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this says that X is an infinitesimal symmetry of the structure, modulo 
V. It will be enough to check this condition by taking for X the elements 
of a (local) basis for V, in turn. In the case in point, 

[W1,£l] 
[W1,£fj 

[W2 ,£lJ 
[W2 ,£l] 

[uj£1 £1] = -£1(uJ)£1 _ uJ[£1 £1] = IIj£1 + !Rk£2 
J' t t J ,, J 'J t k 

[uj£1 £2] = -£2(uJ)£1- uj[£2 £1] = -£1 + rrk£2 
J' t t J ,, J t t k 

0 

-£l, 
the second half coming from homogeneity. The condition is satisfied for 
W 2 . In order for it to be satisfied for W 1 , however, Rf £~ must differ 
from a scalar multiple of £l by an element of V; that is to say, we must 

have !:R: = .X8f + f..LiUk for some A and f..Li· We see, therefore, that the 
almost Grassmann structure passes to the quotient under V if and only 
if the projective class consists of isotropic sprays. • 

§6. The Finslerian case 

One source of projective classes of sprays is Finsler geometry, where 
the geodesics, considered as the extremals of the Finsler function rather 
than of the energy, are determined only up to reparametrization, and 
therefore define a projective class on T 0M. We examine the almost 
Grassmann structure associated with Finslerian geodesics. We also con
sider the extent to which conditions on the almost Grassmann structure 
associated with a general projective class of sprays might guarantee the 
existence of a suitable Finsler function. 

Theorem 5 To each Finsler function F on T 0M there is associated 
a closed 2-form wp on T 0M, such that the characteristic distribution 
of Wp is the 2-dimensional distribution V corresponding to the geodesic 
sprays of F, and such that the n-dimensional plane generators of the 
Segre cones are isotropic with respect to Wp. 

To establish this theorem, we need a lemma telling us when forms on 
T 0M may be lifted to T 0 (VM) and then projected to T 0 M. We denote 
by A the Liouville field on T M. 

Lemma If w is a closed form on T 0M satisfying AJ w = 0 then its 
pull-back v;w by v* : T 0 (VM) ---+ T 0 M is projectable to a form on T 0M. 

Proof A form won T(VM) is projectable to T 0M if and only if 

XJw = o, Cxw = o, v -VXE(Y ,Y). 

Now if w is closed then the second of these conditions follows from the 
first, because Cxw = d(XJ w). If furthermore w = v*w for some form w 



248 M. Crampin and D. J. Saunders 

on T 0M, and X is ll*-related to a vector field X on T 0M, then XJ w = 
v;(XJ w). Now yv is v*-related to the zero vector field on T 0M, while 
Y is v*-related to -A on T 0M, so a closed form w defines a form on 
T 0M by this process if AJ w = 0. • 

Proof (of Theorem 5) Suppose given a Finsler function F on 
T 0 M. Let e be its Hilbert 1-form, so that e = (aFjavi)dxi. Since e is 
of homogeneity degree 0, AJ dB= Lt..B- d(A, B) = 0; so, by the Lemma, 
dB defines a 2-form on T 0M. Set 

a2p 
FiJ = aviavJ; 

recall that FiJVJ = 0 by homogeneity. On T 0M, dB = Fijdxi 1\ (dvJ + 
f{dxk) where fj are the non-linear connection coefficients of any ge

odesic spray of F; notice that if we add to r{ the terms ab{ + DkVj' 
corresponding to a projective change, then the right-hand side is un
changed. By the Lemma, we may construct the corresponding form w F 

on T0~M, and this can be represented as 

WF = Fijdxi 1\ (duj + IT{dxk). 

Now the 2-form dB is not symplectic: it has a 2-dimensional characteristic 
subspace which is spanned by A and any geodesic spray, that is, the char
acteristic distribution is effectively the projective class. Note however 
that dB projects onto the path space P, which is obtained by factoring 
by the characteristic distribution (which is integrable because the form 
is closed) and defines a symplectic form on this 2(n- I)-dimensional 
manifold. 

A similar property holds for w F. Recall that the n-dimensional 
generators of the Segre cones on T 0M are spanned by vector fields of 
the form >-.El + p,Ef where 

1 a . a 
[i =~-m~, 

ux' uuJ 

The characteristic distribution of WF is spanned by uiE'f', a= 1, 2; that 
is, it is the distribution D of the previous section. Furthermore, the 
n-dimensional plane generators of the Segre cones are isotropic with 
respect to WF: for any:>.., f.1 

• 
There is also a partial converse to this result. To express it, we need 

to use the concept of a pseudo-Finsler function. Recall that a Finsler 
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function F must be homogeneous in the fibre coordinates, positive, and 
'strongly convex': that is, if 

8 2 F 8F 8F 
gij = F 8ui8u1 + 8ui 8u1 

then the matrix (9ij) must be positive definite. In the result we are about 
to prove we show the existence of a function F which is homogeneous, 
and for which the sprays of a given projective class are formally geodesic. 
However, we cannot ensure that F is positive or strongly convex; the best 
that can be expected is that the corresponding (9ij) is non-singular. We 
call a function with these properties a pseudo-Finsler function. 

Theorem 6 If for a given projective class of sprays there is on T 0M 
a 2-form w such that 

• the n-dimensional plane generators of the Segre cones are iso
tropic with respect to w; 

• the characteristic distribution of w is V; 
• w is closed 

then the projective class is the geodesic class of a locally defined pseudo
Finsler function. 

Proof Set ni = dui + ITI.,dxk. We can express w as 

where aij and Cij are skew-symmetric in their indices. Then 

and this must vanish for every choice of >. and p,; so aij = Cij = 0, 
b1i = bij· Now if X = ~iEl + rJiE'f then XJ w = ebij1rj - rJibjidx1, so 
XJ w = 0 if and only if bij~j = bijrJj = 0. Thus if the characteristic 
distribution of w is V then bij~j = 0 if and only if ~i ex ui. The exterior 
derivative of w is 

dw = El (bjk )dxi 1\ dxj 1\ 1rk - EJ (bik)dxi 1\ 1rj 1\ 1rk - bi1dxi 1\ dni, 

and therefore if w is closed then EJ ( bik) = E'f ( bij), or 

8bik 8bij 
8u1 auk. 

Thus, using the symmetry of bij, there is a function F* such that 

a2p• 
bij = 8ui8u1 · 
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Moreover, bijUj = 0, so 

82 F* . 8 (8F* · ) 8 '8 .ul = -8. -8 .ul -F* =0, ut uJ ut uJ 

so that there is some function f independent of the ui such that 

8F* J- F* f -8 .U- +. 
uJ 

But F* is determined only up to the addition of a function affine in 
the ui, so without loss of generality we may take f = 0. Then F* is 
homogeneous of degree 1 in the fibre coordinates, and determined up to 
the addition of a function linear in the ui. 

Next, we consider the relationship between the function F* and the 
projective class of sprays with which we started the construction. For 
this purpose we must examine the remaining consequences of the closure 
condition. Now as we noted earlier, 

the remaining conditions are therefore 

which by contraction with ui gives 

and 

bil9l~k + bjlryt~i + bklryt~j = 0. 

These are projectively invariant forms of conditions for the existence 
of a !-homogeneous Lagrangian for a projective class of sprays given 
originally by Rapcsak [18]; we use the formulation to be found in a 
recent paper of Szilasi and Vattamany [22]. According to the theorem 
of Szilasi and Vattamany, when these conditions hold there is locally a 
1-form TJ on M such that ifF= F* + 'f/iUi then each spray of the given 
projective class satisfies the Euler-Lagrange equations for F. Note that 
F is still indeterminate: one can add to it a total derivative, that is, 
a further linear term in which the coefficients T/i are those of an exact 
1-form. In particular, by making use of this remaining freedom one can 
assume that in a neighbourhood of any point F is non-zero. 
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Finally, we show that (gij) is non-singular at any point u of T 0 M 
where F is non-zero. For suppose that there is a vector ( wi) such that 
gi1wJ = 0 at u; then in particular 9ijuiwj = 0, which means that 

But then 

aF . 
F(u)-a .wJ = o, 

uJ 
aF . 

or -a .wJ = 0. 
uJ 

a2F . 
F(u)-a ·a .wJ = o, 

u' uJ 

so that wi must be a multiple of ui. But 9ijUiuj = F(u) 2 ic 0, so wi 
must be the zero vector. • 

§7. The isotropic case again 

We end the main body of the paper by considering what happens 
when the spray is isotropic, in the light of the previous two sections, 
thereby putting our own gloss on the results of Grossman concerning 
the almost Grassmann structure associated with a 'torsion-free path ge
ometry' [15], that is, a projective equivalence class of isotropic sprays. 
We note that, in Grossman's terminology, the 'torsion of a path geom
etry' is the trace-free part of the Jacobi endomorphism (see also [14]) 
and, as shown in [9], this is equivalent to P]k1u1. We also remind the 
reader that, just as in Grossman's paper, all of our results below are 
local, though we do not continue to mention the fact. 

We note first since every isotropic spray is projectively R-flat, and 
every R-flat spray is Finslerian, we are guaranteed the existence of a 
Finsler function F of which the projective class is the geodesic class. 

Secondly, by Theorem 3 the almost Grassmann structure on T 0!v1 
passes to the path space to define an almost Grassmann structure there; 
this is the 'almost Segre structure' defined by Grossman. 

Thirdly, since the 2-form wp on T 0 JI.!J defined in Theorem 4 has V 
as its characteristic distribution and is closed, it passes to the quotient 
under V to define a symplectic structure on the path space. This con
struction of a symplectic structure on the path space is a generalization 
of that discussed by Alvarez Paiva in [2] in the context of Hilbert's fourth 
problem, that is, the search for Finsler functions whose geodesic sprays 
are projectively flat, the so-called projective Finsler functions. 

Fourthly, the Segre foliations on T 0M for which >. doesn't vanish 
project onto Lagrangian foliations of the symplectic structure. Gross
man points out that the almost Grassmann structure on the path space 
is semi-integrable; we see now that the Segre foliations are Lagrangian, 
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and are projections of the foliations on yo M associated with those mem
bers of the projective class that are R-fl.at. 

§ Appendix 1: almost Grassmann structures 

In this first appendix we determine the normal Cartan connection 
for an almostGrassmann structure. 

Our first task is to fix the gauge. We have already pointed out in 
effect that we can partially fix the gauge by choosing a particular local 
representative of the preferred local coframes (in other words, a local 
section of the G-structure) for w~. Now if AjA~wb = w~ then (since 

{w~} is a basis) AjA~ = 0 unless i = j and a = (3, while AIA~ = 1 
(no sum), or A~ = AI for all i and a. Thus by a choice of frame 
we fix Aj and A(3 up to the same scalar factor; that is, we may take 

(Aj, A(3) = ±(Jj, <5(3), and the remaining gauge freedom is in the choice 

of the Af. Under a gauge transformation with (Aj, A(3) = ±(Jj, <5(3) 
we have w(3 f-+ w(3 ± Afwb. Since we are in a gauge, the w(3 are local 
1-forms on A1 which can be expressed in terms of the basis {w~} as, 

say, w~J w~; then if we take Af = =fwg~ (sum over (3 intended) then the 
transformed w(3 will have zero trace. That is, by choice of gauge we can 

take w~ = wJ = 0, and not just w~ + wJ = 0. This, together with the 
choice of w~, fixes the gauge. 

We can now proceed to fix the Cartan connection by conditions on 
the curvature, in the usual way. We shall write e~ for the chosen coframe 
on J1.1, instead of w~, to make it clear that the purpose of the exercise is 
to fix the remaining components of the connection form in terms of the 
e~. In the chosen gauge, each component of the connection form may 
be written as, for instance, wj = wjJ.e~; the aim is to determine all the 

coefficients, such as, in this case, wjJ.. 
The conditions imposed on the curvature must be such as to make 

the process global, even though it is carried out locally. Since the condi
tions will all be expressed in terms of vanishing of traces of components 
of the curvature with respect to the e~, in view of the transformation 
laws for the curvature and for the e~ it will be clear that this requirement 
is satisfied. 

We may write de~ = -1C'~J.eb 1\ e~, where the coefficients C~J. 
(with the obvious skew- symmetry) are to be considered as known. We 
have first that 
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from which it follows that 

0~1 = -c::;J. + (wlf;8~- w~J.8~) + (w~Z8j- w~~8k)· 

We now impose the trace conditions O~J. = 0~1 = 0; recalling that 
w~ = wt = 0 we find that 

qw131 - w 113 + w113 81 a.k a.k kJ a. 
i1 il 1!3 s:i 

pwjk - wkj + w !3J uk 

cJf31 
a.jk 

C if31 
- f3jk" 

By taking further traces we obtain 

(c113'"~ c 1113 b ·· t f th k f ci13'"~) F h IJk = - lkJ y v1r ue o e s ew-symmetry o a.jk . rom t ese 

equations we can determine w J~ and wfJ; then the previous equations 
become, say, 

qw13'"~ - w -yf3 n 131 
a.k a.k a.k 
i-y il nil 

pwJk- wkJ Jk' 

where the right-hand sides can be given explicitly in terms of c;;;J.. From 
the first of these 

whence 

(1) 

there is an analogous formula for w~J., namely 

(2) ( 2 1) il _ nil nil P - wjk - P jk + kj" 

Thus the conditions on the traces of 0~, together with the trace-free 
conditions coming from fixing the gauge, determine the connection com
ponents w$ and wj completely. 

It remains to determine the connection components wf; for this we 
need the curvature components 03 and Oj. We may express the second 
of these as 
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The first two terms on the right-hand side are known; it will be conve
nient to write them collectively as KJ, so that 

i i i k 
K 1 = dw1 +wk l\w1 . 

Note from this formula that Kf = 0. The first condition to impose is 

that Di = 0, which gives e~ 1\ wf = 0, whence w':(/ = w?t'. Similarly we 
have 

where 

K$ = dw$ + w~ 1\ w J; 
it is automatically the case that D~ = 0 since D~ + Di = 0. 

Before proceeding we note that, unlike D~J, the quantity D~Zt does 
not transform linearly under a gauge transformation but instead picks up 
terms involving D~1; however its traces do transform linearly because 

by assumption the traces of D~1 vanish. We have 

nif3r 
Hjik 

nf3oq 
ajk 

K ifh + f3r rf3 
jik qwjk - wjk 

K {3cq f3r + f3r 
ajk - pwjk wkj ' 

and we now need a condition which determines w?; for all p and q. The 
condition we impose is that 

nif3r nhf3 nf3ar nraf3 0 
Hjik + Hkij - Hajk - Hakj = ' 

from which it follows that 

Then w rf3 = wf3' whence 
Jk Jk' 

(3) 2( 2) !3r Kf3"'' K'"'f3 Kif3' Kirf3 P + q- Wjk = ajk + akj - jik - kij ' 

which is consistent with the symmetry condition derived earlier. 
We conclude from these calculations that the Cartan connection is 

determined uniquely by the stated conditions on its curvature. 

§ Appendix 2: the flat case 

Given an affine hyperplane in a vector space, and the projective 
space of rays in the vector space, we may consider affine geometry as the 
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sub-geometry of projective geometry obtained by 'fixing the hyperplane 
at infinity'. The almost Grassmann structure obtained from a projective 
class of sprays in the way we have described is, in that sense, a sub
geometry of the full almost Grassmann geometry; we use the flat case 
to demonstrate this. 

A related remark has already been made by Grossman [I5], who 
observes that the second-order differential equation y"(x) = 0 does not 
have, as a solution curve, the line x = 0. But that is an artefact of 
the coordinate system, and we may obtain every line in projective space 
as a geodesic of the projective class of sprays containing the one whose 
affine coordinate representation is given above. Our remark is rather 
different: it is that the path space of all the lines generates only a part 
of the Grassmannian geometry, fixing again a hyperplane at infinity. 

The intuition behind this comes from considering path geometry as 
a study of incidence relationships between points and lines, as in the 
description in [I5] of the projective tangent bundle to n-dimensional 
projective space as a flag manifold. Now the points correspond to rays 
in an ( n + I )-dimensional vector space, whereas the lines correspond to 
2-planes and hence may be defined by affine lines in the vector space 
not passing through the origin. From this point of view, the projective 
incidence relationships may be described in terms of the intersection 
of lines in an (n + I)-dimensional affine space, where one of the two 
lines passes through a distinguished point, and thus the whole structure 
may be considered as a sub-geometry of (n +I)-dimensional projective 
geometry. (This is similar to, but not quite the same as, the 'twistor 
space' described in [I3].) 

To formalise this, we therefore start with an (n + 2)-dimensional 
vector space V. A 2-plane in V may be identified with an equivalence 
class [x 1\ y] of simple 2-vectors, and hence the collection of all 2-planes 
in V (or lines in PV) may be identified with a subset Q C PW, where 
W = 1\2 V is the ! ( n + I)( n + 2 )-dimensional vector space of all 2-
vectors. The classical example of this arises when n = 2, and then 
this subset Q is the Klein quadric, a 4-dimensional hypersurface in the 
5-dimensional projective space PW. In the general case, Q is a 2n
dimensional quadratic variety; it is the image under the projection W ---> 

PW of a cone C C W. 
We show first that Q is a homogeneous space. The group GL(V) acts 

on the individual vectors in V, and this induces an action on 2-vectors 
by x 1\ y ~--> A(x) 1\ A(y) for A E GL(V), mapping simple 2-vectors 
to simple 2-vectors and extended by linearity. Thus PGL(V) acts on 
W, and clearly this preserves the quadratic variety Q. If we take a 
basis {va,vi} = {v 1,v2 ,v1 , •.• ,vn} ofV, and let H be the subgroup of 
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PGL(V) fixing [v1 1\ v2], then H contains equivalence classes of matrices 
of the form 

(modulo non-zero multiples of the identity); so we have an almost Grass
mann structure of type (2, n). 

The Segre cones and Segre planes of an almost Grassmann structure 
live in the tangent spaces at each point; but in this flat case we may 
consider the question globally. We see that certain n-dimensional and 
2-dimensional linear subvarieties of Q correspond to the Segre planes, 
and they capture the incidence properties of the 2-planes of V in the 
following way. Fix a 2-plane L E Q, and choose a basis { va, vi} such 
that L = [v1 1\ v2]. Any other 2-plane meeting Lin a common ray may 
be written as [x 1\ z], where x = XaVa is a generator of the common ray, 
and where z = ZaVa + zivi. The 2-vector x 1\ z E W may therefore be 
written as 

If we choose a fixed common ray [xo] then the set {xo 1\ z : z E W} 
is an (n + 1)-dimensinallinear subspace of W contained in C, and so 
its projection is an n-dimensionallinear subvariety of Q. On the other 
hand, if we choose a fixed ray [L + zo] in the quotient space V / L and 
consider only the rays [z] such that [L + z] = [L + z0] then the set 
{ x 1\ z : x E L} is a 3-dimensional linear subspace of W contained in C, 
and so its projection is a 2-dimensional linear subvariety of Q. These 
are the Segre planes of the structure. 

Now the geometry of 2-planes in Vis just the geometry of lines in the 
(n+ I)-dimensional space PV; but we are concerned with n-dimensional 
path geometry. So suppose that V has a distinguished element e, and 
also a distinguished hyperplane U defined by an element c E V* satisfy
ing c(e) = 1, so that V = [e] EB U. We wish to consider the geometry of 
lines in then-dimensional space PU, or of 2-planes in U. Now any ray 
in V, apart from [e] itself, corresponds to a ray in U by [e + x] ,...... [x] 
where x E U; we obtain a fibration PV- {[e]} ---> PU where two rays [y], 
[Y] are in the same fibre when y 1\ fj 1\ e = 0. But the situation for lines 
in PV, or 2-planes in V, although similar, is more complicated: there is 
again a subset Q0 C Q of 2-planes in V which project to 2-planes in U, 
but now the fibres of the projection are a distinguished subfamily of the 
Segre 2-planes described above. 

To see how this arises, and to relate it to the general case described 
in the main body of the paper, let i : U ---> V be the inclusion map: this 
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induces an injection ic2) : 1\ 2 U ____, 1\ 2 V = W. Denote the image of ic2) 

by W _ C W; it is easy to see that this image space is characterised by 
the condition that contraction with E gives zero. We may also define an 
injection j : U ____, W by setting j ( u) = e 1\ i ( u), and we shall denote the 
image of j by w+. 

We now claim that W = W + EEl W _. Certainly the dimensions are 
correct, because dim w+ = n + 1 and dim w_ = ~n(n + 1), whereas 
dim w = ~(n + 1)(n + 2) =dim w+ +dim w_. So suppose that e (\X E 

W+ n W_; then 

0 = EJ (e 1\ x) = c(e)x- c(x)e = x- c(x)e 

so that el\x = c(x)e/\e = 0. We shall henceforth identify W = W+EEJW_ 
with U EEl 1\ 2 U; a point of PW may thus be written as [x, y 1\ z] where 
x,y,z E U. 

Now define the subsets Q+ = PW+ and Q_ = PW_ n Q of Q (note 
that, by construction, PW+ c Q); the argument above shows that Q+ 
and Q _ are disjoint. We shall let Q0 denote the remaining part of Q, so 
that Q = Q+ U Qo U Q_. 

The quadratic variety Q may be used to describe incidence relation
ships in PU. Take a point and a line in PU, the formergiven by a ray [x] 
and the latter by an equivalence class of simple 2-vectors [y 1\ z]. Thus 
x E U and y 1\ z E 1\2 U, defined in each case to within a non-zero scalar 
multiple. In some circumstances the point will lie on the line, and this 
will happen when (for any choice of representatives) x 1\ y 1\ z = 0. It 
turns out that the set of such pairs ( x, y 1\ z) is the subset of U EEl 1\2 U 
which corresponds, under the identification with W = W + EEl W _, to 
the cone C. To see this, suppose first that we have an element of C, a 
simple 2-vector in W. Write it, using the decomposition V = (e) EEl U, 
as (>.e + y) 1\ (JLe + z) (where the inclusion maps have been omitted). 
Multiplying out, we get e 1\ (>.z- f-LY)+ y 1\ z, corresponding to the pair 
(>.z-JLy,yl\z) E UEEJ/\2 U; obviously (>.z-JLy)l\yl\z = 0. On the other 
hand, suppose we have a pair (x, y 1\ z) E U EEl 1\ 2 U where x 1\ y 1\ z = 0. 
Then x, y, z are linearly dependent, and as y 1\ z =1- 0 we must have 
x = >.y + f.LZ for some real >., f.L· Then 

(JLe + y) 1\ ( ->.e + z) = JL(e 1\ z) + >.(e 1\ y) + y 1\ z = e 1\ x + y 1\ z 

so that e 1\ x + y 1\ z is indeed a simple 2-vector in W and thus lies in C. 
To relate this to our spray construction, we need to introduce the 

tangent bundle TU0 , where U0 = U- {0}, and we do this in terms of 
the canonical trivialisation TU0 = U0 x U. This is 'almost' the tangent 
bundle TV(PU) to the volume bundle of the n-dimensional projective 
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space PU: although V(PU) may be identified with U0 j± rather than 
with U0 itself, we may nevertheless construct the bundle of weighted 
tangent vectors to PU by taking an additional quotient with respect to 
the Z2 symmetry. To simplify the notation slightly, we shall refer to this 
bundle as Tu rather than T(PU). 

The volume bundle coordinates (xa) = (x0 ,xi) are not the projec
tions of the usual Cartesian coordinates on U, and in particular x 0 is a 
'radial' coordinate. In fact, if we take the xi to be affine coordinates on 
P U, related to Cartesian coordinates ya by xi = yi / y0 , then the con
struction of the volume bundle gives x 0 = y0 , so Cartesian coordinates 
are given in terms of the xa by y0 = x0 , yi = x0 xi. The transformation 
laws for the coordinate vector fields are 

and therefore 

In coordinates (ya, wa) on TU0 , 

yV _ a_!_ 
- y awa' 

We may therefore define Tu as follows. We specify an equivalence rela
tion on Uo x U by (x, y) ,...., (x, y) if x =AX andy= y + J.i,X for A E R 0 , 

11 E R; then Tu = T(PU) is the quotient of U0 x U under this relation. 
We shall write a typical element of Tu as ([x], [[y]]x)· 

We now define a map¢: U0 xU-+ Uffii\ 2U by ¢(x,y) = (x,x/\y). 
This gives rise to a map '¢ : Tu -+ P(U ffi 1\ 2 U) by '¢([x], [[y]]x) = 
[ ( x, x 1\ y)]; this is easily seen to be well-defined. Using the identification 
W = U ffi /\2U we may regard'¢ as a map Tu -+ PW; we shall now 
investigate its relationship with Q. 

First, '¢(Tu) C Q because x 1\ ( x 1\ y) = 0; and '¢(Tu) C Q + U Q0 

because x =!= 0. The map is injective, because if [(x, x 1\ y)] = [(x, x 1\ y)] 
then x =AX and x 1\ y = A(x 1\ y) for some A E R 0 , so that x 1\ y = x 1\ y 
and therefore y - y = J.i,X for some 11 E R. And the map is surjective to 
Q+ U Qo, because if [(u, X)] E Q+ U Qo then u =!= 0 so that u E U0 ; and 
u 1\ X= 0 so that, as X is simple, X= u 1\ v for some v E U. We may 
therefore identify the bundle Tu with the subset Q+ U Q0 of Q. 

We also remark that Tu is a vector bundle. We have already noted 
this in the general case, but we may see this directly here. Observe that 
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Q+ is the set {[x, OJ : x E U0 }, and so is just the projective space PU; 
this is the base of the bundle. The projection is ([x], [[y]]x) >---+ [x] E PU. 
The linear structure in the fibres is inherited from the linear structure 
on Uo X U _, Uo, so that ([x], [[y]]x) + >.([x], [[y]]x) = ([x], [[y + >.y]]x)· 
The decomposition Q+ U Q0 corresponds to a decomposition of Tu into 
zero and non-zero weighted vectors; we shall write T[j for the slit bundle 
containing the non-zero weighted vectors. 

As a vector bundle, the Tu has a corresponding projective bundle 
PTu containing elements ([x], [[[y]]x]) where ([x], [[y]]x) E T[j. We may 
identify this with the projective tangent bundle of PU as follows. An 
element of PT(PU) at a point [x] E PU is a line in PU passing through 
[x]; but such a line is defined by a 2-plane [x 1\ y] in U, and this corre
sponds to the element ([x], [[[y]]x]) E PTu. So we have the sequence of 
projections 

Uo x Uo _, PU x Uo _, T[j _, PT(PU) _, PU 

where the dimensions of these manifolds are 2n + 2, 2n + 1, 2n, 2n- 1 
and n respectively. 

Finally, we relate this approach to the Segre planes in Q. Take a 
point ([x], [[y]]x) E T[j; this is the 2-plane L = [(e- y) 1\ x] E Qo. There 
are now canonical choices of rays to use in the Segre construction. We 
note first that EJ (e- y) 1\ x = x, so that [x] is a canonical choice of ray 
in the 2-plane; it is easy to see that the n-dimensionallinear subvariety 
of Q corresponding to this choice is just (the projective completion of) 
the fibre of the vector bundle Tu _, PU projecting to [x] E PU. 

On the other hand, L + e E V / L may be used to define a canonical 
2-dimensionallinear subvariety of Q as described earlier, and this turns 
out to be a subset of Q0 . Any point in this subvariety is a 2-plane of 
the form 

[(a(e- y) + j]x) 1\ (e + >.x +fLY)], 

and we may check that this is an element of Q0 for all values of a, j], >., fL 
such that a and j3 are not both zero. The subvarieties of this kind are 
the leaves of a foliation of Q0 , and it is straightforward to check that 
two 2-planes [(e- y) 1\ x], [(e- y) 1\ x] of this form in V are in the same 
leaf of this foliation precisely when [x 1\ y] = [x 1\ y], so that each leaf 
projects to a well-defined 2-plane in U. 
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