M is metrical with respect to G. In fact, we 
have 

dH((!(Z), (!(W)) = H(\7 (!(Z), (!(W)) + H((!(Z), \7 (!(W)) 

= H ((!(V'Z), (!(W)) + H ((!(Z), (!(V'W)). 

Taking the real part of both sides, we have 

dG(Z, W) = G(V'Z, W) + G(Z, V'W), 

and thus \7 is metrical with respect to G. 
Since \7 satisfies \7 R (!(Y) = H\7 (!(Y) and the multiplication 

by R is identified with the operator J, we have 

H\7 (!(Y) = V'H(!(Y) = \7 (!(JY) = (! (V'(JY))' 

and 
HV'(!(Y) = (!(J(V'Y)). 

Thus the lifted complex structure J is \?-parallel: 

(8.15) \7] = 0. 

Consequently, the connection \7 on TM defined by (8.14) is the Hermit­

ian connection of (T 1\I, G), and so we call \7 on T 1\1 is the Chem-Finsler 
connection on (T M, G). 

2'<?r the connection e defined by ( 5.1), the corresponding connection 
ofT 1\1 is denoted by the same symbol e, i.e., 

B((!(Z)) = (!(B(Z)) 

for every z E A(T 1\fX' T M). Then e defines a splitting T(T MX) 
VrMx ffi'Hrl\fx, and the differential operator d also splits as d = dH +dv. 
Then, for every horizontal real k-form 8, we have 

(dH8) (Z1, .. · , Zk+l) 

k+l 
= 2:) -1F-1 zje(Z1, ... , zj, ... , zk+l) 

j=l 

+ 
+. H A A 

(-1) 2 18([Z Z] .. · Z .. · Z .. · Zk+l) 
z,, J ' ' z., ' J' ' 
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for all sections zl, ... 'zk+l E A(T MX' 7-lrMx ), where zi means that 
zi is to be omitted. 

In the sequel of this subsection, to avoid the confusion of notations, 
we shall identify the bundle T M with the horizontal bundle 7-lrMx. 

1-lrMx TM 
(•)'H 

7-lrl.oMx ~====:: Tl,OM 
(e)'H 

We suppose that a connection D = D'H + vv is given on T M. Since 
the torsion D1-£1r * is given by 

under the identification TM 9:! 7-lrMx, the condition D1-£1r* = 0 is given 
by 

(8.16) D~W- D'ft.Z- [Z, W]'H = 0 

for all Z, WE A(TMx,TM). Then we have 

Proposition 8.3. We suppose that a connection D satisfies the 
symmetric property (8.16). Then 

(1) D satisfies 

for any horizontal real k-form 8 and all horizontal vector fields 
z1, · · · , zk+l· 

(2) Any D'H-parallel horizontal form is d1-l-closed. 

Definition 8.3. A connection D on the bundle T M is called the 
Cartan connection of (T M, G) if it satisfies the following conditions. 

(1) Dis metrical, i.e., DG = 0, 
(2) D satisfies (8.16), i.e., D1-£1r* = 0, 
(3) D satisfies rvv = 0, 

where rvv is the vertical part of the torsion DB of D. 
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Remark 8.3. The Cartan connection D of (T M, G) is uniquely 
determined. However we remark that the Cartan connection D in our 
sense is not the Cartan connection in the usual sense in [Ma], since G is 
a generalized Finsler metric, not a real Finsler metric in the usual sense 
( cf. [Ic]). 

Remark 8.4. The Chern-Finsler connection V' of (T M, G) is metri­
cal and it satisfies the symmetric property rvv = 0, but not necessarily 
the condition (8.16). 

Identifying i0JM with T M via the morphism {!, we have con­
structed two metrical connections V' and D on (T M, G). Then we have 
a characterization of Finsler-Kiihler metrics. 

Theorem 8.2. Let (M, F) be a complex Finsler manifold. Then 
the following conditions are equivalent. 

(1) The Cartan connection D coincides with the Chern-Finsler 
connection V'. 

(2) The lifted complex structure J is parallel with respect to D: 

(8.17) D?-l J = 0. 

(3) The Kahler form ro is parallel with respect to D: 

(4) (M, F) is a Finsler-Kiihler manifold. 

Proof (1) ----> (2) is obvious, since the assumption D = V' and 
(8.15) imply (8.17). 

(2) ----> (3) is proved as follows. For all X, Y, Z E A(T Mx, T M), 
we have 

(D~w)(Y, Z) 

=X w(Y, Z)- w(D~Y, Z)- w(Y, D~Z) 

= XG(JY, Z)- G(JD~Y, Z)- G(JY, D~Z) 

= G(D~(JY), Z) + G(JY, D~Z)- G(JD~Y, Z)- G(JY, D~Z) 

=0, 

since DG = 0, and thus the condition (8.17) implies (8.18). 
(3) ----> ( 4) is proved as follows. Since D satisfies the symmetric 

property (8.16), the second assertion in Proposition 8.3 implies (8.8). 
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( 4) -----+ ( 1) is proved as follows. Since the Chern-Finsler connection 

\7 of (T M, G) is metrical and satisfies rvv = 0, it is enough to prove 
that \7 satisfies V''H.1r * = 0. Because of 

(V''H.Ir*)(Q(Y), Q(Z)) 

= V'~y)Ir*(Q(Z))- V'~z)Ir*(Q(Y))- 1r*([Q(Y), Q(Z)]) 

= Q (Y'i11r*(Z))- Q{V'~1r*(Y))- Q (1r*([Y, Z])) 

= Q (Y'i11r*(Z)- V'~1r*(Y)- 1r*([Y, Z])) 

= Q ((V'1i1r*)(Y, Z)) 

for all Y, Z E A(T Mx, T M), the assumption (8.18) on fl,O M implies 

V''H.1r* = 0 on T !vi, and thus the Chern-Finsler connection \7 on (T 111, G) 
coincides with the Cart an connection D. 

Q.E.D. 
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